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Finiteness of Mordell-Weil Groups of Kuga
Fiber Spaces of Abelian Varieties

By

Masa-Hiko SAITO*

Abstract

In this paper, we will study Mordell-Weil groups of Kuga fiber spaces of abelian
varieties associated to the standard sympiectic representation classified by Satake. We
will show the finiteness theorem for them with a few exceptions by using the Hodge
theory and Borel-Wallach's vanishing theorem.

§ 0. Introduction

Let /: 2C-+M be a projective abelian scheme over an arithmetic quotient
of a hermitian symmetric domain M=F\3), constructed from a sympiectic
representation of the associated algebraic group. Such fiber spaces of abelian
varieties have been studied by Kuga, Shimura, Satake, Mumford, et al. Follow-
ing Satake ([SI], Ch. IV), we call such a fiber space a Kuga fiber space (of
abelian varieties). Let 37 be the generic point of M and 3^ denotes the generic
fiber of /. Then 3?^ can be considered as an abelian variety defined over the
rational function field K=C(M), so define the Mordell-Weil group to be the
group 3£y(K) of K-rational points, or equivalently, the group of rational sections
of f:3C-+M, and denote it by MW(T/M). In this paper, we shall study
Mordell-Weil groups MW(!£/W) of Kuga fiber spaces, and prove a finiteness
theorem for them.

Historically, Shioda first showed that the Mordell-Weil groups of the elliptic
modular surfaces corresponding to arithmetic subgroups /1cSL2(Z) are finite
in [Sd]. Generalizing Shioda's result, Silverberg [Sil] proved the finiteness of
the Mordell-Weil groups of those Kuga fiber spaces which are characterized by
an endomorphism algebra with positive involution and a polarization, introduced
by Shimura in [Shi] and [Sh2]. She later obtained in [Si2] a cohomological
criterion for the finiteness, which covered the most of her former results.

Denote by Rif*C% the local system of the first homology groups of the
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fibers of /. Then the local system Rif*Cx is induced by a representation
r-+GL(Wc), and we have natural isomorphisms Hq(M, RJ*Cx)s* Hq(r, Wc)
where Hq(F, Wc] denotes the Eilenberg-MacLane cohomology group. The cri-
terion of Silverberg says that if dimM>l or M is compact and Hq(r, WC)=Q
for 0=0, 1 then the Mordell-Weil group MW(T/M) is finite.

This criterion directly works for the cases when the algebraic group GQ

defined over Q under consideration has rational rank ^2, or the rational rank
=0 (i.e. FC.GR is cocompact) and GR has no compact factor and no factor
isomorphic to SU(n, 1) (see Th. 6 and Th. 7 in [Si2], or [B-W]). (When the
rational rank =1, see Theorem 7 of [Si2]).

On the other hand, there are examples of Kuga fiber spaces for which one
can not apply these vanishing theorem directly, and in some cocompact cases,
we do have examples with H\F, PFC)^0. (See §5). But we can still expect
the finiteness of the Mordell-Weil group (see [Sil], [Si3]).

As far as the classification of Kuga fiber spaces is concerned, Satake studied
deeply Q-symplectic representations, and classified all Q-primary symplectic
representations with a very mild additional condition ([S2], see also IV, §6,
[SI]), and every Q-symplectic representation is a sum of primary represetations.
They consist of the standard one which is constructed from the pair of a D-
module V with a D-skew hermitian or a D-hermitian form h where D is a
division algebra over Q with center Flf and the nonstandard one obtained from
exterior product and spin representations. In the standard case, the Q-algebraic
group is given by RFl/Q(SU(V, /i)), which is obtained from the Fralgebraic
group SU(V, h) by Weil's restriction of the scalars. We remark that the
standard representations include the cases which were studied by Shimura in
[Sh3].

In this paper, we will only consider the standard Q-symplectic representa-
tion. Also, we will exclude the following case from our consideration (cf.(3.42)):

(0.1)

Case (122, -1), w=2: GR^SU2(H)-x-xSU2(IT)-xSO4(R)x-xS04(R)t

because the reducibility of SU2(H)~ forces annoying distinctions about the nature
of r. (For the notation, see § 3, (3.23) and (3.31)).

Then the main theorem in this paper can be stated as follows.

(0.2) Theorem. ((4.23), (5.8) and (6.25)). Let f: 3£-+M be a Kuga fiber
space associated to a standard Q-primary representation not isomorphic to the case
(0.1). Assume that dim M^l. Then the Mordell-Weil group MW(3C/M) is finite.

The main idea of our proof is a generalization of Silverberg's method in
[Si2] by introducing the L2-cohomology and the Hodge theory, which can be
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outlined as follows.
If the codimension of the singular locus of the Satake compactification M*

of M is greater than 1, then for q<Ll, Hq(F, Wc) = Hq(M, Wc) is isomorphic to
the middle perversity intersection cohomology IHq(M*, Wc)* Then by the
Zucker conjecture proved in [L] and [Sa-St], these are also isomorphic to L2-coho-
mology groups. By Borel-Casselman [B-C], the L2-cohomology is calculated by
(g, K )-cohomology, and hence we can apply the Borel-Wallach vanishing theorem
in [B-W] even in the case when F is not cocompact, and deduce that H\2}(M,
WC)=Q if q<rankRGR. So if rankRGR^2, we always have Hq(M, WC~)=Q for
q=Q, 1. In case when rankj2GjB=l, we will separate the proof into two cases,
that is, the cases where M=F\£) is compact or non-compact.

If M is compact, we can use Deligne-Zucker Hodge theory on Hq(M, Wc),
because Wc admits a variation of polarized Hodge structure. It is proved that
the Mordell-Weil group MW(!£/M) is isomorphic to H\M, Wz)r\(H°-0) in this
case. Since WQ has a structure of a local system of F±-vector spaces, we have
a decomposition of Wc according to the distinct embeddings of F^ into C. We
can see from Satake's classification that this decomposition is compatible with
the Hodge structure. Though in this case it is possible that Hl(M, TFC)°'°^0,
we can use the decomposition of Hl(M, Wc) to conclude that Hl(M, WQ)O'°=Q.

If M is not compact and rankRGR=l, we can take a smooth toroidal com-
pactification /: Afc_>M such that D=M—M is a smooth divisor and consider
the cohomology group Hl(M, /* Wz). Then by a result due to Cattani-Kaplan-
Schmid [C-K-S] and Kashiwara-Kawai [K-K], this admits polarized Hodge
structure of weight 0. On the other hand, we can extend the Kuga fiber space
/ : 2C~>M to a semi-abelian scheme /: 3J—>M. And in this case one can prove
that H\M, 0^n(T})^H\M, /*JFz)

0l°, where H\M, O^n(T)) denote the group of
holomorphic sections of /. By using the theory of Neron model, it can be
shown that there is an injective homomorphism r: HQ(M, O^-n(3C}^MW(3C/M)
with finite cokernel. Now by using the description of Hodge structure due to
Yuji Shimizu [ShzY], we calculate the Hodge component and we can finally
prove that H\M, /*JFQ)0'°=0.

The organization of this paper as follows. In § 1, we introduce Q-sym-
plectic representations and Kuga fiber spaces. In § 2, we introduce the Mordell-
Weil groups of Kuga fiber spaces and recall some results due to Silverberg
[Sil], [Si2]. We also review a Hodge theory of the cohomology group to give
a slight refinement of Silverberg's results. In § 3, we summarize the basic fact
on Satake's classification of Q-symplectic representations. In §4, we recall
some results from Borel-Casselman [B-C] and Borel-Wallach [B-W], and prove
the desired vanishing theorem when the R-rank of GR^2, even if GR has
compact factors. In § 5, we shall deal with the case when the R-rank of GR

is 1 and M=F\0 is compact. We will check that the decomposition (see (5.10))
is compatible with the Hodge structure, and we calculate the first Gauss-Manin
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complex whose Hl is the space of (0, 0)-elements. In § 6, we shall deal with
the case when the R-rank of GR is 1 and M is non-compact.

The author would like to thank Professor Steven Zucker for very useful
discussions about Hodge theory, L2-cohomology and intersection cohomology.
He would also like to thank Professor Alice Silverberg for reading the preli-
minary version of this paper and giving useful comments. He would like to
express his gratitude to JAMI in Johs Hopkins University for its hospitality
during academic year 1990/91.

After I have finished the preliminary version of this paper, the author was
informed that Ngaiming Mok announced the more general finiteness result of
Moredell-Weil group of Kuga fiber spaces independently. It was announced in
his preprint [Mo], though there were some gaps in their first version of full
paper [Mo-T]. (They have assumed that GR has no compact factor for all
Kuga fiber spaces, which is not true in general.) They have fixed the gaps in
the revised version of [Mo-T], which the author received after submission of
this paper. The author believes that the method in this paper is different
from theirs and it is worth while publishing this paper.

