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Algebraic features of modular theory in von Neumann algebras are discussed with
the help of Haagerup's //-theory and some notational devices.

Nowadays, the so called modular theory for von Neumann algebras is
well-established and fully utilized (see [17] for example) in the field of
operator algebras. The symbols conventionally used there, however, does
not seem to be so much expressive in some sense. One of the main purposes
in the present article is a focussed account of the problem of this kind for
modular theory in operator algebras.

In the past time, there had been already some suggestions on the
improvement of notations for the modular theory but not in a thorough
way. Among them, Woronowicz's approach [22] and new symbols introduced
in [2] are worthy of attention. Around the same time of these works, the
non-commutative //-theory for arbitrary von Neumann algebras came out
and had been developped by several people such as Haagerup, Connes-Hilsum,
Kosaki, and Araki-Masuda, and so on. It is worth pointing out the fact
that, in this theory, the l/p-th power of a state of a von Neumann algebra
is identified with an element in the relevant //-space.

Now we give a brief outline of the contents in this article. The first
section surveys the background materials and the substantial parts start from
the next section.
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In §2, after the introduction of formal powers of positive linear functionals
on von Neumann algebras, we shall give an algebraic interpretation of the
works mentioned above. For example, we can get clear understanding of
Connes' converse theorem on Radon-Nikodym cocycles, Araki's multiple
time KMS-condition, and so on.

In §3, 'relative modular theory' is introduced based on the formalism
in §2, which enables us to incorporate the theory of operator-valued weights
of Haagerup. The theory of operator-valued weights is utilized in the index
theory for type III von Neumann algebras (cf. [10]) and the present
formulation will give some perspective in that field.

As to the technical part of our exposition, we rely heavily on Haagerup's
theory of non-commutative //-spaces. In some sense, our algebraic approach
in modular theory is a natural generalization of //-theory to complex
exponents.

Originally, the present research comes out from the investigation of the
meaning of modular operators which appear in Sauvageot's relative tensor
products. We can explain his construction as well as Connes' theory of
spatial derivatives in the framework of the present approach. The appropriate
language to treat such topics is, however, the 'modular theory' for bimodules
and it deserves separate expositions because of the importance in the Ocneanu's
approach to Jones' index theory.

We would like to return to this subject in a future paper.

§ 1. Preliminaries

This section is devoted to the description of standard facts as well as
related technical tools which will be used in the succeeding sections. The
main reference here is [20].

Notation and Convention

For a linear operator x in a Hilbert space Jf, we denote by B(X) the
support projection of x, i.e., the (orthogonal) projection in Jf corresponding
to the closed subspace D(x) Q ker#. More generally (and vaguely), any
object x which is represented (or can be regarded) as a closable linear
operator, the symbol §(x) is used to denote the support of the operator.

Resolutions of the identity in the spectral decomposition of self-adjoint
operators are assumed to be left-continuous.

When one speaks of holomorphic functions / on a closed subset D of



ALGEBRAIC ASPECTS IN MODULAR THEORY 1077

C5 / is assumed to be a bounded continuous function which is 'integrable'
in the following sense: For any closed path y in D9 the contour integral of
/ along y vanishes whenever y is homotopic (in D) to a point.

For unbounded linear operators A and B, we denote the usual addition
and product by A+B and A-B, while the notation A+B and AB is reserved
for the strong sum and the strong product (if they exist).

Measurable Operators

In this part, we shall scratch the theory of measurable operators in the
form appropriate for our purpose (so the description may be biassed). For
the full account, we refer to [13] (also cf. [20]).

Let N be a semifinite von Neumann algebra realized in a Hilbert space
J^ with a faithful normal semifinite trace i.

A closed linear operator x in J^ affiliated with N is called T-measurable
if there is a projection p in N such that

(i) pffl is contained in the definition domain of x and the restriction x\p^

is bounded (this situation is simply expressed as \\xp\\ < -foo),

(ii) T(!

The set of T-measurable operators affiliated with N is denoted by N*

(or simply N). Any T-measurable operator x is automatically densely defined
and its adjoint x* is again T-measurable. Moreover, for two T-measurable
operators x, yeN, x+y and xy (here the sum and the product should be
understood in the usual sense of unbounded operator) are densely defined
closable operators and their closures are again T-measurable. In the following
the closures x + y and xy are simply denoted by x + y and xy respectively.

Theorem 1.1. With the algebraic operations described above, Nr is a

^-algebra.

Remark. The condition of T-measurability on a closed densely defined
operator x is equivalent to the condition

3c>0, r(l-ee(N))< +»>

where Ai— »0;i(|tf|) denotes the spectral resolution of the positive self-adjoint
operator \x\ = (x*x)ilz.

The following topology (defined by the convergence) in N is



1078 SHIGERU YAMAGAMI

introduced in [16] and fully utilized in [13].

Definition 1.2. A sequence of operators {%„}„> i in NT is called to converge

in measure to xeNT if 3 a sequence of projections {pn}n>i in N such that

lim \\(xn — x)pn ||=0 and limi(l —pn) = 0.
n n

Theorem 13, Nr is a complete Hausdorff topological * -algebra in the

measure topology which contains N as a dense *-subalgebra.

Corollary 1.4. As a completion of N with respect to the measure topology,

Nr is independent of the choice of a specific representation of N on a Hilbert space.

Remark. The above result other than the completeness is already proven

in [16]. In [13], the completeness is proved in the following way: First

complete N with respect to the measure topology and then the abstract space

of completion is identified with the set of measurable operators. For a

direct proof of the completeness of N, see [20].

The following fact may be known. For the completeness we add its

proof.

Lemma 1.5. Let q>, \ji be two normal semifinite weights on N with h, k

their Radon-Nikodym derivatives with respect to T. If h and k are i-measurable,

then the sum <p + \l/ is semifinite and its Radon-Nikodym derivative with respect

to T is given by the (strong) sum h-\-k.

'.') Suppose that N is the von Neumann algebra on a Hilbert space

2tf . Let {eA}Aen, {/jAeR be the spectral resolutions of h, h respectively and

set hn = hen, kn = kfn.

