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The Behaviour of Solutions with Singularities
on a Characteristic Surface to Linear Partial
Differential Equations in the
Complex Domains

By

Sunao OuCHTI*

§0. Introduction

Let L(z, 0,) be a linear partial differential operator defined in a neigh-
bourhood £ of z=0 in C**'. Its coefficients are holomorphic in 2. LetK be
a connected nonsingular complex hypersurface through z=0 and characteristic
for L(z, 0,). We choose the coordinate so that K={z=; z,=0}. In the pre-
sent paper we study the equation

0.1) Lz, 0.)u(z2)=f(2),

where u(z) and f(z) are holomorphic in a sector £(6,) whose edge is K, 2(8,)
={z=Q—{z,=0} ; larg z,| <@,}. It is the main purpose of this paper to show
under some conditions on L(z, @,) that if u(z) has at most some exponential
growth on Q2(8,) and f(z) has an asymptotic expansion with bounds on £2(6,)
as z,—0, then u(z) has also an asymptotic expansion of the same type as f(z)
(Theorems 1.5 and 1.7). The conditions on L(z, 0,) are given by means of
characteristic indices {¢;:0=</<p} of K and the localizations on K defined in
[9]. The growth order of u(z) and the asymptotic expansion of f(z) are
characterized by ¢,-,. When f(z) has no singularities on K, that is, it is
holomorphic in £, the equation (0.1) was investigated in [12] and it was shown
that u(z) is also holomorphic in £ under some conditions, which is contained
in the results in this paper.

As for existence of solutions of (0.1) which are singular on K were investi-
gated in many papers, for example, [1], [2], [3], [5], [10], [13], [15] and
papers cited there.

In §1 we give notations and definitions of characteristic indices and func-
tion spaces, and state the results. Theorems 1.11 and 1.13 are applied to the
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proofs of Theorems 1.5 and 1.7. In §2 we study the function spaces intro-
duced in §1. In §3 we introduce an integro-differential operator .L.(z, 4, , 0.,
0O, Aty—20;), 0<a<1, which is derived from L(z, d,), and construct a formal
solution V(z, ¢, ) of an equation

(0‘2) Ia(z; /2; C’ ai; ac: Zto—-lax)V(z, t’ '27 C):F(Z: t) Z)fno(g_i—rzl) .

In §4 we construct the kernel functions G(¢; w, z,t) and Gr(¢; w, z, t) in
Theorem 1.11, where we use Lay(z, 4, E, 0., 0z, Aty—203), @p-1=(0p-1—1)/0p-1.
In §5 we investigate integral operators acting on holomorphic functions on a
sector and give the proof of Theorem 1.11. It is the main purpose in §6 to
give Theorem 6.28 which is used to show Theorem 1.5 in §7. We give an
integral representation of u(z) in (0.1) in order to prove Theorem 6.28, where
Loz, 4, ¢, 0, 0, Ay—20,), a;=(0,—1)/0,, is used. The representation in this
paper is somewhat different from that in [6] and [7], and sufficient for our
purpose. The arguments in § 6 are similar to those in [12]. But we investi-
gate the equations under the weaker conditions than in [12]. We used the
operator L.(z, 4, {, 0, 0) in [12], which does not contain At,—A20;. Since we
treat (0.2) in this paper, the arguments become somewhat complicated. In §7
firstly we summerize about majorant functions and show Theorem 1.13. Next
we give the proofs of Theorems 1.5 and 1.7. We make use of Theorems 1.11
and 6.28 in the proof of Theorem 1.5, and Theorem 1.7 follows from Theorems
1.5 and 1.13. Finally we give the proofs of estimates, that is, the proofs of
Propositions 4.1 and 6.8, which are assumed in the preceding arguments. Pro-
position 4.1 (Proposition 6.8) gives estimates of functions appearing in construc-
tion of G(w, z, t) (resp. in the representation of u(z)). Many constants will
appear in this paper. So for simplicity we denote various constants by the
same notations A, B, C, etc..

§1. Notations and Definitions

The following usual notations are used: z=(z,, 21, =, zZ2)=(20, 21, 27)=
(2o, 2’) is an element of C™*', while §=(&,, &, &”)=(&,, &) is the variable dual
to z, 0;=0/0,, and 8,=(0,, 0, -+, 02)=(0,, 01, 0")=(0,, 0'). |z|=max{|z;|; 0<i<n}.
N={1,2,3, -} and Z*={0, 1, 2, ---}. For a real number a, [a] means the
integral part of a. Let K be a nonsingular complex hypersurface through z=0.
We choose the coordinate so that K={z,=0} to simplify the statements. In
order to give the results we define firstly the characteristic indices {¢,} 0<i<p)
for a linear partial differential operator L(z, 0,) of order m=1 and with the
holomorphic coefficients in a neighbourhood of z=0, and secondly function
spaces. The characteristic indices were introduced in [9] and [10]. We write
L(z, 0,) in the following:
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{ L(Z, az>=2’llzn=0Lk(z: az) ’
(1.1)

L.(z, az)———zll;skAk,l(Z: 0")@0)* ",

where L,(z,d,) is the homogeneous part of the order £, A, s, (z, 0)%0 if
L,(z, 0,)0, and otherwise we put s,=-4oco. By expanding A;,(z, 0) (z0)
with respect to z, Az, 0)= 255w, vahai (2, 0)=z*Pa, (2, 9'), where
al% (2, 0)%0. We put conventionally j(k, )=+ if A, .(z, 3")=0. We have

(1.2) Li(z, 0)=24=5,20* Pas, (2, 0")00)*
=3024,(Siescr n=a2d® Pay,i(z, )@,
where d,=min;{d,, . =I[+j(k, D)}, and d,=-+ o0 if L,(z, 0")=0. If d,<-+co, put

Ly=max{l;[+jk, D=ds,  as.(z, 8")70},
1.9 {

]‘k:‘dk—lk .

Obviously /,=s,. When [+/j(k, {)>d,, we do not have to expand A, .(z, 0)
with respect to z, up to j(k, /). Put j'(k, )=d,+1—I. Then we have A, ,(z, 0)
=z} % Day ,(z, 0')(0,)* " and use this expression in (1.2). So, when [+j(k, [)>d,,
we put j(k, )=7'(k, ) and a;,.(z, 0")=a+ .(z, &'). Let us define the characteristic
indices {g;; 0=<i<p}: Consider the set A={(k, d:)ER?; 0<k<m, d;>+ o}
and its convex hull A. Let Y be the lower convex part of the boundary of
A. In general 3 consists of segments Y(z) (1</<p’) and let 4 be the set of
vertices of X, 4={(k;, de)ER?; i=0,1, -, p'}, m=ky>k,> - >k, =0 (see
Fig. 1.1). We define as in [9] and [107],

(1.4 o;=max{l, dy, ,—de,)/(kiy—k)}.

Then there is a peN, p<p’+1, such that ¢,>¢,> + >a,-,>1=0,, and we
put g,=+o0. If X consists of one point (m, dn), put ¢,=1.

4 =
(m.dm)-(ko.dko)

RSB

Fig. 1.1

We put Y0)={0n, dn.)ER?; dn,15+}. We note that
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(1'5) H?;()laki.lki(oy Z’? E,)E—to .

Definition 1.1. We call {g;; 0<i<p} the characteristic indices of the sur
face K for L(z, 0,).

Let us define function spaces. For a set AcC?, A is the universal cover-
ing space of A. ©(A) (O(ﬁ)) is the set of all holomorphic functions on A (resp.
A). ©(A) contains multi-valued holomorphic functions on A. Let 2=0,x2’
be an open polydisk in C**!, where 2,={z,&C"; |z,|<r,} and 2’cC”. Put
Qula, b=12€9,— {0} ; a<arg z,<b} and 2((a, b), D)=2(a, )X D for DEL’,
where D&’ means that D is compact and DcQ’. We simply denote £2,(a, b)
X2’ by (a, b) and 2(—a, a), a>0, by 2(a). ©(2(a, b)) contains multi-valued
functions on £ —K, if b—a>2zx. We have O([?IS:O(Q(—OO, +0)). We remark
that the notations in this paper are different from those in [11], for example,
0(5—\[-(/) (©(2(a))) was denoted by O(Q—K) (resp. (2,)) in [11]. In the fol-
lowing the center of £ is the origin.

Definition 1.2. For &, >0, O,,(2(a, b)) is the set of all [(z)=O(R(a, b))
such that for any a’, b’ (a<a’<b'<b) and any DEQ’

(1.6) [ fe)| =Aexp (hlz|™)  in £(a’, b), D)

for a constant A=4(a’, b’, D). We put Ow,(2(a, b)=MN1>0 w.1(82(a, b)).
f(2)E04(2(a, b)) if and only if for any a’, b’ (a<a’<b’<b), any £>0 and
any DER’

(.7 [f@I=A. o 0. peXP (] 20| ™) in 2((a’, ¥'), D).
Function spaces introduced in the following are characterized by the be-

haviour of functions near K= {z,=0}.

Definition 1.3. Asy ., (2(a, b)), 0<k<+o, is the class of all f(z)=@(2(a, b))
having the asymptotic expansion of the following form as z,—0: for any N=1
(1.8) | f(2)— 25t an (22t SABYI(N/k+1) 2,1 ¥

in any 2((a’, V'), D) (a<a’<b'<b, DER’), where a,(z)=O(R’), A and B are
constants depending on 2((a’, ¥’), D). f(z)=Asy.,(2(a, b)) is said to have the
k-asymptotic expansion in Q(a, b).

We note that f(2)E Asy = (2(a, b)) means f(z)=OR).

Definition 1.4. (1) H-asy,(2(a, b)), 0<k<+oo, is the class of all f(z)e
O(2(a, b)) having the following asymptotic expansion in the form with polar
and logarithmic terms as z,—0: for any N>1
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(1.9) | f(&)— Zhau(2)2 log 20— Db (2)24]
<ABYI'(N/k+1)|z|¥|log z,|, and

(1.10) | (@) — oot s ()28 log 20— S uba ()2
<AB¥T'(N/k+1)|z,| ¥

hold in any 2((a’, b"), D) (a<a’<b'<b, DER’), where HE Z, and a,(z’), b:(z")
=0(Q"). A and B are constants depending on a’, b’ and D.

2) MR—K) is the set of all f(z)e@(m) having at most polar or
logarithmic singularities on K, that is, f(z)=a(2) log z,-+b(2)/2¥, a(z), bz
o), He Z+.

We note that if f(z)€ HM-asy.(R2(a, b)) and b—a <7/k, then there are a(z),
b(z)E Asy,(2(a, b)) such that f(z)=a(z)log z,+b(2)/z¥ (see Proposition 2.1).
We have M-asy..,(2(a, b)=H(Q2—K).

Now let us state the main results.
Theorem 1.5. Suppose that L(z, 0.) satisfies the conditions

(1.11) (a) a,>1, ® di, ,=0, © dp,=si, for 0Zi<p—2.
Let 8, be an arbitrary positive constant and u(z2)E0(2(8,)) be a solution of
(1.12) L(z, 0,)u(z)=f(2)€ Asy,(2(8,)),

where 0<e<y=0,-1—1. If u(2)€0,»(2(0,), then u(z)< Asy,(2(0,)).

Corollary 1.6. In Theorem 1.5, if f(z2)€O(Q) and 0,>7/21)+x, then u(z)
s0o0(92).

Corollary follows from Proposition 2.9.

Theorem 1.7. Suppose that L(z, 0,) satisfies the conditions (1.11)-(a), (b), (c).
Let 0, be an arbitrary positive constant and u(z)e0(2(8,)) be a solution of

(1.13) L(z, 0,)u(z)=f(z)€ F-Asy»(2(0,)) ,
where 0<k<y=0,-1—1. If u(@)€04,(2(8,), then u(z)e M-Asy,(2(8,)).

Corollary 1.8. In Theorem 1.7, if f(2)€G1(2—K) and 6,>7r/(2r)+2x, then
uiz)e (R—-K).

Corollary 1.8 also follows from Proposition 2.9.

Remark 1.9. Suppose that L(z, 0,) satisfies (1.11) then d,,=s:,=[:, and
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J(ki, 1)=0 for 0<i<p—1. The condition (1.11)-(a) means that K={z,=0} is
a irregular characteristic surface defined in [9], and the conditions (1.11)-(b),
(¢) mean that the :-th localization of L(z, 0,) on K is a ki,,ki(O, z’, 0’) and the
(p—1)-th localization onAK is a function akp_l_o(O, z’). It follows from (1.5)
that there are =0 and &’20 such that

(1.14) P50 agsy, 0, 2, &x0  for |2/|=r.

Many of the results in this paper were announced in [117], where (1.11)-
(a), (b), and instead of (1.11)-(c). only d,=s, are assumed. The author thinks
that the assertions in Theorem 1.5 and others hold under these weaker condi-
tions, but they can not be shown by the method in this paper.

We give other results in the present paper which are used to prove the
preceding Theorems. In the following the coordinate (w, z, t) means a point in
C'XC"*xC¥*'. Put

(1'15) W5= {(w$ Z, t); lw1>(Sin 5)|t0‘7 lzl érly |t0| grﬂ: 7’2§|ti| grS (Zgl)} »

where 0<d<n/2 and 0<r,<r,<rs.

Definition 1.10. K (W;) is the set of all K (w, z, )OW3) such that: for
any fixed w, K (w, z, t) is single valued holomorphic in (z, ¢), and for any fixed
(z, ) it is holomorphic on the universal covering space of {weC!; (sin d) |t | <
lw|<+oo}.

Now let us define integral operators, using K (w, z, ) &K (W;). Put Q=
{teC¥**; |t| <rs} and U={z=C"**; |z|<r,}. Firstly we define a path T'(a, b)
in t-space, 0<b—a<2rx, T(a, b)=T.(a, )XT'<cC*)XC¥. Ty(a, b)=Tia, b)-+
T%a, b)+Ti(a, b) is a path in t,-space, where Ti(a, b)={t,=(1—s)r;+sn)e'*;
0<s<1}, Tia, by={t,=ne’?; a<e<b} and Ti(a, b)={t,=(srs+{1—s)p)e®; 0
s<1} (0<n<r,), (see Fig. 1.2.). T is the product of paths {t;=r.¢*¢; 0<e<2r}
¢=1,2, -, N) in C¥. In the later sections we use the path T when N=n or
N=n—1. When N=n—1, we use the notation t=(t, ts, -*-, t,)=(, t”) and T’
is denoted by 7”.

A
7/\/7}
'%4
Fig. 1.2

Let us define for f(2)€0(Q(a, b)), b—a>20,
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(1.16) <Kf>(z)=STK(to—zo, z, Dfdt,

where T=T,(a’, b") with a<a’<b'<b and 20<b'—a’<2z. We will show in
§5 that if f(z)e©(Q(a, b)), b—a>20, then (Kf)(z2)€0U (a+0d, b—0)) for a neigh-
bourhood U of z=0.

In order to show the preceding theorems we need the following Theorems
1.11 and 1.13.

Theorem 1.11. Suppose that L(z, 0,) satisfies the conditions
(1.17) (@ a.>1, () di,.,=0, (©) @, p0(0)=0.

Put 1=06,-1—1 and a=(0,-1—1)/0,-1. For given =R and any small 6,>0,
there are G(¢; w,z,0)=G;s(¢; w,z,)EK(W;) and Gr(P; w,z,t)=GCrs5, (¢ ; w, 2,1)
€K (W;,) with the following (1)-(5). Let f(2)€0(R(a, b)), b—a>20,, and (G?f)(z)
and (GLS)(z) be operators defined by (1.16).

(1) There is a neighbourhood U of z=0 such that (G?f)(z)), (GLNH)(2)eE
OU(a+0,, b—0,)) and

(1.18) L(z, 3,)(G?f)@)=f(2)+(GLf)(z)+a holomorphic function on U.

(2) Let f(2)E04,1(8(a, b)), where ¢p—n/Ra)+r/2<a<b<¢+nr/QRa)+3r/2
and b—a>n+20,. Then for any ¢>0, there is a constant c=c(e)>0 such that
(G NDEO ¢, cnU(a+e, b—e)).

(3) Suppose ¢ <¢” and 0<ad,<(z—a|d”—¢’'1)/2. Let f(2)€0,»(8(a, b)),
where ¢"—(x/2a)+7/2<a<b<{'+n/QRa)+3x/2 and b—a>zx+20,. Then there
is an h, such that if 0<h<<h,, (G¢ f)(@)—(G*" f)(z)E Asyy,({U(a+0,, b—0dy)).

(4) Let £>0 be arbitary. Let f(z)=Asy,(2(a, b)), where ¢<a<b<¢+2rm
and b—a>20,. Then (G?f)(z)€ Asy,(U(a+08,, b—0y)).