Notation. Let T be a complex vector space. For a complex endomorphism
/and a^C, we set T(a, I)={u<^T\I(u)=a-u}, the eigenspace of /. We denote
by H=RJrR"iJrR'jJ

rR'k the field of Hamilton quaternions.

§ 1. Q-Symplectic Representations and Kuga Fiber Spaces

Let GQ be a Q-algebraic group such that its /^-valued point GR is a Zariski
connected semisimple R-group of hermitian type. Let K be a maximal compact
subgroup of GR and 3)—GR/K the corresponding Hermitian bounded symmetric
space. We denote by g, f Lie algebras of GR and K respectively, and by $ the
orthogonal complement of I in g with respect to the Killing form. Then the
complex structure of 3) is induced by an element //0^Cent(!) such that (adp(HQ))2

= — lj,. A pair (GQ, //0) consisting of the above GQ and H0 is called a Q-
hermitian pair.

(1.1) Definition. A Q-symplectic representation of a Q-hermitian pair (GQ,
HQ) is a quadruples (WQ, pQ, AQ, /) consisting of

(i) a Q-vector space WQ of dimension n,
(ii) a non-degenerate symplectic bilinear form AQ on WQxWQ,
(in) a faithful representation pQ: GQ-*Sp(WQ, AQ) and
(iv) a complex structure I^3)(WRf AR) satisfying the condition

(1.2) tdpR(HQ)-(l/2)I, dpR(Xft=Q for all
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where 3)(WR, AR} denotes

(1.3) {I<=End(WR) IZ= — 1WR, AR(x, ly) is a positive-definite /^-symmetric form}.

(See (3.11)).

Next we introduce a Kuga fiber space of abelian varieties induced from a
Q-symplectic representation. Let (WQ, pQ, AQ, I) be a Q-symplectic representa-
tion of a Q-hermitian pair (GQ, //0). By a lattice in WQ, we mean a free Z-
submodule Wz in WQ such that Wz®zQ = WQ. Considering GQ as a subgroup
in GL(WQ) through the representation pQ : GQ-*Sp(WQ, AQ), for each lattice
Wz in WQ, we set

(1.4) GWz

Then GWzdGQ becomes a discrete subgroup of GR.

(1.5) Definition-Proposition. ([SI, Ch. IV, §7]). A discrete subgroup F of
GR commensurable to GWz for some lattice Wz is called an arithmetic subgroup
of GR. The quotient space P\GR is of finite measure with respect the measure
induced from the Haar measure of GR, and there always exists a normal subgroup
rf of r of finite index such that F' is torsion-free.

(1.6) Definition. A 5-tuple (WQ, pQ, AQ, I, Wz) is said to be a Kuga 5-tuple
if (WQ, pQ, AQ, /) is a Q-symplectic representation of a Q-hermitian pair (GQ,
HQ) and Wz is lattice of WQ such that

(1.7) AQ(Wz,Wz)dZ.

From a Kuga 5-tuple, we obtain a fiber space of abelian varieties as follows.
Let K be the maximal compact subgroup of GR determined by HQ, and denote
by 3)=GR/K the corresponding hermitian symmetric space. Set WR=WQ(g)QR,
WC=WQ®QC. We have a complex structure I0^£)(WR, AR) (cf. (1.3)) satisfying
(1.2). For an element g^GR, define

Then, by definition, we have Ig(^3)(WR, AR), and from (1.2), Ig = IQ for
Hence we define, for each point z~

Setting Wt={u<=Wc\IzU = V::^iu} , we can obtain a holomorphic vector bundle
over 3) such that the following diagram commutes.

(1.8)
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Let F be a torsion-free arithmetic subgroup of GR such that Fc.GWz>
Then the quotient space M—F\S) is a complex manifold, which is known to
be a quasi-projective variety ([Ba-B]). Denote by Wz the local system of free
Z-modules on M induced by the flat bundle (3)xWz/-^)} where ~ denotes the
equivalence relation given by

(i.9) (z,w)^(r-z,p(r)-v) for r^r.
We also denote by WQ, WR, Wc the local systems on M corresponding to WQ,
WR, Wc respectively. The GQ-invariant form AQ induces a flat symplectic
bilinear form A on WQ. A holomorphic vector bundle §° on S) descends to M
and we denote by EF° the corresponding locally free sheaf on M. Now we have
the following

(1.10) Definition-Proposition. The triple (Wz, A, £F°) constructed above
becomes a variation of polarized Hodge structure (VPHS, for short) of weight
— 1, and of types (— 1, 0), (0, -1) over M=r\3), i.e.,

( i ) A is a flat Z-valued non-degenerate symplectic form on WZt

(ii) 3°dWz®zOx defines a Hodge filtration of weight — 1, and of types
(-1,0), (0, -1), i.e.

such that

(iii) A satisfies the Hodge-Riemann bilinear relations, i. e0 for a non-zero
local section w^EF 0 , we have

As explained in [D2, (4.4.3)], we have an equivalence between the category
of polarized abelian schemes over M and the category of variations of polarized
Hodge structure over M of weight — 1, and of types (—1, 0), (0, —1), so we
obtain a fiber space / : !£— >M of abelian varieties over M.

(1.11) Definition-Proposition. ([SI, Ch. IV, §8], or [Sh2, 3.10].) A fiber
space of abelian varieties f: 3C^M=r\£D obtained from a Kuga 5-tuple (WQ,
pQ, AQ, I, Wz) and a torsion- free arithmetic subgroup FdGWz of GR is called a
Kuga fiber space (of abehan varieties). The total space !£ is a smooth quasi-
projective variety and f is a smooth projective morphism.

§ 2B A Criterion of Silverberg and a Generalization

In this section, we review a criterion of the finiteness of Mordell-Weil



MORDELL-WEIL GROUPS OF KUGA FlBER SPACES 35

group of Kuga fiber spaces due to Silverberg [Si2], and give a slight gener-
alization.

First of all, we introduce the Mordell-Weil group of a fiber space of abelian
varieties. Let M be a connected smooth quasi-projective variety. By a fiber
space of abelian varieties over M we mean a polarized smooth abelian scheme
/ : 3£->M. Consider the generic fiber 3?7 of /. Then 3£7 is considered as an
abelian variety over the field K—C(M} of the rational functions on M. Then
the Mordell-Weil group of / is defined to be the group of K-rational points

), and is denoted by MW(T/M). There exists a natural isomorphism

(2.1) A4W(T/M)={a rational section s: M ---- >T of /}.

Now let (Wq, pQ, AQ, I, W z) be a Kuga 5-tuple for a Q-hermitian pair
(GQ, //0), Fc:Gwz, M=r\& as in § 1, and /: 3?-»M the associated Kuga fiber
space (see (1.11)). Let OM(3£) fresp. 0in(3f)) denote the sheaf of germs of
regular algebraic (resp. holomorphic) sections with values in 3? (resp. 3?an).
The cohomology group H°(M, OM(^}} is isomorphic to the group of regular
algebraic sections of /. A rational section seMW(3T/M) always extends to a
regular algebraic section in case of a Kuga fiber space (see [Sil, Prop. 2.1]). So
we have

(2.2) Proposition. For a Kuga fiber space f : T-*M, we have an isomorphism

(2.3) MW(Z/M)^H\Mt 0M(:£)) .

(2.4) Remark. From the construction, there exists a natural map

(2.5) H\M, 0M(T}} —> H\M, 0

In general, there exists a holomorphic section of / which is not algebraic, (e.g.
consider the case where M is a non-compact curve.) Assume that F is irredu-
cible in GR (see (4.4)). Then, if either dim(^))>l, or M is compact, one can
show that (2.5) must be an isomorphism (see [Si2, § 1], [Ba-B, § 10]).

For K=Z, Q, R, C, let H'(F, WK) denote the Eilenberg-MacLane coho-
mology groups induced by the representation pQ and an arithmetic group F.
Since 3) is contractible, we have natural isomorphisms for K—Z, Q, R, C

(2.6) H'(F, WK) = H'(M, WK}

where WK denote the local system on M associated to WK, (see (1.9)).

Now we can state the Silverberg' s criterion of the finiteness of MW(3£/M)
([Si2, Theorem 5]).

(2.7) Theorem. Assume that F is irreducible (cf. (4.4)) and dim^)>l or
M—3)/r is compact. If
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(2.8) H\r, wc)=Hi(r, WC)=Q ,
the Mordell-Weil group MW(3C/M) is finite, and isomorphic to H\F, Wz)^
H\M, Wz}.

(2.9) L2-cohomology

Let /: 3£^>M=r\3) be a Kuga fiber space as above, and (Wz, A, ff0) the
corresponding VPHS of types (0, -1), (-1, 0) as in (1.10).