Then hn /* h, kn 7 k and [14, Proposition 4.2] gives

Since hn and kn are bounded, [14, Proposition 4.1] assures
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Thus, once we can show that hn + kn 7 h + k, [14, Proposition 4.2] gives

The semifiniteness of (p + ij/ is clear from this expression.

To see the convergence, we first remark that the strong sum h + k is

self-adjoint by the theory of measurable operators. The real content of the

above convergence is the convergence of (hn + kn)(l +hnkn)~
l to (h + k)

(l+h + k)'1 in strong operator topology. Let Dn be the range of en/\fn for

w = l,2,"'. Then Dn is increasing as n — * oo and the estimate

t(l -«„ A/,) <;t(l-o +*(!-/„)

shows that D = u n> 1 Dn is dense in ffl. Since

(h + k)£ = (hn + &„)£ for ^ e Dm with m < n,

the problem is reduced to check the convergence of (1 -f/z,, + ^w)~1 to

( l - f /z-f^)" 1 in strong operator topology. Since the closure of (l+h + k)\D

coincides with \-\-h-\-k (the uniqueness of extensions of measurable operators),

(1 +h + k)(D) is dense in J^. Take %eD. For sufficiently large n, we have

1+ * + * )<? and hence

Thus (1 +hn + k^~l converges to (l+h + k)~l on the dense subspace

(l+h + k)(D). Since the norms of (1 -f hn + kn)~
l and (I -{-h + k)'1 are

uniformly bounded, the desired convergence limn(l -\-hn-\-k^)~l = (l

follows. [].

For e>0, ^>0, if we set

N(ey 6) = {xe~NT] 3 a projection p in AT, \\xp\\ <G,t(l—p)<d},

{AT(8, 5)} forms a fundamental set of neighborhoods in measure topology at 0.
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The following description of JV(e, d) is taken from [20] (see the remark after
Theorem 1 for the notation).

Lemma L60

N(e, S) = {XeN<; ?(l-ec(\X\)<d}.

The next result is [20] II. Lemma 18.

Lemma 1.7. Let h be a positive self -adjoint operation in Nr. Set

C+ + = {zEC; 3te>0}. For ZE C+ + , hz belongs to "Nr and the map

is differ entiable on C+ + if N* is furnished with the measure topology.

Modular Theory

In this part, we shall review some of the key formulae in modular
theory, which at the same time makes our notation fixed (although it is
standard).

Let N be a von Neumann algebra with the predual N^, and its positive
part N*. We denote by N* the set of normal semifinite weights on N and
by N* + the set of normal faithful semifinite weights. Since the weights
dealt with in this paper are always assumed to be normal, we often omit
the adjective 'normal' in the following.

For (peN*, we denote by L2(N,cp) the GNS-construction (or
representation) of N. If (p is faithful, we define a densely defined operator
S, in L2(N, <p) by

S9([x]J = [x*]99 xeN, (p(x*x)<oo, (p(xx*)<co.

8^ is closable and, if we denote by J^A^2 the polar decomposition of the
closure /S^, we have (note that S2

p = id)

The fundamental facts in Tomita-Takesaki theory are

(i) AdJ9 transfers N onto its commutant in L2(N, (p).
(ii) VaeC, AdA^ 'preserves' AT in a certain sense.
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In particular,

defines a 1 -parameter * -automorphism group of N, called the modular
automorphism group of (p.

For two <p, \I/EN*+, we can compare their modular automorphism

groups by the 2x2 matrix method: Let 6eMat2(N)*+ be defined by

_X21 X22

Let

.-[•
Since h and hence

*- o -i

fl Ol 1 TO Ol 1
= -(l+A), \ = -(l-

|_0 OJ 2 LO IJ 2

are in the centralizer of 0, we can find a 1 -parameter group of isometrics

<7f^, (7?'*, o-f^, fff'^ such that

By the KMS-condition, we can identify of >(p with erf and crf'1^ with erf. On

the other hand, since

r° °LI o

is a partial isometry with initial and final projections

ri 01 ro 01
Lo oj' Lo ij '

we can find a continuous family of unitaries {(D\l/: Dcp)t}teR in AT" satisfying
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Now, by matrix manipulations, we have

(1)

(2) o+(x) =(D(p:Dt)to*(x)((D<p:Dil/)t)*, teR,

(3) oT-+(x) = (Dq>:Dt

(4) fff'+=(ottqTl,

Similarly, if we consider the 3x3 matrix of TV, for <plt cp2,

(5) a*Ma™* = a*i«

which follows from

[ 01 0 "

0 0 0

L 0 0 0 „

" 0 0 0 "

0 0 1

. 0 0 0 . h
" 0 1 0 "

0 0 0

. 0 0 0 .

\ 1 "0 0 Oil

0 0 1

.0 0 OJ/

The above argument works for non-faithful weights: For (peN*, cp

defines a faithful semifinite weight on the reduced algebra s(<p)j/Vs(<p), where

§((/?) denotes the support projection of cp, and its modular automorphism

group is defined to be this reduced one. Similarly, given two weights

(p, \l/eN*y 1-parameter group of isometrics af^ of s((p)Ns(\l/) is defined. 1-

parameter family of operators af^ (s(cp)s(^)), teR, in &(<p)Ns(\l/) is denoted by

{[D^: D\//]t} as well.

§2. Modular Algebras

For a von Neumann algebra TV, we shall introduce, in this section, a

*-algebra which contains TV as a *-subalgebra and is generated by TV and

the symbols <pa with (peN* and aeC+={zeC; SR#>0} (this account is a

bit inaccurate when N does not admit a faithful normal state). This algebra

is called the modular algebra of TV in this paper because all the essense

of algebraic features of the modular theory is stuffed in it.
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Modular Algebras — boundary case

Let us begin with the description of the algebra generated by purely
imaginary powers (cf. [2]), which turns out to give a canonical realization
of Takesaki's dual. For a von Neumann algebra AT, let N(iR) be the universal
*-algebra generated algebraically by N and a set of symbols {(plt;
teR} with the relations

(1) pVW'**", (<?''')* = 9~", 9i0 = s(<p),

(2) (p^xqj-^^x), xeN,

(3) <?'•<

for cp, \lseN*+ and s, teR. Here s((p) stands for the support of (p. (More
precisely, N(iR) is defined to be the quotient of a formal * -algebra generated
by N and (plt by the *-ideal generated by the relations (1), (2), (3).)

