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The Behaviour of Solutions with Singularities
on a Characteristic Surface to Linear Partial

Differential Equations in the
Complex Domains

By

Sunao Oucm*

§ 0. Introduction

Let L(z, 92) be a linear partial differential operator defined in a neigh-
bourhood Q of z=Q in Cn+1. Its coefficients are holomorphic in Q. LetK be
a connected nonsingular complex hypersurface through z—§ and characteristic
for L(z, 32). We choose the coordinate so that K= {z^Q; z0=0}. In the pre-
sent paper we study the equation

(0.1) L(z,dju(z)=f(z),

where u(z) and f(z) are holomorphic in a sector Q(00) whose edge is K, Q(0Q)
— {z^Q— {^0=0} ; i a rg^o] <#0}. It is the main purpose of this paper to show
under some conditions on L(z, 32) that if u(z) has at most some exponential
growth on Q(0Q) and f(z) has an asymptotic expansion with bounds on Q(0Q)
as Zo^O, then u(z) has also an asymptotic expansion of the same type as f(z)
(Theorems 1.5 and 1.7). The conditions on L(z, dz) are given by means of
characteristic indices {0t:Q^i^p} of K and the localizations on K defined in
[9]. The growth order of u(z) and the asymptotic expansion of f(z) are
characterized by ap-l. When f(z) has no singularities on K, that is, it is
holomorphic in Q, the equation (0.1) was investigated in [12] and it was shown
that u(z) is also holomorphic in Q under some conditions, which is contained
in the results in this paper.

As for existence of solutions of (0.1) which are singular on K were investi-
gated in many papers, for example, [1], [2], [3], [5], [10], [13], [15] and
papers cited there.

In § 1 we give notations and definitions of characteristic indices and func-
tion spaces, and state the results. Theorems 1.11 and 1.13 are applied to the
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proofs of Theorems 1.5 and 1.7. In §2 we study the function spaces intro-
duced in § 1. In § 3 we introduce an integro-differential operator -£a(z, 1, C, 32,
dc,, At0—Adt), 0<«<1, which is derived from L(z, 32), and construct a formal
solution V(z, t, X) of an equation

(0.2) £a(z, I, C, d,, 3C, 2t0-tdtW(z, t, i, Q=F(z, t, ^(C+wrO .

In §4 we construct the kernel functions G(<f>;w,z,t) and GR(<J); w, z, t) in
Theorem 1.11, where we use Xa^z, A, C, 32, 3c, ̂ o-/^), ap.1=(ap-i— l)/<7p_i.
In §5 we investigate integral operators acting on holomorphic functions on a
sector and give the proof of Theorem 1.11. It is the main purpose in § 6 to
give Theorem 6.28 which is used to show Theorem 1.5 in §7. We give an
integral representation of u(z) in (0.1) in order to prove Theorem 6.28, where
-^ajCz, 1, C, 3*, 3C, tiv—Xdi), a1=(a1— l)/0lt is used. The representation in this
paper is somewhat different from that in [6] and [7], and sufficient for our
purpose. The arguments in § 6 are similar to those in [12]. But we investi-
gate the equations under the weaker conditions than in [12]. We used the
operator -£a(z, 1, £, 32, 3^) in [12], which does not contain M0—Adi. Since we
treat (0.2) in this paper, the arguments become somewhat complicated. In § 7
firstly we summerize about majorant functions and show Theorem 1.13. Next
we give the proofs of Theorems 1.5 and 1.7. We make use of Theorems 1.11
and 6.28 in the proof of Theorem 1.5, and Theorem 1.7 follows from Theorems
1.5 and 1.13. Finally we give the proofs of estimates, that is, the proofs of
Propositions 4.1 and 6.8, which are assumed in the preceding arguments. Pro-
position 4.1 (Proposition 6.8) gives estimates of functions appearing in construc-
tion of G(w, z, t) (resp. in the representation of u(z)). Many constants will
appear in this paper. So for simplicity we denote various constants by the
same notations A, B, C, etc..

§ 1. Notations and Definitions

The following usual notations are used: z=(z0, zlf ••• , zn)=(z0, Zi, zff)=
(ZQ, z'} is an element of C71"1"1, while ?=(?0, £1, £") = (£<), ?') is the variable dual
toz, 8t =a/d2l and dz= (30, 3lf • • - , 3J=(30, 3i, 3") = (30, 3')- \z\=Tnax{\Zi\ ; O^i^n}.
N={1, 2, 3, • • • } and Z+= {0, 1, 2, • • • } . For a real number a, [a] means the
integral part of a. Let K be a nonsingular complex hypersurface through z=0.
We choose the coordinate so that ^={^0=0} to simplify the statements. In
order to give the results we define firstly the characteristic indices {<rj (Q<Li<^p)
for a linear partial differential operator L(z, 3?) of order m^l and with the
holomorphic coefficients in a neighbourhood of z=0, and secondly function
spaces. The characteristic indices were introduced in [9] and [10]. We write
L(z, 32) in the following :
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(1.1)

where L*(z, 32) is the homogeneous part of the order k, AktSk(z, 30^0 if
Lk(z, 3z)^0, and otherwise we put sk = + °°. By expanding Akti(z9 30 (=£0)
with respect to z0, Aktl(z, 30=2j"x*,»2iflJ.i(*', 30=**c*i0fl*.i(*, 3'), where
a*.'*'1^*', 30^0. We put conventionally /(&, /)= + oo if ,4^0?, 30=0. We have

(1.2) Lk(z, d2)=Zt=Skzi<k'l>akil(z, 30@o)*-'

where dt=mini{dk.i=l+j(k, 0}. and d* = + oo if Lk(z, 3')sO. If d*< + oo, put

(1.3)

Obviously lk^sk- When l+j(k,l)>dk, we do not have to expand Ak.i(z, d)
with respect to z0 up to /(^, /). Put j'(k, /) = rf* + l—/. Then we have Akii(z, 3)
=^ f (* l0fl*.i(2r, 30(3o)*~* and use this expression in (1.2). So, when /+y(fe, l}>dk,
we put ;f^, l)=j'(k, /) and a*. 1(2:, df}=a'k,i(z, 30- Let us define the characteristic
indices {^ jO^f^ / )} : Consider the set A={(k, dk}^R2', O^^^rn, rf^ + oo}
and its convex hull A. Let I be the lower convex part of the boundary of
A. In general 2 consists of segments I(i) (l^i^p') and let A be the set of
vertices of Z, A={(kt, dk^Rz] i=Q, 1, -, p ' } , m = ^ 0>^i> - >kp^Q (see
Fig. 1.1). We define as in [9] and [10],

(1.4) ^=max{l, dki_1-dki)/(ki.l-ki}}.

Then there is a p&N, p<^p'-t-l, such that al>cr2> ••• ><7p-i>l=<Tp, and we
put <70=-f- oo. If 21 consists of one point (m, dm}> put (T!=I.

We put Z(0)={(m, dm.i)^R2; dm.i* + °°}. We note that
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(1.5) nf-o1f l* i . i* l(0,z / ,5 /

Definition 1.1. We call {at'tQ^i^p\ the characteristic indices of the sur
face K for L(z, dz).

Let us define function spaces. For a set Ac:CN , A is the universal cover-
ing space of A. O(A) (O(Aj) is the set of all holomorphic functions on A (resp.
A). O(A) contains multi-valued holomorphic functions on A. Let Q—Q0xQf

be an open polydisk in Cn+1, where £0— {z^C1 ; \zQ\<r0\ and Q'^Cn. Put

QQ(a, b)={z^QQ-{Q} ; a<argzQ<b} and Q((a, V), D)=Q0(a, b)xD for DmQ' ,
where DmQf means that D is compact and DdQ'. We simply denote QQ(a,b)
xQr by fl(a, ft) and Q(~a, a), a>0, by $(a). O(Q(a, ft)) contains multi-valued
functions on 0— A", if b-a>2n. We have O(Q^JC)=O(Q(—oo, +00)). We remark
that the notations in this paper are different from those in [11], for example,

0(Q^K} (<Xfl(fl))) was denoted by d(Q-K) (resp. 5(00)) in [11]. In the fol-
lowing the center of Q is the origin.

Definition 1.2. For K, h>Q, OM,h(Q(a, ft)) is the set of all f(z)^O(Q(a, ft))
such that for any a', ft' (a<a' <br <b) and any

(1.6) |/(*)|^4exp(A|*0 -*) in

for a constant A=.4(a7, b', D). We put O^(Q(a9 b}} = ̂ h>QO{K]th(Q(a, ft)).
f(z)^Ow(Q(a, ft)) if and only if for any a', ft' (a<a /<ft '<ft) , any e>0 and

any

(1.7) l /Wl^^. .a ' .6 ' .z>exp(e |z 0 | -0 in Q((a', b'), D] .

Function spaces introduced in the following are characterized by the be-
haviour of functions near K={zQ—Q}.

Definition 1.3. Asyu,(fl(a, ft)), 0</c^ + oo, is the class of all f(z}^O(Q(a,b))
having the asymptotic expansion of the following form as z0— >0 : for any N^l

(1.8) l/W-Sfc1**^)** ^ABNr(N/fc+l)\zQ\N

in any Q((ar , ft'), D) (a<a'<bf<b, D^Q'}, where ak(z')s=O(Q'\ A and B are
constants depending on Q((a'9 b'\ D). f(z)^Asy[K}(Q(a, ft)) is said to have the
A>asymptotic expansion in Q(a, ft).

We note that f(z^Asy(+00](Q(a, ft)) means f(z}^O(Q}.

Definition 1.4. (1) M-asy{K}(Q(a, ft)), 0</c^-f oo, is the class of all /(*)€=
O(Q(a, ft)) having the following asymptotic expansion in the form with polar
and logarithmic terms as ^-^0 : for any A^>1
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(1-9) l/W-S&G.^O^logzo-Sfc-i^^)^!

^ABNr(N/K+l)\zQ\N\\ogz0\, and

(1.10) l/to-SF-ofl*^')** log so-St-Jj^Cz')

hold in any Q((a', b'\ D) (a<a'<b'<b, DmQ'), where H^Z+ and a*(z'), bk(z')
<=O(Q'}. A and B are constants depending on af , bf and D.

(2) 3l(Q—K) is the set of all f(z)^O(Q^K) having at most polar or
logarithmic singularities on K, that is, f(z)=a(z) log zQ+b(z)/z%, a(z), b(z)^
0(Q),

We note that if f(z)^$l-asy{K}(Q(a, b)} and b—a^n/K, then there are
6(z)e^S3;{ff}(^(a, 5)) such that f(z}—a(z) log 00+6(z)/^f (see Proposition 2.1).
We have 3i-asy{^}(Q(a, b)}=M(Q-K).

Now let us state the main results.

Theorem 1.5. Suppose that L(z, 9,) satisfies the conditions

(1.11) (a) (7!>1, (b) rfftp.^O, (c) djfe^s*, /or 0^jg/>-2.

Le/ ^0 ^^ an arbitrary positive constant and u(z)^O(Q(6Q}) be a solution of

(1-12) L(z,

where 0</c^7 = (Tp_1 — 1. // u(

Corollary 1.6. /n Theorem 1.5, // /(z)efl(fl) anrf

Corollary follows from Proposition 2.9.

Theorem 1.7. Suppose that L(z, dz) satisfies the conditions (l.ll)-(a), (b), (c).
Let OQ be an arbitrary positive constant and u(z)^O(Q(0o)) be a solution of

(1.13) L(z,

where 0<«^r=^p-i-l- U u(z}<=O^(Q(0,}), then u(z)s=JfL-Asylf](Q(00)).

Corollary 1.8. In Theorem 1.7, *'/ f(z)<= M(Q-K) and ^0>7T/(2r)+27r,

Corollary 1.8 also follows from Proposition 2.9.

Remark 1.9. Suppose that L(*, 92) satisfies (1.11) then dki=Bki=lki and
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) ( k i , /*,)=() for Q£i<*p—l. The condition (l.ll)-(a) means that K={zQ=Q} is
a irregular characteristic surface defined in [9], and the conditions (l.ll)-(b),
(c) mean that the z-th localization of L(z, 92) on K is aki,Ski(Of 2' ', 3') and the
(p— l)-th localization on K is a function fl*p_ll0(0, z'). It follows from (1.5)
that there are r^O and |'^0 such that

(1.14) nf=V<U^. (0, *',|')M) for |*'|=r.

Many of the results in this paper were announced in [11], where (1.11)-
(a), (b), and instead of (l.ll)-(c), only dm—sm are assumed. The author thinks
that the assertions in Theorem 1.5 and others hold under these weaker condi-
tions, but they can not be shown by the method in this paper.

We give other results in the present paper which are used to prove the
preceding Theorems. In the following the coordinate (w, z, t) means a point in
ClxCn+lxCN+l. Put

(1.15) Wi={(w, z, 0; |u

where 0^<5<7r/2 and Q<rl<r2<r,.

Definition 1.10. K(W8) is the set of all K(w, z, t)^O(ffi§) such that: for
any fixed w, K(w, z, t) is single valued holomorphic in (z, t), and for any fixed
(z, 0 it is holomorphic on the universal covering space of (w^Cl\ (s in5) | f 0!<

Now let us define integral operators, using K(w, z, t)^K(Wa). Put Q—
N-i'l') \t\^r3] and U={z(=Cn+1; \z\^rl}. Firstly we define a path T(a, b)

in ^-space, 0<&--a^27r, T(a, b}=TQ(a, b)xT'aClxCN. T0(a, b) = Tl(a, b)+
Tl(a, b)+Tl(a, b) is a path in ^0-space, where T}(a, b)=\t0=((l-s)rs+sr])eia ;
O^sgl}, Tl(atb)={t0=ije^; a^y>^b} and T*0(a, b)={t0=(srs+(l-s)ii)eib',Q£
s<l} (0<^<r3), (see Fig. 1.2.). T' is the product of paths {tt=r3e^ ; 0^^^2^r}
(/—I, 2, ••• , AO in CN. In the later sections we use the path T when N=n or
N=n — l. When N=n — l, we use the notation t=(tQf tz, ••• , tn)=(tQ, t") and T1

is denoted by Tfl '.
i b

Fig0 1.2

Let us define for f(z)^O(Q(a, &)), b-a>2d,
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(1.16) (Kf)V)=K(tt-z» z, t)f(f)dt ,

where T=TQ(a', ft') with a<a'<b'<b and 2<5<ft'-a'^2;r. We will show in
§5 that if f(z)s=0(Q(a, ft)), b-a>2d, then (Kf)(z)s=O(U(a+8, ft -3)) for a neigh-
bourhood U of z=Q.

