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Remarks on the Shuffling Problem
for Finite Groups

By

Akihito HORA*

Abstract

The shuffling problem is discussed as the asymptotic behavior of random walks on
finite groups. We give a new characterization for asymptotic equidistribution of such
random walks in terms of representations of the group. As applications, we characterize
perfect groups and consider random walks on classical Weyl groups.

§ 1. Introduction and Main Results

A set 5 is shuffled by successive random actions. Taking a group G acting
on S and a probability measure ft on G, we let elements of G act on S suc-
cessively and independently in the frequency controlled by fjt. G should act
transitively on S to shuffle the whole of S. Thus a pair (G, p) defines a shuf-
fling rule of S.

Let us give a rigid definition in terms of random variables. Let Xlf X2, •••
be G-valued independent random variables with the same distribution fjt. Put
X0=e (=the identity element of G) a.s. We call their product Wn=XnXn-i~-
XiX0 a left random walk on G generated by p. The mapping Wn: S—>S gives
an n times shuffle of S. In this setting, shuffling rule (G, //) is considered to
'work weir if and only if the distribution of Wn, which is equal to /**n (n-fold
convolution of p), tends to the uniform distribution on G as H->OO. We thus
concern ourselves with asymptotic behavior of infinite convolution of probabilities
on G. We can set up the following two questions.

Question (A) When does shuffling rule (G, /*) work well?
Question (B) Then, how many times shuffle should we repeat to reach a

sufficiently shuffled condition?
In this note we give a comprehensive answer to Question (A) in the case
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where G is a finite group. Although this problem is already treated in the
pioneering work due to Kawada-Ito [8] and Heyer [6], we give here a new
characterization in terms of representations of G (Theorem 1). This charac-
terization enables us to understand a relation between the extent of noncom-
mutativity of G and the shuffling effect by G. As an application of this result,
we characterize perfect groups by means of asymptotic behavior of random
walks on them (Theorem 2). Question (B) is deeper than (A). Solutions are
given in some concrete models, in which interesting cut-off phenomena are
discovered. See Aldous-Diaconis [1] and Diaconis [3, 4].

Let us recall some terminology on Markov chains to state our theorems.
We use the notations of N= {0, 1, 2, • • • } and N+=N\{0}. Let (Wn)n&N be a
left (or right) random walk on a finite group G as above and pn(s, f) (s, t^G,
ne^V+) its nth transition probability. If every state communicates with the other
states, i.e. Vs, t^G, 3ne7V+, pn(Sj t)>Q, (Wn}n^N is said to be irreducible. Then,
since the greatest common divisor d of {n^N^.; pn(t, 0>0} is independent of
t, d is called the period of (Wn)n^N. If (Wn)n^N has no nontrivial period (i.e.
if d=l), (Wn)ne=N is said to be aperiodic. Lastly, if the distribution of Wn con-
verges to the normalized Haar measure m of G (at every point t^G), (Wn)n(=N

is said to be asymptotically equidistributed (after Heyer [6]). Of course this
means that shuffling rule (G, ^) works well. The support of p is denoted by
supp^w. <£> denotes the subgroup of G generated by a subset B.

Theorem 1. Let G be a finite group, ft a probability on G and (Wn)n(EN a
left (or right} random walk on G generated by p.. Then the following conditions

are equivalent.

(1) (Wn)n<=N is asymptotically equidistributed.

(2) 3k^N+ such that (supp/O^G.
(3) (Wn}n<EN is irreducible and aperiodic.

(4) <supp^> = G holds and supp/^ is not contained in any coset of any proper

normal subgroup of G.

(5) <supp/*> = G holds and no nontrivial one-dimensional characters of G are
constant-valued on supp JJL.

Remark 1. In Section 2 we give a self-contained proof of this theorem in
order of (1):^2M(3)^(4)=X5)=X1). Our main step is (5)^(1), where we use
Fourier analysis on G, especially estimation of the spectral radius of /2(

Remark 2. Equivalence (!)<=> (3) follows from a convergence theorem for
doubly stochastic Markov chains with finite states. See e.g. Feller [5] Chapter
XV or Chung [2] Section 6. Equivalence (1)<^(4) is due to Kawada-Ito [8] and
(1)<^(2)^(4) is in Heyer [6] Chapter n . In many cases, however, our condition
(5) is a convenient criterion for asymptotic equidistribution.
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Remark 3. Condition (4) is strictly weaker than:
(4X) supp/* is not contained in any coset of any proper subgroup of G.
See Proposition 1 in Section 3. It seems that (4) is sometimes confused with
(4'). Even if supp fj> is contained in a proper coset, p does not necessarily
generate a periodic random walk.

As an application of Theorem 1, we obtain the following theorem. A finite
group G is called a perfect group if G=G' (the commutator subgroup of G).
Perfect groups have strong noncommutativity.

Theorem 2. G is a perfect group if and only if every irreducible random
walk on G is asymptotically equidistributed.

The proof is given in Section 2.