The *-algebra N(iR) is graded in the obvious way: If we set

lt (summation is an algebraic one)

for teR, then N(iR)=@teRN(it) and

N(is)N(it) c N(i(s 4- 0), N(it)* =N(- it).

Note that N(it) = N(plt = (pltN for any (pe~N+ + .
As a consequence of the gradation, we can define a 1 -parameter

automorphism group {9s}seM (called scaling automorphism group) of jV"by

(4) Os(x(pit) = e~i*x(pit, xeN, (peN+, s, teR.

By a ^representation of N(iR) in a Hilbert space H, we mean a
*-homomorphism n of N(iR) into the full operator algebra &(3ff) such that
n\N is a normal representation of the von Neumann algebra N, t\-+n((plt) is
weakly continuous for any (peN*, and 0 is extended to a weakly continuous
1 -parameter group of automorphisms of n(N(iRy)" .

Let N be the von Neumann algebra obtained as the closure of N(iR)
with respect to the topology induced from the set of ^representations of
N(iR). By the universality of the construction, 0 is uniquely extended to
a 1 -parameter automorphism group of N, which is again denoted by 9.
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Lemma 2.1. (N, 6) is identified with the Takesaki's dual of N.

'.') Take a faithful weight \l/eN*+ and construct the crossed product

NWyR relative to the modular automorphism group {crj associated with \j/.

Note that N^^R is a von Neumann algebra generated by N and a distinguished

1-parameter group of unitaries {At}teR which implements a, i.e.,

(5) AtxA^l=at(x), xeN, tt=R.

We can define a * -representation TI of N(iR) in N^ffR by

(6)

In fact, (1) follows from (1-3) and (6), while (2), (3) is a consequence of

(1-1), (1-2). The continuity properties of n are clear (note that 0 is identified

with the dual action of cr).

Since n is evidently faithful on N and intertwines 0 to the dual action

of Ny$aR, a characterization of crossed product ([19], [12]) shows that n is

an isomorphism. Q

As a corollary of this fact and the corresponding result for crossed

products, N is identified with a subalgebra of N and is characterized as the

fixed point algebra of 0. More generally, we have

Furthermore,

(8) e(*)= ds08(x),
J — 00

defines a normal faithful semifinite AT-valued weight e on N+. By a general

theory of operator-valued weight ([5]), cp = (pos gives a normal semifinite

weight (dual weight) for (peN* and their modular groups as well as

Radon-Nikodym cocycles are expressed in terms of original weights:

(9) af=Adtptt,

From (9) and (10), one sees that 31 a normal faithful semifinite trace T on
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N satisfying

(11) (Dcp: Di\ = ̂ \ VteR,

([18]). The Radon-Nikodym derivative h^ of q> with respect to T in the
sense of [14] (h9 is a positive self-adjoint operator affiliated with N) is
identified with the (exponentiated) generator of (plt:

h* = (plt, teR

Theorem 2.2 (Haagerup).
(i) The map <p\-*h9 defines a bisection from the set of semifinite weights on
N onto the set of positive self-adjoint operators h affiliated with N and
satisfying

0s(h) = e~sh, VseR.

(ii) For (peN*, cp is bounded, i.e., <peN* iff h^ is t-measurable.

(iii) The map N* 3(p\—*hy is uniquely extended to a linear isomorphism from

the predual N^ onto the set of i-measurable operators h affiliated with N and
satisfying

which turns out to be an N-bimodule map preserving * -operation and
polar decompositions'. If (p = u\<p\ is the polar decomposition of cp as a linear
form, then h(p = uh\(f)\ gives the polar decomposition of h^ as closed operator.

Remark. The assertion (ii) in the theorem is assured by showing the
following formula due to Haagerup:

for A>0.

Here {e(^)};i>o denotes the spectral resolution of cp as the positive self-adjoint
operator affiliated with N.

Considering the importance of the map (p -> h^ as it will be made clear
succeedingly, we want to call it Haagerup's correspondence in this paper. It
is not always convenient, however, to distinguish cp and h9 and sometimes
it is even unnatural, so we regard JV^ as a subspace of the *-algebra N of
T-measurable operators affiliated with N and use the same symbol to express
them.
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As an immediate application of the above results, one can prove the

following fact which is already equivalent to a generalization of the Connes'
converse theorem on Radon-Nikodym cocycles.

Lemma 23. Let R3t\—*uteN(it) be a weakly continuous \-parameter

group of partial isometries in N. Then there is a unique weight (p £ N* satisfying
ut = (pif for VteR.

'.') Let h be the generator of {ut}teM: h is a positive self-adjoint operator
affiliated with N and satisfying hlt = ut. By the scaling property 0s(ut) = e~lstut,

we see that

0s(h) = e~sh, VseR.

Thus there is a unique weight (peN* such that

Taking the Radon-Nikodym cocycles of both sides with respect to T, we have

The uniqueness of cp is clear. Q

Modular Algebras — general case

For a E C + + = {z e C\ ^z > 0} , let N(a) be the set of T-measurable operators
h affiliated with N and satisfying

Note that this is an immediate extension of the definition of Haagerup's
Z/~spaces.

We shall introduce a *-algebra which is an 'analytic continuation' of
N(iR): Since algebraic operations as well as operational calculus are applied

for measurable operators, we can define the a-th power q>* of cpeN* (aeC + )
as a measurable operator in N (note that (p* is T-measurable <^> (p = 0 for

0).
By the polar decomposition, N(ot) is identified as
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If we set

(12) N(C+)= £ N(«),
aeC +

(the right hand side is an algebraic sum) N(C + ) is a *-subalgebra of
TV. Furthermore, it is a graded *-algebra in the following sense:

N(a)N(P) c N(a + p), AT(a)* = AT(a).