In order to show the preceding theorems we need the following Theorems
1.11 and 1.13.

Theorem 1.11. Suppose that L(z, 32) satisfies the conditions

(1.17) (a) *!>!, (b) < /*_ !=( ) , (c) fl*.

Put Y—(Tp~i—l anda=(ap-i—l)/<Tp-i. For given <p^R and any small <50>0,
there are G((p\ w,z, f)=Gs^p\ w,z, t)^K(WdQ) and GR((j)] w,z,t)=GRtdQ(<p; w,z,t)
<=K(WSJ with the following (l)-(5). Let f(z)<=O(Q(a, ft)), b-a>2dG, and

Gg/X*) fte operators defined by (1.16).
(1) T/zere /s a neighbourhood U of z=Q such that (G*f}(z)},

(1.18) L(z, Sz)(G^f)(z)=f(z) + (G^f)(z) + a holomorphic function on U.

(2) L*f f(z)s=Oir}th(Q(a, b)}, where (f>-n/(2a}+7c/2<a<b<<{>+7!:/(2a)+3n/2
and b—a>n+2d0. Then for any e>dQ there is a constant c=c(s)>Q such that
(G'Y)(*)e0,rl.cfc(£7(a + e, ft~e)).

(3) Sw/J^sg ^<^x/ ancf 0<a50<U-a|^-0/|)/2. Le/ f(z)^Oin.h(0(a, ft)),

// 0<h<h0, (G^1 fX^-(G^"fX^^Asyir](U(aJ
rdQt ft—

(4) L#f yc>0 ftg arbitary. Let f(z}^Asy(K](Q(a, ft)), it'/ierg <f)<
and b-a>2dQ. Then (G*f)(z)<=Asy{K}(U(a+8*, ft-30)).

(5) L0£ f (z)^.O (r},h(Q(a, ft)). Suppose that one of the following conditions
holds :

(i) ^-^/(2a) + ^/2<a<ft<^+^/(2a)-f3^:/2 and ft-fl>7r+2<50,
(ii) 0-7r/(2a)+3^/2<a<ft<^+^/(2a)-f^/2 and b-a>2dQ.

Then there is an hi such that, if 0<h<hl9 (G$f)(z)^Asym(U(a+d0, ft-<50)).

Remark 1.12. Suppose L(z, 92) satisfies the conditions (l.ll)-(a), (b), which
are the same as (1.17)-(a), (b). Then it is written in the form

(1.19) L(z, 52)-a,p_1>o^)(5o)*p-1+Sc,,o.c,73-1,o)4a'°a,.ife SOOo)*-' ,

where k-dkti = k-(l+j(k9 / ) )<Jfep- i for (^, I ) * ( k p - l 9 0). So, if (1.17)-(c) is
valid, then for a given formal power series /(z) of z0. /U)=2S-o/n(^0(^o)n/w!,
fn(z')^O(Q'}, there is a formal power series u(z)=^n=kp-l un(z')(zQ)n/n !, Mn(^0

f), such that L(z, dz}u(z}—f(z) as a formal power series of z0.
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We have the following which we apply to the proof of Theorem 1.7.

Theorem 1.13. Suppose that L(z, 3,) satisfies the condition (1.17) and put
T-ffp-i-l. Let f ( z ) ^ A s y l f } ( Q ( 0 0 ) ) with 0<00^7r/2/c and 0<fc^T- Then there
is a V(z)&Jk-AsylK](U(00)) such that L(z, Sz}v(z)-f(z) log z0^AsylK}(U(dQ))s where
U is a neighbourhood of z=Q.

At the end of this section we show an example- Let L(z, 92) be an operator
of the form

(1.20) L(z, 3,)=(30)*+4,(*, d')(dor>-l+Am2(z, 30,

where ord.Ai(z, 30=^1» and ord.Amz(z, d')=mz. We assume that k<m1<mz,
(P.S.^)(*,eOl.0-o^O and (P.S.^2)(z, r)U0=o^O, where (P.S.4)(z,£) means
the principal symbol of A(z, 32).

Case (1) (ra2— /)/(ra2— 77Zi)^ra2/(??z2--&). We have ff1=m2/(mz—k)>l, <72=1,
p=2 and i[—al—l. The conditions (l.ll)-(a), (b), (c) are satisfied,

Case (2) (mz— l)/(m2— m1)>//(m1 — k}>l. We have <j^—(m^— l}/(mz— mj, <72=
//(mi — fe), c/3^1, ^=3 and r=(T2— 1. The conditions (l.ll)-(a), (b), (c) are
satisfied.

Case (3) (mz~l)/(mz~m^>l^l/(ml — k}. We have (7i=(m2— /)/(wz— wO, er2

= 1, />=2, d*^/^!. So (l.ll)-(b) does not hold.
Case (4) I^ (w 2 — /)/(w2— mi)^//(7ni — &). We have (7i=l and dkQ — ni2.

Neither (l.ll)-(a) nor (b) is valid.
According to the classification of characteristic surfaces in [9], in Cases

(l)-(3) K={z0—Q} is irregular characteristic and in Case (4) K={zQ=Q} is re-
gular characteristic.

§2. Function Spaces

In § 1 we introduced some classes of holomorphic functions. In the present
section we give some properties of them, which are used to show Theorems
and Corollaries stated in § L Some of them were given in [12] and we refer
the proofs of them to it. In the definitions of function spaces in § 1, z means
the (n + l)-variables, z=(z0, z')^Cn+1, but the variable ZQ is important and other
variables z' are not. Hence z or t means one complex variable in §2 except
Proposition 2.8.

Firstly we study functions with asymptotic expansions on the half axis.
Let u(z) be a function defined on the line (z\ argz— <p, 0^|z|<.4} having the
/c-asymptotic expansion,

that is, if for any TV^
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(2.2) Mto-Sfe1 ckz
k |

We may assume (p=Q. We have from (2.2)

(2.3)

Conversely, let {ck} (k=Q, 1, • • • ) be a sequence satisfying (2.3). Put

(2.4)

which is holomorphic in {feC1; UK/?} and |g(0| ̂ -4(1- I*//?!)-1 . Put

(2.5) Kz^z-^'expC-z-'Ogft1'*)^ , Q<c1"c<R ,
Jo

which depends on c. Then we have

Proposition 2.1. (1). v(
(2). v(z) has the it-asymptotic expansion as z—>0 in (z ; arg z \ < Tr/2/c} ,

/s, Mere zs an A(c) such that for any N

(2.6) Iv^-S&Caz'I^AMc-^^

holds in {z\ argz\<0'} for any 6' with Q<0'<n/2io.

Set w(z) — u(z}—v(z). By Proposition 2.1, w(z) and v(z) have the same
asymptotic expansion on the positive real axis as z— >+0. Hence w(z)~Q as
^— >0 on the positive real axis. More precisely we have

Lemma 2.2. w(x)\ ^Ac'n/rr(n/K + 1) x n for each n, and
(— cx"K) for O^^'gl, u;/zere ,4 and C depend on c,

The proofs of Proposition 2.1 and Lemma 2.2 were in [12]. We'll define
the /c-Laplace transform and investigate relations between functions with the
A;-asymptic expansion and their A>Laplace transforms. Let H(x) be a continuous
function on (0, A) (A>0) with I TL(x) \ ̂  C exp (h % | - A ) (/c>0). We define the K-
Laplace transform X(f) of HL(x) by

which is holomorphic in {£ ;Ref< — A}. X(f) depends on a, we may choose
any a with «>.4~A: and fix it. The inversion formula is given by

(2.8) XW-^r+l°°exp(-^-Wf)^ (d<-A) f o r O < x < f l - ^ .
Z7rOd-ioo

Let u(g) be the /c-Laplace transform of u(x) with the /c-asymptotic expan-
sion (2.1). Since u(^=D(^ + iu(^, v(z) being defined by (2.5), we study £(£) and
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We have

Lemma 2.3. (1) 0(£)etf({f ; Re£<c}).
(2) 0(?)e<9({£ ; feC1— [0, c]}). /£ /zas £/ze holomorphic prolongation around

(3) !0(0|^Mr.,|log£| in {£; arg£|<0, 0<|£|<r} /or anj; d andQ<r<c.
(4) |z)(f)-z)(fe27ri)}/27r^^1//E), w;/i<?re #(*) is cf^ned by (2.4) and f1'^

It follows from Lemma 2.2 that w>(f)e<Xif ; Ref<e}). We refer the proof
of (2)-(4) to [12]. Thus we have

Proposition 2.4. Let u(x) be a function with the asymptotic expansion (2.1)
on [0, A). Then there is a constant c>0 such that

(1) zKf) is holomorphic in {£; Ref<c, f^[0, c)},
(2) w(f) is holomorphically extensible onto 30= {f ; 0< |f |<c} swc/i

(2.9) ^ ( f ) I ^M r , ^ i l og f | in {5

and t&(&- &(&***)} /2m=g(£l").

Next we consider functions holomorphic in a sector Q(a, b), Q={Z] \z\ <R].
In the sequel we only consider u(z)^O(K],h(Q(a, b}}. We can define the K-
Laplace transform #(£) of u(z) by

I*J.™<,T-<P

(2.10) w(f)

where \A\ >R~K and a<—(argA)/K<b, u(!~) depends on A. We may choose
any A satisfying the conditions and we fix it. #(£) is holomorphic on the set

(2.11) B(h, a, b)

- U {^ le i^eHO} ; if cos^+pX-A, I^+^-TT <7r/2}8a<-<p/K<b

We have

Theorem 2.5. Let u(z)^G(K}th(Q(a, b}). Suppose that the K-Laplace trans-
form u(%)^O(3(h, a, b)} is holomorphically prolonged to the punctured diskS^, S0

= {0<|f|<c}, for some Oh so that
(i) for any <P>0 \&(&\ ̂ M^|log ?| in {£e=i§0; argf-^|<0}, and
(ii) F(&={u(&-u(&ZKi)}/2m is a convergent power series of £1/K at f=0,

(2.12) F(£)-se°0 cK?*/r(N/K+i).
Then there is an hQ=hQ(c)>Q such that the following hold. If h<h0, there

are a'=a'(h) and b'—b'(h) l(a<a'<bf<b) such that u(z) has the K-asymptotic
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expansion (2.1) in Q(af , b'} and lim a'(/i)=fl and limb'(h)=b.
h-*+Q h-* + Q

Proof. We may assume that a = — 00 and b=0Q (00>0). Firstly we note
that there exists 0</i0<e such that if 0</i</i0, 3(h, -0Q, 00)W£0=>{?=l?ie^ ;
f^O, i^-7r|<0"} for some Off = Off(h}>n/2 with lim df/(h)=icOQ+7c/2. By the

ft-*+o

deformation of the integration path to the right half plane, the inverse K-
Laplace transform is given by

Z-K /r-d fneidt-O') \

(2.13) «W = 5-(\ . + j
2 ^ A J o o < C f f + ̂ f) J^ /

exp (-

for z^Q((6'—7t/2)/K) (K/2<0'<7t}. From the assumption, £(£) has at most the
logarithmic growth at £=0. Hence, by deforming the integration path (see
Fig. 2.1), we have for z€E£((0'-7r/2)//e) with n/2<6'<0» and 0'^Tr,

Here F(£)=w(f)-^(fg2jri) and
~-/c / r c e27ri poo

(2.15) s»'(z)=s-<\ „ +
2^l\Joo 6*C.T-t-t f ' ) J C

Fig. 2. 1

For z with ] arg z | < 7r/2/c we have the /^-asymptotic expansion

(2.16)

and

(2.17) |s

in {^;0<!2|<^ / , ^/2-0 /+5<A;argz<-^/2+/9 /-^} for any 5 >0. Hence, we
have the yc-asymptotic expansion of u(z)

(2.18) M(z)~S£"o c*z* in

Moreover if follows from the rotation of z and using the above method again



74 SUNAO OUCHI

that u(z) has the /e-asymptotic expansion (2.18) in Q((0" — K/2)/K). Put — a'(/z)
and as mentioned above lim 0"(/i)=£00-f^/20 Hence lim

-a'(/i)= lim b'(h)=(0ff

fc- + 0

From Proposition 2.4 and Theorem 2.5 we have

Corollary 2.6. /,<?£ u(z)^O^(Q(a, b)). Then u(z) has the K-asymptotic ex-
pansion in Q(a, b), if and only if the K-Laplace transform w(f)€EC>{£; Ka — x/
argf— K<tcb-}-x/2} satisfies the following (1) and (2).

(1) #(£) has holomorphic extension onto S0— {<? ; 0< |£|<c} such that

^773; <5>0.
(2) F(f)={^7(f)-^?(fe27rO}/(27^/) /zas f/ig convergent power series of %1/K at

£=0 SMC/I as (2.12).

Remark 2.7. Put

(2.19) ^(€)=^.j;^*.

Then Ok(&-0 „(&***)=£""' for | f |<r . Define

(2.20) &(5)=2iSc*^(g)/r(^A+l).

Then Cr(f)-Cr(£e2jri)=2if~oC*£*/V/1(^A+l) and it is easy to show that #(£)
has at most logarithmic growth at £=0. Suppose that conditions (1) and (2) in
Corollary 2.6 hold. We have u(^-U(S)=u(^i)-U(^e2r:i) and zKf)-C/(£>e
#{(0<if |<c}). Since 0(£) and t7(f) has at most logarithmic growth at £=0,
#(£) — #(£)e0(|£|<c). Therefore the behaviour of #(£) at f— 0 is characterized
by

In the next proposition z— (^0, ^
/)^C'n+1 and Q=Q0x8' is a polydisk with

the center z=Q in Cn+1.