The local system Wc— Wz®zC has a flat symmetric bilinear form AC) and
if we denote by Cz the Weil operator, (or the complex structure) of a fiber
Wc, the form T2(x, y} :=Ac(x, Czy} becomes a positive-definite hermitian form,
so it induces a metric on Wc. From the construction of Wc and Ac, this
metric is nothing but the one induced by the admissible inner product on Wc

([M-M, p 375]). The base space M=F\3) is endowed with a complete metric
induced by the Bergman metric on 3). Hence, we can give a norm on each
term of the complex A'(M, Wc}°° of ?Fc-valued C°° exterior forms on M. Let
L°(2)(M, WCT denote its subcomplex consisting of square-in tegrable elements
whose exterior derivative are also square-integrable. We define the L2-coho-
mology group for Wc by

(2.10) ff(«(M, WC):=H'(L'W(M, WCT}.

Let M* denote the Baily-Borel, Satake compactification of M. It is known
that M* is a normal projective variety which has a stratification by complex
subvarieties. Following [G-M], we can define the middle perversity intersection
cohomology group IH'(M*, Wc}. The following theorem is a direct consequence
of the result, which was known as the Zucker conjecture, proved by Looijenga
[L] and Saper-Stern [Sa-St].

(2.11) Theorem, Under the notation and assumption as above, we have iso-
morphisms

(2,12) Corollary^ // codimc(M* — M) = i in M*, then we have isomorphisms

H«(M, Wc} for

Proof. From the definition of the intersection cohomology group [G-M,
§3, 3.1], one can easily deduce that

c) for

hence (2.11) implies the assertion.

If F is irreducible in GR (see (4.4)) and dim^>l, one has codimc(M*— M)
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^>2 in M*. Hence, thanks to (2.12), we have the following

(2.13) Corollary. Assume that FdGR is irreducible and dim£)>l, or M=
is compact. Then there exist isomorphisms

(2.14) H\v(M, WC) = H«(M, Wc] for q^l.

(2.15) Hodge theory in case M is compact

We recall that the triple (Wz, A, 3Q) constructed in § 1 is a VPHS of weight
-1 of types (0, -1), (-1, 0) (see (1.10)). In particular, the sheaf W0:=
Wz®zOM has a Hodge filtration

Assume now that M=F\^D is compact. Then we have an isomorphism

(2.16) Hn(M, Wc)^Hfa(M, Wc) for all n.

In this case, from the L2-harmonic theory, the right hand side of (2.16) can be
expressed as a space of JFc-valued L2-harmonic forms. Deligne showed that,
as in the classical Hodge theory, there exists a decomposition

(2.17) H»(M, WC) = HUM, Wc)=®P+*.n-iH*-*

such that Hp'q = H q ' p (see [Zl]). Moreover the associated Hodge filtration on
Hn(M, Wc} is given as follows. Let Q'M(WC} denote the holomorphic de Rham
complex with values in Wc, with differential dM- If we define the filtration
(FrQ'M(Wc» by

Griffiths' transversality (see e.g. [Zl]) implies that they actually become sub-
complexes of Q'M(WC). The holomorphic Poincare lemma implies that

H'(M, WC}^H'(

and the above filtration induces a filtration on the cohomology.

(2.18) Theorem. Under the above notation, we have the following.
( i ) The spectral sequence

(2.19) E^H'+^M, Grp
FQ'M(Wc}} =$ HP+*(M, Wc}

degenerates at EI.
(ii) The filtration induced by {FPQ'M(WC)} on Hn(M9 Wc) coincides with

the Hodge filtration induced from the decomposition (2.17).
(iii) There is a natural identification
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for p+q=n — l.
(iv) The cohomology group Hn(M, Wz)/torsion is a Z-structure of Hn(M, Wc\

and has a natural polarization B, i. e. a Z-valued bilinear form satisfying the
Hodge-Riemann bilinear relations.

For example, HQ(M, Wc) has a 2-step filtration 0=F1C.F0c:F-i whose suc-
cessive quotients are :

where Gr^^g-1/^0. Hl(M, Wc] has a 3-step filtration Q=Fz(zF1c:F0c:F-1=
Hl whose successive quotients are :

(2.20) Hl>-

(2.21) H°-

(2.22) H-1' l=Grpl=F-l/F«=Hl(Gr%1) .

Considering Hl(M, WQ) as a lattice of Hl(M, Wc), we set

(2.23) Hl(M,

Let pn: Hn(M, Wc')-^H-1'n=Hn(M, Gri1) be the natural projection map induced
by the spectral sequence (2.19). Set also

(2.24) *co?^-coker{£0 : H\M, Wz) -> H\Gr^)} ,

(2.25) H\M, Wzy-*=ter{pi : H\M, Wz} -> H\M, Gri1)} .

Then by Hodge theory (2.18), one has

(2.26) H\M, WQy-*=Hl(M, WZY>*®ZQ.

Under these notations, we can state the following theorem which gives a
very natural description of MW&/M}. (Cf. [Zl, Cor. 10.2].)

(2.27) Theorem. Assume that M~F\S) is compact. Then
( i ) ^const in (2.24) is an abelian variety over C, and
(ii) we have a natural exact sequence of abelian group

(2.28) 0 — ̂  Xconst —> MWQC/M) —> H\M, WZ)°-Q — > 0 .

Proof. The assertion (i) is an immediate consequence of (2.18). Since M
is projective, all holomorphic sections become algebraic, so by (2.5), we have
an isomorphism MW(!£/M} = H\M, 0Jn(3f)). The relative exponential map for
an abelian scheme / : ?£-+M yields the following exact sequence of sheaf of Man

(*) 0 — ̂  RJ*Z —> Lie(3C) — > OF&) — > 0 ,
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where RJ*Z denote the local system of the first homology of fibers of /.
From the construction of a Kuga fiber space, we have isomorphisms Wz=Rif*Z
and Lie(3C) = Grs1, hence (*) can be written as

(2.29) 0 —> Wz —-> Gri1 —> 0Jn(3?) —> 0.

This yields an exact sequence of cohomology group

0 —> //°(M, Wz) -^> #°(M, Gri1) —> #°(M, <
(2.30)

—-> #W, Wz) —> H\M, Gri1),

from which (2.28) follows. q.e.d.

As a corollary, we have the following generalization of Silverberg's result
(2.7).

(2.31) Theorem. Assume that F\S) is compact. The Mor dell-Weil group
MW(T/M) of a Kuga fiber space is finite if and only if

§3. Satake's Classification of Q-Symplectic Representations

In this section, we will summarize the Satake's work of classification of
Q-symplectic representations. The main references are [SI], [S2].

(3.1) Preliminary
Let F be a field of characteristic zero and D a division algebra over F.

Denoting by F1 the center of D, we set

(3.2) [FI :F] = J, [D'.F^r*.

Consider a finite dimensional F-vector space V with a structure of a right D-
module, and set n^rank^F. We set:

GL(V/D)={g<=EndD(V)\g is invertible},

SL<y/D)={gs=GL(V/D)\N(g)=l],

where N denote the reduced norm of Endz>(V). The corresponding matrix
group are denoted by GLn(D) and SLn(D) respectively.

Let i be an involution on D and let e=±l. A (D, e)-hermitian form h on
V with respect to c is by definition a F-bilinear mapping h: VXV-^D satisfy-
ing the following conditions:

(3.3) h(v, v'a)=h(v,v')a,

(3.4) h(v'9 v)=eh(v, v'Y for all v,
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A (D, s)-hermitian form h is called non-degenerate if an intersection matrix
T—(h(Qi, ej)) for a Z)-basis (et) of V is invertible. Fix an involution c on D.
For a non-degenerate (D, s)-hermitian form h on 7 with respect to j, we define
the unitary group and the special unitary group for h by

(3.5) £7(7, A)=teeGL(7/0)|Afev, gv')=h(v, i/), (v, i/e7)}

(3.6) S£/(7, A)=£7(7, A)nSL(7/£>),

and the corresponding matrix group are denoted by £7n(A A) and SUn(D, h)
respectively.

The groups GLn(D), SLn(D), Un(D, h} and S£7B(I>, A) can be viewed as
algebraic group defined over Fl8 For a general Fi-group G, we denote by
RFIIF(G} the F-group obtained by scalar restriction (Weil [W, 1.3]).

(3.7) Classical groups over R and classical domains

If F—R9 we can define the classical groups and classical domains of type
( I ) , (n), (HI). A division algebra D over R must be either R, C, or H, and
here let c be the standard involution of D.