(B) Let f(2)€0,.,(2(a, b)). Suppose that one of the following conditions
holds :

(1) ¢—n/a)+r/2<a<b<¢Pp+n/2a)+3r/2 and b—a>n+20,,

(i) ¢—n/Ra)+3n/2<a<b<¢+n/2a)+n/2 and b—a>20,.

Then there is an h, such that, if 0<h<h,, (G4f)(2)EAsy (U (a+d,, b—0ay)).

Remark 1.12. Suppose L(z, 0,) satisfies the conditions (1.11)-(a), (b), which
are the same as (1.17)-(a), (b). Then it is written in the form

(1.19) L(z, )= 0, ,.o@O0) P+ Sk, otk po 075 H P11z, )@,

where k—dg =k—(+jlk, D)<kp-: for (k, Dx(kp-;, 0). So, if (1.17)-(c) is
valid, then for a given formal power series f(2) of z,, f(2)=2%=0 f2(2")(20)*/n},
f2(Z)eo(®R’), there is a formal power series u(z)-—-Z‘f,':;kp_1 U2 (z)/n !, ua(z)
€0(2"), such that L(z, 0,)u(z)=f(z) as a formal power series of z,.
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We have the following which we apply to the proof of Theorem 1.7.

Theorem 1.13. Suppose that L(z, d,) satisfies the condition (1.17) and put
7T=0p,-1—1. Let f(2)=Asy,(2(0,) with 0<0,<n/2x and 0<k<y. Then there
is a P(R)E HM-Asy (U (By) such that L(z, 0,)¥(z)—f(2) log z,&Asy U (8,)), where
U is a neighbourhood of z=0.

At the end of this section we show an example. Let L(z, d,) be an operator
of the form

(1.20) L(z, 0.)=00)"+Au(z, )@)™ '+ Amyz, 0,

where ord.A;(z, 0)=[=1, and ord.An,(z, 0')=m,. We assume that &<m,<m,,
(P.S. A)(z, §)]:p=0%0 and (P.S. An ) (2, &)|.,~F#0, where (P.S.A)(z, §) means
the principal symbol of A(z, d,).

Case (1) (m,—0)/(me—m) <my/(m,—k). We have a,=m,/(m,—k)>1, g.,=1,
p=2 and y=0,—1. The conditions (1.11)-(a), (b), (c) are satisfied.

Case (2) (ms—0)/(mae—my)>1/(m,—E)>1. We have o,=(m,—1)/(m;—m,), G,=
l/(my—k), os=1, p=3 and y=0c,—1. The conditions (1.11)-(a), (b), (c) are
satisfied.

Case (3) (my—1)/(my—m)>1=1/(m,—k). We have g,=0m,—1)/(m,—m,), ¢,
=1, p=2, d,,=l=1. So (1.11)-(b) does not hold.

Case (4) 1=0m,—0)/(m.—m)2l/(mi—k). We have ¢,=1 and d,,=mn..
Neither (1.11)-(a) nor (b) is valid.

According to the classification of characteristic surfaces in [9], in Cases
(1)-(3) K={z,=0} is irregular characteristic and in Case (4) K={z,=0} is re-
gular characteristic.

§2. Function Spaces

In §1 we introduced some classes of holomorphic functions. In the present
section we give some properties of them, which are used to show Theorems
and Corollaries stated in §1. Some of them were given in [12] and we refer
the proofs of them to it. In the definitions of function spaces in §1, z means
the (n-+1)-variables, z=(z,, z’)=C™*!, but the variable z, is important and other
variables z’ are not. Hence z or ¢ means one complex variable in §2 except
Proposition 2.8.

Firstly we study functions with asymptotic expansions on the half axis.
Let u(z) be a function defined on the line {z;argz=¢, 0<|z| <A} having the
k-asymptotic expansion,

2.1 u(z)~Ii5 crzt

that is, if for any N=1
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2.2) |u(z)— it crz® | SARMI(N/k+1) |2

We may assume ¢=0. We have from (2.2)

2.3 lce | SAR*(k/k4+1).

Conversely, let {c.} (=0, 1, ---) be a sequence satisfying (2.3). Put

o it
=T (B /k+1)

which is holomorphic in {tC*; |t| <R} and |g@®)|<A1—|t/R|)"'. Put

249 FLOEDY teC,

@.5) v(z):z"S:exp(—z‘”t)g(t"")dt . 0<cU<R,

which depends on ¢. Then we have

——~———

Proposition 2.1. (1). v()eo(C!'—{0}).
(2). v(z) has the k-asymptotic expansion as z—0 in {z; |arg z|<=/2k}, that
is, there is an A(c) such that for any N

2.6) |v(z2)— 205 cxzt | S A(e)e™V*(cos (£0)) V" (N/k+1) |21 ¥

holds in {z; |argz| <<’} for any 0" with 0<0'<m /2.

Set w(z)=u(z)—v(z). By Proposition 2.1, u(z) and v»(z) have the same
asymptotic expansion on the positive real axis as z—-+0. Hence w(z)~0 as
z—0 on the positive real axis. More precisely we have

Lemma 2.2, |wk)| < Ac " (n/k+1)|x|* for each n, and |w(x)|=<
Clex™)'%exp (—cx*) for 0<x<1, where A and C depend on c.

The proofs of Proposition 2.1 and Lemma 2.2 were in [12]. We’ll define
the k-Laplace transform and investigate relations between functions with the
k-asymptic expansion and their x-Laplace transforms. Let Z(x) be a continuous
function on (0, A) (A>0) with [X(x)|<Cexp (h|x|™) (¢>0). We define the &-
Laplace transform (&) of X(x) by

@0 2<s>=gf°exp EMx- Mz dx (@>A),

which is holomorphic in {£;Re&<—h}. (&) depends on a, we may choose
any a with a> A" and fix it. The inversion formula is given by

- —K

@8  10=p | “exp(—ex9i@de (d<—h) for 0<x<a .

Let @#(§) be the g-Laplace transform of u(x) with the g-asymptotic expan-
sion (2.1). Since @#(&)=0(&)+1w(€), v(z) being defined by (2.5), we study #(£) and
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w(&). We have

Lemma 2.3. (1) @) <0({&; Reé&<c}).

(2) 2E)eo({é; EeC*—[0, c]}). It has the holomorphic prolongation around
£=0 so that D(&)e0(&,), F,={£=C*; 0<|&| <c}).

3) 10®I=M. 4llog &| in {&; |arg &1 <0, 0<|&| <r} for any 0 and 0<r<c.

@) {p(&)—v(Ee*™ )} /2mi=g(€'%), where g(t) is defined by (2.4) and &=
[El 1rgitarg 5)/16_

It follows from Lemma 2.2 that @(6)c0O({€; Re£<c}). We refer the proof
of (2)-(4) to [12]. Thus we have

Proposition 2.4. Let u(x) be a function with the asymptotic expansion (2.1)
on [0, A). Then there ts a constant ¢>0 such that

(1) @) is holomorphic in {&; Re &<c, €[00, 0)},

(2) @(&) is holomorphically extensible onto Z,={&; 0<|&|<c} such that (&)
€0(&0),

2.9) &) <M, silog & in {€; larg €| <0, 0<IE| <r} (0<r<c)
for any 6>0 and {a(§)—a(ée* )} /2ri=g(§'").

Next we consider functions holomorphic in a sector 2(a, b), 2={z; |z| <R}.
In the sequel we only consider u(z)E0,. ,(2(a, b)). We can define the -
Laplace transform #(£) of u(z) by

(+oog?
4

(2.10) ﬂ(E):S sDexp(Ez)u(z'”")z‘ldz (a<—o/k<b),

where |Al>R-* and a<—(arg A)/k<b, #(€) depends on A. We may choose
any A satisfying the conditions and we fix it. #(£) is holomorphic on the set

(2.11) E(h, a, b)
= U {&=|£]e¥eC—{0}; [&]cos(G+@)<—h, |p+o—n| <z/2}.

al-p kb
We have

Theorem 2.5. Let u(z2)S0,, ,(2(a, b)). Suppose that the k-Laplace trans-
form a(§)cO(E(h, a, b)) is holomorphically prolonged to the punctured disk 5, 5,
={0<|&|<c}, for some c>h so that

(i) for any >0 |a(8)| <My|log &| in {£€5,; |argé—n| <D}, and

(i) F@={ag) —a(e*™")}/2ni is a convergent power series of &' at £=0,

(2.12) F&=2#% cx&*F/T'(N/k+1).

Then there is an hy=~hy(c)>0 such that the following hold. If h<h,, there
are a’=a’(h) and b'=b'(h) ((a<a’<b'<b) such that u(z) has the k-asymptotic
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expansion (2.1) in 2(a’, b’) and ’}im a’(h)=a and hlirr}) b’ (h)=h.
-+0 -+

Proof. We may assume that a=—80, and b=46, (,>0). Firstly we note
that there exists 0<h,<c such that if 0<h<h,, S(h, —0,, O0)JE,D{E=|&|e*;
£x0, |[¢—x| < 0"} for some §”=07(h)>r/2 with ’}ir{loﬁ”(h)=x00+7r/2. By the

deformation of the integration path to the right half plane, the inverse &-
Laplace transform is given by

z 5 /rd el (m—0")
2.13) u@ =5 (1" ot e (—gra@as
for ze2((0’'—x/2)/k) (x/2<6’<rm). From the assumption, #(£) has at most the
logarithmic growth at £=0. Hence, by deforming the integration path (see
Fig. 2.1), we have for z€Q2((§’'—r/2)/k) with n/2<0’<6” and 0'<~r,

—K

z
(2.14) u(z) = 2t

([l it () exp (g2 02@ dé 50 @

:Z—mS: exp (—EZ”K)F(E)dE+50'(Z) ’

Here F(&)=a(§)—a(£e* ) and

@.15) sr@=2 (177 T Yexp (gmaeaz.

2i\Jogica 0y Je

Fig. 2.1

For z with |argz|<zx/2c we have the k-asymptotic expansion

2.16) 2| exp (— 829 F ©de~Siner2*
and
2.17) 50:@) | SAgr.5€Xp (=5 2] ™), €3>0,

in {z;0<1z|<A’, n/2—0'+0<ckargz<—n/2+6'—4d} for any 6>0. Hence, we
have the k-asymptotic expansion of u(z)

(2.18) U@~ ¢, 2k in QU0’'—=r/2)/k).

Moreover if follows from the rotation of z and using the above method again
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that u(z) has the x-asymptotic expansion (2.18) in Q((0”—=z/2)/k). Put —a’(h)
=b'(h)=(0"—r/2)/k and as mentioned above Ilimoﬁ”(h)zxﬂo—l—n/Z. Hence lim

h—=+0
—a’(h)= ,limob’(h)=(6"—7r/2)//c=00.
From Proposition 2.4 and Theorem 2.5 we have

Corollary 2.6. Let u(z2)€0»(2(a, b)). Then u(z) has the k-asymptotic ex-
pansion in Q(a, b), if and only if the k-Laplace transform #(§)c0{&; ka—n/2<
arg E—n<kb+n/2} satisfies the following (1) and (2).

(1) @(€) has holomorphic extension onto Z,={&;0<|&|<c} such that @<
o(&,) and |2@E)| <M;llog &| on {£€Z,; ka—n/2+0<arg é—rn<kb+m/2—d} for
any 0>0.

2) F@&)={a€)—a(€e*M}/(2ni) has the convergent power series of &'¢ at
&E=0 such as (2.12).

Remark 2.7. Put

R r kK
(2.19) 0uO=5 1

Then U.(&)—U(Ee*"")=E*/r for |&|<r. Define

(2.20) U@=3t% ¢ Ue®/T(N/k+1).

Then U@)—U(&e* =34 c,&4%/'(N/k+1) and it is easy to show that U(§)
has at most logarithmic growth at £€=0. Suppose that conditions (1) and (2) in
Corollary 2.6 hold. We have #(&)—U@E) =a(te*")—U(&e**Y) and a@)—-U@®) e
O{(0<]&|<c}). Since #(f) and U(§) has at most logarithmic growth at &=0,
4@ —U®) =0(|&] <c). Therefore the behaviour of 4(&) at £&=0 is characterized
by U().

In the next proposition z=(z,, z2/)eC"*' and 2=02,x 2’ is a polydisk with
the center z=0 in C™*',

Proposition 2.8. Let u(2)€0»(Q2(a, b)) and D be a non empty open set in
Q. Suppose that u(z) has the r-asymptotic expansion with respect to z, as z,—0
on 4(a, b)XD, then u(z) has also the k-asymptotic expansion in £2(a, b).

Proof. We may assume —a=b=60,. We have (&, 2)E0(Zq,:22X82"),
where Zy={6€C'— {0} ; |argé—x|<0}. If /€D, A, 2)=0(Z,xD’). Hence,
it follows from the theory of the extension of holomorphic functions of several
complex variables that #(&, z’) is holomorphically extensible around £=0 for
Z’e’, that is, @&, 2)e0(Z*), Z*={(&, z’)EC"—\{ﬁ}xQ’;0<|E!<c(1z’|)} for
some c¢(iz’|)>0 (see [4]). We have F(§ z")={a(€, z’)—a(Ee? ¢, 2)} /@2ni)=



SOLUTIONS WITH SINGULARITIES 75

S cn(2DER /(R /k+1), and @&, 2)—U(E, z)e0(1&! <c(|2’])) as a function of
&, where U(E, 2/)=3% c,(2))0 &)/ (k/k+1) is defined by (2.20) for @(&, 2’).
Hence it follows from Remark 2.7 that the conditions (1) and (2) in Corollary 2.6
hold. So u(z) has the k-asymptotic expansion with respect to z, in 2(a, b).

Proposition 2.9. (1) Let f()€Asy(2(a, b). If b—a>n/k+2r, then
f@eo@).
2) Let f)edt-Asy(R(a, b)). If b—a>n/k+4r, then f(2)€ M(2—K).

Proof. (1) Put F(2)=f(2)—f(ze?*?), z&82(a, b—2x). Then F(z)~0. More
precisely for any N=1 we have

(2.21) |F(2)| <ABY'(N/k+1) |z, ¥ in 2(a’, b'—27x) (a<a’<b'<b).

Choose a’ and b’ such that b'—a’—2zx>m/k.. From (2.21) we have |[F(2)| <
Aexp(—clz,|® in Q(a’, b’—2x) for some ¢>0. Since (V' —2r)—a’>n/k, F(2)
=0. So f(z) is single valued on £—K and bounded. Consequently f(z) is
holomorphic in Q.

(2) Put F(2)=f(2)—f(ze**), z&R(a, b—2x). Then F(2)€Asy,(2(a’, b’
—2r)). We can choose a’ and b’ such that (b'—2x)—a’>n/k+2z. Hence F(z)
€02 by (1). Put g@@)=f(&)+1/27i)F(2)log z,, Then g(z)—g(ze* " )=F(z)—
1/@ri) {F(z)(log z,+-27i)—F(2) log z,} =0. So g(z) is single valued in 2—K.
Since |g(z)|<A|z,|~¥ for some H>=0, {z,=0} is at most a pole of g(z). Thus
f(2)=g()—1/@2ri)F(2) log z,& M(2—K).

As stated in §1, we have Corollary 1.6 (resp. 1.8) by Theorem 1.5 (resp.
1.7) and Proposition 2.9.

Proposition 2.10. Let u(z)E0,, ,(2(a, b)). Suppose that there exist u,(z)
E0up(2(a, b)) G=1,2, -, |, k<1 <K< --- <ky) such that w(@)=},u.(z) and
each uy(z) has the k-asymptotic expansion on {z; argz=e;, |z| <R} (a<¢,<b).
Further assume that there is a ¢,=(a, b) such that |¢;—¢,|<m/2k.. Then there
is an hy>0 such that, if 0<h<h, u@@<Asy(2(a’, b)) for some a’=a’(h) and
b'=b'(h) (a<a’<b'<b) satisfying ;}irﬂ a’(h)=a and ’}irgb’(h)zb.

Proof. By the rotation of z, we may assume a<0<b and ¢,=0. We have

+oogl
A

2.22) a(g):S ‘expEu@Mztdz (A>R-, arg z=p)
which is holomorphic in EZ(h, a, b) (see (2.11)). @(€) is represented in the form
(2.23) aé)= lim0 Iimo limnymmexp (Ez—k &2 u(z71 ")z dz

Sy-+0 Eg—+ g-+0Ja

where p,=#;/k>1 and |¢|<=w/2p,. Suppose |argé—n|<@* where §*=
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min {z/2— |kp;| ; 1<i<i} >0. Since |kgp;| <z/2p;, by putting ¢=—r¢,, we have
~ikp

2.24) a(;):S:“e exp (E2)u(z-1)z-1dz

=lim lim --- lim exp (fz— 3 ,8;2P%) (ko ui(z7V5)z7dz,

S+ooe'”‘/’l
£1->+0 Eg+0 e1-+0J4

+ue—i/z¢1
=lim lim --- lim S exp(Ez—ict ez°) (it uy(zV")z"dz
€1-+0 g3-+0 El-1-+0J4
i +oog ™ Py
+lim lim - lim S exp (Ez— St e,2f D,z dz
€1-+0 eg—»+0 £§1-1-+0J4
+oog " LR
=1lim lim --- lim S exp(z—il ez (it uy(z )z d=
&1»+0 €940 E1-1-4+0J4

P

+S:° exp(&z)u(z7")z " dz.