Proposition 2.8. Let u(z)^O^(Q(a, b)) and D be a non empty open set in
Qf. Suppose that u(z} has the K-asymptotic expansion with respect to ZQ as z0-*Q
on QQ(a, b)xD, then u(z) has also the it-asymptotic expansion in Q(a, b).

Proof. We may assume —a=b=0Q. We have #(£, z')<=O(ZK0Q+n/2xQ'),
where Ztf={feC^10} ; |argf-7r|<^}. If z'<=D, u($, z')tEO(Z+00xD'). Hence,
it follows from the theory of the extension of holomorphic functions of several
complex variables that #(f, z') is holomorphically extensible around f — 0 for
z'€=Q', that is, ft(£, z')e=0(Z*), Z*={(£, zOeC1- {0} xfi' ; 0< IKcdz' l )} for
some c(|^|)>0 (see [4]). We have F($, z')={a(£, z')-^**', z')}/(2ni)=
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), and &(£, *')-#(£, z')<=O(\£ \ <c( |z ' l )) as a function of
£, where Z7(f, 2r/)=2iSc*(2r/)Or* (f )//"(* A+l) is defined by (2.20) for u(%, zf}.
Hence it follows from Remark 2.7 that the conditions (1) and (2) in Corollary 2.6
hold. So u(z) has the ^-asymptotic expansion with respect to ZQ in Q (a, ft).

Proposition 2.9. (1) Let f(z)<^Asy[K}(Q(a, ft)). // b-a>n/K+2n, then
f(z)e=0(0).

(2) Let f(z)z=Jk-Asylie}(Q(a, ft)). // ft-a>7r/A;+47r, f/zen /(z)e= Jtt(Q-K).

Proof. (1) PutF(z)=/(z)-/(^^)^eiQ(:a^_2^). Then F(z)~0. More

precisely for any N^l we have

(2.21) F(z)\^ABNr(N/K+l)\z0
 N in Q(a' , bf-2n} (a<a'<b'<b) .

Choose a' and V such that ft' - a '-27r >?:/£.. From (2.21) we have |F(z)|^
Aexp(-clz 0 "*) in fl(a', ft'— 2*r) for some c>0. Since (ft'-2;r)-a/>^//c, F(z)
=0. So /(^) is single valued on fi— /< and bounded. Consequently f(z) is
holomorphic in Q.

(2) Put F(z)=f(z)-f(ze*xi), z^Q(a, ft-2^). Then F^eAs^coCfiCa', ^
—2*0). We can choose a7 and ft' such that (ft'-2^)-G/>;r//»:+27r. Hence F(z)

by (1). Put g(z)=f(z)+(l/2m)F(z)\ogz0. Then ^)-g^27ri)-^(^)-
(log^0+2^)-F(z)logz0}=0. So g(z) is single valued in Q-K.

Since |^(z) ^^41z0|"H for some H^Q, {^0=0} is at most a pole of g(z). Thus
f(z}=g(z)-l/(2m)F(z} log z0

As stated in § 1, we have Corollary 1.6 (resp. 1.8) by Theorem 1.5 (resp.
1.7) and Proposition 2.9.

Proposition 2.10. Let u(z}^O{K],h(Q(a, ft)). Suppose that there exist ul(z)
(=0Cffi)(fl(fl, ft)) (i=l, 2, ••• , /, K<KI<KZ< ••• <KI) such that u(z)=^l

isslut(z) and
each ut(z) has the K-asymptotic expansion on {z ; arg z=(pt, \z\<R] (a<(pl<b).
Further assume that there is a <pQ^(a, ft) such that \(pi—<p0 <7t/2K%. Then there
is an /20>0 such that, if Q<h<hQ, u(z)^Asy(K](Q(a', ft')) for some a' = a'(h) and
b'=^bf(h) (a<a'<b'<b} satisfying \\ma'(h} = a and Y\mb'(h}=b.

ft- + 0 7i-» + 0

Proof. By the rotation of z, we may assume a<0<ft and ^o^O. We have

(2.22) ft(f)=f+°8et?>exp(^)M(z-1^"1^ (A>R-K, argz=<p)
J A

which is holomorphic in S(h, a, ft) (see (2.11)). z?(f) is represented in the form

(2.23) a(f)=lim lim ••• lim r^^expCfz-SUie^*)"^"1^'1^,
Sl-* + 0 S2~» + 0 s^-» + Oja

where pl~tci/K>l and |^|<^r/2/?z . Suppose | a rgf— TT| <^*, where ^*=



76 SUNAO OUCHI

mm{K/2—\K<pi\ ; 1^'^/}>0. Since icy>i\<n/2pi, by putting <f>=—K(pL, we have

(2.24) e '

lim ••• lim I exp(fz— Si-i
£2->-fO ej-»-i-ojA

l im- lim e '
£2-» + 0 6£- l -» +

lim lim ••• lim I exp(^—
e!-.-»-0 sz-* + 0 Si-j-^ + oJ^l

lim - lim e '

Since \K(pi-i\<x/2pi-i, we also have

lim lim ••• lim

r + e o e - i -
-lim l im- lim

6J- + 0 £2-+0 £^-!-* + oJ/l

-lim l i m - - - lim f+°°e '"'exp^-Sfcf s^OCStf u%(z'lllfi)z'ldz
e j - fO £2-» + 0 e^-2-* + oJ^l

Repeating this argument, we have for £ with |arg|— ^|

(2.25)

By the assumption M^Z) has the /e-asymptotic expansion on {z;argz— <pt}0

Hence &i(&^O(St), 30={Q<\£\<c} , for some c>0 and (1) and (2) in Proposi-
tion 2.4 hold for each #»(£). Hence u(^}^O(5(h, a, d)) has a holomorphic pro-
longation to {£; |arg£— tfK^JWiSo. So the assumptions in Theorem 2.5 hold
and the assertions follow.

We give a few propositions for the later sections. The next two mean
that holomorphic functions with bounds in a sector are represented as a sum
of those in wider sectors.

Proposition 2.11. Let u(z)^O^(Q(aJ b}}. Given &>0, there are
O\K}ji(U(a, &-j-27r)) and uz(z)<=:O{K]ih(U(a—27t, b}} such that u(z) = ul(z)Jruz(z) in
U(a, b), where U is a neighbourhood of z— 0.
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Proof. We may assume that a<Q<b. Given /i>0, define

(2.26) ^)=expf:V3Texp(-^"V3)u(o<tt .Lm Jo t— z

Then, by deforming the integration path, we can prolong U(z) to the U(a, b+2n),
U={\z\<rl. We denote by u^(z) this extension, U(z) is also considered to be
a holomorphic function on U(a—2n, b), say — uz(z). Then we have u(z)=
iii(z)+uz(z) on U(a, b) and we can easily show u1(z)^O[K]lIi(U(at fr+2?r)) and

2x, b}).

We have by the same method as in Proposition 2.11.

Proposition 2.12. Let u(z)^O[K}ih(Q(a, b)). Given h'>h, there are Mi(z)e
O(K],h'(U(a, b+2n)) and u2(z)G:O{K}.h>(U(a—2n, b)) such that u(z) = u1(z) + u2(z) in
U ( a , b ) , U={\

We give a relation Asy[K}(Q(a, /;)) between 3h-Asy{K}(Q(a, b)).

Proposition 2.13. For u(z)^Asy(K}(Q(a, b)) there is a u(z)<=$l-Asy[K}(U(a, b)),
U={\z\<r}, such that u(z)-u(z) log z<=Asy{f}(U(a, b)).

Proof. We may assume that a — —b—Q. Define

(2.27) u(z}^\r^-dt.
J o Z I

Then u(z)^O(U(-0, 0+2*)), 17= { z <r] . Put w(z)= \ru(t\~u(z} dt. Then
Jo t — Z

(2.28) u(z) = (r^dt+w(z)=u(z)(\ogz-log(z-r))+w(z).
Jo Z— t

We show w(z)e=Asylf}(U(0)). We have w(z)=[T dt\1u'(st+(l-s)z)ds and
Jo Jo

w^(z)=(rdt(\l-s)nu^n+1\st+(l-s)z)ds. Hence if
Jo Jo

(2.29) \ww(z

which means w(z)^Asy{K}(U(d}}. Hence u(z)—u(z)\ogz^AsylK](U(a, b)).
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§ 30 Integro-differential Operators Derived from L(z, 32)

In order to show Theorems in § 1 we need integro-differential operators
J?a(z, A, C, 32, 3^ At 0— Ad*) (0<a<l) containing an integral operator d~^, where
zeCn+1 and 1, £, t^C1. £a^£a(z, X, £, 32, 3C, tt*-Xdti is derived from
L(z, 32) in (1.1) as follows: Let 0<a<l. L(z, 32) is the sum of Lk,i(z, 32)—
*o'fl*.i(*, 9')3*~l ( j = j ( k , l ) , sk^l^m, O^fc^ro) (see (1.2)). We correspond
-Ca,k,i=-Ca,k,i(z, Z, C d*> 30 ^o-^3^) to each Lktt(z, 32),

(3.1) ^a.A.^W-^^ttC+W^o-^JSc^M^'fl*. i(^3^^

Namely we get -£a,k,i from Lkii(z, 3Z) by the following replacements:

(3.2) z0— ̂ ^"'^(aC+M^-^^Sc1)* 3'— >^3/3c1, 30 — > i«303c1+^

but the variable ZQ in ak,i(z, df) is not replaced. Define

(3.3) £a=J:a(z, 1, C 9,, 3C, ̂ 0-^^)=23R-o St-t* ^«.*.i .

Now we define d^1 in J7a. In order to do so we introduce a sequence of
auxiliary functions {//Of (J^Z) used in [1] :

(3.4)

It is easy to show the next lemma.

Lemma 3.1. The following identities hold :

(3.5) -

(3.6) C/XO=(; + l)/^i(0+fl Polynomial of C-

By considering Lemma 3.1, we define

(3.7) 3c1/>-i(C+c)=/XC+c),

where c does not depend on C- By (3.6), we have

(3.8) C/XC+c)=(; + l)/^i(C+0-c/XC+c) (mod. polynomials of C).

All the calculations with respect to £ will be performed by the relations
(3.5)-(3.8). Polynomials of £ are neglected in all the calculations below. It
will turn out that they make no contribution to the integration on the closed
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paths in £-space. The notation = means modulo polynomials of £ in § 3.
Now we define the operation of X a—-£ a(z, ^, C, 32, 3c, #0— ^3;i) to a func-

tion V(z, t, I, £, ^) of the form

(3.9) V(z, t, Jl, C, r)=2K»0v»U, f, J, r)/»(C+r*0 .

We prepare several lemmas for this operation. v(z, t, 1, r) in Lemmas 3.2-3.4
and Proposition 3.5 is holomorphic in some domain.

Lemma 3.2.

U-^Sodc'+W*, t, I, r)/B(C+r*0

, f, J, r)/B+r(C+rzO.

Lemma 3.3. There are linear partial differential operators a k , i > s ( z , 3')
^s^/) K;^/Z ord.f lA ,Z f S(^, 30 ̂ s such that

(3.10) flftil(z, S'BcXz, t, I, r)/n(C+rzO

^SLorz-sa^,z.sfe 3')^, t, I, r)/B

i^/zers a k , i , o ( z ) = a k , i ( z , fOlr^ '-ci .o. .«-

Lemma 3.2 follows from the binomial theorem and the proof of Lemma 3.3
is easy.

Lemma 3.4. The following identity holds :

(3.11) U-^^C+U^-^rc1)}^, t, I, r)/B(C+«i)

P{(n, ^0-^)=
p{tk(ri) (Q^k^s, O^s^/) sa^'/y /or constants A and B

(3.12) i/>

Froo/. The identity (3.11) is obvious for ;=0. We have by (3.8)

(3.13) A-1+ft(aC+(*o-^i)3

^ t, I, r)/B(

Thus, by putting P\(n, tt0-tdd=a(n + l)+(tt0-idri, we have (3.11) and (3.12)
for y=l. Assume (3.11) and (3.12) for some /. Then we have



80 SUNAO OUCHI

tfitfc1)}'*1^, t, I, T)/.(C+rz,)

-TfCB, Jfe.-JlSjMz, *, Jl,

s^-'+« [(-arz,) tf(-1+a

-IW*.-^3i)Pf(n> 3tt-Xi^z, t, X,

By putting P|+1(n, ^.-W2)=Pi(n, ^0-^
i'-,^, ttt-)di), we have (3.11) and (3.12) for /+!

Thus, making full use of the above Lemmas, we have

Proposition 3.5. The following holds :

Now let us construct a formal solution V(z, t, X, C, t-) of

(3.14) j:aV(z, t, A, C, T)=F(z, t, X, rJ/

which has the form (3.9). Define

(3.15) Qtfr, d(n, tta-ttx)=l-k^1-°:"<+r>Pi(n,

where O^fe^m, sh<l<k and Q<r<k—l. By operating J7a to y(z, ̂ , ̂ , £, r)
and setting the coefficients of the same /jv(C+rzi) equal to each other, we have
from Proposition 3.5

(3.16) S.T.+r+d

S>— /

, ^o-^)T'-'at.,.,(^, 3')9oVB(z, t, X, r)}=dN,n.F(z,t,i.).
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In order to show Theorems in § 1 we'll put a=a1—(01—l)/al or a=ap-i=
-i—ty/Gp-!. So we give a lemma for later purposes.

Lemma 3.6. Assume dk,i=l-^j(k, 0^ + °°- Then there are nonnegative
l) such that

(3.17) (dkt.l-dk.iKl

(k, dk,i)^Z(i] if and only if $.1=0, and

(3.18)

where $i=$f.iki (see (1.3)).