The summation in (12) is a direct sum because each component belongs to
different spectral subspaces of 0. Note that N(l) = N^ by Theorem (iii).

For a positive real number s>0, the set of positive T-measurable operators
in N(s) is called the positive cone and is denoted by N+(s).

The following is immediate from operational calculus in the *-algebra
of T-measurable operators.

Proposition 2.4. Let s>0 be a positive real number.

(i) W>0, VpeJV+(s), preN+(rs).

(ii) VzeJ?, V£EN(s + it), 31peN+(s) and a partial isometry ueN(it) such that

£ = up, u*u = s (p i / s ) .

The following is a trivial generalization of a result in [20].

Lemma 2.5. For a sequence {cpn}n>i and an element (p in N^, the
following two conditions are equivalent.

(i) \\mn(pn = (p in the norm topology as the predual of N.

(ii) limn(pn = (p in the measure topology as i-measurable operators.

'.') Taking the difference (pn — (p, we may assume that (p = Q (note that

three topologies are translation-invariant). Let (pn
 = u

n\
(Pn\ De tne polar

decomposi-tion and {en(^)}^eR be the spectral resolution of \cpn\ as T-measurable
operator.

(i)=>(ii): Since \cpn\(l)= \\cpn\\ —> 0 as w-»-foo, we can find a sequence
of positive numbers {&„} such that

= 0 and
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Set pn = enttn)EN. Clearly \\9nPn\\N <\\\9n\Pn\\N < ̂ ^^- Moreover, by
the formula of Haagerup, we have ?(l —pn) = \(pn\(l)/An-*Q as n-^+co.
Thus lim^cp^O in the measure topology.

(ii)— »(i): Take a sequence of projections {pn}n>i in N such that
limwT(l —pn) = 0, (pflpneN, and limn(pnpn = Q in the norm-topology of N.

Let £ = sup,, <! || (?„/>,, || # and set qn = en(c/2). Then by the spectral
decomposition of \<pn\, we have (1 — qn) /\pn = Q. In fact, for £e(l—qn) ApnH,

\S\\\ While

implies £ = 0. Hence 1— #„ -<!—/>„. Again, by the formula of Haagerup,
we have

ll9BIU, = I^IO) = W2)T(l-O<(c/2Ml-/> I I)^0 as « - > + o o .

D

Corollary 286 (Multiple KMS condition). Le? *!,-•-,*„ eJV and

<P i r • • ,<Pn + 1 e ^^ • 7"^en £/zg function

is a bounded holomorphic function on the tube

where N^ is furnished with the norm topology as the predual of N.

'.') The function is holomorphic on the domain in question by Lemma
5. The repeated application of three line theorem gives the boundedness. D

According to Haagerup, the evaluation map N^ 3 <p\—xp(l) is denoted
by tr and is called trace. This terminology is justified by

Proposition 2.1 '.

(i) Let aeC be in the strip 0<5Ra<l . For £eN(%) and

(ii) Let 5>0 be a positive real number and teR. For
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". ') The following is a slight modification of the proof of Proposition
11.21 in [20].

(i) By Proposition 4 (polar decomposition), we can write £>=x(p'*y

rj=yi//1'~a with x, yeN and cp, ij/eN*. Since

tr(x^y^ l~lt) = \l/(xq>*y\l/ ~ '<)

= \l/(\l/~ltx(plty) (by the of-invariance of \l/)

the analytic continuation of this relation from it to a gives the desired formula.
(ii) This is a special case of (i) by the polar decomposition of £ and

the operational calculus for (£*£)ll2a and (^*)1/2s. Q

Lp-Spaces

Let 5>0 and teR. For i;eN(s + it), set

Following the argument in [13], we can prove that ||p | |S4-i t is a norm in
it): We first prove Holder's inequality

by the three-line theorem applied to the holomorphic function

Then the identification

shows that ||'||s+jt is a norm.
For />>!, N(\/p) with the norm |Hli/p is called the Z/-space associated

with a von Neumann algebra N (in the sense of Haagerup) and usually

denoted by LP(N).
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The following result is an extension of Lemma 5.

Lemma 208«, Let s + it£C+ + . For a sequence {£„}„> i and an element

£, in N(s + it), the following three conditions are equivalent.

(i) limj£n-a+,, = 0.

(ii) limn£M = £ in measure topology.

Y) By a similar argument in the proof of Lemma 5. D

Now we sketch proofs of some of the properties of N(s-\-it) (see [20]

for details). Since the set N of T-measurable operators affiliated with the

Takesaki's dual N of N is a complete topological vector space with respect

to the measure topology and since N(s + it) is identified with a closed linear

subspace of N, (N(s + it), IHL + it) ig a Banach space. To see the reflexivity
of these Banach spaces, we first prove Clarkson's inequality for s<l/2:

for £, rjeN(s-i-it), by 2 x 2-matrix and three-line techniques, which enables

us to show that (N(s + it), |H|5+,-f) is uniformly convex for s<l/2. Then by

a general theorem on uniformly convex Banach spaces (see [24] for example),

we see that the Banach space N(s + it) is reflexive for s< 1/2. Finally, N(s + it)

with 5>l/2 is reflexive as the dual space of the reflexive Banach space

(N(l—s — it)t | | ' | | i_ s_ i f). In this way, we obtain the first part of the next

theorem.

Theorem 2o90

(i) For aeC with 0<5Ra<l , (AT(a), ||-||a) is a Banach space and is identified

with the dual Banach space of (N(l— a), |Hli_a) by the pairing

JV(a) x N(l - a) 3 ( Z j ) h-* tr(fy) e C.

Here ||-||ft for teR means the restriction of the (operator) norm in N to

the closed subspace N(it).

(ii) ^-operation is an isometry of N(a) onto AT(a) for 0<SHa<l .

(iii) For a, jSeC, with 0<SRa, 0<5RjS5 and SRa+SR]8<l, we have

(iv) For 0<s<l, positive cones N(s)+ and N(l—s)+ are polar s of each other
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under the pairing given by (i).