Since |k¢i-,|<m/2p,-,, We also have

+oog ™ IFPy
lim lim - lim S exp (62— St e,200) (St uy(z~)z " dz
£1>+0 &340 &p-1—=+0J4

+we'i’°$pl-1
= lim lim -+ lim S exp(z— i ;20 ui(z7 )z dz
Ejo+0 Eg=t0 £y — 140
+oog Py
=1lim lim - lim S exp (f2— 52 6220 (2 ua(2) 2" dz
€1-+0 gg>+0 El-9-+0JA4

+o0g " KO
+SA 1exp EDu-(z7V"z"dz.

Repeating this argument, we have for & with 'arg é—n|<@*
-lrgni

exp(&z2)u(z-"z"dz .

@) Q=S @@=
By the assumption u;(z) has the k-asymptotic expansion on {z;argz=e;}.
Hence #;8)e0(&,), 5,={0<|&|<c}, for some ¢>0 and (1) and (2) in Proposi-
tion 2.4 hold for each #;(&). Hence #(§)€0(&(h, a, b)) has a holomorphic pro-
longation to {&; largé—=x|<0*\US, So the assumptions in Theorem 2.5 hold

and the assertions follow.

We give a few propositions for the later sections. The next two mean
that holomorphic functions with bounds in a sector are represented as a sum
of those in wider sectors.

Proposition 2.11. Let u(z)€0,(2(a, b)). Given h>0, there are u,(2)€
O nU(a, b+27)) and u(2)€0,, ,(U(a—2x, b)) such that u(z)=u,(2)+us(2) in
U(a, b), where U is a neighbourhood of z=0.
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Proof. We may assume that a<0<b. Given h>0, define

exp (hz"‘/S)Sr exp(—ht=*/3)
2ni 0 t—z

(2.26) U(x)= u(t)dt .

Then, by deforming the integration path, we can prolong U(z) to the U(a, b+2r),
U={lzi<r}. We denote by u,(z) this extension, U(z) is also considered to be
a holomorphic function on U(a—2r, b), say —u,(z). Then we have u(z)=
u,(2)+uyx(z) on U(a, b) and we can easily show u,(2)€0,.{U(a, b+2x)) and
ux(2) €0, n(U(a—2x, b)).

We have by the same method as in Proposition 2.11.

Proposition 2.12. Let u(2)E0,,.(2(a, b)). Given h’>h, there are u,(z)E
O nUl(a, b+2x)) and u,(2)€0 4, U(a—2x, b)) such that u(z)=u,(2)+u,(2) in
Ua, b), U={|r|<r}.

We give a relation Asy,(2(a, b)) between H-Asy.,(2(a, b)).

Proposition 2.13. For u(z)e Asy,(2(a, b)) there is a ii(z)€ H-Asy,,[U(a, b)),
={|z|<r}, such that ii(z)—u(z) log z= Asy,({U(a, b)).

Proof. We may assume that a=—b=8@. Define

w0

@2.27) iz )_S -

dt.

Then @i(z)eoU(—0, 0+2r)), U={|z|<r}. Put w(z)—So w dt. Then

2.28) i) =| 2= @)

dt+w(2) u(z)(log z—log (z—7))+w(z).

We show w()eAsyU(0). We have w(z)=5:dtS:u’(st—{-(l—s)z)ds and

w‘"’(z):-S:dtS:(l——s)"u‘"“’(st—i—(l—s)z)ds. Hence if |largz| <6,<0,

(2.29) @SB T(PE 1)1yt (a1 -9mas
<AB"+‘I’<"+1 +1)nt,

which means w(z)e Asy,,(U(8)). Hence #(z)—u(z) log z€ Asy,(U(a, b)).
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§3. Integro-differential Operators Derived from L(z, 0.)

In order to show Theorems in §1 we need integro-differential operators
Loz, 2, {, 0, 0r, At,—A0;) (0<a<1) containing an integral operator 8z, where
zeC™*' and 1,§ t,eC'. L,=Lu(z, 4, 0,, 0, At,—10;) is derived from
L(z,0,) in (1.1) as follows: Let 0<a<l1. L(z, 0,) is the sum of L, (z, 0,)=
z@a,, (2, 005 (J=j(k, D), sp<I<m, 0<k<m) (see (1.2)). We correspond
Loar1=Law1(2, 4, C, 0., 0, A,—20;) to each L, ,(z, d,),

B Lo =A@l — 20200 {22 ar, 1z, 30TNH(A0,0T + )1
Namely we get L., from L, ,(z, 0,) by the following replacements:
(3.2)  zy—> A %(al+(At,—20;)07"), 0 —> A%0'07', 8o —> 20,07 +4,
but the variable z, in a,,(z, 0’) is not replaced. Define

(3-3) .L’az,Ca(z, 2) C) az: aC’ Zto—zal)::EgLO lez=8k -[:a.k,l .

Now we define ;' in .£,. In order to do so we introduce a sequence of
auxiliary functions {f,(0)} (j€Z) used in [1]:

FO= s s (1+ g+ + )} (D,

(2::) !
(3.4) fo©)= W log g,
o= e Gs-b.

It is easy to show the next lemma.

Lemma 3.1. The following identities hold:

(3.5) dCfJ(C) fi©),

3.6) L Q=0G+1fi(+a polynomial of L.
By considering Lemma 3.1, we define

3.7) 07 fi-C+e)=fC+e),

where ¢ does not depend on {. By (3.6), we have

(3.8) CfiC+o)=G+Dfjn@+c)—cfiC+e)  (mod. polynomials of ).

All the calculations with respect to { will be performed by the relations
(3.5)-(3.8). Polynomials of { are neglected in all the calculations below. It
will turn out that they make no contribution to the integration on the closed



SOLUTIONS WITH SINGULARITIES 79

paths in {-space. The notation = means modulo polynomials of £ in §3.
Now we define the operation of £,=.L.(z, 4, &, 0., 0;, A4,—20;) to a func-
tion V(z, t, 4, {, ) of the form

(39) V(Zy t: 2: C’ T):E;:novn(zy t; l) T)fn(c+721)-
We prepare several lemmas for this operation. w(z, t, 4, 7) in Lemmas 3.2-3.4

and Proposition 3.5 is holomorphic in some domain.

Lemma 3.2.

(7142007 +1)'w(z, 1, 4, T)fa(l+12)

=S D ATz, 1, 2, D) f e r(C 7).
r
Lemma 3.3. There are linear partial differential operators ay, . s(z, 0’)
0=s<0) with ord.ay, . s(z, @')<s such that
(3-10) ak,l(zy a,azl)v(zx t» 2: T)fn(C+TZl>
:2§=071—sak,l.s(2; a/)YJ(Z, t, A, T)fn+s<c+f~7-1)’

where ay,.,(2)=ay,(z, 5’)f$'=é'=<1,o, L0).

Lemma 3.2 follows from the binomial theorem and the proof of Lemma 3.3
is easy.
Lemma 3.4. The following identity holds:
(3.11) {27 (al+(At,—20)0T) u(z, t, 2, ) fn(l+72)
=TI (—arz) T Pi(n, Aty—R0)v(z, t, A, T)f nes(CHT2)}.

Here Pj(n, Aty—203)=1 and P}(n, Aty%—20;)= Di-opl :(n)(Aty—120:)%, where con-
stants pi n(n) OZk<s, 0<s<j) satify for constants A and B

(3.12) pham)| SAB(In|+j+1)7"*",  0<k<s=<j.
Proof. The identity (3.11) is obvious for j=0. We have by (3.8)
(3.13) A7 (@l (At —202)07 W(z, t, A, T)f2(l+72)
=1 (—arz )z, t, A, T)f2((+72)
+Ha(n+1)+Aty—20))(z, t, 4, T)f nC+r21)}.

Thus, by putting Pi(n, At,—10:)=a(n+1)+(At,—20;), we have (3.11) and (3.12)
for j=1. Assume (3.11) and (3.12) for some ;. Then we have
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{27+ *(al+(t,— 202007} 1 u(z, t, 4, T f n(L+721)

=27 *(al+(At,—20,)37")

{AC DIy (—arz,) ~*Pi(n, A,—202)v(z, t, 4, T)f 2+s({+T20)}

=2 [(—arz) AT (D, (—arz, Y T Pi(n, &ty—203)v(2, t, A, T) [ nss(C+721))}
+(a(n+s+1)+(At,—20,))

{2 (Dh (—arz) " Pi(n, At,—20:)0(z, t, 4, ©)f nes+1({+72))} ]

=AY (—arz,) 1 Pi(n, At,— 20,00z, t, A, T)f nss(CHT21)
+(SDao(—arz,Y - (a(n+s+1)+j1—a)Piln, t,—202)v(z, t, 2, T) [ nssr({F721))
+(Dio(—arz, )% (Aty—20,)Pi(n, At,—20:)0(z, t, A, 7)f ness1({+T20))}-

By putting Pi*(n, &t,—20;)=Pi(n, ty—10;)+(a(n+s)+j(1l—a))Pi_,(n, At,—

40)+(At,—202)Pi_(n, At,—20;), we have (3.11) and (3.12) for j+1.

Thus, making full use of the above Lemmas, we have

Proposition 3.5. The following holds:
-Ca, k,lv(z; t; 2: T)fn(c—{_le)

i (T O S ez P s b, 2= 0

0s
0s8<

=3
Zk—(l_a)(“.r)rl—sak.l.s(Z; al)agv(z: t; 2: T)}fn+8+r+d(c+rzl) .

Now let us construct a formal solution V(z, ¢, 4, {, ) of
(3.14) LaV(z,t, 2,8, 1)=F(z, t, 2, 7)fa,C+72),
which has the form (3.9). Define
(3.15) Q. a(n, Aty—20;)=2A"F+A=0UDPI(y 2t —30,) A%~ A=+

where 0<k<m, s,=<I<k and 0=<r=<Fk—[. By operating L, to V(z,t, 4, ¢, 1)
and setting the coefficients of the same fy({+7z,) equal to each other, we have
from Proposition 3.5

k—1
r

(3.16) En-rs+r+d=N( )Z‘“‘"”{Eosdg,-(—arzl)"“”Pé(n+s+r, At,—205)
Ab-Q-aanpl=3q, . (z, 00w (2, t, A, T)}

E—IN,,_ )
=2n+:+'r+d=N( ” )zk (l—a)(l”m{20515;‘(“(1721)1_‘1

Qb a(nts+r, A—202)t " ar.1.4(2, 3)05va(z, 1, A, T)} =0, 4, F (2,1, 2).
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In order to show Theorems in §1 we’ll put a=a,=(0,—1)/a, or a=ap,-,=
(6p-1—1)/0p-1. So we give a lemma for later purposes.

Lemma 3.6. Assume d,=I+j(k, [)>+oco. Then there are nonnegative
Bi..€Q (1<i<p—1) such that

(3~17) (dki_l—dk,l)(l_ai)+ﬁ£,12ki—1_k B
(k, dp,)E20) if and only if Bi,=0, and

( (de;—de i )@r—a;)+ B, —Bh+BE=0,
1 di;_(ay—a)+Bi,_ =de(ar—a)+Bi;,
where Bi,=Bk,.1,, (see (1.3)).

(3.18)

Lemma 3.6 follows from the lower convexity of X and the definition of
2(@@) and d, (see [12]). Now put a=a,=(0;—1)/0; 1<i<p—1). From Lemma
3.6, k—ds (1—a)=ki,—ds,_.,(1—a)—pi:. Hence we have from (3.16),

(3.19) zki-1‘<"“z>dkz—meHw:N(k:l),z—u—am-ﬁz?,z

{(Dozasi(— @iz " QL a(nts+r, A,—20;)t% 175 %ay,, (2,0))07va(2, , A, T)}

=5N. noF(Z, t, 2) .
Put

(3.20) G;(Z, 3’, /z, f):ZkL—l'(l—Ql)dki_l

k—I i . .
| St (5) e eor iz Qb st st 20

¢ \ 7
Tée 175 0g, (7, 6’)85}} .

Gz, 0, 2, t) is a polynomial of z. So we denote it by Giz, 4, r), which will
often appear and has the form

(3.21) Gi(z, 2, 7)22”“_“"““‘1““1{Ek,zl"’si- l(_alzl)]Tdk‘lak,L(z)}y

where a; ((2)=as.1.02)=as,.(z, &) (see Lemma 3.3). Thus the equation (3.19)
becomes

(3.22) Gi(z, 2, ton(z, t, 4, )

+2,Gilz, 0, 4, Dow-o(2, t, A, T)=0x, 4, F(2, t, 4, 7),

where X, is a finite sum. Consequently we can determine vy(z, ¢, 1, 7) (N=n,)
successively by (3.22). In order to determine them we need the division by
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Gz, 4, 7). So the properties and the estimates of vy(z, ¢, 4, ) depend on the
zeros of Gi(z, 2, r). In particular, if F(z, ¢, 4, 7) is rational in 7, vy(z, ¢, 4, 7)
(N=n,) are also rational functions of r. G%~!(z, 4, r) is simple. The zeros of
Gi(z, A, ) are studied in §6.

§4. Construction of Kernels Gw, z, t) and Gr(w, z, t)

In §4 we construct G(w, z, t) and Gg(w, z, t) in Theorem 1.11 by using the
results in § 3. So we assume (1.17)-(a), (b), (c) in this section. Now put a=

ap-; and =0 in (3.14). Consider

(4.1) IHV(Z) t, 2) C)ZF(Z, t, Z)f'-l(c)!
where

—_— _l n 1
4.2) Pl t, D= o Tl

Since a=ap-1, 7=0 and dkp_,=0, we have from (3.21)
-1
4.3) Gz, H)=G37'(z, 4, O)=/zkp'12(k;j(k,0)=0)2—ﬁz’° a,o(2)

gt
zlkp'l(akp_l,o(z)’*_z(k;k#kp_l.](k.o):ollz Pi.o ar.o(2).

If kxk,oy, BE'>0 in (4.3). By the assumption (1.17)-(c) we have |G,(z, )|
>C|2|*p-1, C>0, for large 2 and in a neighbourhood of z=0. So we can
construct a formal solution V(z, ¢, 4, {) of (4.1) by the method in §3,

(4.9 Vizg, t, 2, D=3 walz, t, D 0.
va(z, t, ) (n=—1) are successively determined by the formula (3.22) as holo-

morphic functions in a neighbourhood of z=0. We have

Proposition 4.1. For small r,, vy, rs (0<r,<r,<rs) and large A,, there exist
constants A and B such that

4.5) [Afp-10,(2, t, A)| SAB™ (225514t 7/r N(n+1)!
holds in {(z, t, D lzISr, [ Srs, S| <rs 1Ki<n), |21 =1,}.

The proof of Proposition 4.1 is given in §7. As for the convergence of
V(z, t, 2, ), we have

Proposition 4.2. V(z, t, 4, )=212_v,(2, t, A)f n({) converges in {(z,t, A, {);
[zl Sry, 1G] S, St Sy 1ZiZ0), 12| 24, 0<1Li <1} for some r,>0, the
singularity at (=0 of V(z, t, 2, O)—v_,(z, t, Df_(L) is logarithmic and

(4.6) Viz, t, 2, O—vou(z, t, Df 1) <A[2]% exp (C*[ 2Lt [ )(|log {1+ B)
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for some constants A, B, C* and ¢*.

Proof. By Proposition 4.1, |2¥»-1(V(z, ¢, 2, O)—v_\(z, t, D)f_1(0)| £ A(jlog C|
+ D3R5 (BICHX2 At 7/rD). I 210 =B, 335 (BICHM(Z A6 7/r) =
A+232,(128 |7 /r W32 (BICD"N S AQ 72, | 2t |71 BE " /r D= A2 exp(BlALt ).
So we have (4.6).

The constants C* and ¢* appering in this section are those in Proposition
4.2. Define paths in {-space: Z(¢, ¢')= {{=d*e'~D29+sa0" . 0<s<1} and Z(¢h)
=Z(¢), ¢+2r/a), where d*>0. Put

@) V@2t 0=], exp(—20V( 1, 2 0dL,
Z)

where 0<d*<r,, r, being that in Proposition 4.2, and

4.8) Vg, ¢ 52,8, )=V(p;2,t, )=V ; 2,1, 2),

where |a(¢p—¢’)| <z. In the definition of V(gb; z, t, 2), the holomorphic part
of V(z,t, 4, {) as a function of { can be neglected. We have

Lemma 4.3. The following estimates hold :
4.9) V(s 2z, t, D <A exp (d*| 2} “+C*d*| ).
If |arg 2+¢| <z /2a,
(4.10) \V(d; z, t, A A2 exp (C*d*|2t,]).