Lemma 3.6 follows from the lower convexity of I and the definition of
2(i) and dki (see [12]). Now put a=al=(ai—!)/<;* (l^i^p—1). From Lemma
3.6, k — dk,i(l—at)=ki-i — dki-^1—at)—$.z- Hence we have from (3.16),

(3.19) ^^-l-^-

{So^/-azZiX-dQi^

Put

(3.20) GJ(z, 5X, ^, r)=^*»-i-cl-

~ d ^ ^ ^ n +

Gl(z, df, 2, r) is a polynomial of r. So we denote it by Gi(z, ^, r), which will
often appear and has the form

(3.21) G\(z, I, ^^^-i-^-^^i-MS^^-A.iC-a^yr^.'flfc.ife)},

where ak,i(z)=ak,i,Q(z)=akii(z, |x) (see Lemma 3.3). Thus the equation (3.19)

becomes

(3.22) Gl(z, I, T)VN(Z, t, X, r)

+ ^qG\(z9 V, X, r}vN.q(z, t, I, T)=dN>noF(z, t, X, r),

where 29 is a finite sum. Consequently we can determine VN(Z, t, X, r) (N^nQ)
successively by (3.22). In order to determine them we need the division by
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Gt(z, A, T). So the properties and the estimates of vN(z9 t, A, r) depend on the
zeros of Gl(z, A, r). In particular, if F(z9 t, A, T) is rational in r, vN(z9 t, A, r)
(N^nQ) are also rational functions of r. G$~\z, /I, r) is simple. The zeros of
Gl(z, ^, r) are studied in § 6.

§ 4. Construction of Kernels G(w, z, t) and GR(w, z, t)

In §4 we construct G(w, z, t) and GR(w, z, t) in Theorem 1.11 by using the
results in §3. So we assume (1.17)-(a), (b), (c) in this section. Now put a=

ap-! and r=0 in (3.14). Consider

(4.1) j:aV(z9t9i9G=F(z9t9X)f.l(G,

where

(4.2) F(zyt^}

Since a=ap-i, r=Q and da^^O, we have from (3.21)

If k^kp-t, ^!>0 in (4.3). By the assumption (1.17)-(c) we have |G0(z, >l)|
^ C I J l l * ? - 1 , C>0, for large /I and in a neighbourhood of z^O. So we can
construct a formal solution V(zt t, ^, Q of (4.1) by the method in §3,

(4.4) V(zf t, i C)=2t=-iv»(*, f, ̂ )/B(C) .

fn(z, t, X) (n^ — 1) are successively determined by the formula (3.22) as holo-
morphic functions in a neighbourhood of z=0. We have

Proposition 4.1. For small rlr rz, rz (Q<rl<rz<rz) and large AQ, there exist
constants A and B such that

(4.5) \lk*-*vn(z9 t, fl|^

holds in {(z, t, 1} ; \z\^rlt \t0\^rS) rz^ t

The proof of Proposition 4.1 is given in §7. As for the convergence of
V(z, t, /I, 0» we have

Proposition 4.2. F(z, t, X, Q=Sn=-iVn(*, f, ^)/n(0 converges in {(z, t, I, Q;
l^r l f i ^ o l ^ r 3 , r 2 ^ I M ^ r s (l^i^Tz), i ^ l ^ A , 0 < i C i ^ r 4 } /or some r4>0, ^

singularity at £=Q of V(z, t, X, Q—V-^Z, t, /0/-i(Q is logarithmic and

(4.6) \V(z, t, I, C)-v-ife, ^, «/-i(C
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for some constants A, B, C* and q*.

Proof. By Proposition 4.1, V*-i(V(z, t, X, Q-V-I(*, t, J)/-i(C))l ^4(ilog Cl
If 2 |CI^£-1 , SKo(5ICI)"(S?iil*ol r/r!) S

^^So we have (4.6).

The constants C* and q* appering in this section are those in Proposition
4.2. Define paths in £-space : Z(0, ^ /)={C=rfVcc l-' )a^+ 'a^' ) ; O^s^l} and

), where d*>0. Put

(4.7)

where 0<^*^r4, r4 being that in Proposition 4.2, and

(4.8) %, 0'; 2, /, ^)=^; z, ^ A)-t/(^; z, ^,

where a(<j)—<])f)\<n. In the definition of V(<f>; z, t, X), the holomorphic part
of V(zy t, ^, C) as a function of C can be neglected. We have

Lemma 4.3. 77ie following estimates hold :

(4.9) \V(<J)\z, t, ^ ) |^^U|

(4.10)

)-e, ^

(4.11) 7(0, 0';2, ^, /0|^U|Q*exp(C*d* ^ol -rf* sin

Proof. V(<p; z, t, X) is well defined and we have (4.9) and (4.10) from (4.6)
and the deformation of the integration path Z(0). We have

(4.12) t/(0, 0'; z, t, X)=(\ -\ )exp(-^C)^(z, ^, I, CMC
VJzcv'o Jzc^')/

0' +27T/a , ^ + 2^ /0

and Re^ f lC^^* sin(ae)^|a on Z((p+2n/a, <f>'+2x/a)\jZ(<p, <f>'). Thus we have
(4.11).

By Lemma 4.3 we can define

(4.13) G(0; u;, z, 0=
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and

(4.14) G(0, ̂  ; w, z, 0=G(0; w, z, t}-G(^ ; w, z, t)

Put, by using the constants in Proposition 4.1,

X={(z,t)', z ^rlf \t0\£rt, r^\t\^

(4.15) • Q={zi \z ^rs}, U={z; \z\<ri},

and recall (see § 1)

(4.16) W*={(w, z, 0; | i t f |> ( s in3)Uol , (z, t)e=X] for a small d>Q,

the function space K(Ws) (see Definition 1.10), and

(4.17) a=ap-l^(ap-1

We choose d*>Q small in the following in this paper, if necessary. We
have

Proposition 4.4. (1) G((p; w, z, t)^K(WgJ, 5*=sin"1C*rf*.
(2) Suppose |argw;-^i<7r/2o:+7r/2-£ for small s>0. Then if

<(sin e ) \ w \ ,

(4.18)

(3) Suppose l a rgw;—</>\<n. Then there is 0<c*<U such that if C*d*|f0 l
<c*\w ,

Constants A, B and C in (4.18)-(4.19) are some constants and q* is that in (4.6)
(or (4.10)), and 9J stands for the r-th derivative with respect to z.

Proof. By varying <p in (4.13), we have the holomorphic prolongation of
G((])-, w, z, t) with respect to w and G(^>; w, z, t)<^K(Wd*) by (4.9). Suppose
|argw;-^l<7r/2a+7r/2-£. Then we can choose l=\l\ei(f> (\<p+<f>\ <n/2a)
such that ReAw^(sms)\Aw\. Hence, if C*d*\t0 <(sins)|u; | ,
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We have also the similar estimates for 9^32
rG(^; w, z, t}. In particular suppose

argw—</)\<n. Then we can choose X = \ X \ e i t p (\ip-\- (p\<n/2o) so that Re Aw
, where 0<c*^l is determined by a. Hence, if C*d*\t0 <c*\w\,

; w, z, Oi^

Thus we have (4.19).

We study G(0; w, z, t) in §4 and §5. We calculate L(z9 dz)G((j>; tQ-z0, z, 0
in this section. In the following = means modulo holomorphic functions on X
(see (4.15)). We have

Proposition 4.5.

(4.20) L(z,

where

(4.21)

/z(^; z, t, X)<=O(XA^ with

(4.22) VR(<f>-,z, t, ^ |^yl( l+ |^ | )^exp(C*rf*i^ 0 | ) /or some N.

Before the proof of Proposition 4.5 we note the following identity:

Lktl(z, 3)G(0; ^o-^o, z, 0=Vfl*.i(*, d')dk
Q-lG(</>; t0-z0, z, t)

X [ . a* . ,(*, 3')Oo+^)s-! exp (-^
J^C^)

Now we give several lemmas to show Proposition 4.5, in which the same
notation V(z, t, X) means several functions on XAo.

Lemma 4.6.
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(4.23) ( (3.+J)*-' exp (-X*QV(z, t, X,
Jz<.</>->

-^, t, I,

where ¥(z, t, 2)\ ̂ 4(1 + \l\)N exp(C*d*|^0|) /0r some TV.

Proof. Since 5cexp(-^Q0=->ia exp(-^C) and
* ~ z , we have (4.23) by integration by parts with respect to £•

Lemma 4.7.

(4.24) ( a k t l ( z , d'}(d*+X)k-l(zKv(-laQV(z, t, i,

^0|) for some N.

Proof. We have (4.24) with another V(z, t, X} and another N in the same
way as in Lemma 4.6, by using integration by parts in C,.

Put

(4.25) 7?.,(z, t, Jl, 0=^-^a'fl*.i(*, S^-Oa-^^oSc^

Lemma 4.8e The following identity holds :

(4.26) rl" (0,X exp Wz0J^o
rooe^>

= 1 exp(-
J^o

X [ exp (
JZCji)

.-^.J-^'dV*)^, f, X)dl,

\)N exp(C*d*|^0|) /or some TV.

Proof. By integration by parts in ^, we have
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c*V

't.i(z,t,l,

.,(z> t, A,

iyVf.iU, t, i,

By integrations by parts in £ we have

'C+fo-^XF^C?, f, ^,

Hence we have (4.26).

Summing up Lemmas 4.6-4.8, we have from (3.1)

Lemma 4.9. The following holds :

(4.27) Lkll(z, d)G(</>; f0-z0f z, 0=

f-oc*^

exp(
J ^0

t/(z, t, Z)\ <A(1+ \l\)N exp (C*d * some

Now we can give the proof of Proposition 4.5.

Proof of Proposition 4.5. We have, by Lemma 4.9,

r~e<
(4.28) L(z, a2)G(^; zo-^o, *, 0=\Jvi0

where \VR(<p',z, t, X)\ ̂ A(1+\X\)N exp(C*d*!^0l) for some N. Define

(4.29) GR((j)', w, z, t)=\

Then, from (4.1), we have
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(4.30) L(z, d,)G((/>;t0-z«, z, f)

- ; zQ-t0, z, 0-

We have shown in Proposition 4.4 that G((f>'} w, z, t)^K(W^), 5*=sin lC*d**
It is obvious that GR((/>', w, z, t) and G(<f>, (/>'; w, z, t) are also in fC(Wd*). In the
next section we show that G(</>; w, z, t), GR((f>; w, z, t) and G(<f>, <p'; w, z, t)
have the properties (l)-(5) stated in Theorem 1.11.

§ 5. Integral Operators

In this section we firstly study integral operators with kernels K(w, z, t}
and secondly give the proof of Theorem 1.11. Let us recall (w, z, t)&

(5.1) W8={(w,z,

where Q<r1<r2<r3 and <5>0 is small and put

. \z
(5.2)

We also write again a path T(a, b) in if-space, a<b and b—a^2n (see §1),
which is defined as follows: T(a, b)=T0(a, b)xT/aC1xCN. T0(a, fc)=TJ(fl, b)
+T2

Q(a, b}+Tl(a, b) is a path in ?0-space, where TJ(a, b)= {t,=((!-s)r3+sr})ela ;

O^s^l} (0<^<r3). T' is the product of paths \tt\=rz (tt=rae^ ] $<<p<2x}
(i=l, 2, • • • , N) in CN. iy>0 in T0(a, b) is chosen suitably and small in order
to obtain good estimates.

Let K(w, z, f)tEfC(W§) and f(t)<=O(Q(a, by), b-a>2d. Define

(5.3) (Kf)(z)=K(tQ-z0, z, t)f(t)dt ,

where T=T(a', b') with a<a'<b'<b and 2d<b'-a'^2n. We have

Proposition 5.1. Let K(w, z, t)^K(W8) and f(z}<=O(Q(a, &)), b-a>2d.
Then (Kf)(z)s=O(U(a+d, b-d)).
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Proof. We note that K(w,z,i) is holomorphic if | w\ >(sin d)\tQ\ as a
function of w. So, if ZQ satisfies \zQ-t0\ >(sin d)\tQ\ for t^T»(a', b'), (Kf}(z)
is holomorphic. So we obtain (Kf)(z}<E^O(U(a'+d, b'—b*)}. The integration
path T depends on a' and V. Let (K'f)(z) be an operator integrated on
T(af, b'} and (K"f)(z) be one integrated on T(a", 0")- We can easily show
that if (a'+3, 6'-<5)n(a"+<5, ^-d)^=0, then (Kff)(z)-(K"f)(z) is holomorphic
in a neighbourhood of z=Q. Thus (Kf)(z) is holomorphically extensible to

Proposition 5.2. Suppose that K(z, t, X)^O(XAo) satisfies

(5.4) £(*, t, «|^^exp((sin3)|^0 + B U i f l ) on

/or 4, 5, 0<a<l awJ O^dO/2. Put

r°°elv
(5.5) /f (w, z9 0=1 exp(-Aw;)^(z, /,

J^o

/f (u;, z, t)^K(W§) and the following holds.

(1) Let /(z)e=0in.fc(fl(-0+(7r/2)-e0, -#+(
/or flnj; s'>0 there is an h'(e') such that (Kf}(z)^O(r],h)

(2) Suppose that

(5.6) £(*, f, ^) 1 ^ A exp ((sin d)\ttQ -C\l\a] on arg ^=^S .