" .") (ii) is a consequence of Proposition 7 (ii). (iii) follows from the
duality in (i). To see (iv), first note that tr(fy) = tr(£i/2ri£ll2)>Q for £eN(s) +
and rieN(l—s) + . Conversely, let ^eN(s) be such that tr(^)>0 for all
r j e N ( l — s ) + . Considering the Jordan decomposition of £, one sees that £,
has only the positive component. Q

The following is an easy modification of Proposition 11.35 in [20].

Proposition 2010B For a, /?eC with 0<JRa<JR/?< l , let T:N(oc) -> N((t)
be a bounded linear map satisfying T(a£) = aT(£) for aeN, £eN(a). Then
there is an element r\£N(f$ — VL) such that T(£,) = £,r\ for £eN((x).

Problem. Extend this result to the case 0<SRa<31/?.

Remark. For 0<5R/?<5Ra<l , ^ maY happen that we cannot find a
non-trivial T. An abelian von Neumann algebra provides such an
example. On the other hand, when N is infinite-dimensional, all left
AT-modules N((x) are isomorphic and hence there are many intertwiners.

Standard Space

The space of half power N(l/2) is a Hilbert space and provides a
(canonical) standard space of N. In fact, N acts on N from the left by
multiplication, the set N(l/2)+ forms the self-dual positive cone (Theorem
9 (iv)), and the modular conjugation is given by * in N(l/2).

In this part, we shall describe the position of weights in standard spaces.
Recall that for unbounded linear operators A and B, the usual product

is denoted by A-B, while the notation AB is reserved for the strong product.

Lemma 2.1L Let A be a densely defined positive self-adjoint operator

on a Hilbert space J^ and ae&(tf). l.etB = a*Aa£^{3?}}+ be the quadratic

multiplication in the extended positive part of &(#?). Then (i) D(Bl'2) =
D(A1/2-a), (ii) Al/2-a is closed, and (iii) B = (All2d)*(Al'2d) when A1/2a is

densely-defined.

'.') For an extended positive operator T on Jf, denote the associated
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quadratic form by

(T'W'OeP), +00],

By the definition of a*Aa,

which gives (i).

The closedness of A112 -a is obvious because of the boundedness of a.

Suppose that A112 a is densely defined. Then B is a positive self-adjoint

operator. If we denote by uClf2 the polar decomposition of A112 a, then

D(B1/2) = D(Cl/2) and we have

for %ED(Bl/2) = D(Clf2). Thus B1/2£h-»C1/2£ gives rise to a partial isometry

v and we have Ci/2 = vB1/2. Since v intertwines the support projections of

B112 and C1/2
5 we concluded that C = B1/2v*vB1/2 = B. Q

Proposition 2.12. For cpeN^, let n9 = {xeN\ q>(x*x)<+co} as

usual. Through the Haagerup's correspondence, we regard cp as a densely

defined positive self-adjoint operator affiliated with N.

(i) For aeN, aen^ if and only if a(pa* is a T-measurable densely defined

operator.

(ii) Vaeitp, a-(pl/2 is a densely defined closable operator and its closure acp112

belongs to N(l/2).

(iii) (a(p1/2)* = (pl/2a* and ((p1/2a*)*((p1/2a*) is an operator in N(l) which

represents (via Haagerup's map) the positive linear form N3x\—*(p(a*xa).

(iv) For (peN* the map

L2(N, (p)3[X

is isometrically extended to unitary map from L2(N, <p) onto L2(N)s((p).

'.') Let aeN. It is easy to see that the weight (p(a*(-)a) is represented

by an operator a<pa* in the extended positive part of N. Since acpa* is

T-measurable iff the associated weight is bounded, (i) follows from this. Let

aen^ and set Q} = acpa*. Then acpa* is densely defined and hence <p1/2a* is

densely defined as well. Since D((pi/2a*) = D(coil2) and co1/2 is T-measurable,
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(pl!2a* is T-measurable. This, with the relative invariance 0s((p) = e~scp and

Os(a) = a, implies that (pl/2a* eW(l/2).

On the other hand, from the general relation (a(pil2)* ^(pi/2a* and the

fact that cp1/2a* is T-measurable, we have (acp112)* =(pi/2a* (the fundamental

theorem of measurable operators). Now (ii) and (iii) follows from Lemma 1 1 .

(iv): From (iii) just proved, the map in question is isometric. Since

its image is a left AT-module, 3 a projection eeAT such that n^q)112 = L2(N)e.

By (pl/2s((p) = (p1/2, e<s((p). To see the opposite inclusion, we first restrict

ourselves to the case (peN*. This case, (pif2(l— e) = 0 and hence taking the

inner product with cp1/2, <^(p, 1— 6^ = 0. Thus 1— e<\— s(<p), i.e., s((p)<e,

proving e = s(cp).

Now we go into the general case. Express (p = ̂ i&>i with o^e N*. Since

®((p) = \/iS(cof), the problem is reduced to the case just proved by the following

lemma. n

Lemma 2.13. Let <peN* and coeA/"^ with (D<(p. Then 31 aEn9s((p)

such that CD1/2 = acp112.

' . ' ) Let e6JV be the projection to the closed subspace (pi/2n* c: L2(N) as

before. Since

is norm-decreasing and commutes with the right action of N, 3a E eNe such that

Let pn and qn be an increasing sequence of spectral projections of (p and co

respectively. For x e n^, let rn(x) = 1— s((l —pn A qn)x*). Then (pn A qn)

x*rn(x) = x*rn(x) and hence co1/2 = a-(p112 on x*rn(x)3tf. Since ^^^rn(x)^e

is dense in (pn A qn)s((p)JJf (s(a))<s((p)) and since a)1/2 and (pi/2 are bounded

on (pn A qn)J^y we conclude that

on

Thus a-(p112 is T-measurable and its closure a<p112 is equal to co1/2.

The uniqueness of a is clear. Q

Corollary 2.14. For £eL2(N),
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". ') This is a combination of (iv) and the polar decomposition of £. D

Matrix Amplification and Reduction

For a projection e in N, the space of weights of reduced algebra eNe
is naturally identified with

Starting from this fact, we can construct identifications (eNe) = eNe and
(eNe)(x) = eN(%)e for aeC+ (use the KMS-condition). These are called
reductions.