If —(x/2a)+(|¢p—¢'|/2)+e<arg A+ (P+¢")/2<(n/2a)—(1p—¢'| /2)—¢, where 0<
ac<(n/2)—(a|p—¢'|/2),

(4.11) \D(D, ¢ 3 2, t, D] SAI2|7 exp (C*d* | 2ty| —d* sin (@e)| 2] 7).

Proof. V(gb; z, t, A) is well defined and we have (4.9) and (4.10) from (4.6)
and the deformation of the integration path Z(¢). We have

@y Vg iz n=(], ] ewrovet 104

Z"

:(SZ(gb'+2z/a.z/}+2n/n)+SZ(¢-. <,’u)> exp (—)‘HC)V(Z’ t’ 2’ C)dc

and Re 2°{=d* sin (a¢)!1]|® on Z(¢p-+2xn/a, ¢'+2n/a)\JZ(), ¢'). Thus we have
(4.11).

By Lemma 4.3 we can define
mel

(4.13) Gl; w, z, t)=gl ' exp(——lw)f}(gb; z, t, A)dA
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and

(4.14) G, ¢ 5w, z, )=G(p; w, z, )—G(¢'; w, 2, 1)
=V

Put, by using the constants in Proposition 4.1,

i T

exp(—Aw)V (¢, ¢'; z, t, DdA.

X={(z, t); |z| Sy, 18| Sra, o= Sry (1ZiZn)},
(4.15) Q=lz; |z|<rs},  U={z;|z| =},
X1, =XXA%,  A3={2; |2 = A},

and recall (see §1)

(4.16) Wi={(w, z, t); |lw|>(sin d)|t,], (z, HEX} for a small 6>>0,

the function space K (W;) (see Definition 1.10), and
4.17) a=ap.,=(0p1—1)/05-1, r=0p.,—1=a/(l—a).

We choose 4d*>0 small in the following in this paper, if necessary. We
have

Proposition 4.4. (1) G(¢; w, z, t)e K (Ws), 6*=sin"'C*d*.

(2) Suppose |arg w—¢| <m/2a+m/2—e for small e>0. Then if C*d*it,]|
<(sin &)|w]|,
ABiCTq!lr!
w|—C*d*|t, | )1+t

(*.18) BICWs w, 2, DI S g

(3) Suppose |argw—¢p!<m. Then there is 0<c*<1 such that if C*d*|t,l
<c*|lw]l,
9CT g1
< ABC7qlr! .
(c*|lw| —C*d*|t,|)r+a !

4.19) 10%0;G(¢J; w, z,

Constants A, B and C in (4.18)-(4.19) are some constants and g¢* is that in (4.6)
(or (4.10)), and 0] stands for the r-th derivative with respect to z.

Proof. By varying ¢ in (4.13), we have the holomorphic prolongation of
G(¢; w, z,t) with respect to w and G(¢; w, z, )eK (W) by (4.9). Suppose
largw—¢|<m/2a+n/2—e. Then we can choose A2=|2|e*? (lo+¢!<n/2a)
such that Re Aw=>=(sin ¢)|Aw|. Hence, if C*d*|t,| <(sin &)|w],

LG5 w, 5 D1 S AT exp(—(sin o)l 2w | +C*d*| ty1) 219+ d2)

<AB%'((sin e)|w|—C*d*|t,|) 1771,
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We have also the similar estimates for 040;G(¢; w, z, t). In particular suppose
larg w—¢| <z. Then we can choose A=|2|e** (Jp+¢|<m/2a) so that Re Aw
=c*|Aw|, where 0<c*<1 is determined by a. Hence, if C*d*|t,|<c*|w],

ooei‘/’
la%G(sb;w,z,t)léASI exXp (—¢*| Aw | -+ C*d* | 2o 1)| 2|97 dA|
/g
<ABY ! (c*|w|—C*d*|t,|)" 7",
Thus we have (4.19).

We study G(¢; w, z,t) in §4 and §5. We calculate L(z, 0,)G(¢; to—2,, 2, 1)
in this section. In the following = means modulo holomorphic functions on X
(see (4.15)). We have

Proposition 4.5.

(4'20) L(Z, az)G(¢; tO_ZOJ z, t)
-1
Ezzni—)nHH?=o(ti_Zi)—l+GR(¢; to— 2o, 2, 1),
where
oegi‘/’
(4.21) Grl¢; w, z, t)=84 exp(—Aw—A%d*e** )V p(¢; z, t, A)dA

and V(¢ z, t, HEO(X 1) with
(4.22) [Vald; z, t, D SAQ+]2])Y exp (C*d*12¢,|)  for some N.
Before the proof of Proposition 4.5 we note the following identity :
Ly (z, )G ; ty—2z0, 2, )=2)ar,1(2, )0 G(Y; ti—20, 2, 1)
ZS::W exp(——/l(to—zo)z,,fdlgzw)ak_l(z, 8@+ 2"t exp (—2°0V (2, ¢, 2, Dl

weiip .
=7 @ exp Gz exp (~at)dz

XSZ(¢)ak.L(z: 8@+ L exp (—A° 0V (z, t, A, O)dL.

Now we give several lemmas to show Proposition 4.5, in which the same
notation V(z, ¢, 2) means several functions on X Ay

Lemma 4.6.



86 Sunao OucHi

(4.23) [, @t 4~ exD (— 20V (2, 1, 4,
=2 exp (- A 0A DV (a1, 3, DL
Z)

+exp(—2*d*e’ )V (z, t, 1),
where |V(z, t, DI <AQ+|2])Y exp (C*d*|at,|) for some N.

Proof. Since d;exp (—A*0)=—2%exp (—2A%) and (G,+A)*‘=2*"4A"'**2"%0,
+1)*-!, we have (4.23) by integration by parts with respect to {.

Lemma 4.7.
@20) | aeale, )0+ Hexp(—2DV (2, 1, 2, ONE

=2t exp (= 201z, PR DA+ @, 1, 4 OdC
14

+exp(—2a2d*eie9)V(z, t, 1),
where |V(z, t, )| <A1+ |2]))Y exp (C*d*|At,|) for some N.

Proof. We have (4.24) with another V(z, t, 2) and another N in the same
way as in Lemma 4.6, by using integration by parts in (.

Put
4.25) VEz, t, R, O=2"""2ta,, (z, 0’0 ) (A71*20,0; 1+ A) "V (2,1, 4, ).

Lemma 4.8. The following identity holds:

aoei(.g X
@.26) [ (@2 exp (G2 exp (—at)dd | exp(—2QViita, 1, 4, Dd

Zep
wel®
=™ exp (~ Aty —20)d2
Ag
X[, P2l Uto— LY VEe, £, 4 DG
el N

+SA exp(—AE,—z,)—A%d*e**")V(z, t, )dA,

0

where |I7(Z, t, )1 < AL+121)" exp (C*d*|t,|) for some N.

Proof. By integration by parts in 1, we have



SOLUTIONS WITH SINGULARITIES

[ @y exp Geexp (~a0aA|, | exp(~20VEG 1, 2, D

0 Zg

=["" explieai—ay fe (2, | exp(~20VELG, 1, 4 D)

Z

ngawexp(—l(to—zo))dls exp (— 2L @Ae L+ to— Y VE 2, £, 4, O)dC .
Ay Z

By integrations by parts in { we have

[, XP(—A D@ 102V Eulz, 1, 4, D

=1, X (=20 (@l (o= 2000 VG2, 1, 4, D

+exp(—itd*eie)V(z, t, A).

Hence we have (4.26).
Summing up Lemmas 4.6-4.8, we have from (3.1)

Lemma 4.9. The following holds:

ooe l

@20)  Liite, DG@; oz, 2, 0= exp(—Ats—z)da],  exp(~270)

Ao ze
Lok iV(z t, 4, C)dC—{—STowexp(—Z(t.,—zu)—k“d*e“"”)V(z, t, AdA,
where |V(z, t, )| <AQ+i21)¥ exp (C*d*|2,|) for some N.
Now we can give the proof of Proposition 4.5.
Proof of Proposition 4.5. We have, by Lemma 4.9,

i

(4.28) LGz, 006 2—to 2 D=\ exp(—Alty—z)dd

Ao
S exp(—2°0)-La(2, 4, §, 0., Gc, Ay—202)V (2, 1, 4, )l
+S::i¢ exp(—Alty—20) = 2*d*e** )V (¢ 2, 1, Dda,

where [Va(¢; 2, £, )| SAU+|21)" exp (C1a*13t,!) for some N. Define

ooeiS"
(4.29) Grl¢; w, z, f)=SA exp(—Aw—2A%d*e* NV (¢ ; z, £, DdA .
0

Then, from (4.1), we have

87
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(4.30) L(z, 0,)G(¢; to—20, 2, 1)

= [ exp(— Aty — A g TTis (=207 exp (=20 (0

(2 )"
+GR(¢; tD—'ZO’ z, t)

ooe,i‘P
=[™" exp(— 2ty 2)dA oy Ty (=207 + Gal@h =20, 2, 1)
0

=
-1
= Gy o (207 Grlgh; 2010, 2, ).

We have shown in Proposition 4.4 that G(¢; w, z, )€K (W), 0¥=sin"'C*d*.
It is obvious that Gg(¢; w, z, t) and G(¢, ¢’ ; w, z, t) are also in £(Ws). In the
next section we show that G(¢; w, z,t), Ge(¢; w, 2,t) and G(¢, ¢'; w, 2, t)
have the properties (1)-(5) stated in Theorem 1.11.

§5. Integral Operators

In this section we firstly study integral operators with kernels K (w, z, t)
=k (W;) and secondly give the proof of Theorem 1.11. Let us recall (w, z, t)e
C'XC™ ' XCV¥, t=(ty, t, -, tn), X={(z, HECT I XCY"; |z| 1y, |t g, 725
It:] <rs (ISIiZN)},

6.1 Wi={(w, z, HeC'XC™*'XCY*'; jw|>(sin d)|t,], (z, ) EX},
where 0<7,<r,<r; and 6>0 is small and put

U={zeC"*'; |z| =7}, R={teC*"; |t| <},
(5.2) {

X1,=XxI5,  Af={AcC'; |2z A}

We also write again a path T(a, b) in t-space, a<b and b—a =<2z (see §1),
which is defined as follows: T(a, b)=T(a, b)XT'cC**xXC¥. Ty(a, b)=T¥a, b)

+T%(a, b)+Ti(a, b) is a path in t,-space, where Ti(a, b)={t,=((1—s)rs+sp)e**;
0=s<1l}, Tia, b)={te=7me'; aZep<b} and Tia, b)={t,=(srs+(1—s)p)e®;
0=s<1} 0<y<r;). T’ is the product of paths |t;|=r; (t;=r:e*?; 0<¢<2r)
(¢=1,2, -, N)in C¥. 5>0 in T(a, b) is chosen suitably and small in order
to obtain good estimates.

Let K(w, z, )ek(W;) and f(H)eo(2(a, b)), b—a>2d. Define

6.3 KN@=| K 6=z, 2 DOt
where T=T(a’, b’) with a<a’<b'<b and 20<b’'—a’=<2n. We have

Proposition 5.1. Let K(w, z, t)ek(W;) and f(z)e0((a, b)), b—a>20.
Then (Kf)z)eoU(a+d, b—0a)).
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Proof. We note that K(w, z, t) is holomorphic if |w!>(sind)|t,| as a
function of w. So, if z, satisfies |z,—%,! >(sin d)|¢,| for t,&T(a’, b’), (Kf)(2)
is holomorphic. So we obtain (Kf)z)eo®U(a’+d, b’—05)). The integration
path T depends on a’ and b’. Let (K'f)(z) be an operator integrated on
T(a’, b’) and (K”f)(z) be one integrated on T(a”, b”). We can easily show
that if (a’+d, b’—0)N\(a”+0, b”"—0d)= @, then (K’'f)(z)—(K”f)(z) is holomorphic
in a neighbourhood of z=0. Thus (Kf)(z) is holomorphically extensible to
U(a—+0, b—9).

Proposition 5.2. Suppose that K(z, t, )EO(X 4,) satisfies

(5.4) |K(z,t, ) <Aexp((sin 8)|it,| +B[2i*)  on X,
for A, B, 0<a<1 and 0<0<z/2. Put

13

5.5) Kw, 2, z):S:: " exp(—aw)R (z, 1, Dd1.
Then K(w, z, )ek(Ws) and the following holds.

(L) Let f(2)€0u n((—¢+(r/2)—¢&, —P+(Bx/2)+&y)), €.>0, T=a/(1—a).
Then for any &' >0 there is an h'(¢’) such that (K f)(2)€0u, 1, ((—d+(x/2)+¢,
—¢+Q@r/2)—¢")).

(2) Suppose that

(5.6) |K(z,t, )| <Aexp((sind)idt,| —C|A|*) on argi=4¢.

Let f(2)€0 ), n(Q(—P+(n/2)— &0, —P+(3n/2)+¢0)), >0, r=a/(l—a). Then
there is an h, such that if 0<h<h,, (Kf)2)eAsynU(—J+(n/2), —d+(3x/2)).
(3) Suppose that

6.7 |R(z, t, )| SA1+12))Y exp ((sin 9)|2t,|)  on arg A=4 .

Let £>0 be arbitrary. If f(2)€E0 . n(Q(—d+(x/2)—e0, —d+(37/2)+ &), €0,
then for any & >0 there is a constant ¢=c(e’)>0 such that (Kf)(2)E0 ), cn(2(—&
+(z/2)+¢', —¢+@r/2)—¢"). If f(2)EAsy;((—P+(7/2)—eo, —P+(37/2)+ &),
€>0, then (Kf)(2)€ Asy(2(—P+(x/2), —+(3m/2)).

Proof. 1t is obvious that K(w, z, t)ek(W;). Put ¥4, t))=—Re A+
(sin 0)|Ato| +R|to! T+ BA1%, 6'=(04¢0)/2 and T=T(—¢+(x/2)—0', —g+(3x/2)
+0”)). Let arg2=¢. Put p=c|4{~'** in the definition of 7. Then we have
TR, to)=—ci|Ato| +h|t| 7+ B2 on TH—@-+(x/2)—0", —¢+Bn/2)+d"), c,=
sin 0’—sind. So ¥(Z, ty)<(B+hcT)|2|* on Ti—¢+(x/2)—d’, —d+(3Bn/2)+d").
We have also, ¥(, t,)<(B+hc )2 on T¥—¢+(x/2)—08, —d+(3n/2)+d").
On TU—¢+(w/2)—d', —d+Br/2)+0d"), T(A, t)<(c+c sin d+hc 7+ B){2]*. Hence
we have
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6.8) ¥Q, t)s(c+esind+heT+B) A on To—g+ 35—, —¢3+37”+a').
So we have, if argi=4,
(5.9) ISTexp(-—lto)K(z, ¢ Z)f(t)dt‘ <Aexp(c+csino+hec7+B)|1]9)

for any ¢>0. Thus we have, if |argz,+¢—=n|<(x/2)—¢’,
(5.10) (K f)(z)::gjow exp (Rz.,)dlsr exp(—it)K (z, t, DfW)dt
and from (5.9)
(Kf)2)| _S_AlS;:exp(—(sin &)zl (c-te sin d-+he T+ Byr*)dr |
SAlz |V texp (h'|z] 7).

We have (1). Let us show (2). Assume (5.6). Put ¥(4, t,)=—Re At,+(sin 0)| Aty !
+hity| 7, T=T(—d+(x/2)—0, —+Br/2)+0")), 0'=(0+¢,)/2 and let arg A=4.
Put p=c|2{~""* in the definition of T. Then we have

G.11) U@, t)<(c+csind+hc7)|al  on T.,(—¢+§~5', —¢+37”+5').
So we have, if argi=¢,
(5.12) 1STexp(—zfo)1€<z, t, ) f(t)dt! < Aexp ((c+c¢ sin d+hc7—C)|A]%)
for any ¢>0 and if |argz,+¢—n|<n/2,
K@) gA‘S;:eXp ((c4-¢ sin 3+ heT— Cyr*)dr|.

Choose ¢>0 small so that c+c¢ sin0<2c<C/4, fix it and choose /1, with h,c7
<C/4. Hence if 0<h<h,, for |argz,+d—m|<zm/2

(5.13) (K f)(2)] gA}S'” exp(—Cr“/Z)dr%.