Let f(z)s=Oir}th(Q(-$+(7c/2)-e0, -^+(37r/2)+e0)), s0>5, r=«/(l-a). Then
there is an h, such that if Q<h<h1} (Kf)(z)<=Asylr}(U(-$+(x/2), -

(3) Suppose that

(5.7) \g(z, t,V\^A(l+\t\)Nexp((smd)\ttQ\) on

Le^ /c>0 &e arbitrary. If f(z)t=OlKj.h(Q(-$+(x/2)-e0, -
f/zgw /or an^ s'>0 ?/iere /s a constant c = c(e')>0 swc/i
+(7r/2)+e/, -

. It is obvious that #(10, z, Oe/c(P7g). Put

A U o l " r + f l | i | a , ^=(^+£o)/2 and T=T(-^+(w
+(5')). Let arg^=^. Put ij=c|^r1 + a in the definition of T. Then we have
rU, f 0 )=-c 1 | ^ 0 |+AUo - r + ^ | A I « on TJ(-^
sin 3'- sin 3. So W(l, Q^(B+hc-r)\l\a on TJ(-
We have also, fU, tQ)^(B + hc^)\}i\a on T§(
OnTl(-^+(7r/2)-^, -^+(3^/2)+3'), ^W, tQ)^(c+c sin a+/zc^'+5)U| a. Hence
we have
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(5.8) W(A, tQ}<(c-\-c sin d-\-hc~r-}-B)\A\a on T0( — ̂

So we have, if arg^=^J,

(5.9) ( exp(—#„)£(*, t,

for any c>0. Thus we have, if argz0+$—n\ <(n/2}—e',

(5.10)

and from (5.9)

sin

We have (1). Let us show (2). Assume (5.6). Put W(t, f0)=-Re^0+(sin <5)
-t-h\t0 -?, T=T(-$+(x/2)-d', -^+(3w/2)+37)), 8'=(d+e0)/2 and let
Put r}=c\A\~^a in the definition of T. Then we have

(5.11) V(l, W^(c+cs in^+/ ic -OI^! a on

So we have, if

(5.12) f
J

, t,

for any c>0 and if |argz0+^—7r|<jr /2,

exp((c+c sir

Choose c>0 small so that c-\-c sin ^^2c^C/4, fix it and choose hi with h{c~r

<:C/4. Hence if Q<h<hlt for |arg^0+^-^i <7r/2

(5.13) \ ( K f ) ( z ) \ ^ A \ \ f exp(-Cra/2)dr\.

We also have

(5.14) |,

This means that if Q<h<hlf (Kf)(z)EEAsyir](U(-$+(n/2), -^+(3;r/2)). Let
us show (3). Assume (5.7). Let f(z)^O[K]th(Q(—^+(?r/2)—e0, — ^-h(3^/2)+s0)),
T=(-0-\-(7t/2)-d', —$+(3x/2)+3'), a7=(a+e0)/2, and arg^=^. We have in
the same way as in (1), for any c>0

(5.15) , t, X)f(t)dt ^
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a=K/(l+K). Hence we have for — ̂ +(7r/2)<argz0< —^+(3^/2),

(5.16) (Kf)(z)=r* Vexv(tejd*( exp(-M0)g(z, t, X)f(t)dt
»M0 Jr

and

(5.17)

Choose c=h1/(iK+1\ then c+c sin d-J
rhc~K=ch1~a for a c>0 independent of h.

Thus we have for — <

(5.18)

This means the first statement of (3). Let us show the second statement of
(3). Let f(z)GAsylK]Q(-$+(n/2)-£Q> -^+(37r/2)-h£0). Then we have

(5.19)
J T

= \ exp(-Xt0)K(z, t, X) {SUrt@,0)*/(0, t")/k !+«+

J r

Put

ft(z, i)=jrexp(-^0)^(z, f, X)

and

hq(z, ;i)=

By deforming the path T and putting c2=(sin 8'— sin 5)r3>0, we have

gq(z,

for

and
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for

Therefore we have for arg^=

(5.20) exp(-W(z, t,
J T

Since the estimate (5.20) is valid for large X and any

(5.21) Jrexp(-Jlfo)£(*, t,

Hence we have if |argz0+^— n

(5.22)

and from (5.21)

(5.23) i

This means that

Now we apply Propositions 5.1 and 5.2 to the integral operators defined by
(5.3) with kernels K(w, z, t)=G(^; w, z, t), GR(<f>; w, z, t) or G(^', $" ; u«, z, 0
(see (4.13), (4.14) and (4.21)). They are denoted by (G<*/)(*)f (Gg/)(*) or
(G*' • $" f)(z) respectively. In the following considerations

f a=ap-1=(0p-1—l)/ffp-1, and r=^p-i--l=«p-i/(l— «U-I )F
(5.24)

i d* = shr1C*d* (see Proposition 4.4).

From Lemma 4.3 and (4.22) we have the estimates :

(5.25) ?(«&;*, ^ A)|^^|irexp((sin«*)|^

(5.26) |7(0;^, f, ^) |^^Ui s*exp((sin^*)i^ol) for

f5.27) |F(^, <J)";z, I, Z)\ ̂ ^ l^l^expCCsina*)!^! -d* sin (ae) j^ | a)

f o r _ + , + £ < a r g A + : < _ K _ £ with

2 2

and

(5.28) exp (-^^S^WR^ ; z, t,

rf* sin(ae)M|°) for arg/l+^|< — s.
Z6t

Proposition 5.3. Let f(z)^Oir]lh(Q(a, Vj)9 where <f>-n/2a+x/2<a<b<</)+
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7r/2a:+37r/2, b-a>x+2d*. Then for any e>d* there is a constant c=c(e)>0
such that (G*f)(z)^0[n.ch(U(a + e, b-e)\

Proof. Put K(z, t, X)=V((p\ z, t, X) in Proposition 5.2. Choose £0 so that
b— a>7r+2£0>7r+2d* and £>£0 . Then it follows from the assumption on a
and b that ^ with a-(n/2)+sQ<-$<b-(3n/2)-e0 satisfies l^+^|<(jr/20:)-£0

and (5.26) holds. Hence it follows from Proposition 5.2-(3) that for any s'>0
there is a c^c(s')>0 such that (G*f)(z)!=O(T}lch(U(-$+7c/2+ef, -
The union of intervals (-^+(^/2)+e7, -<J+(3ff/2)- s'), fl-(7r/2) +
(37T/2) — £0, is (a + So+s', b— £0— e'). By putting £ '=£—£0, we have the assertion.

Proposition 5.4. Suppose $ '<</>" ', 0<a^<(^-«!^//~^/|)/2. £0* /(z)e
Om.h(Q(a, b)}, where (/>''-(K/2a) + (n/2)<a<b<(/>'-i-(7!:/2a) + (37i:/2) and b-a>7r
+2(5*. T/isn ?/2grg zs an h0 such that if 0<h<h0, (Gv'>v" f)(z)cEAsym(Q(a+d*}

Put K(z, t, ^)=F(0X, ^ ; z, t, X} in Proposition 5.2. Choose £0 so
that 6— fl>w+2e0>^+23* and a£0<(7r-a|^ / /-^ /i)/2. Then it follows from
the assumption on a and b that ^3 with a — (^/2) + £ 0 <— $<b— (3^/2)— £0 satisfies

--(7r/2)a+(^//-^0/2+£o<^+(^+^/0/2<(7r/2a)-(^-^0 and (5.27) holds
forarg/ l=^ and £— s0, where sin (as0)^sin («5*). Intervals (— ̂ 3+(7r/2), — $+
(3.T/2)), fl-(7r/2) + £o<-^<^-(3^/2)-£o, cover (G + £O, b-e0). We have the
assertion by Proposition 5.2-(2), tending £0 to 5*.

Proposition 5.5. Let f(z)^Oir}lh(Q(a, b)}, where (/>-n/2a4-7t/2<a<b<<f>+
b-a>x+2d*. Then there is an A1(3*)>0 such that, if Q<h<hlf

*, 6-3*)).

Proof. Put K(z, t, ^)=exp (-^ad*eia^))y^, t, X) in Proposition 5.2. Choose
£0 so that b— fl>7r+2e0>^+25*. Then it follows from the assumption on a
and b that ^ with a-(7r/2) + £0<-^<6-(3^/2)-£0 satisfies |^+^|<(w/2a)— s0

and (5.28) holds for £=£0. Intervals (-^+(^/2), -^+(37r/2)), fl-(;r/2) + £0<
— $<b— (37T/2)— s0, cover (G + £O, b—£Q). By tending £0 to ^*, since sin(a£0)^
sin (ad*), we have the assertion from Proposition 5.2-(2).

Now let <50>0 be a given small number. We choose d*=d*(<50)>0 so that
c* sin 50=C*flf*, by using the constants 0<c*^l and C*>0 in Proposition 4.4,
and fix d*. It is obvious that 50^5*=sin~1C*rf*. In the rest of this section
we consider G(0; M;, 2, 0> G^(^; w, z, 0 and G(^x, (f)/f ; u;, z, 0 for this fixed
d*=d*(50). By Proposition 4.4, if arg w— <f>\ <n, and (s in5 0 )U 0 l<

(5.29)

holds.
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Proposition 5.6. Let f(z)<=Asy(K](Q(a, ft)), where /e>0 is arbitrary,
ft<0+2?r and b-a>2dQ. Then (G^f)(z)^Asy[K](U(a+d0) ft-30)).

Proof. We may assume ^= — TT. Let a<a"<a'<b/<b"<b with b" — a">
b'-a'>2d, and ze=£7(a'+30, ft'-30). We have

where T=T(a", bf'}, GC9)(-7r; u;, z, t) = (-dw+dz^G(-n ; w;, ^, 0 and q'=

Put

and

By deforming the path T, we have gq(z)^O(U) and |^g(z)| ^q!T>q
k

X((k/K)+l)^AB*Dq\r((q' + l)/K+l). Since -n<a<a"<a'<bf<b»<b<n and
ftx/ -a">b'-a'>2d,, there is a ^>^0 such that sin ̂ U0 | < \zQ-t,\ for feT=
T(a/x, ft/x) and ze{/(a'+ao, ft7-a0), and since t^T=T(af/, b»}c:Q(-K, n) and

+30, b'-d0)c.U(-n9 TT), argtf0-e0)-^ <7r. Therefore by (5.29)

S
u | <-0 J- 1 - I - * - I

TT~' s • g M ̂  • ̂ n>+^ I dtQ | ^
r { ( s m d i — s m d 0 ) U o l } '

Thus we have

,(z) i + I hq(z) | <[

for zef/Cfl'+^o, ft'—3). This means (£"*/)(*) has the yc-asymptotic expansion
in i/Cfl'+^o, b'—do). Since ar and ft' are arbitraty, (£'*/)(» has the /c-asymptotic
expansion in f/(a+50, b—dQ).

Now we show (l)-(5) in Theorem 1.11.

o/ Theorem 1.11. It follows from Proposition 4.5 that
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(5.30) L(z, 3,)(G<7)(2)=

where Tc Is a path TgxT', Tg=Tg(a, k)={£0=r3^ca-S)64-sa) ; Orgsrgl} . The
last term integrated on Tc is holomorphic at z=0. So we have (1) in Theorem
1.11. We proceed to the proof of (2)-(4). Let f(z)<=O(Q(a, V)\ We have (2)
in Theorem 1.11 by Proposition 5.3, (3) by Proposition 5.4 and (4) by Proposi-
tion 5.6. Finally we show (5). If b— a>7r-j-2<50, if follows from Proposition
5.5. Otherwise, by Proposition 2.12, we have for given h' with h^>h'>h, hl

being that in Proposition 5.5, /(z)= fi(z)+fz(z), where fi(z)^Oir]th, (Q(a—2K, b)),
f 2 ( z ) ^ O [ r ] , h , (Q(a, b+2n)). We have, from the assumptions on a and b, <f>—
7r/2a+n/2<a-ii:<b-l-7!:<</>+n/2a + 3n/2. Hence by Proposition 5.5, (Gg/OWe
Asy[r](U(a-n+dQ, b-d,)} and (G%f2)(z)<=Asym(U(a+80, b+x-d,)). Since (Gg/)

§6. Integral Representation

In §6 we obtain an integal representation of a solution u(z)^O(Q(00)) of

(6.1) L(z,3,)M(*)=/(z)f

where f(z)^O(Q(00)). When f(z)^O(Q), an integral representation was ob-
tained in [6], [7] and [12]. In this section we assume (l.ll)-(a), (b), (c),
namely,

(6.2) (a) ^>1, (b) ^^=0, (c) dkt=ski for 0£i^/>-2.

So we have

(6.3) L(z, 3,)= S?=0 2t-.^*.iU, 3')3o'-z ,

where dki=sk% (Q^^p-1), that is, lki=skl, j(kt, / f t i)=0 and ^^..^(^ 3/)=
fl*,,.^*, 90 and by (6.2)-(b) dkp_=skp_=$. Put f-r-d, 0, ••• , O)/ Firstly
we assume

IIf=-M*i..*i(0, |/)=nt? 0*^.^(0, 0^0 (see (1.14)).

We construct an integral representation and investigate it under the conditions
(6.4). An integral representation can be constructed under the condition on
the principal part in (6.4), and other conditions on lower order terms are used
for the proof of Theorem 6.28 which requires detailed analysis of the integral
representation.
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Before construction, we give a remark on the coordinate z. From (6.2) and
(6.4) the principal part of L(z, 92) is written in the form

(6.5) Ln(z, 3,)=Sr-.m4mi«(*,

Consider the coordinate transformation

(6.6) IVO=ZQ, Wi=cz0+

Then we have

(6.7) Ln(z, 3,)=S?=.m A

The coefficient of (dlvj
m is (2f=.m cm 'Mm,i(0, £')) at the origin. Since

Am,Sm(Q, ?')^0» the coefficient of (dWl)
m does not vanish for large c. This

means Wi=Q is non characteristic. Hence in addition to (6.3)-(6.4) we assume
that the coordinate is chosen so that

(6.8) 4».m(0,£')M),

that is, Zi=Q is non characteristic.
The integral representation obtained here has the form

(6.9) "W = 2*=° *('°~*'' Zf to>

where uh(t0, t
//)=(d/8tiy

iu(t0, 0, r) and the integration paths T°=T°(a, b), Q<b
T=T°xT' and T" are defined in § 1. The functions {Kh(w, z, t0, t"} ;
1} do not depend on tlf but for simplicity we denote them by

Kh(w, z, t) and the same conventions will be used for other functions. We
seek for the kernel functions Kh(w, z, t] (0^/z^m) in the following form,

(6.10) K*(w, z, 0= exp(-^u;)^ ^v(-laQWh(z, t,
JAQ JC

where

(6.11) a=al=(al-l}/al.

We note that a defined by (6.11) is different from a in §4. The integration
path C in £-space in (6.10) will be defined later.

We construct Kh(w, z, t) (0^/i^ra) by the method described in §3. As in
g 3, we define the integro-differential operator J?a(z, ^, C, dz, 3C, itt—Xdi) for
a=(al—l}/al. We will determine W1l(z, t, I, 0 (O^A^m) by



SOLUTIONS WITH SINGULARITIES 97

, i, C a,, 3Cf *,-tf j)^*, t, l, 0=

Firstly we reduce the initial value problem (6.12) to that with zero initial
data. In order to do so we give a lemma.