We shall apply this identification to the construction of matrix
amplification. Let I be a set which describes the size of matrix and denote
by Matj(N) the matrix amplification of N indexed by 1. Through the pairing

the predual of Matj(N) is identified with Matj(N^) (under the suitable
convergence condition). Cutting down MatI(N)(oC) (aeC+) to matrix
components and then doing polar decomposition, we see that this space is

also identified with Matj(N(oC)) (again under the suitable convergence
condition) and the algebraic structure for Matr(N)(C + ) is recognized as the
matrix amplification of N(C + ).

Similarly, given two index sets / and J, we can define MatIXJ(N(a)) as
the subspace of MatruJ(N(oC)). In particular, the space of column vectors
(resp. row vectors) M0*/x{1}(AT(a)) (resp. Mat{l}* /(JV(a)) is denoted by Nfa)®1

(resp. ©/#(<*))•
In the obvious way, MatT(N(oC)) multiplies on 0/JV(j8) from the left,

producing 0/JV(aH-j8). Similarly for the multiplications of other types.
Here is the explicit description of important cases, a = 0,1/2,1:

)TN=ttx-}- T- x-eN Y x * x - e N }' I I I ijiel* i J ^ j i i J '
i

y®/_ rr \ . ^.c AT ̂
V — X X ^ i / t e / J • * i t = - t V ,

i
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Note that 07L
2(AO and L2(N)®r are Hilbert spaces and there is a

natural pairing between them, i.e., they are the conjugate spaces of each
other. Similarly, there is a pairung between 0/A/" and N®1 , through which
0/AT is identified with the dual space of AT®7.

Remark. Note that the conjugation ( = *-operation) gives isometric

(conjugate-linear) isomorphisms ®jN^N®J, ® jL2(AT) = L2(AOeJ, and
©fNj.^N®1. Though the analytic conditions are the same for 0jL2(AT)
and L2(A7)®/, they should be discriminated by this reason.

§3. Relative Modular Algebras

In this section, we consider the relative notion for modular algebra.
Recall that modular algebras developped in §2 incorporates the modular
theory for weights. Analogously, 'relative' modular algebra is closely related
with the modular theory for operator-valued weights. So let us begin with
the relevant definitions of operator-valued weights.

Consider a von Neumann algebra M and its subalgebra N and denote
by M+ and N+ their extended positive parts. Then an operator-valued
weight (or an AT-valued weight on M) e is an AT+ -valued weight on M+

satisfying £(yxy*)=ys(x)y* for xeM+ and yeN. The normality and
semifiniteness are defined for operator-valued weights exactly by the same
way for ordinary weights. Since we do not consider operator-valued weights
other than normal and semifinite ones, these adjectives are often omitted in
this paper. Let cp be a (normal semifinite) weight on N. Then cp is uniquely
extended to a weight on N+ (again denoted by (p) and (p°s gives a weight
on M. Note that epos is normal and semifinite because s is normal and
semifinite.

For an operator-valued weight s: M+-*N+, its support is defined by
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g is called faithful if s(e) = l. Since e induces a faithful operator-valued
weight s(e)M+s(e)-^§(e)]\/r"f in the obvious way, the study of operator-valued
weights is reduced to faithful ones in some sense. In particular, from the
corresponding result on faithful operator-valued weights ([6]), we have

(D(p°s: D\l/oe)t = §(s)(D(p: D\l/)t

for <p, i/seN*.

Using the above relation we see that the map

N(it) 3 x<plt h-> x(q> o s)lt e M(it)

is well-defined and gives rise to a *-homomorphism from N(iR) into M(iR).
By the universality of crossed products, this map is further extended to a
normal *-homomorphism e^: N-*M, which is JV-linear and intertwines the
scaling automorphisms (dual actions). The homomorphism s^:N-^M is 1-1
if and only if the central support of §(e) in Nr is equal to 1 (use the Landstad's
characterization of crossed product in terms of dual action). Note that e^
preserves identities iff e is faithful.

Let TM (resp. TN) be the canonical traces on M (resp. N) described in
the construction of Takesaki's dual. By [5, Theorem 2.7], there is a unique
normal faithful semifinite operator-valued weight e from M to N such that

e is called the modular extension of e. By the uniqueness, e preserves the
scaling automorphisms.

e is the transposed of e^ in the following sense.

Proposition 3 A, We have

<e*tf)*M, $> = <y*N, «(*)>, ^eM+, yeN+.

'.') See (the proof of) [5, Theorem 2.7]. Q

Corollary 3820 Let mczM be the defining *-subalgebra of s. Then the

defining subalgebra of e contains a *-subalgebra defined by
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on which s is given by

If we denote by SM (resp. SN) the operator-valued weight from M (resp.

N) to M (resp. N) canonically associated to scaling automorphism group in

the dual construction, then we obtain the following commutative diagrams

(cf. [6] and [11, §2.1]):

8 £
M » N M > N

-I 1* I i
M » N M N

B 8

Conversely, any normal AT-linear *-homomorphism N-*M which extends

the inclusion NciM and preserves scaling automorphisms arises in this way

(use the characterization of q>lt as a 1-parameter group of unitaries and the

Haagerup's existence theorem on operator-valued weights).

Relative Modular Algebras—boundary case

For tER, set

M/N(it) = Hom(NN(it)NtNM(it)N).

Note that M/N(0) = MnN', M/C(it) = M(it), and M/M(it) = Z(M) (the center

of M). Define a multiplication

M/N(is) x M/N(it) 3 (S, TJ^STe M/N(i(s + 1))

so that

(ST)(ab) = S(a)T(b), for aeN(is) and beN(it).

To see this being well-defined, take (peN*+ and define a linear map U:

by
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For a=y<plsEN(is) and b = z(plteN(it) with y, zeN, we have

U(ab)=yo*(z)S(q>*)T(<p*)

= S(y<plM)zT(q>it)

= S(a)T(b).