Let h be a non-degenerate skew-hermitian form on 7 (i.e. (D, — l)-her-
mitian form) with respect to c. We can find a £-basis (et) for 7 such that the
corresponding matrix T=(h(eif eff)^Mn(D) is in the following form:

( i ) D=R : n is an even integer,

r=/.,,= . . Q

(ii) D=C: (p, q) is a pair of non-negative integers such that p+q=n,

(-Up 0'

0
(Hi) D=H:

Hence the corresponding special unitary groups SUn(D, A) are given by the
following matrix groups:

( i ) ' D=R : n is even,

(3.8) S£7B(fi, A)=S/>B/a(fl)= \

(ii)' D^C: p+q=n,

(3.9) S£/B(C, h)=SU(p, q, C)={g^SLn(C)\tglpqg=lpq} ,

(iii)' Z)=ff:

3.10) S£7B(fl; A)=S£7B(fO-=
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These groups are /2-algebraic groups, which are of non-compact hermitian
type unless G=SU(n, 0, C) = SU(Q, n, C)^SU(n, C) or SU^H)". Moreover
these groups are /^-simple except for the case where G=SU2(H)~~ (see (4.12),
or [SI], Appendix, §1).

These groups act on bounded symmetric domains as follows. Consider the
following set of complex structures on V

(3.11) 3)(V, h)

= {I<=EndR(V)\I2= — lv, h(x, ly) is a positive-definite £-hermitian} .

Then the special unitary group SUn(D, li) acts on £)(V, h) transitively, and
3)(V, h) becomes an irreducible hermitian symmetric domain and is isomorphic
to a homogeneous space SUn(D, ti)/K where K is a maximal compact subgroup
of SUn(D, h). A bounded symmetric domain 3)(V , h) obtained as above is
called a classical domain and isomorphic to one of the following bounded sym-
metric domains.

(3.12) (I)pq={Ze=M(p9 q, C)|lg-£ZZ»0} ,

(3.13) (//)n={ZeMn(C)|'Z=-Z, lre-'

(3.14) (III)n={ZE-Mn(C)\tZ=Z, 1TO-£

The relations between SU(V, h) and ®(V , h} and the R-rank of SU(V, h)
are shown in the following table.

D G=SU(V, h) $=3)(V, /i) dimcW R-rank

(3.15) R Spn/2(R) (///)B/B («/2)(n/2+l)/2 n/2

C SU(p,q,C) (I)pq p.q min(p, q}

H SUn(H)- (//)„ n(n-l)/2 [n/2]

(3.16) Satake's classification

A Q-symplectic representation (WQ, pQ, AQ, /) of a Q-hermitian pair (GQ, //0)
(cf. (1.1)) is called Q-primary if (WQ, pQ) is a sum of GQ-stable subspaces iso-
morphic to an irreducible Q-representation pl : GQ-»GL(V/Q).

In this section, we review the classification of Q-primary standard sym-
plectic representations. In order to classify Q-primary symplectic representa-
tions, the following proposition is fundamental. For a proof, see [SI, Ch. IV].

(3.17) Proposition. Let (WQ, pQ, AQ, I) be a Q-primary symplectic repre-
sentation of a Q-hermitian pair (GQ, HQ), and p : GQ~*GL(V) an irreducible
representation containing in (WQ, PQ). Setting
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D=EndGQ(V), F^CentD, U=HomGQ(V, WQ),

we have the following.
( i ) D is a division algebra over Q, and V (resp. U) becomes a left D-

module (resp. a right D -module).
(ii) There exists a canonical isomorphism

(3.18) WQ = U®DV.

(iii) There exist a natural involution c on D, a (D, s)-hermitian form h on
V and a (D, — e)-hermitian form hf on U with respect to the involution c such that

(3.19) AQ=KD,Q(h'®K).

(iv) The form h on V is G ̂ -invariant . In particular, p is reduced to a
natural representation over Fl

(3.20) PL : GQ — > SU(V, h)

(with EndGQ(V)=D).

(3.21) Definition. A Q-primary representation (WQ, pQ, AQ, /) of a Q-
hermitian pair (GQ, //<,) is said to be standard if GQ=RFl/Q(SU(V, /i)) and p in
(3.20) is induced by the universal homomorphism of the scalar restriction (cf.
[W, 1.13]).

(3.22) Remark. Satake [S2] determined all Q-primary symplectic represen-
tation under an reasonable additional condition. Besides the standard one, there
exist few nonstandard representations involving skew-symmetric representations
and spin representations. But there exist also a Q-primary symplectic repre-
sentation which does not satisfy his condition (see [SI, p 195] for references).
In this paper, we will not deal with non-standard case.

A standard representation is determined only by the data D, c, V , U, h, h'
in proposition (3.17). First we have the following.

(3.23) Proposition. ([SI, Ch. IV, §6]). Let (WQ, pQ, AQ, /) be a Q-primary
symplectic representation (not necessarily standard) of a Q-hermitian pair (GQ, HQ),
and D, Flf c, V, /?, U, hf be as in Lemma (3.17). Then one of the following cases
occurs.

(RT) D—Fi is a totally real algebraic number field and c=identity, and h
is a symplectic form on V(e= — 1).

(R2, e) D is a quaternion algebra over a totally real algebraic number field
F1 and c is the standard involution, h is a (D, s)-hermitian form V with respect
to c, where s=±l.

(C) FI is a CM field, i. e. a purely imaginary quadratic extension of a



MORDELL-WEIL GROUPS OF KUGA FlBER SPACES 43

totally real algebraic number field F1Q, D is a central division algebra over F1} c
is an involution of D of the second kind, and h is a (D, s)-hermitian form with
respect to c where s=±l.

Let D, Flf c be as in Proposition (3.23). If we set F\={z<=F1 zc=z}, then
Ft is a totally real algebraic number field. Setting f=[F|: Q], let \Tt : FtQ»
R, l<Li<t] be the set of ^-distinct embeddings of Ft into R. For each: r< :

, we put

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

The algebra D^ becomes a central simple algebra over F^, so there exists a
division algebra D^ over Ff*5 such that

Fixing an above isomorphism, we denote by e*p the corresponding matrix unit
in DTi. We moreover set:

(3.29) Fci) :=ej!7Ts U^=U^el
n .

Then Fci) (resp. Uw) are left (resp. right) Dco -modules and we have an iso-
morphism (cf. [SI], p 189),

(3.30) W**=U«>®DwV™.

Note that from (3.23), Ff0 is isomorphic to R or C, corresponding to the case
(ffl), (Jf22, e) or (C), so D^ is isomorphic to i?, /r, or C.

Under these notations, we can state the following theorem.

(3.31) Theorem. ([SI, Ch. IV, §6]). Let (WQ, pQ, AQ, I) be a standard Q-
primary symplectic representation, and D, c, Fl} V , h, U, hf , WQ— U®DV , AQ=
^Diq(h'®h) be as in (3.17). Then we have the following.

( i ) There exists a decomposition

(3.32) WR :=^g®gB=0UiWrr<s©U1£/

(ii) For each i, l^i^t, h (resp. h') induces a CD00, Bf] ^-hermitian form /i(i)

on Fa) (resp. (D^, — £7]i) -hermit ian form /z/a) on £/ci)), where ^<=±1. We
have a decomposition of AR:=AQ0R=®t

i=lA'ii:> corresponding to (3.32), where
one set



44 iMASA-HiKo SAITO

(3.33) A^ :=tTDw/Fw(h'

(iii) The R-valued points GR of GQ=RFl/Q(SU(V, h)) has a canonical de-
composition

(3.34) GR=RFl/Q(SU(V, M*=ILSU(V«\ A « > ) ,

and, for each i, the natural representation pl : GQ-*SU(V, h) induces a represen-
tation

(3.35) pl^ : GR=

where p[i:> can be written in the form

(3.36)

according to the decomposition (3.34).

Moreover, for each case in (3.23), we have the following

(3.37) Theorem. ([SI, Ch. IV, §6]). Under the notation in Proposition (3.23),
we have the following explicit descriptions of F™, D^} D^\ FCI), /ico, U«\ GR

for the cases of (121), (Q2, e), (C) respectively.
(Rl) (e=-l) D=F1=F+

l. Set dimFlV = n, dimFlU=m. Then one has:

/ico: R-symplectic form on V^\ (7t=l) for l<i

(3.38) GR=Sp

(R2, e) We have Fl=F'i, and D is a quaternion algebra over Flt Set
rankDV = n, rankDU=m. Then one has Fco=/2. After a suitable renumbering
of {rj, we may assume that for some tr , Q^t'^t,

H l^i^t' { H
D^^\

M2(R) t'+l^i^t, { R t'

Then one has :

Hn ( Hm

U^^\ W*
RZn, { R2m, RZn®RR2m t' + l^i^t.

positive-definite H-symmetric form (Wi=l) l^i^

R-symplectic form (i]t= — 1)

(3.39) GR=SUn(H)X--xSUn(H)xSpn(R)x-xSpn(R)
J'xcompact (£-£' )x(lll)7i
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H-symplectic form (w<=l)

positive-definite R-symmetric form (3^= — 1)

(3.40) GR=SUn(H)- X - - X SUn(H)~ xS02n(R)X
(J-J ' )xcompact

((7) (s=±l). F! zs a purely imaginary quadratic extension of Ft, s0
: Q]. P7e set [D\ FJ^r2, rank^F^n, and rank^^m. T/zen one /z

C, DT*sMr(C),

assume that for t', 05^'

C-symplectic form with the signature (pi} q%) l^i^t' (pt^

positive-definite C-hermitian form

(3.41)
(£-£ ' )xcompact

(3.42) Proposition. A Q-algebroic group GQ=RFl/Q(SU(V, h)) in (3.37) is
Zariski connected. Assume thai GR is non-compact, i.e., dim^)^l. Then GQ is
Q-simple except for the case (R2, —1), n=2.