Lemma 6.1. Let ^(r)=Sf=ofl kTk (flm^0). For given {bk; Q^k^m-1} there
exists uniquely a polynomial ^(r) with degree <m such that

(6.13) sM T-^-dr=bk fo

where c is chosen so that all the roots of y>(r)=0 are contained in {r; r\<c}.

Proof, We may assume am=l. Put

(6.14) 9Xr)=S?-^i flpT'--'-1 (;=0, 1, - , m-1).

Then we have

Hence ^(r)=S5l="o1 bjtpj(r) is a desired polynomial. It is easy to show the uni-
queness.

We can define by Lemma 6.1 a polynomial <j>h(z" ', t, r) with degree <m such
that

where TI is a positive constant. Later we will choose TI so as to satisfy an
inequality and fix it. Using fyK(zfl ', t, r), define

d)h(?ff t T}
(6.17) v\z, t, C, r)=£^-^-;A-.(C+«.)

u '!/

and

(6.18) Vh(zy t, C)=( *>7I(*, ^, C, r)rfr , Or, .
|T|=C

Then, if |£ >|^1|, we have for Og^^

TTft ^
B+1 - '
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Hence Vh(z, t, X, Q—W\z, t, X, £)—fh(z, t, 0 satisfies the zero initial conditions

(6.20) 0,)*V»(z, t, X, OI2 l=«=0 for Q<k^m-l.

Put

(6.21) C*(z, t, X, Q=-Ca(z, X, C, 5,, 3C, Mt-XdtW^z, t, X, 0.

It is easy to show that if | £ | > \czi \,

where

(6.23)
f"? . I *7 t J f\

for

where cf i j fe(z, t, %.,?) (—l<*k^m+h — l) are polynomials of T with degree<m,
and c£,fc(z, t, 2, r)~0. Thus the initial value problem (6.12) is equivalent to

(6<24) , a ? ^ '

where we denote Vh(z, t, i., C) again by WK(z, t, 1, C). We try to find
W*(z, t, X, 0 in the form

(6.25) |T |=C

z, t, I, C, r)=2S.1u;SU, f, i,

where /n(0 (n^Z) are defined by (3.4) and the path \r\-c is a circle and en-
closes r=Q once, c being large.

Now let us determine i^(z, f, Jl, r) (— l^n< + oo) in (6,25). Substituting
Wh(z, t, ^, r) into (6.24), we have as in § 3 (see (3.21) and (3.22))

(6.26) Go(*, 1, T)W$(Z, t, I, r)

+ S«GJ(z, 37, ^, r)wj_g(z, f, ^, r)=chtn(z, t, I, r),
where

(6.27) Go
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(6.28) G\(z9 3', I, T)=;r-ci-«i>*m

GO(Z, £, /O is a polynomial of r with degree m and the coefficient of rm is
^m-ci -a i )dm-0m.m f l T O > T O (2) which does not vanish in a neighbourhood of z=0 by
(6.8). So we conclude that w%(z, t, 1, r) (n^> — 1) are successively determined
by (6.26) and each w%(z, t, 2, r) is a rational function of T. By (6.23), if h=m,
its poles are r=0 and {r; G0(z, 1, r)=0} and if h^m, its poles are T=TI and
{T; G0(^, ̂ , r)=0}, and the multiplicity of rl is m.

Now we investigate the roots of the algebraic equation GQ(z, 2, r)=0 under
the conditions (6.4) and (6.8) in order to analyze the integral representation.
Put

(6.29)

(6.30) Ft(z, ^ r)=

where a k . i ( z ) = a f c , i ( z , |') and j=j(k, /), and

(6.31) F?(*f Jl, T)=^w^1-«i>d™Go(^, ^, rJ-Fife, ^, r).

We recall that J r ^ ~ < j 0 > f f l > ••• >crp_1>(Tp — 1, ai—(at—\)/ait m—k^k^
-•• >^p_!^0, j8|il = ^ i_1-*-W* i_1-rf f c , l)(l-a i)and^i i l l j f e i = j8tt (see §1 and §3).
In the sequel dk_1=m and j$l_l—(m— rfm)(l— «i). We have

Proposition 6.2. There are positive constants A0, ai} bif (at>bi, O^/^ /? — !),
C, r anrf c, swc/z that the following holds: Put U={z^Cn*1; \z\^r}, Tt=

| r |<a<!^ l a *-^} and r?-{r ; 3^|^!f t i"f t l/2< |r |<fl ,Ul a i" t t l /2}. Let z^U and
\l\ ^A0. Then it holds that

(6.32)

on the boundary of Tt and

(6.33)

on the boundary of T't and all the nonzero roots of Ft(z, X, r)=0 are contained
in T».

Proof. Put r=^- f ti+a* (Q<i^p-l, a0=l). Then we have by Lemma 3.6
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Ft(z, ^ 9J-"i+**)

where j~j(k, 1}. Since Pki+dk^ai— at)= ^.^-fd^.^ai— at) by Lemma 3.6 and
dki=ski, that is, j(kt, /*i)=0» there are at and bt, at>bi9 such that |F€(z, ^,r)|
^CUI"^**-i r | t f*<-i on { l r |=a i U]- a i + ^}U{| r ]=^UI~ a i 4 ' a i } and all the non
zero roots of Ft(z, 1, r)=0 are contained in {r; 3fciU|a*-°V2< r| <fli |i |a*-aV2}.

Put r=^-f li+a<-1 (*S1, a0=l). Then

^

cc^^

y=;(fe, /). Since /Sj.i^O for (k, 0^(**-i, d^^), we have
C|^r^*i-i | r |d**-i on \T\=bi-1\Z\-a^ai-i and |^|^J0 for some AQ. Thus we
have (6.32). It remains to show (6.33). For each term JT^*.Ka«ri)Va*.i(z) in
Ff(z, J, r), we have U^^K^zOVa^K^i ^CU ^*.'"^**-i r d*'-' on the
boundary of 7"{, where ^8|.«>0. Hence there are a constant e>0 and a large
AQ such that (6.33) holds for \X\^AQ.

Now let rfi/z);ia*-"i (0^i^/>-l, l^j^dk^-dk^ be non zero roots of
Ff(z, ^, r)— 0. It follows from ^^^0 that ^^(dk^^dk^m, and from
(6.33) and Rouche's Theorem that there are roots of G0(z, ̂ , r)=0, \ritj(z, X);
0^i^/»-l, l^y^d^^-^J, such that {ri.Xz, ^); l^y^d^^-^Jcrj'. More
precisely we have

Proposition 6.3. For #?2j> sma// 57 >0 ^/z^re are AQ and r such that
for z^U=\ z\^r] and \

Choose rl in (6.16) so that bl<Ti<al and fix it.
Define for

(6.34) ffi(?)=fr; |r-^.XO)|<7 for

(6.35) K^)=Kl(^U{\r-rl <rj} and A'?(^)-K^) for /

and sets 7(2) (Q^i^p), by using the constants at and ^^ in Proposition 6.2 and
small >?>0: for Q<i^p-l

(6.36) r(0={r; ̂ |^|f l«-a^ I rK^^i

H{r; r-^/OW^-^^^l^l0*"*1 for

(6.37) r(«={r; |r| <^1|^|^-1-ai

Proposition 6.3 means that for given small f]



SOLUTIONS WITH SINGULARITIES 101

(6.38) {r,./z, A)

for z<=U—{\z <Lr} and UI^A- We also define the sets S(i) and 5

, S(i)= {(zy t, I, r); (z,
(6.39)

where X= {(z, t)^Cn+1xCn^1; \z\^rit \tQ\<,r3t rz^\ti\^rs (l^i^n)} and r is
small and AQ is large, if necessary.

We have by the same method as in Proposition 6.2.

Proposition 6.4. On {(z, ^, r); \z\^r, X

(6.40) G0(z, *, r) | ̂  C UI W-^ I-QI )^

Let us define sectors S^ (O^/^ /?—!), which are used in the later part of
this sections for analysis of the integral representation. We defined sectors St

(l^i^p—1) in [12], where S0 was not defined, but the following arguments
are the same as in [12]. To define St we give two lemmas.

Lemma 6.5. There is an Q)Q(\O)Q =1) such that argOriWo)^1^— TT#I (mod27r)
and argfo.XOX^Jr—Trai (mod 2;r) for all Q<Li<p — l and 1^/

- Put fl={ri.,(0);0:£i'^/>-l, l^y^^^-
and L = \j^\Lt. B is a finite set of nonzero points and L is a finite

set of half lines. So we can find an co0 ( ] (y 0 |=l) such that a)QBr\L~0. This
implies the assertion.

We have from Lemma 6.5

Lemma 6.6. There are o)i (| 0*1 1=1) and positive numbers r, £1 and AQ such
that argri<y^;r — na^ (mod 2?r) and argTitj(z, X)o)^K — xai (mod 2;r) for all X
^A0) \z\<>r and |o>— < W i | < S i .

Thus we have

Proposition 6.7. There are 27, £i>0, 2i=^0 and open sectors Si (Q^i^p—1)
with the vertex 0 in C1 such that S^e^e^-™^ and Sir\(-zlK*i(f)/2)}=0
(Q^i^p-l) for \zl-zl\<Bl.

Now we re tun to construction of wh(z, t, X, r) in (6.25). As for estimates
of w%(zt t, A, r) we have

Proposition 6.8. There exist positive constants A, B and c such that the
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following estimates of w%(z, t, A, r) hold in 3. For

(6.41)

and

(6.42)

We refer the proof of Proposition 6.8 to §7. The convergence of
wh(z, t, 1, C, r)=2S— i Wn(z, t, X, r)/B(C+rzi) follows from Proposition 6.8.

Proposition 6.9. (1) There is a constant c*>0 such that wh(z, t, 1, £, r)
converges in {(z, t, t, C, r); (z, f, J, r)e£, r^O, T, and 0< C+rzi|<c*|r|}.

(2) T/zerg e%/s? positive constants A, B, Ci and c' such that the following
estimates holds :

(6.43) Kr-rO™ {U/HZ, f, J, C, r)-u;5^, f, i, r)/-i(C+TzO} I

/or O^A^m-1

(6.44) |r{u;-(^ f, ^, C, r)-^fe f, ^, rJ/

^ A U 1 c' exp (c*5 1 ^0 1 )( ! log (C+r*) | + d) .

Proof. The following argument is the same as in Proposition 4.2. We
have, by Proposition 6.8,

SS-ol^Cr-rO-M/SCar, f, ^,

n=0 I re(S?ii I Ao r/r I) .

If |(C+rzi)/rj <c* and c*5<l/2, the above series converges and we have (6.43).
We have (6.44) by the same method.

Remark 6.10. Since w%(z, t, ^, r) (h^m, n^ — 1) are holomorphic at r=0,
it follows from the maximal principle of holomorphic functions and (6.41) that
wh(z, t, A, C, r) (h^m) are holomorphic at r— 0. Since w™(z, t, X, r) (n^ — 1)
have a single pole at r=0, wm(z, t, ^, C, t-) has a single pole at r=0 by (6.42).

We have obtained wh(z, t, X, C, r) in (6.25). So we proceed to construction
of Wh(z, t, X, C). Define

(6.45) W1(z9 t, I, 0= w*U, t, 1, C, r)rfr
j m=Ci

where flj|/l|ai~ai<cl<^i_1|^jai-1~a:i and constants a< and 6£ are those in
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Proposition 6.2, ap=Q, b-1= + oo. Put

(6.46)

Now we study the domain to which Wh(z, t, A, Q (0^/i^m) are holomor-
phically extensible as functions of £. So we often omit the other variables.
We always assume (z, t, X)tEXAo, XAQ=XxA$, Jf^^eC1 ; \X\ ^A»} , X=
{ ( z , t ) ; \z ^r1} j f d ^ r s , rz^\ti\<r3}, and put

(6.47) Z( i )={C; f l , | * i l l* ! a <- a i < CKCCHzil^-ilJr*-1- '1}, Q<i^p,

for a C>0, which is chosen suitably. Firstly we have from Proposition 6.9
and Remark 6.10.

Proposition 6.11. (1) WJ(Q (**P) is holomorphic in Z(i).

(2) WJ(Q=0 (h*m) and W7(^=fl(0/C+&(C)logC in Z ( p ) , where a(Q and
b(Q are holomorphic.

Proof. Suppose that a i U l f f l ~ a i < r <fr i - iU| a*-i- a i , \^\y\TZl\ and ICI +
rzl <c*|r|, c* being that in Proposition 6.9. Then w;7l(^, t, ^, C ^) is holo-

morphic. Integrating it on |r|=r, a4 |^ | a i" a i<r<6 l_1 | J l ! a*-1~ f l l , we have W*(0
eO(Zr), Z r = { C ; r ZiKlCKCc*- ^ i l M . So varying r, we have (1) f o r a
constant C>0. Since wh(z, t, ^, C ^) (h^m) is holomorphic on r(/>), ^(0=0.
w;m(z, t, X, C ^) has a single pole at r=0 in r(/>), that is, wm(z, ?, ^, C, ^)—
(l/r)SS=-i wTt(z, t, Z, r)/n(C+r^i), where #£(*, ̂ , ̂ , r) (n^ — 1) are holomorphic
in r(p) (see Remark 6.10). Hence

(6.48) Wf(z, t, I, 0= u-(z, f, I, C 7)^=24-.!*; (z, f, ^, 0)/B(C),J i n = c p

which implies (2).

Put

(6.49) Wr?i*+i(0=^?(0-^+1(0 , i=0, 1, - , #-1.

It follows from Proposition 6.11 that W}ti+i(£) is holomorphic in Zf
it Zt—

{C;a f 2 r i i l^ r t " f l l <!CK(C- ZiDW^ ^~ai}, for small ZL We have by the de-
formation of the integration path to 3(#K7?)^-ai) (see (6.35)).