§ 2. Proofs of Theorem 1 and Theorem 2

2.1. Proof of Theorem 1
We discuss only left random walks. Notations in Section 1 are freely used.

Lemma 1. For probabilities p and v on G, supp (/w)= supp /^ suppv.

Proof. From (p*v)(t) = 32gf=G f*(ts-l)v(s), we have (j£nO(f)>0 & 3seG such
that ^(ts~l)>Q and v(s)>0<=»?=^s~1sesupp^ suppp. •

Lemma 2. (Wn)n^N is irreducible if and only if <supp^> = G.

Proof, (only if part): Let t^G. Since 3n^N+ such that Q<pn(e, 0=

we have £e supp ju*n = (supp /^)7ld<supp^> (by Lemma 1).
(if part): VfeG, 3ne^V+ such that t, r'eCsupp jOn. Then, />n(e, f)=/£*n(0

>0. Since />(si, s2) = ^(s1s/, s2s') therefore /?n(si, s2) — pn(sis', s2s'), we have
Pn(t, e)—pn(e, r1)>0. Hence e communicates with every state t. B

Proof of (1)=X2): Since i**n(t)-*m(t)= G -^0 for V?eG, we have G =
supp ̂ *re= (supp p)n for sufficiently large n^N+ by Lemma 1. •

Proof of (2)=X3) : Irreducibility immediately follows from Lemma 2. Let
d^N+ denote the period of (Wn)neiV. Since />A(e, e)=^*fe(^) for Mk^N+, we
have {*e^; (supp ̂ )* = G}c{^e^V+ ; / > * ( « , e)>0}c:^V+d. However, (supp/*)*
= G implies G = G (supp^)~1(supp^)ciG supp fjt= (supp ̂ )fe supp p = (supp jti)*4"1.
Hence, if {^e^V+; (supp/^)^ = G} ^0, we have d = l. •

/ (3)^(4) : Let (Wn)n^N be irreducible. It suffices to show that



156 AKIHITO HORA

(^Ti)ne.v is periodic if 3N<\G, N^G and 3s ̂ e such that supped sN. Let r
denote the order of sN^G/N (r^N^, r^2}. Then, supp^czsTV, ••• , (supp/^)7"1

cisr-W, (supp£«)rc:Af hold and sN, ••• , s r~W, 7V are disjoint as subsets of G.
Hence, pk(e, 0)>0 (<^eesupp^*n=(supp^)fe by Lemma 1) =3 (suppft)kc:N=$r\ &.
O'PJnejv thus has a period divided by r. m

Proof of (4)=X5) • Let % be a nontrivial one-dimensional character of G
such that I(t)=I(to) for VZesupp^. Then supp^ci^kerX where kerX<!G,

Before proving (5)=?(1), we recall some properties of Fourier transform on
G. Let G denote the equivalence classes of irreducible representations of G.
We can regard G as the family of unitary representatives.

Definition. For (7-valued functions f,g on G, we define

O Fourier transform: /(r)=Stec /ftM*'1)

O Inner product : (/ 1 g)= \ G \ -lS*ec f(t)W) -

Facts 1)
2) m(r}=d(T, 1) where m is the normalized Haar measure of G, 1 is the

trivial representation of G and d is Kronecker's delta.
3) (PlancherePs formula)

(/|£)=-T>.-JT- 23^r trace (/(r)£(r)*)

where dr is the degree of r and * denotes the adjoint operator.

Proof of (5)=K1) is divided into four steps. We show the L2(G)-norm of
fj*n—m converges to 0 as n—>oo.

[Step 1] Using Facts 1), 2), 3), we have

II «*" —m\\2—(ti*n I u*n)—2(u*n I m)-f(w I m)= „ 9 S dr traceC/Kr^/Kr)*").
G r=*l

Let r(-) and || • || denote the spectral radius and the operator norm respectively.
Since p. is a probability and r is unitary, we have

[Step 2] We show that trace (/3(r)n/2(r)*n)->0 as n-»oo if r(/2(r))<l. Since

/2(rri|2 and Hm MW-H^^K/l

we can take d (r(/Kr))<<5<!) such that, for n^N+ large enough, trace (/2(r)n/
(-^0 as n->oo).
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[Step 3] We show that rf-=l if r(/2(r))=l. Let V be the representation
space of r. r(/2(r))=l implies 3^eC and 3v^V such that U|=l, IMI = 1 and
fi(r)v=to. Through the isometric identification V^Rzdr, we denote by B the
closed unit ball of V. Since to, T(t~l)v^dB in the equality

to—ft(r}v= S n(t)r(t~l}v (convex combination),
tesupp ^

we have r(t~l)v=to for Wesupp/* from uniform convexity of B. Expressing
WeG as t^t^-ti where t1} ••• , ^esupp/i, we have rCr^v^r^r1) ••• <r(^T1)^=^Iv.
Thus v spans an invariant subspace of V. Since r is irreducible, d r=dimF=l
holds.