Ag

We also have

S””‘E—Z—iexm_cm A+ 121yah| SABT(Z+1),

Ao

(5.14) 95K S)(2)| =AXi,

This means that if 0<h<h,, (Kf)z)€AsynU(—¢+(n/2), —H+Bn/2)). Let
us show (3). Assume (5.7). Let f(2)€0 ), n(2(—J+(x/2)—ey, —P+(Br/2)+¢y),
T=(—¢+(x/2)—0', —§+Bn/2)+0"), 0'’=(0+¢,)/2, and argi=¢. We have in
the same way as in (1), for any ¢>0

(5.15) ]STexp(—zto)mz, 8, DV Odt| < A0+ 12 exp (e sin d+he5)| A[9) |
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21=k/(1+£). Hence we have for —¢+(n/2)<argz,<—¢+(3n/2),

(5.16) (K f)(z)=S°A”Wexp (zzo)dxgrexp<—zzo)f{(z, 1, Df(Ddt

and

| roogtd R
(5.17) E(Kf)(z)léAISA " exp(Re Azo+(c+c sin 5+hc-~)|z|a)(1+m)wx|.

Choose ¢=h*+*>  then c-+c sin 5+hc“=éh“?‘ for a ¢>0 independent of A.
Thus we have for —¢+(n/2)+¢’ <arg z,<—¢+(3m/2)—¢’

(5.18) [(Kf)(z)l<A|S+ exp(—sin & |z | r+ch=r Y (1+7)V dr |

<Alz| "V texp(c,hlz,| < Aexp(chlz ™),  c=c(e).

This means the first statement of (3). Let us show the second statement of
(3). Let f(2)€Asy 2(—d+(n/2)—&y, —J+(37/2)+¢,). Then we have

(5.19) STeXp(—lto)f{(z, t, NF©dt

={ exp(-2IR G, 1, 1) (Shath@* £O, /R 18 FO /g + D1}

Put

22, D= exp(—=HIR G, 1, D) {Shota@:)* £O, )/ 1)

and
ho(z, z>=§r exp (=K (z, 1, DT 7 )/ (g+1) 1 dt .
By deforming the path T and putting c¢,=(sin 8’—sin d)r;>0, we have
|gale, DI SAIAY exp (—cal A1) (Do AB'T (241))
<AV exp(—czfli)BqF(q+l+l) Al2| ¥ -2Beg 'F(—+1> for argi=4,
and

oz, DI lexp(—atR (2, 1, D5 /g + D)1 dt
<Al NSTeXp(—czllto DI Btolq*‘F<q~1:—l+l>dt

< A2 Vo IS exp (— c2|4tm)132tolq“l“(q+l )dt
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q+1+1>(q+1)' for arg A=¢

<Al v-ie@, o (=
Therefore we have for arg i=¢
(5.20) ISTeXp(—Zt,,)f((z, t, A) f(t)dt} <A|2{V B, a)q+1r("+1+1) .
Since the estimate (5.20) is valid for large A and any g N,
G.21) ‘STexp(—zto)K(z, f) z)f(t)dt] < A(e, 8)exp (—c|A| D), a:%.
Hence we have if |argz,+¢—n|<n/2,
(5.22) (K f)(z):Sj:w exp (Rzo)dlgr exp(— )Rz, 1, Df(at
and from (5.21)

(6.23)  [9N(KN) () SAB"Z,

Szzwz_iexp(—cul 3)(1+lll)*di‘ éAB’F(—:{-H),

This means that (Kf)(2)e AsynU(—d+(x/2), —d+(3r/2))).

Now we apply Propositions 5.1 and 5.2 to the integral operators defined by
(6.3) with kernels K (w, z, )=G(¢; w, z, 1), Ge(¢; w, 2, t) or G(¢', ¢"; w, z, 1)
(see (4.13), (4.14) and (4.21)). They are denoted by (G?f)=z), (G&f)(z) or
(G99 f)(z) respectively. In the following considerations

(5.24) { a=ap-1=(0y-1—1)/0,-;, and 7=0,,—1=a,_,/(1—a,-1),
0*=sin"'C*d* (see Proposition 4.4).
From Lemma 4.3 and (4.22) we have the estimates:
(5.25) V(¢ 2, t, DI SAIR|™ exp ((sin )] Ate| +2%[2] %),
(.26) |V(g;zt, DISA[Aexp((sind¥)|it,])  for largi+¢|<x/2a,

5.27) |V, ¢"; 2, 1, A)) SA|A]7 exp ((sin 6%)| Aty — d* sin (ae)i]®)

I e U AR
for 2 + 7 +e<arg A+-—" 2a 5 ¢ with

'(/)ll ¢l
O<ae< R

and
(5.28)  |exp(—A%d*e* )V r(¢; z, t, A)|

< A(1+]2])" exp ((sin 8*)| At,| — d* sin (ae)|A|%) for |arg A+¢| <2ﬂ—a—e'

Proposition 5.3. Let f(2)=0,,,(2(a, b)), where ¢—z/2a+r/2<a<b<P+
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w/2a+37/2, b—a>n+20%. Then for any e>0* there is a constant c=c(g)>0
such that (G?f)2)€E0 . n(U(a+e, b—e)).

Proof. Put K(z,t, 2)=I7(</); z,t, ) in Proposition 5.2. Choose ¢, so that
b—a>m+2¢>n+20* and e>e¢,. Then it follows from the assumption on a
and b that ¢ with a—(n/2)+¢&,<—¢<b—3n/2)—¢, satisfies |J+¢|<(r/2a)—¢,
and (5.26) holds. Hence it follows from Proposition 5.2-(3) that for any & >0
there is a ¢=c(¢’)>0 such that (G?f)(2)=0), n(U(—J+n/2+¢', —H+3m/2—¢")).
The union of intervals (—@+(x/2)+¢', —d+Ba/2)—¢), a—(n/2)+e,<—P<b—
(Br/2)—¢,, is (a+ey+¢’, b—e,—e’). By putting e’=¢—¢,, we have the assertion.

Proposition 5.4. Suppose ¢'<¢”, 0<ad*<(z—ald”’—¢'|)/2. Let f(z)e
O, 1(82(a, b)), where ¢"—(x/20)+(x/2)<a<b<{'+(x/2a)+(3x/2) and b—a>n
+20*.  Then there is an h, such that if 0<h<h,, (G* ¢ f)2)=Asy ) (2(a+0%,
b—0%*)).

Proof. Put K(z, t, D=V (', ¢”; 2z, t, 2) in Proposition 5.2. Choose &, so
that b—a>n+2¢,>n+20% and ae,<(r—al¢”—¢’|)/2. Then it follows from
the assumption on a and b that ¢ with a —(z/2)+¢,<—H<b—(37/2)— ¢, satisfies
—(z/2)a+ (" —¢") /24 <P (P +¢")/2<(m/20)— (" —¢')/2—&, and (5.27) holds
for arg A=¢ and e=¢,, where sin (as,)=sin (ad*). Intervals (—@+(x/2), —J+
(Bx/2)), a—(m/2)+ &, < —p<b—(3m/2)—¢,, cover (a-+e, b—e,). We have the
assertion by Proposition 5.2-(2), tending ¢, to %,

Proposition 5.5. Let f(2)€0),.(2(a, b)), where ¢p—r/2a+n/2<a<b<Pp+
n/2a+3n/2, b—a>n+20*. Then there is an h,(0%*)>0 such that, if 0<h<h,,
(GEN) (2 Asy (U (a+0%, b—0o*)).

Proof. Put K(z, t, )=exp (—2A°d*e**¥))V x(z, ¢, ) in Proposition 5.2. Choose
& so that b—a>n+2e,>r+20*%. Then it follows from the assumption on a
and b that ¢ with a—(7/2)+e,<—<b—(3n/2)—¢, satisfies |J+¢| <(7/2a)—¢,
and (5.28) holds for e=e¢,. Intervals (—¢+(x/2), —d+3n/2)), a—(x/2)+ &<
—$<b—(3m/2)—¢,, cover (a-+te, b—e,). By tending ¢, to 0*, since sin(ag)=
sin (a0*), we have the assertion from Proposition 5.2-(2).

Now let d,>0 be a given small number. We choose d*=d*(d,)>0 so that
c* sin §,=C*d*, by using the constants 0<c¢*<1 and C*>0 in Proposition 4.4,
and fix 4*. It is obvious that §,=0*=sin"*C*d*. In the rest of this section
we consider G(¢; w, z, 1), Gel¢; w, z,t) and G(¢', ¢”; w, z,t) for this fixed
d*=d*(d,). By Proposition 4.4, if |arg w—¢! <z, and (sin dy)|f,| <|wl|,
ABCTqlr!

T . y &
(5.29) 10407 G(¢; w, z, 1)) = e lw| <simoyr ¢=0t0

holds.
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Proposition 5.6. Let f(z)eAsy(2(a, b)), where £>0 is arbitrary, ¢<a<
b<¢+2m and b—a>20,. Then (G?f)(z)E Asy,({U(a+38,, b—0dy)).

Proof. We may assume ¢=—nx. Let a<a’<a’<b <b"<b with b"—a”>
b'—a’>20, and z€U(a’+4d,, b’—0d,). We have

@G PE= | (~Bu . C(— 75 =z, 2, OOt

=, GO t—20, 2, 1) [SEte @) FO, 1)/ 1+ F O/ +D)

where T=T(a”, b"), GO (—=m; w, z, )=(—0,+0.)'G(—x; w, 2, t) and ¢'=g+¢*.
Put

2=\, GO (x5 tr=z, 2, 1) (S4-uth@:,) FO, ¢/}
and

hee)=|, GO ty—z, 2, D F O/ +D) 1t
By deforming the path T, we have g,(z2)€0U) and |g(2)| <q! X4, ABIC*I’
X((k/e)+1)SABWDg'\ (¢’ +1)/k+1). Since —r<a<a”’<a’'<b'<b"<b<r and
b —a”>b’'—a’>20,, there is a 0,>0, such that sin d,[¢,| <|z,—t,! for teT=

T(a”, b”) and zU(a’+9d,, b'—3d,), and since t=T=T(a”, b")c(—=x, ) and
zeU(a’+6,, b'—0,)cU(—=, ), |arg (t,—z,)—n|<=m. Therefore by (5.29)

pulear (L)
I |
12401 10, e 61

Belty o= (CE )
SAq!S : o
= r{(sin 8,—sin d;) | £, } ¢ *

g'+1
| dty| <Aq! BQF(T—I-I).
Thus we have
‘+1
(@G 1)) | = | 8a2) | + | he(a)| S ABtg1 I (T 41)

for zeU(a’+0,, b’'—3d). This means (G~~f)(z) has the x-asymptotic expansion
in U(a’+d,, b’—0,). Since a’ and b’ are arbitraty, (G~*f)(z) has the k-asymptotic
expansion in U(a-+8, b—d,).

Now we show (1)-(5) in Theorem 1.11.

Proof of Theorem 1.11. It follows from Proposition 4.5 that



SOLUTIONS WITH SINGULARITIES 95

63 LG, 0)GHNE= ], e (=20 O+ GHE)

= F@+ GHO+ gy [T te— 20 F)a

where T°¢ is a path T5><T’, Ts=T¢(a, b)= {ty=rse’ 90+, 0<s<1}. The
last term integrated on T° is holomorphic at z=0. So we have (1) in Theorem
1.11. We proceed to the proof of (2)-(4). Let f(z2)=0(Q2(a, b)). We have (2)
in Theorem 1.11 by Proposition 5.3, (3) by Proposition 5.4 and (4) by Proposi-
tion 5.6. Finally we show (5). If b—a>=+2d, if follows from Proposition
5.5. Otherwise, by Proposition 2.12, we have for given A’ with h,>h'>h, h,
being that in Proposition 5.5, f(z)=f,(2)+ f:(z), where f,(2)E0 .1, (2(a—2=x, b)),
f:(2)€04, 1, (8(a, b+2x)). We have, from the assumptions on ¢ and b, ¢—
r/2a+7/2<a—n<b+rn<d+n/2a+3r/2. Hence by Proposition 5.5, (G&f,)(z)E
Asy nU(a—n+0,, b—0d,)) and (Ggfz)(z)eAsy{)')([](a+5o, b-+m—d,)). Since (G%f)
=(G4/)(2)+(G3f2)(2), (mod OW)), (GH ))& Asy (U (a+ds, b—0d0)).

§6. Integral Representation

In §6 we obtain an integal representation of a solution u(z)e®(£2(6,)) of

(6.1) L(z, 0.)u(z2)=f(2),

where f(z)e0(2(0,). When f(z)e0(2), an integral representation was ob-
tained in [6], [7] and [12]. In this section we assume (1.11)-(a), (b), (c),
namely,

(6.2) (@ a.>1, () de,,=0, (©) dp,=ss, for 0=2=<p—2.

So we have

6.3) L(z, 0.)= X1 2=, Ar. (2, 00571,

where d.,=s;, 0=:<p—1), that is, [,,=s,, j(k,, lki) 0 and A, kg (z, 0=
Qrysy, (z, 0’) and by (6.2)-(b) Ak pey =Sk ,- ,=0. Put &= &=, 0, -+, 0). Firstly
we assume

6 [ Ansn©, E)=0m,s,(0, £)%0,
' U TE5 Arye (0, 8)=T107 00y, (0, £)50 (see (L14)).

We construct an integral representation and investigate it under the conditions
(6.4). An integral representation can be constructed under the condition on
the principal part in (6.4), and other conditions on lower order terms are used
for the proof of Theorem 6.28 which requires detailed analysis of the integral
representation.



96 Sunao OucHI

Before construction, we give a remark on the coordinate z. From (6.2) and
(6.4) the principal part of L(z, 0,) is written in the form

(6.5) La(z, 8)=31sp Ani(z, )05, Am,e,(0, £)0.
Consider the coordinate transformation

(6.6) Wo=2,, wi1=Cz,+2,, wi=z; (=2).
Then we have

6.7) Ln(z, 0.)=321s,, An.1(2(w), 03,)0w,+ 0w )™ " .

The coefficient of (0,)™ is (Zle, ¢™ "An,:(0, £)) at the origin. Since
A, s, 0, £)20, the coefficient of (0w,)™ does not vanish for large c. This
means w,=0 is non characteristic. Hence in addition to (6.3)-(6.4) we assume
that the coordinate is chosen so that

(6.8) An, (0, £)%0,

that is, z,=0 is non characteristic.
The integral representation obtained here has the form

1
(6.9) u(z) = 5mi jrs STMHK M(ty—2zo, 2, to, 1" )Un(to, t”)dtodt”

1
2i
where u,(to, t”)=(0/0t,)"u(t,, 0, t”) and the integration paths T°=T"%a, b), 0<b
—a<2r, T=T°XT’ and T” are defined in §1. The functions {K*(w, z, t,, t");
0<h<m—1} do not depend on ¢, but for simplicity we denote them by
K"(w, z,t) and the same conventions will be used for other functions. We
seek for the kernel functions K*(w, z, t) (0<h<m) in the following form,

5] K 20, 2, DFOL,

(6.10) K"w, z, t)=§:ew exp(—Zw)dlgcexp(—Z“C)W"(z, t, 2, ©d¢,
where
(6.11) a=a,=(c,—1)/0,.

We note that a defined by (6.11) is different from @ in §4. The integration
path C in {-space in (6.10) will be defined later.

We construct K™(w, z, t) (0<h<m) by the method described in §3. As in
§3, we define the integro-differential operator .L.(z, 4, {, 0,, 0, At,—40;) for
a=(c,—1)/0,. We will determine W(z, ¢, 2, {) (0<h<m) by
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~ _ _5h.m n 1
(6 12) —ft‘r(z; 21 CJ 02: a:; Ztﬁ—zai)Wh(Z! t; 2) C)_ (Zni)n+2cni=l (ti_zi) 1)
' _ _5)1.12 n 1
(azl)kWh(z) ty ’27 C)]zl=0"— (272'2')’“{ Hi:z (t@'—"zi) ’ (Oékgm—l)-

Firstly we reduce the initial value problem (6.12) to that with zero initial
data. In order to do so we give a lemma.

Lemma 6.1. Let ¢p(r)=301a:7* (an>0). For given {b;; 0<k<m—1} there
exists uniquely a polynomial () with degree<<m such that

1 i () _
(6.13) Z—MS‘”:C o dr=bs  for 0ksm—1,

where ¢ is chosen so that all the roots of ¢(r)=0 are contained in {r; |7|<c}.

Proof. We may assume a,=1. Put

(6.14) QA=D1 apt? 7t (7=0,1, -, m—1).
Then we have

1 tho(t)
6.15) Zm'Sm=c o de=ds

Hence ¢(r)=3%4" b, (r) is a desired polynomial. It is easy to show the uni-
queness.