(6.50) WM

From (6.50) we have

Proposition 6.12. W£<+1(£) is holomorphic on Ziii+1 for small z1}

Considering Propositions 6.11 and 6.12 and (6.49), we have
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Proposition 6.13. WJ(0 (i^p) has a holomorphic prolongation to Ziy

(6.51) Zi

for small z±. Moreover Wp-i(£) (Og/i^w— 1) are holomorphic at £— 0,

Hence, by using the relation

(6.52) ^(0=^(0 in Z(0)

in

in

in Zp-i.p ,

we can prolonge Wl(Q (Q<h<^m) holomorphically. Thus we have

Proposition 6.14. TTzer* is a converlng Z of Z=\J$=QZi such that each
Wll(Q (0^/i^m) has a holomorphic prolongation to Z as a function of ^, Wh(Q
(h^m) is holomorphic at £=Q in Z and the singularity of Wm(Q at C=0 is polar
and logarithmic, that is, Wm(Q^a(^)/^-\-b(Q\Qg^ at C=0.

Define

(6.53) K$(z, t,Z) = \ exp (~l*QWh(z, t,
JCoC^)

where C*(9)=Vi=d-le
ite+***W-*i ; O^sgl}, a,\z, £d-i. We have

Proposition 6.15- The following estimates hold :

(6.54) \&j}(z,t, ^) i^A(l+U|)A rexp(d/- 1 l^!+c*51^ 0[) for \i\^

and if

(6.55)

where c* and B are those in Proposition 6.9.

Proof. The estimate (6.54) follows from Proposition 6.9. We can deform
the path C0(0) to C'(0), starting at C^-i**^1'"1* going to flolzik*^1'*1,
enclosing the origin ^=0 once on \^\—aQ\z^l~ai\ and going from

'°;i1-flri to d-ie******)?-"!. We have (6.55) by this deformation.
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Now we can define Kh(w, z, t}, Q^h^m, (see (6.9), (6.10) and (6.53))

el(6.56)

which depends on 0. We have from Proposition 6.15,

Proposition 6.16. K J l ( w , z , t ) is holomorphic in {(w, z, t) ; |arg w — 0\<n,

Proposition 6.17. If c*>0 in Proposition 6.15 is small, then the following
identities hold :

(6.57) L(z,

(6.58)

where = means modulo holomorphic functions on X.

Proof. By repeating the same method as in the proof of Proposition 4.5,
we have

L(z, dz)K$(t0-zQ, z, t)p(-^^^
6' zxv(-l.(t,-zQ}-U-,ei0}Kh(z, t, X)d)i,
o

where KJl(z, t, X>\ ^C(l+ UD^exp (c*B|^0l) for some ^V. If c*>0 is small
such as d-i>c*B\t* , then, by putting <p= — d in (6.56),

P ' exp(-Au;~^rf-1e^)/?/^, f, ^)d^
J^o

is holomorphic at iv=Q. It is easy to get (6.58).

Define, putting d = — K,

(6.59) KJl(w, z, t)=K*x(w, z, 0 ,

and 50=sin~1(c*5), where c*>0 is small. Now let u(z)(=O(Q(60)) be a solution
of (6.1) with f(z}^0(Q(0,)), 6Q>dQ. Define

(6.60) M-«(z)=2?=oM^=S&1 fca0-^o, ^, OM*tfo, 0, r)^0^
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where TQ=TQ(a, b) and uh(t», 0, t")=dtu(tQ, 0, r). The formula (6.60) is an
integral representation of u(z) in (6.1). We have from Proposition 6.17.

Theorem 6.18. u.n(z) defined by (6.60) satisfies

(6.61) L(z,dz)u-K(z)=f(z},

(6.62) (3i)^-^)|2l=o=3?w(z0, 0, **) for

where = means modulo holomorphic functions at z=0, and u(z}—u-n(z)—v(z)^.
O(U) in a neighbourhood of the origin.

Proof. We have by the method used to show Proposition 4.5

(6.63) L(Z, 3i)tt_^)=

This means (6.61). We have (6.62) from (6.58). It follows from the uniqueness
of Cauchy problem that u(z)—u-1i(z)=v(z)^O(U) in a neighbourhood of the
origin.

Remark 6.19. We can show that if \0 — 0'\ is small then K%(w,z,t}—
K$(w, z, 0 is holomorphic in a neighbourhood of w=Q. So the representation
(6.60) is holomorphically extensible to wider domains, which will be done by
replacing K-a(w, z, t) by K9(w, z, t).

We investigate Kh(z, t, X)=ft-z(zt t, X) more precisely, by using Proposition
6.7. So in the sequel we restrict (z, t, X) to the set

(6.64) X'AQ=X'xAt X'={(z,t,X);(z,t)eX, Zi-«i |<fi i}.

The following arguments are similar to that in [12]. Firstly we decompose
integration path C0=C0(— O in (6.53), and secondly according to the decom-
position of C0, decompose Kh(z, t, X), Kh(z, t, 2)=!>}i,sKi,s(z, t, X). We investi-
gate each Kti9(z, t, 2). So we define some paths in £-space. For a path
C={£(s); 0^s<a} and aeC, aC = |aC(s) O^s^l}. Put At = {C(s) =
(1— s)rf1_1e-* j ra :*-^€r«-i-aiH-sc<e- i3 r f l !<^-ai;0^s^l} andjB*= {de-**"****" ; O^s^l}
(Q^i^p—1), where ci>ai\zl\>bl z^ydi, rf-i>acki| and a_i=a0=l. Put
d^Ai+li^-^Bi-e^Ai (l^i^p-1) and Cp={^(s) = dP-1X

ap-^a^-i7:ap-^2i:is ;
O^s^l} (see Fig. 6.1). The path C0 and Cp were not used in [12].
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Fig. 6.1.

We note that the singularity of Wh(z, t, X, Q with respect to C are in
o'-^"-"^ ?(?/2))U {£=0} . Define

(6.65) &\(z, t, X) =

Let us deform the path Xai~a^Bi to another. We give

Lemma 6.20. Tfte path Xai~aiBi can be deformed homotopically to B* such
that: B^^-^Bi+Ci+i+Z^-^iBi', where B't and B'i are independent of t,
contained in {£; di<\^\<Ci] and (Bf

i\jB'i}r\Si=^0, and

(6-66) a(~^<Wh(^ t, X,

*> *>

Proof. As we remarked, the singularities inside of d of Wh(z, t, X, Q are
in (\Jf«*1-^i^tt«-ttl/ff(9/2))W{C=0} and the set (\J&+l-zJa*-aiK*(r}/2))V {£=$}
are inside of Ci+l. So we can deform Bt so that B't and Bfl encloses -Zi/£?(^/2).
From Proposition 6.7, we can take Br

t and 5? so that (BiUBf{)r\Si=0 (see
Fig 6.2).
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Fig. 6.2.

The singularities of Wh(z, t, Jl, 0 inside of C* are in the parts of oblique
lines in Fig. 6.2.

Thus we have

Proposition 6.21. Kh(z, t, X) is represented in the following form :

(6.67) R*(z, t, «=2f-

+ [jC

if li^m the last term integrated on Cp does not appear.

Proof. We have

Kh(z, t,X) = \ exp(-A-iO^(z, t, *,
" -

Since

JC/1

and
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we have (6.67). If h^mf Wh(z, t, X, 0 is holomorphic at £=0, so the last term
in (6.67) vanishes.

For our purpose we further decompose Kh(z, t, X). In order to do so we
need several lemmas concerning the paths Aif Br

t and B'i. The following
lemmas are the same as in [12] and the proofs are not so difficult. So we
omit them.

Lemma 6.22. Let ^At (0^/^/>— 1) and arg/l^Tr. Then there is a c>0
such that Re

Lemma 6.23. Let K be a compact set in Cl and Kr\St=0. If the dia-
meter of K is sufficiently small, then there are cK>Q and <f)K with \<pk — n\
such that Re^C^CxUI"* for ^^~a^K and X with argJU=0A-.

By Lemma 6.23 we can decompose the paths B'i and B'i in the following
way.

Proposition 6.24. There are paths BiiS (l^Ss^r*), constants <pitS with \<f>t.s— n\
and c>0, which are all independent of X such that Bi—^fsLiBiiS and

'i=^\lriBit9t and Re^C^c ^ "* for ^Xa^^BiiS and A with

Define, by using At (Q^i^p — 1), Bit, in Proposition 6.24 and Cpf

(6.68) *?.0(ef t, X)=

(6.69) £?,.

and

(6.70) It5l0(z, ?, Jl)={jc

Then we have

(6.71) K\z, t, ^)-Sf=oS;io^?,sfe *, X) ,

where rp=0 and R$.Q(z, t, ^)=0 (A^m). Kt.i(z, t, X) (Q^i<p, 0<sgr f) are
holomorphic on ^f, y4^— {A; l ^ l ^ ^ o } , as functions of ^ and holomorphic on X'
as functions of (z, t). As for the estimates of them we have
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Proposition 6.25. The following estimates hold for (z, t,
(1) for each K*Q(z, t, X

(6.72) I £?,„(*, t, i) |^^exp(CU|a«-i+(sina0)l^oi) on 1? ,

(6.73) Kt.»(z,t,ti\^Aexp(-c\l\ai+(sm30)\]iti\) on {^1% ; argjl=jr}

(6.74) |£p,o(*. f, ^ ) !^^exp(C[^ | f f p- i+(s in^o) l^o i ) on If,

(6.75) \K$,Q(z,t,V\^A(l+\t\)Nexp((s'md0)\M0\) on tfe^ff; argjl=jr}.

(2) /or each K^s(z, t, X) (Q^i^p-1, s^O)

(6.76) \Kt.t(z,t.X)\^Aexp(C\* a*+(sin30)l#ol) on If,

(6.77) \&tt,(z,t,ti\£Aew(-c\l\a<+c*B\2l9\) on ^elf;

50=sin"1(c*jB) and a// constants are positive.

Proof. The estimates (6.72), (6.74) and (6.76) are obvious. The estimates
(6.73) and (6.77) follow from Proposition 6.24. It remains to show (6.75). It
follows from Proposition 6.11-(2) that

(6.78) /ty, 0(z, t,X)=\ exp (-
J(7

where we deform Cp to the path C'p, C
f
p = {^(s)=(l-2s)dp.le~i7'ap-l}(ap-1~ai

2^s<n)}, and use

I f rdjo.ie-*71

-M , exp(-r1QKC « log UC=AicijCp Jo

If largJ-irKTT/^ap-!, |exp(-^iQ| is bounded on C'p. Thus we have (6.75).

We divide u^n(z), by using K%tS(z, t, X), into the sum of u\iiiS(z}. Put

(6.79) *

(6.80) u»«.f..(z)= Kl.(tt-zt, z, t')u*(tt, 0, r)

for 0^/z^m— 1 and

(6.81) "-*
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Thus we have

(6.82) MW=53c&i<l f )M*, i f i I(z)+i;(z), u(*)€=0(£/)f

where U=UQxU', UQ={zQ^Cl ; \zQ\^r] and U'={z'^Cn ; |^-^i|<£i, |z'|^r}.
In the rest of this section U means that defined above, where r is small

if necessary, and we consider a solution u(z) of (6.1) and f(z) satisfying some
growth conditions:

(6.83)

where ^0>^/2+s0, £0>^o=sin-1(c*5), and L(z, 3,) satisfies (6.2). From (6.83)

(6.83)' i 3} w(£0, 0, t") \ ̂  A exp (h' t, \ ~0 .

Proposition 6.26. ^sswme (6.2), (6.4) and (6.83).
(1) M-«.i,.U) (i=£0, (2, s)%(l, 0)) are holomorphically extensible to U(00-£0)

and

(6.84)

/« z^U(Of] with any 6' with 6'<6Q — £Q, where fi=ai—l=ai/(l — ai).
(2) u-n,iiS(z) (a=0 or (i, s)=(l, 0)) arg holomorphic at the origin.

Proof. (1) It follows from (6.72), (6.74) and (6.76) that if i*Q or (i, s)^
(1,0), £?.,(*, f, ^ ) | ^^exp(C |^ i a +(s in^ 0 ) l^o i ) for some 0<a<l on i?. So
we have the assertion from (6.83)' and Proposition 5.2-(l).

(2) Suppose 2=0 or (i, s)=(l, 0). By (6.73) \Kh(z, t, X)\ ̂ Aexp(-c\l\ +
(sin 50) |^o I) on {^e/lf ; argA=7r}. So K } i g ( w , z , t ) is holomorphic at w=Q.
This means that u-Kti,g(z) is holomorphic at ̂ =0.

Now we use the estimates (6.73), (6.75) and (6.77) on the line
where <pi,*=ic. Put

(6.85)

We obtain the asymptotic expansion of u\iiS(z).

Proposition 6.27. Assume the same conditions as in Proposition 6.26 and
6Q>0 + £Q, B0>dQ. Then urLntitS(z) (i^p — l) have the ?i-asymptotic expansion with
respect to z0 with [z0] |argz0+^i lS— n\<n/2} in U. If h' is small, w\p_ l f S(z)
have the Yp-i-asymptotic expansion with respect to ZQ with {zQ'f |argz0+0f i,— ;r|
<7r/2} in U.

Proof. We apply Proposition 5.2 to u\it&(z). The bounds (6.73) or (6.77)
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holds for (h, i, s)^(m, p, 0). By the assumptions (—^ i iS+(flr/2)— £(b —(j).^Jr

(37T/2)—£0)c:(—$o, #o). So we have the ?vasymptotic expansion by Proposition
5.2-(2). Since ai>ap-l(i^p—1), h' is not necessarily small for i^p—1. For
(/z, /, s)=(m, p, 0) the bounds (6.75) holds. In this case we have the YP-I-
asymptotic by Proposition 5.2-(3).