Proof. See [SI, Appendix, § 1].

§4. Vanishing Theorem and the Case rank/? GR^2

Let G be a connected semi-simple real Lie group with finite center of
hermitian type, K a maximal compact subgroup of G, so that a quotient space
.2)— G/K becomes a hermitian symmetric bounded domain. Let F be a discrete
subgroup of G of a finite covolume with respect to the Haar measure. If F
is torsion-free, the quotient space M=F\£) becomes a smooth quasi-projective
variety. For a finite dimensional complex representation p: G—>GL(WC), we
denote by Wc the associated local system on M=F\3). Let L'(2)(M, Wc) be
as in (2.9), and #"(2)(M, Wc) the L2-cohomology group for it. Let Lz(F\^D)°°
denote the set of C°° square-integrable function on F\3)t and view it as a
unitary G-module under the right translation. Since it is a (g, &)-module, we
may consider the relative Lie algebra complex C*(g, K-} L2(F\G)°°(g)Wc}, whose
cohomology yields the relative Lie algebra cohomology (cf. [B-W]).

First, we recall the following.

(4.1) Theorem. ([B], [B-C]). There exists a quasi-isomorphism

% , K ; .
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In particular, we have isomorphisms

Write Lz(r\G)°° as the direct sum of the discrete spectrum L2(r\G)°S. and
its orthogonal complement, the so-called continuous spectrum L2(/

1\G)S.

The following theorem is a special case of results in [B-C].

(4.2) Theorem, (see [B-C, Prop. 4.4 and Th. 4.5]) Under the assumption as
above, we have the following.

( i ) //"(2)(M, Wc) is finite dimensional,1

(ii) there exists a finite set (Ht)f (i<=S) of mutually orthogonal closed ir-
reducible G-invariant subspaces of L2(r\G)d such that

(4.3) H\n(M9 Wc)=Ext\,.K,(Wl L,(r\G)tS)=®teSExt^K,(JVt9 H,),

(4.4) Definition. Let G be as above. We say that G has no compact factor
if it has no infinite normal compact subgroup. A discrete subgroup F of G is
said to be irreducible if the image of F under any surjective morphism G-»G'
with non-trivial image and non-compact kernel is non-discrete,

We can prove the following vanishing theorem of L2-cohomology group.

(4.5) Theorem. Let G be as above. Assume that G has no compact factor
and F is an irreducible discrete subgroup of G with a finite covolume. If (p,
Wc) is a non-trivial finite complex representation of G, we have

), WC)=Q for

where rank^G denote the J£-rank of G.

Proof. If F is cocompact, then this is nothing but [B-W, Ch. Vff, Proposi-
tion 6.4]. Thanks to (4.3), their proof works even if ,F\G is not compact.

(4.6) Vanishing theorem

Now we apply this theorem for standard Q-primary symplectic representa-
tions. Let (WQ, pQ, AQ, I) be a standard Q-symplectic representation, D, c, Flf

V, U, h, h' as in (3.17), and GQ=RFl/Q(SU(V, h)).
We take a lattice Vz in V (see § 1), and set Dz={m^D \mVzdVz} . Then

Dz becomes a Z-subalgebra of D such that DZ®ZQ^D, which is called an
order of D. Taking a Dz-right submodule Uz of U9 we set

(4.7) WZ

L Of course, this also follows from the Zucker conjecture (2.11)
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Then Wz becomes a lattice in WQ and we may assume that Wz satisfies the
condition (1.7), i.e., AQ(WZ, Wz)dZ. From definition (1.4) and the above con-
struction, we have an isomorphism of discrete groups

Take a torsion-free arithmetic subgroup FdGVz.
Let GQ=RFl/Q(SU(V, h)) be as above. Then from (3.37) and (3.42), except

for the case (R2, —1), «=2, we can write

(4.8) GB=G1X-XG1XU ,

where Gi=SU(V(-i:>, /za)) is a /2-simple non-compact Lie group of hermitian type
for l^i^l and U is a compact group.

(4.9) Proposition. Assume that (V, h) is not in the case (R2, —1), n=2. For
any torsion-free arithmetic subgroup F^GR, let F' denote the image of F under
the projection GR-^G^G^-'-XGt (cf. (4.8)). Then Ff is an irreducible torsion-
free discrete subgroup with finite covolume.

Proof. It is easy to see that F' is a discrete subgroup in G'R with finite
covolume. Let p(^ : GR-^Gt=SU(V«\ /ico) be the representation in (3.35) for
\.<i^l. Then from the construction we can see that pi}r induces an isomor-
phism F ~pl(F). By a corollary in [Shz, No. 4], F' is irreducible in G'R. Since
the projection map F-+F' is injective, F' is also torsion-free.

Let K be a maximal compact subgroup of GR=Glx---xGiXU , and write
K as KiX-'-xKiXU, so that the corresponding hermitian symmetric space £)=
GR/K has a decomposition as

(4.10) ^QiX — X&i,

where ZD^Gi/Ki are irreducible symmetric spaces. We have a natural isomor-
phism

(4.11) M:

(4.12) Remark. We have an isomorphism SUZ(H}~^SU(2, C)xSL2(R).

Now we state our main theorem in this section.

(4.13) Theorem. Let (WQ, pQ, AQ, I) be a standard Q-primary symplectic
representation, which is not the case (R2, —1), n=2, and (V, h\ F ciGR as above.
Asumme that rank^Gjj^2. Then we have

(4.14)

Even if rankRGR=l, we have H\M, WQ)=0.
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Proof. From (3.17), WQ is a vector space over a field Fl=Cent(D). The
field F! is a totally real field, or a CM field (see (3.23)). Set t^lF,: Q]. Let
{ffti FiC+C}^! denote the set of ^-distinct embeddings of Fl into C. For an
embedding at : F^C, we put

(4.15) W*=WQ®Fl.ffiC,

By the universal coefficient theorem, we have an isomorphism

(4.16) H*(M, WQ}®Fl,ffiC^H*(M, Wa*}.

Note that Wai is a local system on M associated to a representation

(4.17) (pQy*> : GR —

induced by pQ. From the assumption and (4.9), an arithmetic group FciGR is
irreducible, hence from (2.13) we have isomorphisms

(4.18) H\n(M9 W°i)s*H*(M, W^} for

From (4.16) and (4.18), in order to show (4.14), it suffices to show that

(4.19) H\»(M, W*i)=Q for q^l.

Recall that we have an isomorphism WQ=U®DV (see (3.17)). Set Uot:=
U®Fl,alC,Vai:=V®FltaiC, and Dai:=D(&Flia.C. Choosing an isomorphism
Dffi=A4s(C), let 4, denote the matrix unit in D°*. Then, as in (3.29) and
(3.30), setting Up :=Ua^\l9 Vp •.=&{&'*, we have an isomorphism

(4.20) W*^U$>®CVP.

Assume that Fl is totally real. Then, the representation pl : GQ -> SU(V, h}
induces a representation

P& ' GR —> SU(Vg>, A£l))

which is obtained by a scalar extension of (3.35) from R to C. Hence, from
(3.36), p$) can be written in form

Write GR=G1X-"XGiXU as in (4.8) and take i such that l^i<^l. Then since
p$ is trivial on the compact factor U, it descends to a representation of GR=
GiX"-xGi . Let rr be as in (4.9). Then we can apply Theorem (4.5) for GR,
p®, V$\ Ff to deduce that

(4.21) H\v>(M, Vp)=Q for

By the assumption that rank«Gi^2, one has

H\n(M, Fi«)=0 for q£
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Hence the assertion (4.19) (so (4.14)) follows from this and the following iso-
morphism.

(by (4.20)).

The proof for the case when F1 is a CM field is similar, so we omit it.

(4.22) Remark. Note that we have the isomorphism SU3(H)~=SU(3, 1, C).

By virture of Silverberg's criterion (2.7), as a corollary of (4.13), we obtain
the following.

(4.23) Theorem. The Mor dell-Wei I group MW(T/M} of a Kuga fibe? space
f : 3Z-+M associated to a standard Q-primary symplectic representation is finite
whenever rankjRGjR^2.

§ 5 . jR-Rank 1 and F Cocompact

(5.1) In this section, we shall deal with the cases where the /2-rank of
GR is 1 and F is cocompact. For technical reasons, we exclude the case (J?2,
-1), ii=2.