Hence U=ST and 17 is AT-linear.

Clearly the multiplication defined in this way is associative. For

TeM/N(it), define the adjoint T*eM/N(-ii) by

With these operations, {M/N(it)}teR becomes a * -algebraic bundle in the sense

of Fell. (Note that T*T>0 for TeM/N(it).)

We call {M/N(ii)}teR (the boundary of) the relative modular algebra

associated to the inclusion N^M. Note that due to the algebraic structure

&(M/N) = {teR; M/N(it)^{Q}} is a subgroup of R, which turns out to be

a conjugacy invariant of inclusion relations. The subgroup §(M/N) can be

taken fairy arbitrary (see the proofs in [6, Proposition 5.8] and [4, Lemma 1]).

Suppose that there exists an operator-valued weight e: M+-*N+. For

, define slteM/N(it) by

(The left ^-linearity is clear and the right AMinearity follows from

\N = a(p. Note that si0 = B(s).)

Then ti-*slt gives a *-homomorphic section of {M/N(it)}teR, i.e.,

which is continuous in the following sense: For any cpeN*, slt((plt)EM(it)c:M

is weakly continuous in teR.

Conversely, any continuous *-homomorphic section of {M/N(ii)}teR is

of this form.

Now the following properties on modular automorphisms associated
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with operator-valued weights are easily established.

Proposition 3.3. Let U,VeM/N(it) and cp^eJj*. Then for
x e M/N(0) c M and yeN, we have

* = ((pityi//-it)(UxV*) in M(iR).

(Here note that (p^'ileNciM and UxV* eM/AT(0)c:M.)

".") From the definition of the *-algebra structure in M/N(iR), we
calculate as follows:

= (UxV*)((pity\l/-it).

D

Corollary 3.4. For faithful normal sernifinite N T -valued weight E and F

on M and faithful normal sernifinite weights (p, i/s on TV, we have

(i) orE(y)

(ii) ((po^il/oE)-*^^-*,

(iii) ((p°E)itx((poErit = EitxE-it

(iv) ((poE)it((poF)-it = EitF-it,

for all teR.

When there is a faithful operator-valued weight e: M+-*N+, we have

M/N(it) = (MnN')^ = eif(Mr\N').

In fact, the inclusion (MnN')slt dM/N(it) is trivial. To see the reverse
relation, let TeM/N(it), <pE~N~^+ and define xeM by

(cpog is faithful because 8 is faithful). Then by the AT-linearity of T,

xeMnN' and hence T=xslt.

This observation suggests similarity between M/N(it) and (J\4nN')(ii).
We shall discuss on this subject below.
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Relative Modular Algebras — general case

Given an inclusion of von Neumann algebras and a EC with 3ia>0, set

where the right hand side denotes the set of algebraic N-N linear maps from

N(ct) into M(a).
Quite similarly as in the boundary case, we can introduce a * -algebra

structure in the totality M/N(C 4.) = ̂ 0£6C + M/AT(a).

An operator-valued weight €>: M+-*N+ is called bounded if
^(M+)aN+. In this case, Cp> admits a pre-transposed map (D^: N^-*M^.

and a *-homomorphism €>^: N-*M is extended to an JV-linear *-

homomorphism AT(C+)-»M(C + ) in such a way that the extension commutes
with the scaling automorphisms, which is again denoted by O^:

Conversely any AMinear *-homomorphisms preserving the scaling automor-
phisms are of this form. The restriction of O^ to N(a) is denoted by

«Da. Then <Da belongs to M/JV(a) and satisfies

Thus (MnJV)*"czM/N(a). Note that, for 0<?|a<l, €>a is bounded as a
linear map between Banach spaces and its norm is majorized by ||<D(1)|| (use

the polar decomposition in N(ct)).

Now consider the converse inclusion. To this end, we need the following
known fact:

Lemma 3B50 Let s>0, cp1, <£>2e^* an(% suppose that <p\s<q)\s. Then
there exists an N-valued zv*- continuous function F on the strip {z£C;

— s<lmz<Q} which is analytic in the interiour of the strip and satisfies (i)
it and (it) ||F(^)||<1 for z^C in the strip.

Let T: AT(a)->M(a) be an N-N linear map. For (peN*, let

be the polar decomposition of T((pa) in M(a), i.e., ueM is a partial isometry
and i/^eM^ with u*u = ®(\l/). Note that s(\l/)<s(cp). Since
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for y e N in the domain D(a^_is) of (T^^, we have

y = ̂ -(y) for

By a result on analytic generators in von Neumann algebras ([5, Theorem
3.2 and Lemma 4.4]), we deduce that

Then, again by the existence theorem on operator-valued weights in [5], we
can find an Af-valued weight ^ on M satisfying

We claim that ®(f>i(') = ®(p2(s((pi)'s((p1)) whenever (p\s<(pls. This can be
seen as follows: Put Uj = u(q)j) and Oy = O^ (/=1>2). Since (<p2°O)~ f t

((pi°$>2)lt = (P2tt(Pll f°r ^£^ 5 the analytic continuation of this relation gives
(9lO*2r = (92°*2)a(<P2Vl) With | |92-Vlll<l- Thus

(92" Vl)

Since !T((pi) = ((pi<302 ̂ (^i)* tne rignt support of T(q>\) is majorized by the
right support of T((p2). Hence the above relation implies (<pio(l>2)2s~
(<Pi°Oi)2s, i.e., <jp1oO2 = (jp1oO1 . By the uniqueness theorem on operator-
valued weight, we conclude the desired assertion.

From the claim just proved, we see that the family {^}^jv/ ^s patched

into a single JV-valued weight <I> on M satisfying

for any cpeN^. and the accompanied \jseM*. Similarly we can glue

{M(<P)}fl»6tf*
+ ^nto a Partial isometry U in M with t7*L7"=s(O). Since (p°Q>

is bounded for any (peN*, €> is bounded as well. Then we can consider
the bounded N-N linear map <Da: AT(a)-»M(a) and we have
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Now, combining

with (*), we obtain

3/[7=E7j/s(O), My eN.