We note that since Y=YP-i^Yi, we can say that there is an h'0 such that
if 0</*'</io in (6.83), then u!LniiiS(z] has the ^-asymptotic expansion with respect
to z0 in {K/2<argZo+</>iiS<3x/2}, We note that from the condition \<f>itS—n\
<n/2ai there are <piiS and itt such that \<pi>s\<n/2Ki<7z/2Yi and M *«,*,«(*) has
the ^-asymptotic expansion with respect to ZQ on argzo^i.s- Thus, by using
Propositions 2.8 and 2.10, we have

Theorem 6.28. Assume (6.2). Let u(z)^Oll]th>(Q(0«}}, r=ap-i — l, be a solu-
tion of L(z, dz)u(z)=f(z)^Asy(r](Q(0Q)'). Then there are positive constants H and
6 with 0<0<7r/2r+7r such that, if 00>6 and h'<H, u(z)(=Asyir](Q(0')), where
O'=0'(h') with limO'(h')=6Q.

Proof. It follows from the assumption (6.2) that (1.14) holds. So we may
assume (1.14) holds at z'=Q and |7=(1, 0, • • • , 0), that is, (6.4) holds. Put 0 =

-7T/2r+7r)/2. Obviously 7r/2Y+n>9>§ by (6.85). Choose <50 and eQ with
^£0<0 — 6 and fix them. Suppose 6Q>0>@Jr£Q. Then it follows from

Proposition 6.27 that if 0</i'</io, u--iitS(z) has the ^-asymptotic expansion with
respect to ZQ on {arg^o^^i.s} in an open set U, Q^U^0. It follows from
Proposition 2.10 that if 0</z'<min(/?o, h0)=H, h0 being that in Proposition 2.10,
u(z) has the ^-asymptotic expansion in U(0') for some 6'=0'(hf) with lim d'(h')

= 6Q. Hence, from Proposition 2.8, u(z) has the f-asymptotic expansion in Q(0').

§7c Proof of Theorems and Estimates

In §7 we give the proof of Theorems 1.13, 1.5 and 1.7, and finally show
Propositions 4.1 and 6.8 which concern with estimates of functions and are not
yet shown. For these purposes the method of majorant power series is avai-
lable. So we summerize what we need. Let A(z)=^Aaz

a and B(z}~^Baz
a

be formal power series, where a=(aQ, alt • • • , an)=(a0, af}^Z++l, Then A(z)
>0 means Aa^Q and A(z)<B(z) means \Aa\<^Ba for all multi-indices a. We
state elementary properties of majorant power series without the proof, which
will be often used. For the proof we refer to [2], [5] and [15].

Lemma 7.1 (Wagschal). Let 0(s) be a formal power series of one variable
s such that ®(s)>0 and
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(7.1) 0?'-s)0(s)»0.

Then for derivatives 9^(s)=(d/dsy0(s) (/=0, 1, • • • ) we have

(7.2) (#'-s)0<»(s)»0, /?'0<>+1>(s)»e<»(s)

and

(7.3) (R0-srlO<n(s)<(R0-RTW(s) (R0>R').

Lemma 7.2 (Wagschal). Let ®(s) be a formal power series of one variable
s such that <9(s)>0 and (/?'— s)0(s)»0. Let M(z, 32) be a linear partial dif-
ferential operator of order m with the coefficients holomorphic in {\z\<R0}, R'
<RQ. Then

(7.4) M(z, 32)<9

for a constant A which is independent of @(s).

Now we proceed to show Theorem 1.13. Firstly we have

Proposition 7.3. Assume L(z, 32) satisfies the conditions (1.17)-(a), (b), (c)
and put r=ffP-i-l. Let f(z)^Asy{K](Q(6,}} with 0</e^r and Q<8Q^n/2K. Then
there exists a function u(z)^Asy{K](Q(0^} such that (L(z, dz)u(z)—f(z))^Q as a
function in Asy{K}(Q(6o)}.

Proof. From Remark 1.12, L(z, dz) is written in the form

(7.5) L(z, dz)=akp_1,Q(z)(dQ)kv-i+ S z^ktl^aktl(z9 SOOo)*'',
*

where k-dk.i^kp^. Let f(z) ~ Sn^o/n^O^o)71/^ !, fn(z')^O(Q'}, and u(z)
^tn^kp-^n^^z^/n !. Then un(z')(n^kp-i) are determined by

(7.6) fli.l,oU/)M»U/)=- . S "L . . . . .
.j+r-fc+^n-fcp-j (?2 — Kp-i— 1)1
(k , l , j ) ~ (*p_ 1 , 0 , 0 )

We show, by induction,

(7.7) Mn(

where 0(s}—(Rf—s)~l, s—zl
jrzz+ ••• +£„.

By the assumption fn(z
/)<ABn6Ln/Kl+n. So (7.7) is obvious for n =

Assume (7.7) holds for r with r<n. Then

(7.8)
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Since l+j^ffP-1(k-kp-1)=(r+l)(k--kp-1)^:(K+l)(k-kp-1) for k^kp-lf \_(r
kp-1)//c^ = t(n-2kp.1+k-l-jyK^l(n-kp-1)/K^ + kp.1---k. Hence

(7.9) <^5>^

Thus we have (7.7). Since §<0Q<*n/2K, it follows from Proposition 2.1 that
there is a u(z)<E.Asy[K](U(n/2K)) in a neighbourhood £7 such that u(z)^^™=kp_l

un(z'}(z*r and (L(*, d,)M(*)-/(*)M) in

Proof of Theorem 1.13. It follows from Proposition 7.3 that there is a
w(z)e^4s;y{/c)(£(0o)) such that g(z) = (L(z, Sz}u(z}— /(z))~0 as a function in
AsylK](Q(0Qy). Define, as in Proposition 2.13,

(7.10) u(Z)

We have, by integrations by parts, for multi-index a with aQ^kp^1

(7.11) a?fl(z)=(-l)floao ! f r {3?'Mtf0, zO/Uo-«fto+1} dt0
Jo

f,)} dt0+gl(z) ,

where gi(z')<^O(U'), U(\z\<r}, is determined by the values of the derivatives
of u(t0, z') at ta=r. Let A(z) be holomorphic in Q and put

(7.12) g2(z)

Then we have

(7.13) ^(^)

and gz(z)eO(U). Hence we have

(7.14) A(z)dau(z) =\lA(ta, z"){(dtyd$u(t» z")/(zt-tt)} dt+gi(z) ,

where ^8(z)eO(f7). Thus there is a g0(z)^O(U) such that

(7.15) L(z, 3 z)w(2)= r {L(f0, z',
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It follows from the proof of Proposition 2.13 that f(z)—f(z) Iogz0, g(z)—g(z) Iogz0

^Asy(K}(U(dQ)). Since g(z)~0 in AsylK}(U(00)), g(z)<=Asy[K}(U(6Q)). This means
L(z, dz}ii(z}-f(z} log *0=/(*)-7(*) log z0

Now we show Theorems 1.5 and 1.7. Let w(z)ee>(n(£?(00)) be a solution of

(7.16) L(*,3,Xz)=/(z).

Proof of Theorem 1.5. We use Theorems 1.11 and 6.28. The positive
constants H and & are those in Theorem 6.28. Suppose that f(z)^Asy[K](Q(6G))
in (7.16). Sincce ^^=0, fl*p_lt0(0, z')^0. We may assume that akp_v0(0, 0)
^0, that is, (1.17)-(c) holds and 00<n/2r+n=n/2ap-l+ii:/2. By Proposition
2.11, we can decompose u(z) : for /i>0

(7.17) M(*)=SUM«(*), M4(z)e=0 fn . f t(C7(fl,, b,}} ,

where U is a polydisk with the center z— 0, — (^/ap-1

+ ;r and 29<bi-ai. Put /*=(«,, ft<). We have fU=i/i=/o=(-0o, *o). Take
<50 and s so that (bi-ai)/2-6>£>dQ for all i. Put

^)} and ^<=(fl i+W/

Define vt(z)=(G**fd(z) (z^l). By Theorem l.ll-(l) and (2)

(7.18) L(z, 3,)viW = /i

where z;t(z) e 0{r) iC/ i(Z7(a i + £, ̂ — £)), c = c(s)^l. If h<hlt hl being that in
Theorem l.ll-(5), (GR^fi)(z)^Asyin(U(ai+d0f ^-30))- Put u;<(z)=Mi(2:)
Then u>i(z)e0{n.cfc(£7(ai-!-£, ^— e)) and

(7.19) L(z, Sz

Hence if follows from Theorem 6.28 that if h is small, wi(z)^Asy(r](U(ai
JrB)

bl— e)). Thus u;(z)=Si=i^<(z)^^s>'in(^(^o— e)). Now we study ^(z). We have

(7.20) ViW

and

(7.21) v(z)=S

Since — (7r/ap_i-i-^)<af<0<fe l<7r/ap_i+^, it follows from Theorem l.ll-(3)
that if h<h0,(G^'-^fi)(z^Asym(U(d,-dQ)) for all «. By Theorem 1.1 1-(4).
f(z)^Asy[K](U(60)} implies (G-*f)(z)^Asy[K](U(0'-dQ)), 0'^mm(6Q, n). So v(z)
^Asy(K}(U(0'-d,}} and u(z)=v(z)-\-w(z)^Asy(K}(U(0 '-&}}. It follows from Pro-
position 2.8 that u(z}^Asy(K}(Q(6f— s)). We can choose /z, ̂ 0 and e arbitrary.
So u(z)<^Asy(K](Q(0'y). By the rotation of z0, we have u(
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Proof of Theorem 1.7. We may assume |00 <*r/2/e. So let /(z)eJZ —
asy[K](Q(6Q)) with /(*) = *(*) log *0+A(*), where g(z), A(z)e 4sy,cl(0(«0)). By
Theorem 1.13 there is a w(^)e J2— asy[K}(U(0Q)) such that L(z, 32)w(»— g(z)\QgzQ

t=AsylK}(U(ff9)), QiDU^O. Hence £0, dJ(u(z)-u(z))z=Asy[f,(U(ffQ)) and (11(2)-
i7(*))e4sj;(,}(£7(0o)) by Theorem 1.5. So u(z)s=JfL-asylf}(U(OJ). For general 0Q,
we have the assertion by the rotation of z0.

Finally we show Propositions 4.1 and 6.8. In the following we assume
r<R'<RQ<R1<R, R^\ti\^R(i^2), and \Jt\^A9 and try to obtain estimates
of holomorphic functions of /I and z, considering r, t to be parameters.

Lemma 7.4. Let e(s)=(R/-s)~1 and put s=
( | ^ o l

(7.22)

Proof. We have

.
Mo

and

If. ! (W-;.)+ 1

/+! v ' /-fl

where we use s0cZ)(s)C0c°(s). Hence

Now let us write the equation in § 3:

(7.23) GQ(Z, A, T}VN(Z, t, 1, r)

+ *2qGq(z, 8', %, r)vN~q(z, t, A, T)—dN>nQF(z, t, ^),

where Sg is a finite sum and

C7 f)A\ ri(i %' 2 -«\ j * f - i - ( i - a i )d j f e , . ,^ / .^ j^ t j Lr^^, (/ , /, T) — X fc"1
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, fa-fa)

GQ(Z, A, r) is a polynomial of r with degree ra,

(7.25) G$(z, ̂  T)=^*<-1"cl"ai )d*i-i

{Sfc.ii-^K-a^*'1^*.^*.^)},

where akii(z)=ak,i(z, I') (see Lemma 3.3).

Proof of Proposition 4.1. In this case z =/>— 1, dkp-^ 0 and r=0. Hence

(7.26) G0(z, «=Gr1fe ^ 0)=^p-i{2c*: jc*,o).o)^Ma*.oW}.

We show

(7.27) ^*p-^n(z, t,

where fl(s) = (^'-s)-1 and s=z0+^i+ ••• +2rB+(W-^0)/(U0-AI)). We have
Jtkp-iv-i(z, t, X)<A0(s). Assume (7.27) for -l^n^N-1. Since a k t i . g ( z , 3')30

r

is an operator with the order ̂ s-fr, from Lemma 7.2,

Vv^ak.i.fc, d'}d*rvN-q(z, t, A)

<^^v-«+MSfc8l l((l^o +Uo-^o l )Uol ) 7 A!}^ ( A " - 5 + s + r + 1)(5).

It follows from Lemma 3.4, (3.15) and Lemma 7.4 that

So

Since ^p-iG?-'(z, ^, 0)~1<^(/?/-s)-1, we have (7.27) for n^A^. Thus

(7.28) Kp-*vn(z, t, i«)|^^JBn+1(2?A l((l^ol)V*l)(» + l)l

for a small neighborhood of z=Q.

We proceed to the proof of Proposition 6.8. In this case i=l and
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From Proposition 6.4 we have

Lemma 7.5. It holds that in r(i) (O^i^p—1)

(7.30) |ylm~ c l~ a i ) d mG0(z, X, r)-1| ̂ A\A\^ki-i\T\~di

Lemma 7.6. There exists a constant A such that for

(7.31)
G0(z, ^, T)

Proof. We have on { | r |=6 i - i |^ l a <- 1

< (; | ̂  | -Cl-«i)r-^^ i-(r + < i^ > i

Since

we have

On the other hand we have

(l-aOr+tei-aOda.i+jBi.^^^

Hence we have

ir^^^'^-'r^^.
on

It follows from Lemma 7.5 that (7.31) holds on the boundary of r(i). By the
maximal principle of holomorphic functions implies (7.31) holds on r(i).

Proof of Proposition 6.8. We show

(7.32) ln-«-«**™(T--Ti)mw%(z9 t, t, r)

where ^(s)=(^/-s)-1 and s=z0+^i+---l-(W-^o)/(Uo-Ai)). (7.32) is true for
n = — l. Assume (7.32) for rer(z) and —l^n^N—1. Since a* ,z ,«U, 9')9or is
?m operator with the order ̂ s+r, from Lemma 7.3,
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(7.33) Zm-«-^d™ak,l>s(z, 3')30
r^-9fe t, I, r)

By the same method as the proof of Proposition 4.1, we have

(7.34) ^-^-"^Q^r

Thus by Lemma 7.6 we have (7.32) for n=N. Since 0Cn)(s)=n !/(#'— s)n+1, we
have (6.41). By the same method, we can show

(7.35) Xm-^-a^d^Twf(z, t, X, r)

and we have (6.42).
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