From the Sa take's classification (cf. Theorem (3.37)), the cases where GR

has the 1^-rank 1 are listed as follows :

(5.2) Case (722, -1), w=3 GR=SU3(H)-XSOG(R)X-^XS06(R),
possibly={l)

(5.3) Case (C) GR^SU(nr~l, l)xSUnr(C)X--XSUnr(C) .
possibly={l}

and

(5.4) dim<2)=l.

In the above case, we can no more expect the vanishing of the Hl(M, Wc) in
general, though we have the vanishing of H°(M, Wc) (see (4.13)). In fact, in
the case (5.3) when r=l and t^2, there is an arithmetic subgroup FdGWz

such that Hl(M, IFC)^0 (See [B-W, Ch. \I, §5]). Hence we should consider
the Hodge decomposition of H\M, Wc), and appeal to Theorem (2.31). In this
section, we always assume that F\3) is compact. Note that F\<D is compact
whenever GR has a compact factor.

(5.5) Let (WQ, pQ, AQ, /) be a standard Q-primary symplectic representaion,
WZ^WQ a lattice, F aGWz^GR a torsion free arithmetic subgroup. Let (Wz,
A, £F°) denote the corresponding VPHS over the smooth manifold F\3) (see
(1.10)). The main result in this section is the following.

(5.6) Theorem. Under the notation as above, we have
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(5.7) H\

in the cases (5.2), (5.3), and (5.4).

As a corollary of this theorem, we have the following.

(5.8) Corollary, The Mor dell-Weil groups of the Kuga fiber spaces associated
to a standard Q -primary symplectic representation is finite when rank/2 GR=l and
F\3) is compact.

Proof. Since we always have H\M, WC)=Q, by (2.31), Theorem (5.6)
implies the assertion.

(5.9) A reduction

We keep the notation in (5.5). Let Flf D be as in (3.17). Denote by
[GI, -' , a*} the set of all embeddings Fx into C where d=[Fl: Q]. Consider-
ing WQ as a Fi-vector, we set Wff*=WQ®Fl.atC and Wai=WQ®Fl.ffiC. Then
we have the decompositions

(5.10) Wc := WQ®QC=®t^ Wat ,

(5.11) Hl(M, Wc}=@tiHl(M, Wffi).

Let 7: OM(WC}->Q1M®WC denote the Gauss-Manin connection on Wc. From
the horizontality, we have the complex

(5.12) 7:

whose H1 is isomorphic to Hl(M, We)0'0 (see (2.21)). We have the following

(5.13) Lemma. Assume that the Hodge filtration £F° and the Gauss-Manin
connection 7 on Wc is compatible with the decomposition (5.10). Then if for at
least one &l

(5.14) Hl(M, Waty'°=Q,

we have Hl(M, WQ)°-Q=Q.

Proof. From the construction of the Hodge structure in (2.15), under the
assumption, we have the decomposition

H\M, W^=®p+q=QH*i«
such that

H\M, wcr-q=®^H^.
Let TCt : Hl(M, WoJ-^H^M, Wai) be the natural projection map. Then we have

Hl(M, WQ)'-*=r\t=i*ll(HW.
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Since the map nt is injective, this implies the assertion.

(5.15) Gauss-Manin complex

Let (GQ, HQ) be the Q-hermitian pair corresponding to the Q-symplectic
representation in (5.5), and K the maximal compact subgroup of GR correspond-
ing to H0. We also denote by QR, I the Lie algebras of GR and K respectively,
and by J) the orthogonal complement of I in QR with respect to the Killing form.
Let us set W$=Wc(±i, /c), ̂ ±=^c(±/, ad>(H0)). Then, by the condition (1.2),
the spaces We and p1 are stable under the action of K, hence they become
representations of K.

For any representation T of K, we can define a holomorphic vector bundle,
or a locally free sheaf £T on M=F\3) as in [Z2, §2]. In the notation in § 1,
the representations W% (resp. We} defines a Hodge bundle EF° (resp. Gr^1) and
p~ defines the cotangent sheaf Q1

M on M.
We call the natural complex

(5.16) 7: ff° — >QlM®Gr?1

the (first) Gauss-Manin complex. Then the Gauss-Manin complex in this case
is induced by the following homomorphism of the representations of K :

(5.17) Wt—*

(5.18) Proof of Theorem (5.6) in the case (5.3)

In this case, since F1 is a CM field, we can denote by \alt • • - , at, di, •••, at]
the set of all embeddings of Fl into C such that ai]F+ is an extension of rt :
FtcJ?. Since G*=nU SU(V™, h^)=SU(nr-l, 1, C)xSUnr(C)X--XSUnr(C),
(FC1), /2(1)) is a C -vector space with a skew-hermitian form /icl) such that the
signature of z/icl) is (nr—1, 1). Recalling that the decomposition WR=^t

i=1W
Ti=

we can write the complex structure I^3)(WR, AR) as

for some Ia^^(V^\ fccl))^(/)nr-i,i and /'( t> €=£)(£/<*>, /i /ci)). (See [SI, Ch. W]
or [S2]). If we set

t nr—1 l

//S = /ci) — 1-— ̂ ylr(i), HO = HQ-{- S IF^) ,

we can check that / and //0 satisfy the condition (1.2). The corresponding
maximal compact subgroup A' in GR can be written in the form K=K1X
nUSC7(7<°, /*CI)) where /dcd :-5/7(Fcl), h^} is the maximal compact sub-
group corresponding to H'Q.

Let Qlf fx denote the Lie algebras of Gly Kl} and £ the orthogonal complement
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of fx in 0J. Then we have the decompositions

and an isomorphism

We have the expression

as in (4.20), and in this case, we have the decomposition

We may assume that the natural projection V™->VP becomes a C-linear iso-
morphism. Then if we set V$}±=V$\±i, /Cl)), we have dim yi1)+=nr— 1,
dim VP~=1, and PTtfi±=f7i1)®Vi1)±. From the description as above, the homo-
morphism (5.17) of representation of K is compatible with decomposition (5.10)
and the (0-J-part of the homomorphism is given by

(5.19) W*i'+ — >

(5.20) Lemma. The homomorphism (5.19) of the representations of K and
is an isomorphism.

Proof. It suffices to show that VP+-*$~®VP~ is an isomorphism of K±-
modules. Since FC ) + and $~®Vc}~ are irreducible representations of K! of
dimension nr— 1 and the homomorphism is not trivial, it must be an isomorphism.2

The following corollary shows Theorem (5.6) for the case (5.3).

(5.21) Corollary. In case (5.3), we have

Hl(M, TF*00l°=0,

so in particular Hl(M,

Proof. Let ^a. denote the Gauss-Manin connection restricted to Wai.
Then the corresponding Gauss-Manin complex

is induced by the homomorphism (5.19). Then by (5.20), this 7^ becomes an
isomorphism. Hence we have Hl(W°y-*=*Hl(yffl)=Q. The last assertion fol-
lows from this and Lemma (5.13).

Considering the Harish-Chandra embedding (/)nr-i.iC>Pg r~1, we can easily see that
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(5.22) Remark. If t^2 and H\M, WC)^Q, we can show that H\M, Wa^°'°
^0 for i^2. Therefore from the example with non-vanishing H1(MJ Wc)
mentioned in (5.1), we have examples with non-vanishing Hl(M, Wc)°'0, but
still we have (5.21).

(5.23) Proof of Theorem (5.6) in the case of (5.2)

In this case, Fl is a totally real field, and D is a quaternion algebra over
FL We denote by at : F^C the embedding which is the extension of Tt.
Since GR=Tl^iSU(V^\ h«>)=*SU9(H)xSOB(R)x-xS06(K), (Fcl), /zc l>) is a left
^T-module of rank 3 with a ^f-skew-hermitian form /icl). Recall that the ex-
pression Wffl = Upg)cV£} as in (4.23). Let us take a complex structure /a>e
£)(FC1), /ic l>)^(//)3 and define V^±=V^(±i, /Cl)). Then we have the decom-
position VP = V&*@VP-. Setting //0=(l/2)/co + SUlr«), we obtain the as-
sociated maximal compact subgroup K=K1xHi=zSU(V<ii\ /ici)) of GR=G1X
ni=25/7(FCl), /i(l)). Then as in (5.19), we have the homomorphism of repre-
sentations of K and Kl :

(5.24) Wffi-+ — >

In this case, we have the isomorphism SU(3, 1, C)=S£78(JEO~, which is induced
as follows. Let (T, /i) be a complex vector space of dimension 4 with a her-
mitian form h of signature (3,1), and set G=SU(T, h) = SU(3, 1, C). Let /'e
®(T, ih), and set T±=T(±/, /7). Note that dimT+=3 and dimT"=l. Then
the space A2T has a hermitian form /i' induced by h, and the decomposition

corresponds to an element Pe^)(A2T, /ix). It is known that <2)(A2T, ihf}^(
and the correspondence T+^-»A2T+ induces an isomorphism (/)3>1 = (//)3 (cf. §5,
IV, [SI]), which can be lifted to a group isomorphism S£7(3, 1, C} = SUZ(H}~.
Thus the homomorphism FC I )+— >$~®V$P~ in (5.24) is isomorphic to

(5.25) A 2 T + — >

as a homomorphism of representation of ^x (and /O- Since we have an iso-
morphism }r^T+(g)(T-)* as /^-modules (cf. (5.20)), the homomorphism (5.25) is
isomorphic to

(5.26) A2: A2T+ — > T+®T+ .