We can define by Lemma 6.1 a polynomial ¢*(z”, t, ) with degree<m such
that
—O0n. & 1

k hi( 0
f_wdr——— EMMfe——  for 0<k<m—1,

(6.16) Sm=c (r—7)™ (2@ “(ti—z0)

where 7, is a positive constant. Later we will choose 7, so as to satisfy an
inequality and fix it. Using ¢*(z*, t, ), define

; ", 1, 7)
n PNt 7
(6-17) v (Z; t; C: T) (T“T;)m fh—l(s+le)
and
(6.18) et o= et i, e

Then, if |{|>]cz,], we have for 0<k<m—1

(6.19) @)V, t, C)Iz,=o=Slu:ci%(_—zi;:)%f—)fh-k-l(cwz,)dr|21=.,
—0n, 1 —0n 1 1

= Gair W2y O @ G2y
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Hence V(z, t, 2, O=W"(z, t, 2, £)—V"(z, t, ©) satisfies the zero initial conditions

(6.20) 0)*V(z, t, 4, {)]:;==0 for 0<k=<m—1.
Put
(6-21) Ch<zy t: Z: C)"——“Ca(zy 2: Cy az: a;; zto_lal)vh(‘z: t’ 12, C) .

It is easy to show that if |{]|>]|cz],

(6.22) et 4, O=SA7  cune t, 4 D sCeaddr,
where
_ —ah.m( n 1 L 511.06’)':.—1(2: t, '2) T)
(6.23) et d T)—(zm')"”\nizl (ti"‘zi)>7 + (t—1,)™ ’
’ *
ez, 8, 4, r)=c”’—"(z’t+i’1—) for kx—1,
(r—11)

where c¢¥ (2, t, 4, 7) (—1Z£k<m+h—1) are polynomials of r with degree<m,
and ¢ .(z, t, 4, 7)=0. Thus the initial value problem (6.12) is equivalent to

[ Ja(zs '27 C: az: ac; Zl‘o—la))Wh(Z, t) '2: C)=ch(t7 Z, 2; C);

(6.24)
| @)Wz, t, 2, Olm=0  for 0<k<m—1,

where we denote V?(z t, 4, L) again by Wo(z,t, 2, (). We try to find
Wn(z, t, 2, {) in the form

Wiz, 1,2, 0= w1, 4, odr,
(6.25) rri=e

wh(z: t, '2! C; T)=2;:—1 w’;l’.(zy t; 2’ T)fn(c+721);

where f,() (neZ) are defined by (3.4) and the path Iz|=c¢ is a circle and en-
closes 7=0 once, ¢ being large.

Now let us determine wi(z, ¢, 4, 7) (—1<n<+oo) in (6.25). Substituting
Wh(z, t, A, t) into (6.24), we have as in § 3 (see (3.21) and (3.22))

(6.26) Golz, A, Dwi(z, t, 2, 7)

+3Gi(z, ', 2, TYwh o2, t, &, T)=cn. a2, t, 4, T),
where
(6.27) Go(z, 2, =Gz, A, 7)

=m-a-adn (SN, 2Pk gz, )rlh a1 ()]
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(628) G}l(z, a', 2, T):]"l—(l"“x)dm

(08 AT oA any =20t nt s, i 163)

$+1r+d=q v

iR 1S=0g (o a/)aor}] ’ F=ik 1) |

Gy(z,t, A) is a polynomial of r with degree m and the coefficient of =™ is
2’""““1Wm_ﬁ§n,mam_m(z) which does not vanish in a neighbourhood of z=0 by
(6.8). So we conclude that w?(z, t, 4, ) (n=—1) are successively determined
by (6.26) and each w(z, t, 4, 7) is a rational function of z. By (6.23), if h=m,
its poles are =0 and {r; G,(2, 4, ©)=0} and if h=m, its poles are r=r, and
{r; Gy(z, 2, )=0}, and the multiplicity of =, is m.

Now we investigate the roots of the algebraic equation G, (z, 2, 7)=0 under
the conditions (6.4) and (6.8) in order to analyze the integral representation.
Put

(6.29) Fyz, A, ©)=31, A P icla, (2),

6.30)  Filz, 4, T =S, peswd Thi(—azytihia, (z),  1<i<p—1,
where a;.1(2)=a,,.(z, &) and j=j(k, [), and

(6.31) F¥(z, 2, T)=A"™-dn G (z 2, t)—Filz, 4, 7).

We recall that +oo=06¢,>0,> - >0,..>0,=1, a;=(6,—1)/0:;, m=ky>k,>
v >kpa 20, Bhi=kio—k—(ds;_,—de,)(1—a;) and Bi, 1, =Pi, (see §1 and §3).
In the sequel d,_,=m and Bi_,=(m—dn)(1—a;). We have

Proposition 6.2. There are positive constants A, aq, by, (a;>b;, 0<i<p—1),
C, r and c, such that the following holds: Put U={zeC"**; z|<r}, V=
{r; bilAl o[ <bs,|A1%i-171) (0<i<p—1, by=-+o0), Vi={r; bija|* 0L
] <a A%~} and Yi={r; 3b;|A|*1~1/2< 7| <a;|A|%~*/2}. Let z€U and
|2l =A,. Then it holds that

(6.32) |Fi(z, 2, D) ZC[2 Phin|z|® ki (0<i<p—1)
on the boundary of T'; and
(6.33) | F¥(z, 2, )| Z1217¢ Fi(z, 4, ©)] 0=i<p-1)

on the boundary of 1} and all the nonzero roots of Fi(z, 2, 7)=0 are contained
in 1",

Proof. Put r=pi~"1*% (0<i<p—1, a,=1). Then we have by Lemma 3.6
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Fi(z, 2, na="1+t)

1 .
=ABk kO i, gy, pesa(—azY i lay 1(2)},

where j=j(k, !). Since Bi,+d:(ai—a)=p},_,+ds, ,(a;—a;) by Lemma 3.6 and

dr; =Sk, that is, j(k; l,,)=0, there are a; and b;, a;>b;. such that 'Fy(z, ,7)|

>C 2| Frim1|z|%ki-1 on {It|=a,]2|"**%}\U{|r| =b;|A|~*1**i} and all the non

zero roots of Fy(z, 4, 7)=0 are contained in {r; 3b;|4]*i~%1/2< |7} <a;|A|*~*1/2}.
Put r=pi-*1*%i-1 (=1, @y;=1). Then

Fi(zy 2; 7}2—0(14411;_1)
_g1 ) o
=30k DiCh, d g, PEZENA Ph i (—azy2tr 1cein Wpliig, (2)
_591 ~dp. (aj-aj_y) -8 i'[l Tandp 1
=27 ki R (TN DS G ik, ay, pezAd B (—az)pthtay, (2)},

J=j(k, ). Since Bi7>0 for (b, )x(kioy, di,.,), we have [Fi(z, 4, 7)==
Cla1~fkica|c*i-1 on || =b,_,!A|-*1*%i-1 and |2]| =4, for some A,. Thus we
have (6.32). It remains to show (6.33). For each term Z‘ﬁi.l(arzl)fr’ak,l(z) in
F*(z, 2, 7), we have [2Fhuarz)Vr'a, (z)|<C|a]| P67 Fhii|z|?i-1 on the
boundary of 1;, where B ,>0. Hence there are a constant ¢>0 and a large
A, such that (6.33) holds for |1|=4,.

Now let #; (2)A*“1 (0<i<p—1, 1<7<ds, ,—d:,) be non zero roots of
Fi(z, 2, ©)=0. It follows from d,, ,=0 that 272 (de;-,—de;)=m, and from
(6.33) and Rouche’s Theorem that there are roots of G,(z, 4, 7)=0, {r; (z, 4);
0<i<p—1,1<7<ds, ,—ds,}, such that {r; (z, 2); 1<j<ds,_,—ds;} Y. More
precisely we have

Proposition 6.3. For any small >0 there are A, and r such that
|75, (2, A i—2, ;0| <9/2 for ze€U={|z|<r} and |21 =4,.

Choose 7, in (6.16) so that b, <7,<a, and fix it.
Define for 0=<:<p—1

(6.34) Kip)=Iir; |[v—#,00)| < for 1<7<ds; ,—ds,},
(6.35) K¥p)=K\(p)U{lt—7,| <y} and K¥(n)=Ky) for 71

and sets 7(z) (0<:/<p), by using the constants a; and b; in Proposition 6.2 and
small >0: for 0<i<p—1

(6.36) @)= {r; bi| 2| 1< 7] <byoy{A] W11}
Nir; lt—#,0)2% | >qp|al%r for 1<7<ds,,—dr;},
(6.37) 7(p)={r; 7] <bp-1|4|“r-1=1}.

Proposition 6.3 means that for given small 7
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(6.38) {102, ) 1S 7S de,  —de;} A% Ki(5/2)
Vi={r;3b;|2] %~ /2<|7| <a;|A|*i~*1/2}

for zeU={|z|<#} and |1|=4,. We also define the sets Z(¢) and =

E)={(z,t, 4, 1); (z, heX, |2 =4, v=t@)}, 0=i<p,

E=U22E0),

(6.39) {

where X={(z, )eC""*XC™'; |zI<ry, [ty Zrs, .5 8] <y (1<i<n)} and r is
small and A4, is large, if necessary.
We have by the same method as in Proposition 6.2.

Proposition 6.4. On {(z, 4, 7); |z| <7, |A| =4, T=70G)},
(6.40) |Golz, 2, ©)| ZC|A|™=0-andm=Fhyy 7| *hi

Let us define sectors S; (0<:< p—1), which are used in the later part of
this sections for analysis of the integral representation. We defined sectors S;
(1£i<p—1) in [12], where S, was not defined, but the following arguments
are the same as in [12]. To define S, we give two lemmas.

Lemma 6.5. There is an o, (|w,| =1) such that arg (t,@,)>n—ra, (mod 27)
and arg (#; j0)wo)=r—ra, (mod 2x) for all 0=Zi<p—1 and 1S7=de, ,—ds;e

13

Proof. Put B={#;,00); 0<i<p—1, 1<7<de, ,—de }Uini}, Li={re*tm 702,
r=0} and L=\U?Z}L,. B is a finite set of nonzero points and L is a finite
set of half lines. So we can find an @, (Jw,|=1) such that w,BNL=¢@. This
implies the assertion.

We have from Lemma 6.5

Lemma 6.6. There are w, (lw,| =1) and positive numbers r, &, and A, such
that arg t.w>n—ra, (mod 2x) and argrt; iz, Aw>xr—ra; (mod2x) for all ||
=A,, 1zISr and |o—w,| <e,.

Thus we have

Proposition 6.7. There are v, &,>0, 2,0 and open sectors S; (0<i< p—1)
with the vertex 0 in C!' such that S;iDe;=e*" 7% gnd §iﬂ(—z,K’f(n/2))=®
0Zi<p—-1) for 'z,—2,| <e,.

Now we retun to construction of w"(z, ¢, 4, ) in (6.25). As for estimates
of wk(z, t, 4, ) we have

Proposition 6.8. There exist positive constants A, B and c such that the
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following estimates of wi(z,t, 2, 7) hold in 5. For 0=h<m—1

(6.41) [ (c—T)"wi(z, t, A, )| SAB™'n | (I35 A7 /r D/ || *
and
(6.42) [Ztw®(z, t, 4, ©)| S AB'n | (D84 T /7 D/ 2|7,

We refer the proof of Proposition 6.8 to §7. The convergence of
whz, t, 4, {, )=1a-_1 wk(z, t, A, ©)f({+712,) follows from Proposition 6.8.

Proposition 6.9. (1) There is a constant c¢*>0 such that w*(z,t, 2, ¢, 7)
converges in {(z,t,2,(, 7); (z,t, A, 1)EZ, t=0, 7, and 0<|C+z | <c*|7|}.

(2) There exist positive constants A, B, C, and ¢’ such that the following
estimates holds:

(6.43) [t—r)™{wz, t, A, {, ©)—whi(z, t, A, )f -1({+T2)} |
-4

= Il

|21 exp (c*B| Aty )(Ilog ({+7z,)|+Cy)  for 0sh=m—1

and
(6.44) [t{w™z, t, A, {, ©)—w™h(z, t, 4, ©)f -,({+7z1)} |

£

< 74‘ |21 exp (¢* B4t )| log (C+ez)| +Cy).
|

Proof. The following argument is the same as in Proposition 4.2. We
have, by Proposition 6.8,

Z?:=0{1C<T—“L'l)mwg(2, t’ 2’ T)(C"“TZI)”/n ”
él‘f‘i %ol BCHT2)/e | " At /7 Y).

If [(€+7z,)/7!<c* and ¢*B<1/2, the above series converges and we have (6.43).
We have (6.44) by the same method.

Remark 6.10. Since wi(z, t, 4, t) (h=xm, n=—1) are holomorphic at =0,
it follows from the maximal principle of holomorphic functions and (6.41) that
w™(z, t, 4, {, t) (h==m) are holomorphic at z=0. Since w%(z, ¢, 4, 1) (n=—1)
have a single pole at t=0, w™(z, t, 4, {, =) has a single pole at =0 by (6.42).

We have obtained w”(z, t, 2, {, =) in (6.25). So we proceed to construction
of Wiz, t, 2, {). Define

(6.45) Wie,t, 4, 0=] w200 (0=ish),

17l

where a;|d]|% *1<¢,<b;_,|A21%-17%1 and constants a; and b; are those in
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Proposition 6.2, a,=0, b-,=-+4o. Put
(6.46) Wz, t, 4, O)=Wilz, t, 2, 0).

Now we study the domain to which W(z, ¢, 4, {) (0<h<m) are holomor-
phically extensible as functions of {. So we often omit the other variables.
We always assume (z,t, DEX4, X1,=XXA%, A¥={2cC;|A|=4,}, X=
{(z,1); |z| =11, (tl =7, 7= |t;| <7}, and put

(6.47) Z@O=AL; ailz | |21 <L <(C— 1z Dbi-y [ ] 1171}, 0=i<p,

for a C>0, which is chosen suitably. Firstly we have from Proposition 6.9
and Remark 6.10.

Proposition 6.11. (1) W) (i3 p) is holomorphic in ZQ).
2) WHO=0 (hxm) and W3 Q\=aQ)/C+bQ) log C in Z(p), where a(§) and
b) are holomorplic.

Proof. Suppose that a;|A|* a1<|z|<b;_,lA|%-17%1, |{|>|rz;| and |LI+
|tz,| <c*|7|, ¢* being that in Proposition 6.9. Then w"(z, ¢, 4, {, t) is holo-
morphic. Integrating it on |t|=r, a;|4|% 1 <r<b,-,|A|%-17%1, we have W)
eo(Z"), ZT={C; rlz| <L <(c¢*—|z,|)r}. So varying », we have (1) for a
constant C>0. Since w™(z, t, 4, {, t) (h=m) is holomorphic on z(p), Wi({)=0.
w™(z, t, 4, {, ) has a single pole at r=0 in z(p), that is, w™(z,t, 4, {, 7)=
A/ DE=_, wh(z, t, A, T)f o({+72,), where W™ (z, t, A, 7) (n=—1) are holomorphic
in 7(p) (see Remark 6.10). Hence

648) WG t,4,0=  wet 4§ 0dr=Si 0 G, 4 4 0520,

T=cp
which implies (2).
Put
(6.49) Pia@Q=WiQ)—WL.(Q, =0, 1, -+, p—L.

It follows from Proposition 6.11 that WZ;,,({) is holomorphic in Zi, Zi=
{Csailzi| A1 1< <(C— | z,])b; | A|*i—*1}, for small z,, We have by the de-
formation of the integration path to o(K¥(n)A2%i-%1) (see (6.35)).

(6.50) WQ,M(C):S Wzt 4, ¢ Dde

aKF (it N

From (6.50) we have

Proposition 6.12. W ,..() is holomorphic on Z ., for small z,, Z; ;1=
{Ce—z,KF()asi—ar; |L <(C—|zy|)bi| A|*im21} .

Considering Propositions 6.11 and 6.12 and (6.49), we have
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Proposition 6.13. W) (G p) has a holomorphic prolongation to Z,,
(6.51) Z;={{e—z,K¥(p)ri—;
Qier]Zp [A] 1L <(C— | 21])bsoy [A] 41701}
for small z,. Moreover Wi_,({) (0<h<m—1) are holomorphic at {=0.
Hence, by using the relation
(6.52) WrQ=WH0 in Z(0)
=WEOFWIO  in ZoNZQD)
=WEQ+WEQ+WID  in Z,.N0ZQ)
=WEQ+WEO+WE O+ -+ + Wiz o1 D+Wh-1 O+ WHE)
in Zp_,_p ,

we can prolonge W*({) (0<h<m) holomorphically. Thus we have

Proposition 6.14. There is a convering 7 of Z=\UP,Z: such that each
W) (0<h<m) has a holomorphic prolongation to Z as a function of L, W&
(h=m) is holomorphic at {=0 in Z and the singularity of W™) at {=0 is polar
and logarithmic, that is, W™{)=a({)/{+b({) log { at {=0.