Since the support §(<!>) of $ is in the relative commutant MnN', we finally

have yU=Uy for all yeN, i.e., UeMnN'.

Thus we have proved the following:

Theorem 3060 Le£ NciM be an inclusion relation of von Neumann

algebras with common unit and a be a complex number with 0<SRa. Then for

any TeM/N(oC), there exists a unique pair of a partial isometry U in MnN'

and a bounded N -valued weight €> on M satisfying (i) T= U®" and (ii)

C7*C7=s(0).

Corollary 3D7D // 0<3Ra<l , any N-N linear map from N((x) into M(OL)

is bounded as a linear map between Banach spaces.

As an application of automatical boundedness, we can introduce

Z(N)-va.lued trace on the relative modular algebra M/N(C+):

Here 1T denotes the transposed (bounded) linear map from M to N.

Regularity on Inclusion Relations

DefkalttiofflL 3.8. An inclusion relation NciM of von Neumann algebras

is called regular if there is a faithful operator-valued weight <D: M-*N such

that the restriction of ^ to the relative commutant Mc\N' is semifinite.

For a regular inclusion relation JVciJW, every (normal and semifinite of

course) operator-valued weight from M to N has the semifinite restriction

to the relative commutant and, via this correspondence, the set of AT-valued

weights on M is bijectively parametrized by Z(JV)-valued weights on MnN'

([6]). In particular, there are plenty of bounded JV-valued weights on M.

Now we can clarify the similarity problem between M/N and MnN'/Z(N).
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Theorem 3.9. If NciM is a regular inclusion relation of von Neumann
algebras, then the relative modular algebra Mr\N'/Z(N)(C+) is canonically
isomorphic to the relative modular algebra M/N(C+).

'.') In fact MnN'/Z(N)(a)3U(®\MnN,y^-*U®* with d> bounded N-
valued weight on M, gives the isomorphism. The well-definedness is checked
by Theorem 3.6 and other algebraic properties are immediate. n

Theorem 3.10. Let N<^M be a regular inclusion of von Neumann
algebras.

(i) For oceC with 0<JRa<l , M/N(<x) is a Banach space with operator norm
and is identified with the 'dual* Banach space of M/N(l—x) with respect
to the Z(N)-valued pairing

M/AT(a) x M/N(l - a) 9 ( { j ) i-> trM/N(^) e Z(N).

(ii) ^-operation is an isometry from M/N(<x) onto M/N(£) for 0<5Ra<l .
(iii) For a, /JeC, with 0<<Ra, 0<$R/?, and SRa + SR/?<l , we have

\\ST\\K + p<\\SUT\\p for SeM/N(a) and TeM/N(fi.

(iv) For 0<s<l , positive cones M/N(s)+ and M/N(l —s)+ are polars of each
other under the pairing in (i).

'.') All the assertions are easy to check except for the duality in the
pairing of (i). So, given a bounded AMinear map /: M/JV(a)->Z(N), we
need to show that there is an element T in M/N(l —a) such that f(S) = trM/N

(ST) for all SeM/N(<x). By the previous theorem, the problem is reduced to
the case when N is a central subalgebra of M. This case, we have the
natural identification M/N(a)®NN(tx) given by iiOflt(g) jV<pah->ii((poO)a, where
ueM, (peN^y and O is a bounded AT-valued weight on M. Note that if
uijs" is a polar decomposition in M(a) and E: M-+N be the conditional
expectation defined by \I/°E = \I/, then we have ||w^a|| = \\uE*\\ ||(^U)a||. By a
direct sum decomposition of N, we may assume that N admits a faithful
finite trace T. Then we can define a linear functional on Af(a) by

M/N(a)(x)N AT(a)a»Sr(x)z ^^(T^V)^^)).

The norm relation remarked above shows that this functional is bounded
by the norm of/. Thus we can find an element £ in M(l — a) satisfying



1104 SHIGERU YAMAGAMI

tr(^(S0N(p<x)) = (i1~a(pai)(f(S)). Let ^ = u^~* be the polar decomposition and
define a conditional expectation E: M-^N by \l/ oE = \j/. Then £ = uE1~*®N

( j ' l ) 1 " * and we have

for SeM/N(oc) and cpeN*. If we put S=yE* with 3; e TV in the above
formula, we get (tl~*(p*)(y) = ((ll'\N)1~cl(p*)(y). Since yeN and (peN+ are
arbitrary, we conclude that the Radon-Nikodym derivative h = (\l/\N)l~aii:~^~a^
is in N. Thus we have

for SeM/N(a). In other words, we can put T = huEl~*. Q

On the algebraic tensor product L2(M/N) Oz(JV) L2(N) we can introduce
an (ordinary) inner product defined by

Let L2(M/N) ®Z(N) L2(N) be its completion. Then we have

Corollary 3.11. Let NciM be a regular inclusion, then SQ £ h-» S(<!;) is
extended to an isometric isomorphism L2(M/N) (X)Z(JV) L2(N)^»L2(M) between
Hilbert spaces.

As a special case of bounded operator-valued weights, a conditional
expectation from M to N has the following characterization (cf. [11, §2.1]):

Theorem 3.12. For a n.f.s. operator-valued weight e: M+-+N+, the
following conditions are equivalent.

(i) e is a conditional expectation.
(ii) £ is a conditional expectation.
(iii) t:M°e^=T;N.

' .") (ii)=>(i): Because e commutes with 0.

(i)=>(iii): Since TMO £^ anc^ TN coincide on a dense *-subalgebra of
holomorphic sections of N(C + ), we have their equality by a result in [14].

(iii)=>(ii): A classical result (Umegaki-Dixmier) on the existence of
conditional expectations. Q
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Since IN is the restriction of TM to N for a conditional expectation g,
the associated imbedding e^: N-*M induces a *-homomorphism N(C+)-*
M(C+) given by

N(a) 3xcp*\-^x((po e)a E Af(a).

Noting that e(l) = l, this map turns out to be an isometry for 0< SRa<l. As
the transposed map of e1"*, we obtain a norm 1 projection M(<x)-+N(a.) for
0<5Roc<l as well.
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