Hence it is trivial that the homomorphism A2 is injective and

coker (A2) = S2(T+).

Let 3" denote the locally free sheaf on M corresponding to the representation
T". Then, from (5.24), we have the isomorphism
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(5.27) coker 7fflst/il)<8)S8(£r) .

Now we have the following result which implies Theorem (5.6) in the case
(5.2).

(5.28) Proposition. In the case (5.2), we have

Hl(M, Way'»=Q.

Proof, Since from (5.27)

we only have to show that H°(M, S2(Er))=0. Let Tc denote the local system
on M induced by T. Since we have the natural inclusion 3:^OM(Tc)f we also
have the inclusion

(5.29) H\M, S2(20) c, H\M, SZ(TC)} .

Then since the right hand side of (5.29) vanishes by Theorem (4.13), we have
the assertion.

(5.30) Proof of Theorem (5.6) in the case (5.4)

In this case, we always have GR=GiXKzX"'XKt where G1=SLZ(R) =
Sp^R^SUQ, 1) and Kt are compact. We also have a expression Wa^U^0
V$} where V£> is a complex irreducible representation of SL2(R) and £/£1} is
a trivial representation. Then since M—F\3) is compact, we can apply the
result in [Z2, (5.33), Example] to deduce that

Hl(M, Wffi)°'°=Q.

Hence, as before, we have the assertion.

§ 6. jR-Rank 1 and F Non-Cocompact

(6.1) Let (WQ, pQ, AQ, /) be a standard Q-symmplectic representation, Wz^
WQ a Z-lattice, r(dGwz^GR) a torsion free arithmetic group. In this section,
we assume that rankRGR=l and F ciGR is not cocompact. Again, we will not
deal with the case (R2, — -1), n— 2. If dim .0=1, we can deduce the finiteness
results from Zucker's results in [Zl] (see Remark (6.30)). Hence we will assume
that dim^>l unless we state otherwise.

We only have to consider the following cases:

(6.2) Case (R2, -1), ti=3 GR=SU3(H)-=SU(3, 1, C),

(6.3) Case (C) GR^SU(nr-l, 1, C).

In the above cases, the bounded symmetric domain 2)=GR/K is isomorphic to
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the m-dimensional unit ball Bmc:Cm for some m^l. Since FdGR is a torsion
free arithmetic subgroup of GR, M=F\<D is a smooth complex manifold with
a finite invariant measure, but, by assumption, is not compact. The Baily-
Borel-Satake compactification M* of M can be obtained by adding a finite
number of cusps {pt} to M. Note that M* is projective. Moreover, according
to Hemperly [He], a resolution of singularities TT : M-*M* is obtained by the
blowing up of the cusps {pl}, and the inverse images Di—n~l(pi} are abelian
varieties.

(6.4) Let (WQ, pQ, AQ, I) be a standard Q-symplectic representation in the
case (6.2) or (6.3), D, c, Flf V, U, h, h' be as in (3.17). Let /: 3f->M denote
the Kuga fiber space associated to the above representation and the lattice Wz

in (6.1). Then, as in (2.29), we have the exact sequence

(6.5) 0 — -> Wz — > Gr^1 — > Oa
M

n&} — > 0 .

Let us assume that the local monodromy around each Dt is unipotent. This
is always possible if one replaces F with a normal subgroup Ff of finite index.
Then we can extend the abelian scheme / : 3: — »M to a semi-abelian scheme
/: X— >M as follows. Let <W\=OM®WC. Then we have the Gauss-Manin
connection 7: <W -* Q^&W which is integrable. Let W denote the Deligne
canonical extension of <W which is a locally free ^-module with a logarithmic
connection 7: cW->Q^(logD)®cW such that Res/,/7) is nilpotent (see [Dl]). Let
j : Mc>Af denote the inclusion. We set :

(6.6) 3p:=j*3pr\W.

By the nilpotent orbit theorem [Sc, (4.12)], these are locally free subsheaf of
W. As in [Z3], we can obtain a semi-abelian scheme /: X— >M which is an
extension of the original abelian scheme / and fits into the following sheaf
exact sequence

(6.7) 0 — > /* Wz — > Grs1 — > 0£n(2C) — > 0 .
M

(6.8) Proposition. Under the notations and the assumptions as above, the
natural restriction map (see (2.4))

r : H°(M, O^(T}} — > H\M,

is injective and has a finite cokernel.

Proof. First, I remark that all sections HQ(M, O^l(Xj) is algebraic, so r
is well-defined. The injectivity of r is obvious. To prove r has a finite
cokernel, we first remark that we can costruct the Neron model N(f) : A/"(3f)— »
M of / : 3C— >M which has the following properties.

( i ) N(f) : N(3£)-*M is a group scheme over M which is an extension of /.
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(ii) Let Y-*M be a smooth morphism and <j)i Y >N(3C) a rational map
over M. Then 0 extends to a morphism 0: F->7V(^T).

(iii) The semi-abelian scheme T is a connected component of N(3£}, i.e.
3C is a subgroup scheme of N(3C) such that for each closed point p^M, DCP is
the connected component of N(3C)P containing the identity.

Moreover there exists a projective manifold N(3£) containing N(3£) as a
Zariski open set and a projective morphism N(f): N(2C)^>M which is an ex-
tension of N(f) such that TV (3?) is the maximal open subset of N(3C) where
N(f) is smooth. The existence of the above Neron model N(3C) and its pro-
jective completion is proved as follows. It suffices to show that the existence
of them over a some tubular neighborhood U of an irreducible component Dt

of D=^l
i=1Di. For each point p^Dis we can take a neighborhood Up which

is isomorphic to An={(zi)&Cn\\zi\<l\ and UpP(Di={z1=0}u Then the Neron
model of flUp,Di: 3£lUp-.D.-*Up—Di^A*xAn-1 can be constructed as in [A].
Since the Neron model has a uniqueness property, such local Neron models can
be patched together and one gets a global Neron model over the tubular neigh-
borhood U of Dt.

Now we prove that the finiteness of cokernel of r. Every algebraic section
s: M-*X defines a rational map s: M >N(3£). Considering locally around
D, we can show that s must actually map to N(3C). Then by the property
(ii), s is a morphism s: M—>N(3C) and so it is a section of N(f). This shows
that H°(M, OM&}} is isomorphic to H\M, tfjrC/V(3?))), i.e. the group of sections
of N(f): N(3C)->M. Then the cokernel of r is a subgroup of H\M, N(T)/%),
where N(?£)/% is a finite group scheme over D. Since the fiber N(3£)/T over
each component Dt is a finite group, H°(D, N(T}/T} is also a finite group,
and this completes the proof.

(6.9) Hodge theory for j*Wc

Let (Wz, A, ff') be the VPHS (see (1.10)) over F\£) of weight -1 associated
to the symmplectic representation as in (6.4). As in (6.1), there exists a pro-
jective manifold M and an inclusion j : Mc+M such that D=M~M is a union
of smooth hypersurfaces each of which is isomorphic to an abelian variety.

It is known that the cohomology group Hi(Mt j*Wz) has a polarized pure
Hodge structure of weight i—1. This fact can be considered as a generaliza-
tion of Zucker's results in [Zl] to the cases of the higher dimensional bases,
and was proved by Cattani-Kaplan-Schmid [C-K-S] and Kashiwara-Kawai [K-K]
as follows.

One can see that M admits a complete Kahler metric with Poincare singu-
larities along D. In the above case, j*Wc equals the intersection complex
J£' (M, We) of Deligne and Goresky-MacPherson. Then they showed that
3C'(M, Wc) is quasi-isomorphic to the L2-complex _£*(2)(M, Wc) with respect to
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the above Kahler metric on M and the Hodge metric on Wc.
z Therefore we

have the isomorphisms

H*(M, uWc)*IH*(M, Wc)^H\n(AI, Wc}.

Each element of L2-cohomology group can be represented by a harmonic form,
so by using the Kahler identity between the Laplacians (cf. [Zl]), we obtain
a Hodge decomposition of the cohomology group. (See also [ShzY].)

(6.10) Mixed Hodge theory

We will recall a more explicit desciption of the Hodge structure on Hl(M,
J*Wc) in our case following [ShzY] (cf. [Zl]). In order to see this, we shall
introduce the mixed Hodge structure on Hl(M, WQ).