Define
(6.53) Ritz,t, D={_ exp(=20W™(z, 1, 4, O,
Coth

where Cy(0)={{=d_,e!9*2*931~%1; 0<s<1}, @412,/ <d-,. We have

Proposition 6.15. The following estimates hold :
(6.54) |Kj(z, t, DI SAQLH12DY exp (d |21 +c*Blate])  for (A2,
and if |largA+0|<=n/2,
(6.55) | K}z, t, D S AQ+[2)Y exp (a0l Az | +c* Bl ato]),

where ¢* and B are those in Proposition 6.9.

Proof. The estimate (6.54) follows from Proposition 6.9. We can deform
the path C.(@) to C’(#), starting at {=d_,e'2'"*1, going to a,|z;|e*’A"1,
enclosing the origin (=0 once on |{|=a,|lz;,A*"*| and going from
Qolz;|e*0+21-21 to (_e*9+2®21-41 We have (6.55) by this deformation.
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Now we can define K*(w, z, t), 0<h<m, (see (6.9), (6.10) and (6.53))
(6.56) Hw, z, t):S::w exp(—Aw)K}(z, t, dA, |dp+0] <—’2’-,
which depends on #. We have from Proposition 6.15,

Proposition 6.16. K}(w, z, t) is holomorphic in {(w, z, t); larg w—0| <=,
lwl>aelz: | +c*Bltyl}.

Proposition 6.17. [/ ¢*>0 in Proposition 6.15 is small, then the following
identities hold :

Onm —1 1

n

Cri) y—zy ti—z;

e —1 1
riy fomz gy, 107 0=k=m—1,

(6.57) L(z, 0)K }(ty—2z,, 2, 1)=

(6.58) (00K §(ts—20, 2, )] =0 =
where = means modulo holomorphic functions on X.

Proof. By repeating the same method as in the proof of Proposition 4.5,
we have

L<Z: aZ)Kg(tO—ZO! z, t)

wetd '—5h m
= exp(—atte—add|, |, exp(—20) g

L1
Ao Coc (ZM')"”CHi:‘ti de

cogtP ~
+SA exp (—Ato—z0)—Ad e )Rz, 1, 2)dA,
0

where | K"(z, t, )| < C(1+|A1))Y exp (¢*B|it,|) for some N. If ¢*>0 is small
such as d-;>c*Blt,|, then, by putting ¢=—0 in (6.56),

oog=— il ~
SA exp(—Aw—2id " K(z, t, 2)dA

0
is holomorphic at w=0. It is easy to get (6.58).
Define, putting §=—r,
(6.59) KMw, z, )=K*(w, z, 1),

and d,=sin"!(¢*B), where ¢*>0 is small. Now let u(z)=o(£2(8,)) be a solution
of (6.1) with f(z)e0(82(8,)), 6,>0,. Define

(6.60) u_(2)=3Tul,= Z‘;&ST TK b(ty—2z0, 2, Hul(t,, 0, t”)dt,dt”
oxT”

+{, Ktz 2 D dtedt,
ToxT7
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where T\=T(a, b) and u’(t,, 0, t")=0%u(t,, 0, t”). The formula (6.60) is an
integral representation of u(z) in (6.1). We have from Proposition 6.17.

Theorem 6.18. u_.(z) defined by (6.60) satisfies

(6.61) L(z, 0)u_(2)=f(2),
(6.62) (00)*u_o(2)|;;=0=0%u(z,, 0, 2”)  for 0=k=m—1,
where = means modulo holomorphic functions at z=0, and u(z2)—u_,(2)=v(z)e

o) in a neighbourhood of the origin.

Proof. We have by the method used to show Proposition 4.5

663 L o= al TP, g,

(272'2')7“'1 ToxT' lg— 2, ti—

= f() sy IO 1 1 g

@ri)r+)rg <1 ty—2, t,—2z;
This means (6.61). We have (6.62) from (6.58). It follows from the uniqueness
of Cauchy problem that u(z)—u_.(z2)=v(z)e©@U) in a neighbourhood of the
origin.

Remark 6.19. We can show that if [#—@’| is small then K}(w, z, {)—

% (w, z, t) is holomorphic in a neighbourhood of w=0. So the representation

(6.60) is holomorphically extensible to wider domains, which will be done by
replacing K_.(w, 2, t) by Ke(w, z, t).

We investigate K(z, t, )=K".(z, t, ) more precisely, by using Proposition
6.7. So in the sequel we restrict (z, ¢, ) to the set

(6.64) Xy =X'x 1%, X'={z 1, D; DEX, |z—2|<el.

The following arguments are similar to that in [12]. Firstly we decompose
integration path C,=C,(—=) in (6.53), and secondly according to the decom-
position of C,, decompose K"z, t, 2), K*(z, t, )= K 1(z, t, 2). We investi-
gate each K!,(z,t, 2). So we define some paths in {-space. For a path
C={{(s); 0<s<1} and aeC, aC = {al(s) 0<sL1}. Put A;={{(s)=
(1—=8)d;s- e 7 *-14%1-17%1f 5c,0 7% Q%21 0< s < 1} and B;= {ce 7% *278 . 0<s < 1}
0£igp—1), where c¢;>a;|z,|>b,z,!>di, d-1>a,lz,| and a.,=a,=1. Put
Ci:Ai_‘_xal—alBl—'eZ:tAi (1<i< ].')—1) and cpz {C(S)=dp-lzap‘1'"10'”“1"”2“3;
0<s<1} (see Fig. 6.1). The path C, and C, were not used in [12].
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Fig. 6.1.

We note that the singularity of W(z, ¢, 4, {) with respect to { are in
(Uiz-z14 1K ¥ (n/2)) U {{=0}. Define

6.65)  Rie t, H=]_ exp(—290WGz 1, 2, D

:<Su +Sz“i““18i+g-c2zui> exp (—A1OWNz, ¢, 4, OdC.

Let us deform the path A*i-*1B; to another. We give

Lemma 6.20. The path A%i-*1B; can be deformed homotopically to B¥ such
that: B¥=2A%*"*B}+C;,,+A% "B}, where B; and B’ are independent of 2,
contained in {{; d:< 8| <c¢s} and (BAUB)NS; =@, and

6:66) | ayoars @XP(—ROWHz, 1, 2, DT
:<Sz“t—ﬂxs'i+scia1+Sz"i‘“wﬁ) exp(—Am0WHGz, ¢, 4, Q)dL.

Proof. As we remarked, the singularities inside of C; of W(z, t, 4, {) are
in (Uf-z%r mK§(n/2)U (=0} and the set (UZh,-zd% =K ¥(p/2)U{C=0}
are inside of C;.;. So we can deform B; so that B} and B encloses -z, K ¥(5/2).
From Proposition 6.7, we can take B; and B7 so that (Bj\UB?)NS;=@ (see
Fig 6.2).
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Fig. 6.2.

The singularities of W(z, ¢, 4, {) inside of C; are in the parts of oblique
lines in Fig. 6.2.
Thus we have

Proposition 6.21. K%(z, t, 2) is represented in the following form:

(6.67) R, t, 2)=2€:0‘{<SA +S exp(—AMQWH(z, 1, 4, O)dE)

i 2Tl gy

([ g, ot g P ABOW Iz, 1, 2, D)}

+], exo(—am0mree, 1, 4, 0,

»

where if ham the last term integrated on C, does not appear.
Proof. We have

RMa t, D=|  exp(—AQW"G, t, 4 Odt

CoC-

(SAo +Sx"“130+5—ezzuo)eXp('—lalC)W’L(Zr t, 4, 0dl

(5 + oy oy iy, eXP= 290, 1, 2, .

Since

[o,exp(=am0wnGa, 1, 2, 0de=(], +{, +{,. )exp(=290W(z,1,2,04

1

and
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Sciexp(——l‘“C)W”(Z, t, 4, ©)dg

we have (6.67). If hxm, W"(z, t, 4, ) is holomorphic at {=0, so the last term
in (6.67) vanishes,

For our purpose we further decompose K"(z, t, 2). In order to do so we
need several lemmas concerning the paths A;, B; and B?. The following
lemmas are the same as in [12] and the proofs are not so difficult. So we
omit them,

Lemma 6.22. Let {A; 0<i<p—1) and argA=n. Then there is a ¢>0
such that Re 281 {=c|A!%:.

Lemma 6.23. Let K be a compact set in C* and KNS;=@. If the dia-
meter of K is sufficiently small, then there are cx>0 and ¢x with |¢,—x| <z/2a;
such that Re 2%1{=ck|2|%t for {£A*~1K and A with arg A=¢x.

By Lemma 6.23 we can decompose the paths B} and B’ in the following
way.

Proposition 6.24. There are paths B; ; 1<s=<r;), constants ¢y, s with |¢; s— |
<m/2a; and ¢>0, which are all independent of A such that BQZZQLBM and
B!=3% 1By, and Re 2 L=c|A] for LEA%""1Bys and A with arg A=¢i.s.

Define, by using A; (0=</<p—1), B,,, in Proposition 6.24 and C,,

6.68)  Riet, 0=(], +] ... Yexp—rmowi, 1, 2, 0at,
669  Ridat, =]  exp(=290Wz 1,2, O, Bi =21,
and
(6.70) Kbz t, 2)=Sc exp(—AMOWn(z, ¢, 4, {)dC.
4

Then we have

(6-71) K'L(zy t, 2)2211;02;‘1—‘01?‘{‘.8(21 tr l)’

where 7,=0 and K% ,(z t, )=0 (hxm). Klzt, 2) 0<i<p, 0<s<r,) are
holomorphic on A%, A¥={1; |A|=4,}, as functions of 1 and holomorphic on X’
as functions of (z, t). As for the estimates of them we have
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Proposition 6.%5. The following estimates hold for (z, t, 2)6)?20:
(1) for each K%z, t, 2) (0<i<p—1)
(6.72) |K2o(z, t, )| <Aexp (C|A|%i-14(sin 8p) | Ato|) on A%,
6.73)  |RIo(z, t, )| S Aexp(—c|A|*+(sin 8,)|At,]) on {AcA¥; arg A=}
and
(6.74) K% oz, t, )| < Aexp (C|2|“r-1+(sin 8,) | Aty}) on A%,
(6.75) |Kp oz, t, D SAQ+121)" exp (sin 8o) |Aty!) on {A€A%; arg A=x}.
() for each KI(z,t, 2) 0<i<p—1, s=0)
(6.76) |K2y(z, t, )| < Aexp (C|A|i+(sin §y)|A,|) on A%,
6.77)  |Rl(z t, AI<Aexp(—c|a|%i+c*B|2t,|) on {A€A¥; arg A=, s},

where 0,=sin"(c*B) and all constants are positive.

Proof. The estimates (6.72), (6.74) and (6.76) are obvious. The estimates
(6.73) and (6.77) follow from Proposition 6.24. It remains to show (6.75). It
follows from Proposition 6.11-(2) that

678) Koz t, D= exp(—290W™G, 1, 2, Ol
P

_ 1 BT ()]
= gi)e, OPAND{EZHHE, 2 log Cfa

-iT@p-y;ap-1-@1

dp_1e
=a(0, D+, exp (—290b(E, Vel ,

where we deform C, to the path Cj}, Chp={L(s)=(1—25)d, e "*P-12"7-1"1
(0=s5<1/2), {(s)=@2s—1)dp-re " @p-1727i3%p-17%1 (1/2<s<1)}, and use

-izap_jap-1-@

1 dp_ 1€ 1
Tri)er P (A0, B log Cd=|; exp (—A10)b(E, VdL.

b9

If |arg A—=|<zm/2ap-,, |exp(—2%1{)| is bounded on C7,. Thus we have (6.75).

We divide u”.(z), by using K?,(z, t, 2), into the sum of u”,; ,(z). Put

cogl¢ “
(6.79) Klyw, z, t):L exp(—Aw)R 2 (z, t, DdA,
0
(6.80) whos@={, | Kit—z, 2 tur, 0, tdtedt?
ToxT”

for 0<h<m—1 and

(6.81) wte@=], KBtz 2 00t

Tox
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Thus we have
(6.82) (@)= n, 1. 00U 1. (2)+0v(2), v(z)eol),

where U=U,XU’, Uy={z,=C"; |2,/ <r} and U'={z’€C"; |z,—2,| <e,, |2'| <1}

In the rest of this section U means that defined above, where » is small
if necessary, and we consider a solution u(z) of (6.1) and f(z) satisfying some
growth conditions :

u(2)E0 ), n (82(6,)), 7T=0p—1,
L(z, 0,)u(z)=f(2)€ Asy 1(£2(6,)) ,
where 0,>7/2+¢,, €,>0,=sin"'(c¢*B), and L(z, d,) satisfies (6.2). From (6.83)

(6.83) {

(6.83) |0tu(t, 0, 1)1 < Aexp (h'[t| 7).

Proposition 6.26. Assume (6.2), (6.4) and (6.83).
1) ul,;(2) G£O0, (G, s)=(, 0)) are holomorphically extensible to U(8,—e,)
and

lul,, 5s(2) | SAg exp(corlze| 77?),  sx0,
(6.84)

fulsi0(2)| SAgrexp(cor1z,] 1Y),  ix1,

in zeU(8') with any 0’ with 0'<0,—e,, where v;=0;—1=a;/(1—a;).
(2) ul, . s(2) =0 or (5, s)=(1, 0)) are holomorphic at the origin.

Proof. (1) It follows from (6.72), (6.74) and (6.76) that if 730 or (Z, s)=
(1, 0), | K2z, t, )| <Aexp(C|A1°+(sin dy)| t,1) for some 0<a<l on A%¥. So
we have the assertion from (6.83)’ and Proposition 5.2-(1).

(2) Suppose =0 or @, s)=(1,0). By (6.73) |K"(z, t, )| <Aexp(—c|Al+
(sindy)|At,|) on {AeA%; argi==n}. So Kl,(w,z t) is holomorphlc at w=0.
This means that u”.; :(z) is holomorphic at z=0.

Now we use the estimates (6.73), (6.75) and (6.77) on the line {1; arg A=¢, ,},
where ¢; ,==. Put

(6.85) f?——-%—i—max{lgb” 7c|}< 4t =T g

Zap -1 ZT

We obtain the asymptotic expansion of u”, ; s(2).

Proposition 6.27. Assume the same conditions as in Proposition 6.26 and
0,>0+¢,, e.>0,. Then u’, ; (z) (i+p—1) have the 7;-asymptotic expansion with
respect to z, with {z,; |arg zo+¢us—ni<m/2} in U. If b’ is small, ut, ,-,,+(2)
have the yp_,-asymptotic expansion with respect to z, with {z,; |argz,+¢; —=|
<r/2} in U.

Proof. We apply Proposition 5.2 to u”,; (z). The bounds (6.73) or (6.77)
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holds for (A, s)x(m, p, 0). By the assumptions (—¢; s+(7w/2)—e,, —¢; s+
(Br/2)—¢ey)=(—8,, 6,). So we have the 7;-asymptotic expansion by Proposition
5.2-(2). Since a;>ap-,Exp—1), i’ is not necessarily small for 7% p—1. For
(h, 7, s)=(m, p, 0) the bounds (6.75) holds. In this case we have the 7,_,-
asymptotic by Proposition 5.2-(3).

We note that since y=y,-,<7;, we can say that there is an h; such that
if 0<h’<hg in (6.83), then u?, ; ,(2) has the y-asymptotic expansion with respect
to z, in {z/2<argz,+¢;<37/2}. We note that from the condition |¢; s—m|
<m/2a; there are ¢;; and k; such that ¢, | <w/2k;<rz/2y; and u®;;(z) has
the y-asymptotic expansion with respect to z, on argz,=¢; . Thus, by using
Propositions 2.8 and 2.10, we have

Theorem 6.28. Assume (6.2). Let u(z2)E0;,, 4 (2(0,)), r=06,-1—1, be a solu-
tion of L(z, 0 )u(z)=f(2)= Asy;,(82(0,)). Then there are positive constants H and
O with 0<O<x/2r+=r such that, if 0,>0 and h'<H, u(z)E Asyy,(82(0")), where
6'=6'(h’") with }thz}) 0’'(h")=4,.

Proof. It follows from the assumption (6.2) that (1.14) holds. So we may
assume (1.14) holds at z’=0 and £=(l, 0, ---, 0), that is, (6.4) holds. Put O=
(§+n/2r+=)/2. Obviously =/2r+x>60>80 by (6.85). Choose §, and ¢, with
0<8,<eg,<O—@ and fix them. Suppose ,>6>f-+¢e,. Then it follows from
Proposition 6.27 that if 0<<h’<hg, u”. ; s(z) has the y-asymptotic expansion with
respect to z, on {argz,=¢,} in an open set U, 2>5U=@. It follows from
Proposition 2.10 that if 0<h’<min (hq, ho)=H, h, being that in Proposition 2.10,
#(z) has the y-asymptotic expansion in U(#’) for some #’=@’(h’) with lhi'riloﬁ’(h’)

=§,. Hence, from Proposition 2.8, u(z) has the y-asymptotic expansion in 2(8").