Since we have Hi(Mf WQ}=Hi(M, Rj*WQ), we have the long exact sequence
of cohomology groups

(6.H) —+ H\M, j*WQ) —> Hl(M, WQ) — > Hl-\M, Rlj*WQ} -t>

which comes from the Leray spectral sequence for the inclusion /: Mc+M.
Then it is known that H\M, WQ} and Hl-l(M, Rlj*WQ] has a mixed Hodge
structure, which makes (6.11) an exact sequence of mixed Hodge structures.

There are a weight filtration {W.} on H\M, WQ] and the Hodge filtration
{F'\ on Hl(M, Wc} such that for each k, Grf(#'(M, WQ)) with the induced
Hodge filtration F' forms a polarized (pure) Hodge structure. In our case, we
have 3-step weight filtration Q=W-1aWQ<^W1c:Wz=Hl(Mt WQ\ such that

(6.12) W*(H\M, WQ)}=lm{H\M, j*WQ) — > H\M, WQ)} ,

XA PI) — > HM(M, j*WQ}},

where the Pfe's denote the local systems on D which underlies VPHS coming
from the limit Hodge structure along D. (See [ShzY, (3.1.4)]).

One can show that there is a quasi-isomorphism Rj^Wc = Q^(logD)^^W(cL
[ShzY, (3.1.1)]). Hence we have an isomorphism H*(M, Wc^H^M, Qji(logD)
(gW). The Hodge filtration \F'} on the complex Kc = Qii(\ogD)®fW can be
defined by

(6.13) F*Kc ^fl'sOog/?)®?11-1 ,

and this induces a Hodge filtration on H*(M, Wc}. The spectral sequence in-
duced by this filtration

(6.14) £?-*=£P+5(M, Gr££i7(log£)) =} HP+*(M,
3 Actually, they proved this result for the more general case where M— M is a

divisor with normal crossings.
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degenerates at E^

(6.15) Now we restrict our attention to H1. From (6.11), one has the
exact sequence of the mixed Hodge structures

(6.16) 0 — > H\M, j*WQ} —* H\M, WQ) — > H\D, Rlj*WQ} — > .

From (6.13), we have the 3-step Hodge filtration 0=F2cF1c:F0c:F-1 on Hl(M,
Wc] whose successive quotients are :

(6.17) W-^Gr^F^H1® —>

(6.18) HQ'Q=Gr^F=FQ/Fl^

(6.19) H-1- ^Gr-F
l

(6.20) Proposition. Let us denote by H\M, j*WcY
>q the (p, q)-component

of the pure Hodge structure of Hl(M, j*Wc}. Then we have
( i ) the isomorphism

(ii) and the inclusion

Proof. These come from (6.18), (6.19) and the fact that (6.16) is an exact
sequence of mixed Hodge structures.

(6.21) Now we have the following proposition which is a generalization oi
(2.27) (cf. [Zl, (10.2)]).

(6.22) Proposition. Let f : 3£-^M be a Kuga fiber space as in (6.4) and f :
X—>M the extended semi-abelian scheme. Then we have an isomorphism

Here we set H\M, ;*lFr)0'0si-1(ff0'0) where i: Hl(M, j*Wg)-*H\M, j*Wc) is
the natural map.

Proof. In this case, H'(M, Gr=x)=0, because H\M, ?FC)=0 by (2.12) and
(4.5). Therefore, from (6.7), we have the long exact sequence

0 — > H\M, 0|B(2)) — > H^M, j*Wz) -^> H\M, Gr^ .

which implies that

H\M, ^(2))sker{/> : H\M, j*Wz} — ̂  H\M, Gr^}} .

Since Hl(M, Gr^1) — //"1'1 by (6.20), the map p is coincides with the composite
of i and the projection from Hl(M, j*Wc) to its (—1, l)-part. Let us take an
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element weker£. Since u<^Hl(M, j*Wz) is real and u has no (—1, ̂ -com-
ponent, it has also no (1, — l)-component. Thus u is of type (0, 0), and con-
versely.

(6.23) Corollary. Let f : 3C-+M be a Kuga fiber space as in (6.4). The
Mor dell-Weil group MW(T/M} is finite if and only if

(6.24) H\M,j*WQ)*-*=Q.

Proof. By Proposition (6.8), we only have to prove that the group H\M,
0^n(X}} is finite. Since H\M, j*Wz)Q'Q®Q^H\M, j*WQ)°'°, Proposition (6.22)
implies that the condition (6.24) is equivalent to the finiteness of H\M, 0J-n(2)).

(6.25) Theorem. Let f : 3C-+M be the Kuga fiber spaces associated to the
Q-symplectic representation of type (6.2) or (6.3). Assume that M=-F\3) is not
compact. Then the Mordell-Weil group MW(X/M] is finite.

Proof. We first remark that we can replace M=F\£) with its finite
unramified covering. So we may assume that local monodromies around the
components of D are unipotent.

We first prove the case (6.3). We shall use the notation in (5.18). In this
case, Fl is a purely imaginary quadratic field over Q, so denote by {a, a} the
embedding of Fl into C. We have the decomposition

where we put Wa \—WQ§§FvaC. We also have the expression

W'=UC®CVC

where Vc is an nr-dimensional C-vector space which has a C-symplectic form
hc such that the signature of >/— lhc is (nr—1, 1). As in (5.18), a complex
structure 1^.3) defines a decomposition Vc=V%@Vc where dimV$=nr— 1 and
dim Vc=l. And setting Wff> ± = Uc®Vc, we have the homomorphism of K-
module

(6.26) Wff- - —>

which induces the a-part of the first Gauss-Manin complex on M

(6.27) 7, : 3* — >

where we set <3$=OM(Wa
c}r\<3p. From Lemma (5.20), the homomorphism (6.26)

is an isomorphism of # -modules and so the sheaf homomorphism (6.27) is also
an isomorphism. Now let us write £)=GR/K. Since K is compact, Wa>+, }r
and Wff' ~ admit G^-invariant hermitian metrics, which induce hermitian metrics
on the locally free sheaves EFJ, Q1

M and Gr%1 respectively. Note that on 2^
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and Gr^l
a these metric are constant multiple of the metric induced by the

original polarization A. Let E be any locally free sheaf on M—F\S) induced
by a /^-representation with an above hermitian metric h. In [Mum], Mumford
showed that such a E admits a canonical extension E to a smooth toroidal
compactification M in (6.1) such that h is a singular hermitian metric good on
M. (For the definition of goodness of a singular hermitian metric, see [Mum,
§1].) One can see that such canonical extensions of EFJ and Gr^l

a coincides
with %l and Gr^1 defined in (6.4), that is, those induced from the Deligne's

-* a
canonical extension. (For the proof of this fact, see [H, Theorem 4.2].) More-
over, the canonical extension of Q1

M in the sense of Mumford is Ql
M(\QgD).

Therefore, by uniqueness of canonical extensions, the isomorphism (6.27) is
extended to the isomorphism

(6.28) 7, : %l —> flL(log0)®Gr=i,

over M. Then by (ii), Proposition (6.22), we have Hl(M, /*IF&)0'0=0. From
this, by the same argument as in Lemma (5.13), we deduce the vanishing con-
dition (6.24), which implies the finiteness of the Mordell-Weil group.

Next we will deal with the case (6.2). In this case, FX=Q and GR^SUZ(H)-
=SU(3, 1, (7). We use the same notation as in (5.23). By the same reason as
in the case (6.3), we only have to show that Hl(M, 7) —0 where 7 is the
canonical extension of the Gauss-Manin complex. Over M, we have the iso-
morphism (5.27), so again by the uniqueness of the canonical extension, we
have the isomorphism

(6.29) coker^s£7c(g)S2(31)

where £F is the canonical extension of the sheaf £T (see (5.23)) to M. As in
proof of Proposition (5.28), we only have to show that H°(M, S2(3i))=0. As in
(5.29), we have the inclusion

i^ H\M,

where Tc is the canonical extension of Tc. We have the isomorphism H°(M,

S*(TC))^H°(M, 52(TC)) (see [ShzY, (3.1.1)]), and by (4.13) H°(M, S2(TC))=0.
So we have the desired assertion.

(6.30) Remark. If dim^=l and M=F\£) is not compact, the finiteness
follows from the result in [Zl]. Let /: 3f—>M be a Kuga fiber space and /:
T-+M the semiabelian scheme in (6.4). By (6.8), we only have to prove that
H*(M, 0|n(3?)) is finite. Then by (6.22) (cf. [Zl, Corollary (10.2)]), we have

H\M,0±n(Ty)^Hl(M,j*Wzy'*. Then [Zl, Lemma (12.4)] says that Hl(M,
M

/*Wrc)0i°:=0> and hence the Mordell-Weil group is finite.
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