§7. Proof of Theorems and Estimates

In §7 we give the proof of Theorems 1.13, 1.5 and 1.7, and finally show
Propositions 4.1 and 6.8 which concern with estimates of functions and are not
yet shown. For these purposes the method of majorant power series is avai-
lable. So we summerize what we need. Let A(z)=>A,z* and B(z)=3)B.z%
be formal power series, where a=(a,, a;, -, a,)=(a,, a’)Z%*'. Then A(z)
>0 means A,=0 and A(z)& B(z) means | A,|<B, for all multi-indices a. We
state elementary properties of majorant power series without the proof, which
will be often used. For the proof we refer to [2], [5] and [15].

Lemma 7.1 (Wagschal). Let O(s) be a formal power series of one variable
s such that ©(s)>0 and
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7.1 (R"—5)0(s)>0.
Then for derivatives @9 (s)=(d/dsyO(s) (=0, 1, ---) we have
(7.2) (R'—$)0D(s)>0,  R'OU+1(s)>OU(s)
and

7.3) (Ro—8)7'09(s)<(Ry—R")O9(s)  (Ry>R").

Lemma 7.2 (Wagschal). Let G(s) be a formal power series of one variable
s such that O(s)>»0 and (R'—s)@(s)>»0. Let M(z, 0,) be a linear partial dif-
ferential operator of order m with the coefficients holomorphic in {|z| <R,}, R’
<R,. Then

(7.4) M(z, 3,)0(s) K AB™(s), s=zy+z;+ - +2z,,

for a constant A which is independent of G(s).
Now we proceed to show Theorem 1.13. Firstly we have

Proposition 7.3. Assume L(z, 0,) satisfies the conditions (1.17)-(a), (b), (c)
and put y=0,-1—1. Let f(z)€ Asy 1 (R2(8,)) with 0<£<y and 0<0,<rn/2k. Then
there exists a function u(z)E Asy,(2(0,)) such that (L(z, 0,)u(z)—f(2))~0 as a
function in Asy.,(2(6,)).

Proof. From Remark 1.12, L(z, 0,) is written in the form

(7.5) L(z, az)zakp-l.o(Z)(ao)kl'"‘+( 2z Pag,(z, 0@,

ko 1)#Ckp_1.0)

where k—di,1<kp-1. Let f(2) ~ X5- fa(2)z0)"/n), fa(2)=0(2), and u(z) ~
Dehpo Ua(Z)(zo)"/n). Then u,(z') (n=k,.,) are determined by

(n—tp-s)!

JtT—kil=n—kp_, (n—- }37)-1—].) !
1,7y = (kp-1,0,0)

+fn—kp_1(z’) .
We show, by induction,

(7.6)  ak,_.o(2Nuan(z)=— a%a(2’, 0")u.(2")

7.7 U (2) K ABMGE - kp-v/eltn=kp_1(g)

where 0(s)=(R’—s)7!, s=z,+2z,+ - +2a,.
By the assumption f,(z’)X AB"§t™"/s*» So (7.7) is obvious for n=k,,.
Assume (7.7) holds for » with »<n. Then
(""’kp—l)! i ’ ’
(7.8) NCET— a2, 0")u.(2")
(n—Fp-1)!

KAMB™CI ——— P
(n—kp-1—1)!

0[(r—kp_1)/zj+r-kp_ﬁl(s) .
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Since I+j=0p-1(k—kp-)=F+1) (k—kp-1)2(&+1)(k—kpoy) for k=ky,, [(r—
kp-1)/k]=[(n—2kp,+k—I—7)/k1<[(n—Fkp-)/k]+ky-.—k. Hence

_(n—ky)!
(n_kp——l_j) !
<<AMBTCjnjat("'kp—l)llc]‘iﬂ'+l—k(s)

(7.9) a% (2, 8)u.(2')
<<AMBrDj0[(n—kp_1)llc]+T+l—k +j(S)
K AMBTDI@tn=kp-v)/6irn=kp_1(g)

Thus we have (7.7). Since 0<8,<n/2¢, it follows from Proposition 2.1 that
there is a u(z)e Asy,(U(x/2k)) in a neighbourhood U such that u(z)~>5-: o1
un(2')(20)* and (L(z, 0,)u(2)—f(2))~0 in Asy,(U(f,)).

Proof of Theorem 1.13. It follows from Proposition 7.3 that there is a
w(z)E Asy,(2(0,)) such that g(z)=(L(z, d,)u(z)—f(2))~0 as a function in
Asy,(2(0,). Define, as in Proposition 2.13,

T u(ty, 2’
_.h_‘tz_)_dto_

0 0 lo

(7.10) a(@:j
We have, by integrations by parts, for multi-index a with a,<k,-,
@1 draE@=(—Da, ! || 05 ults, 2)/ Gt dty

=T 1@)wods utts, /20—t dtet 22,

where g.(z2)€0(U), U(|z|<r), is determined by the values of the derivatives
of u(t,, z’) at t,=r. Let A(z) be holomorphic in £ and put

(7.12) gu(2)= g " (Alzo, )= Alte, 2)){@,)%00% ults, 2)/2o—to)} dto.
Then we have

@13 g@=|{] @AGz+HU—s, 2)ds}@)®008 ults, 2)dto
and g,(2)0(U). Hence we have

1) AR =] Ats, 210,705 utt, 2)/—t} dt+242),
where gi(z)=0(U). Thus there is a g(2)S0U) such that

(@15) LGz, )@= (Lt 2, 8ip D )ults, 2)/ (@t} dto+£4(2)

ZS:(f(to, Z')/(Zo—to))dto+g‘:(g(to, Z/)/(Zo-to))dto+go(z)zf(z)+§(z)+go(z)-
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It follows from the proof of Proposition 2.13 that f(z)— f(2) log z,, 8(z)—g(2) log z,
€Asy,({U(d,). Since g(z)~0 in Asy,({U(0y), §(z)= Asy,(U(8,)). This means
L(z, 9,)ii(z2)— f (2) log z,=f(2)— [ (z) log 2o+ §(2)+ go(2) € Asy (U (0,)) .

Now we show Theorems 1.5 and 1.7. Let u(2)€0,(£2(8,)) be a solution of
(7.16) L(z, 0)u(z)=f(2).

Proof of Theorem 1.5. We use Theorems 1.11 and 6.28. The positive
constants H and O are those in Theorem 6.28. Suppose that f(z)e Asy,(2(8,))
in (7.16). Sincce dkp_1:0, akp_l,o(O, z)7#0. We may assume that akp_l,o(O, 0)

x0, that is, (1.17)-(c) holds and 0,<zn/2y+rn==r/2a,-,+x/2. By Proposition
2.11, we can decompose u(z): for h>0

(7.17) w@)=iul2), w0, 1 Ulas, by),

where U is a polydisk with the center z=0, —(7/ap-,+7)<a;<0<b;<m/ap-
+r and 20<b;—a;. Put I;=(a; b;). We have Ni.,[,=I,=(—8,, 0,). Take
d, and ¢ so that (b;—a;)/2—6>e>0, for all 7. Put

fi@=L(z, 0,)ui(2)€0;,,{U(a,, b)) and ¢;=(a;+b;)/2—n (7>0).

Define v,(2)=(G%f;)(z) (i=1). By Theorem 1.11-(1) and (2)

(7.18) L(z, 0,)v(2)= f1(2)+(Gr?* f1) (2),

where v,(2) € Oy, cn(U(ai+e¢, by—e)), ¢ =c(e)=1. If h<h,, h, being that in
Theorem 1.11-(5), (Gr**f ) (@)= Asyi,(U(a;+0,, bi—08y). Put wi(2)=u.(2)—vi(z).
Then w;(2)€0yy, 1 (U(a;+¢, b,—e)) and

(7.19) L(z, 0,)w(2)=—(Gr?if:)(2).

Hence if follows from Theorem 6.28 that if A is small, w(z)€Asy,{U(a;+e,
b,—e¢)). Thus w(x)=>3, wiz)eAsy{U(l,—e)). Now we study v4(z). We have

(7.20) vi(@)=(G? f)2)=(G?" =" f)(2)+(G~"f)(2)
and
(7.21) 2(2)=240i(2)=21=1(G 7 f)(2)+ 2 (G fi)(2)

=GP T f)(@)+H (G ) 2).

Since —(n/ap-1+7)<a;<0<b,<w/ap_+m=r, it follows from Theorem 1.11-(3)
that if h<h,, (G¢"~"f)(2)EAsyy,{U(0,—8,) for all i. By Theorem 1.11-(4),
f()e Asy . (U(6,)) implies (G~ f)(z)€ Asy,(U(0"—0,)), 6’=min(f,, n). So v(z)
EAsy . (U(0"—0,)) and u(z)=v(2)+w(z)= Asy (U@’ —¢)). It follows from Pro-
position 2.8 that u(z)€Asy(2(0’—e)). We can choose h, d, and ¢ arbitrary.
So u(z)e Asy,(£2(6")). By the rotation of z,, we have u(z)E Asy,(2(8,)).
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Proof of Theorem 1.7. We may assume |68,|<zn/2k. So let f(z)eH—
asy(2(0,)) with f(2) = g(2) log z,+h(z), where g(z), h(z) € Asy,(£2(6,)). By
Theorem 1.13 there is a #(z)E d—asy,(U(8,)) such that L(z, 0.)ii(z)— g(z) log z,
e AsyU8y), 2o5U=0. Hence L(z, 9,)(u(z)—i(z))€ Asy(U(8,)) and (u(z)—
fi(2))E Asy ,(U(8,) by Theorem 1.5. So u(z)e H—asy,(U(b,)). For general 4,,
we have the assertion by the rotation of z,.

Finally we show Propositions 4.1 and 6.8. In the following we assume
r<R'<R, <R, <R, R,<|t;|]£R(=2), and |A| =/, and try to obtain estimates
of holomorphic functions of 1 and z, considering 7, ¢ to be parameters.

Lemma 7'4' L(Zt 0(5):(]3/__3)—} and puts:zo+21+"'+2n+((l{~zo)”20"‘/10!)
({As| =24,). Then
(7.22) (Ata—202) {2t =0 (1 20| + 12— Ao ) | £1)7 /7 1} 0D(s)
LAY (1 2] [ Ag— Ao ) 12)T /7 1} 8¢4+1(s) .

Proof. We have

(2"/{0)4‘ i Izo‘

20,0P
! (S)<< uo‘"‘/]ol

fe(s)« (14 bl Ngunis)«coan(s)
0

l Zo‘ /1 !
and
AaBD(8) < 1| (A= 2)+ 1 20 )D(s)

((A—2)+ 14 )12
[+1

([20—/10“*‘}20!)“01

) 61(s),

L ‘ 0(l+1)(s)<<

where we use sf(s)K 8% (s). Hence
(Atg— 20 {5 =o((1 A | +120— Ao 1) 11, 1)7 /7 1} 8(s)
LC{Z ol Aol + 12— Ao ) ite])7 /7 1} 4+5(s)
Ao Aol + 12— Ao 2 N7+ /(r+1) 1} 644 5(s)
AL Ao+ 12— Ao )£ 1)7 /7 1} §40(s).
Now let us write the equation in §3:
(7.23) Gi(z, 2, Dun(z, t, 4, 1)
+23,Giz, @, 2, T)on-o(2, t, &, T)=0w,2,F (2, t, 2),
where 33, is a finite sum and

(7.24) Gifz, , 2, =210y
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{Ek.l.s.r.i(k—l)l‘“'““"% —az,) Q% a(nts+r, At,—23;)

siridZg\ ¥
Xt (2, 6’)60’}.

Giz, A, ) is a polynomial of z with degree m,

(7.25) Gi(z, 2, Ty=2"-1mmaw ey

(S A Bk i(—az,) + Dririg, ,(2)},

where a, (2)=ax.i(z, &) (see Lemma 3.3).
Proof of Proposition 4.1. In this case i=p—1, dkp_‘-——O and z=0. Hence

(7.26) Go(z, =GB Nz, &, O)=2%r-1{Z (4. j(k.a):o)ZOﬁ’l;-”ak.n(z)}-
We show
(7.27) Arr-1y,(z, t, AKAB™ XN Aol 41 20— Ao]) [26]) /11 07+1(s),

where 0(s) = (R’'—s)™' and s=z,+z,+ - +z,+((A—20)/(|2c—4,])). We have
AEp-w_ (2, t, K AO(s). Assume (7.27) for —1<n<N—1. Since a,,; s(z, 9)0,"
is an operator with the order<s-r, from Lemma 7.2,

AFv-1ay,q,5(z, 00, " Vy-o(2, t, A)
KABY-HZES (Ao + [ 2= Ao ) [20] )1 /8 1} N -3 70(s)
It follows from Lemma 3.4, (3.15) and Lemma 7.4 that
Qtkr, a(n+s+r, Aty—202)

XAZISE (Aol + 1A= Ao )£ [)P/i 1} X ~1+5+725(s)

LAY (120 1 Ag— Ao D) [ £ ])2 /3 1} G N -a¥sFr+dsn(s)

= A{ZEN ol + [ 2= Ao ) [ 1) /3 1} 8N +1(s).
So

AEr-1Gh Nz, 0, A, Dun-o(z, £, A)
KABY{ZEH U ol + 12— Ao [ £ 1)/i 1} V().

Since A*7-1G5\(z, 4, 0)'<€ A(R’—s)"!, we have (7.27) for n=N. Thus
(7.28) | 25P-10,(2, 1, )| S AB™ (22 ((1 Aato 1) /i N(n+1) |

for a small neighborhood of z=0.

We proceed to the proof of Proposition 6.8. In this case ;=1 and
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(7.29) Gz, 2, ©)=Gi(z, 4, 7)
= G-andn Sy, 3Pk i(—az,) * Drihia, (2).
From Proposition 6.4 we have
Lemma 7.5. It holds that in t(?) (0<i<p—1)
(7.30) [Am-a=antnG (2 A 7)Y < A|A]Pri-1|r] "% hima.

Lemma 7.6. There exists a constant A such that for r=z(z)

| zm—(l—al)dm—(l—al)r—ﬁé' TR L

(7.31) [

G0(23 27 T) o

Proof. We have on {it|=b;_,|A|2i-1791}
[A-G-anr -8 lz.r+d§,LEgclll—(1—41)7‘-‘8,21'L-(r+dk.1)(a1—ai_1).
Since
(lI—a)r+Bi ++de, ) —a;-y)
=(—ai-)r+(ei—a,-))ds, 1+ Bk = Bh,, Han—ai)de,
we have
|a-Gmenr=flipreas 1| < 012 PR T] i,
On the other hand we have
(I—a)r+(ai—a)de, 1+ B i =(as—a,)de, .+ Bh 1 = B, +H i —ai)ds,

Hence we have

lz—cl-ﬂﬂf—ﬁkl, Lpr+dg, | §C|2I _‘B}Zi-l !Tl dki—l
on
{I7l=by 2%~} U {22~ 19K (n)} .
It follows from Lemma 7.5 that (7.31) holds on the boundary of z(). By the
maximal principle of holomorphic functions implies (7.31) holds on (7).

Proof of Proposition 6.8. We show

(7.32) Am-“-evim(z—z)mwh(z, t, 4, T)
B \n+1 .
<A(or)" (SE A+ 2= A DI/ 070(s), hxm,
where 0(s)=(R’—s)™! and s=z,+z,+-- +({(A—20)/(|2—4,})). (7.32) is true for
n=—1. Assume (7.32) for r€7(}) and —1<n<N—1. Since a,, . s(z, 0)0," is
an operator with the order<s-+r, from Lemma 7.3,



SOLUTIONS WITH SINGULARITIES 119

(7.33) Zm—(‘_al)dmak,L,s(Z, a,)aorwgl—q(zy t: 2; T)

CA(Zr) ™ BT e Ao Al a3 905057 40s)

By the same method as the proof of Proposition 4.1, we have

(7.34) Am-@mevdmQit y(nts+r, Ay—202)a 4k, 1,5(z, 0)0," Who(2, t, A, T)

CA() B Aol 2= AW 1l 6505).

Thus by Lemma 7.6 we have (7.32) for n=N. Since 0 (s)=n!/(R'—s)"*!, we
have (6.41). By the same method, we can show

(7.35) Am-A-edmey Mz A, T)

<<A<i)"+l {Z?:ol(( E /?-o 1 + uo_‘/lo | ){to | )i/'l' |} 0(n+1)(s)
It

and we have (6.42).
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