[Step 4] If one-dimensional character I is not constant on supp p, then
jJ-(tWf)\ <1. Hence, from Step 1, 2, 3, we consequently obtain

dr trace (/^(r)B/2W*B) -^ 0 . H_ _ .
I Lr I 2 =£1,^=1 I IT I

Remark. Unless <supp^> = G, condition (5) gets strictly weaker than (4).
In fact, we have only to take a perfect, but not simple, group G and probability
/j supported by a proper normal subgroup of G.

2.2. Proof of Theorem 2
[Step 1] Let G be perfect. Since # {one-dimensional character of G} =

\G: G'\=l, G has no nontrivial one-dimensional characters. Hence, Theorem 1
(1)=3(5) and Lemma 2 show that every irreducible random walk is asymptoti-
cally equidistributed.

[Step 2] Let G be not perfect. Since G/G' is a nontrivial abelian group,
we have 3A: abelian group and 3C: nontrivial cyclic group such that G/G' —
A@C. Let TT: G->G/G' be the canonical homomorphism. Then n~lA<\G9 K~1A
^G. Since G/jc^A^nG/A^C, we can take t^G such that coset tic'1 A gen-
erates G. Thus, letting supp^— tK~lA, we see from Theorem 1 (1) <=> (4) and
Lemma 2 that ^ generates an irreducible random walk which is not asymptoti-
cally equidistributed. •

§3. Some Results and Examples

3.1. Supplementary Results
Theorem 1 tells us the following fact.

Corollary 1. Let G be a finite group and p a probability on G such that
suppose. Then every irreducible random walk generated by p is asymptotically
equidistributed.

To let e act is just to do nothing. It may be less efficient to do shuffling
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busily without any pauses.
Next we prove the assertion mentioned at Remark 3 in Section 1.

Proposition 1. There exist a finite group G and a subset S of G satisfying
i) <S> = G, ii) S is not contained in any coset of any proper normal subgroup
of G, iii) 5 is contained in a coset of a proper subgroup of G.

Proof. Let G be a noncommutative simple group. Since G is not a p-
group, G contains a non trivial proper subgroup HQ by Sylow's theorem. Taking
fi£//0 , we put Hi = <t!H0y. Next, taking t^H, if H^G, we put //2=<fa//1>.
We thus inductively get Hn=<tnHn-1y and tn£Hn-i. Since H*^ <\Hn\ clearly
holds, we have G=<^//z_i> for some /eJV+. S—tiHi--^ satisfies the desired con-
ditions. •

3.2. Examples
We begin with a very simple case.

Example 1. G = Z/nZ(n^N+). Probability /j. generates an asymptotically
equidistributed random walk if and only if Mp : prime divisor of n, 3s,
such that

By virtue of Theorem 1 we can check asymptotic equidistribution of random
walks on a group whose one-dimensional characters we know well. Let us
here mention, as a natural extension of random walks caused by symmetric
groups (i.e. card shuffling), random walks by the actions of classical Weyl
groups. These are regarded as some random reflections in Euclidean spaces or
as random walks between the Weyl chambers, while they can be interpreted
as some more concrete models. We give necessary and sufficient conditions
(AE) for random walks generated by /y. on G to be asymptotically equidistributed,
where G is either Weyl group <W(Ai\ W(B fi (=<W(C fi) or WWfi. See Humphreys
[7] Chapter ffl for structures of Weyl groups and their actions.

Example 2. G=<W(Aj) ~©z+ 1( /^l) . G causes shuffles of l+l cards (as
they are turned down). The one-dimensional characters of G make a group
{I0, XJ of order 2, where XQ(a}=l and ^(a^sgna for treG. Hence our con-
ditions (AE) are :

O

O supp^ contains both even permutations and odd ones.

Examples. G=W(Bi)^(Z/2Z)1 x@,(/^2). In this case 'turning over' is
added as new operations to permutations. The one-dimensional characters of
G make ft,, I1} I2, I,} = (Z/2Z}\ See Serre [9] Section 8.2 for irreducible
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representations of semidirect product groups. We express an element t^G as
t—ao where a = (a(l), ••• , a(l))^(Z/2Z)1 and <r^&i, which are regarded as a
sign change and a permutation respectively. Then we put X0(t) = l, X^^s
X8(0=(-l)acl>+I"+ac° and Z*(t)=UtyX.i(t) for t=aa. Now we put A^{a
3<je©i such that acresupp^} and S^={<r^@ z ; 3a^(Z/2Z}1 such that
supp ̂ } . Our conditions (AE) are :

O

O Ap contains both even sign changes and odd ones.

O Sp contains both even permutations and odd ones

O supp fj. contains an element aa such that both a and a are even or both
are odd.

Example 4. G=cW(Dl)^(Z/2Z)l~1^<^id^)- We use the same expression
t=a<r, a^(Z/2Zy-\ a^&i and notation S^ as in Example 3. Similarly, we
have (AE):

O

O Sft contains both even permutations and odd ones.

References

[ 1 ] Aldous, D. and Diaconis, P., Shuffling cards and stopping times, Amer. Math.
Monthly, 93 (1986), 333-348.

[ 2 ] Chung, K. L., Markov chains with stationary transition probabilities, second edition,
Berlin Heidelberg New York, Springer, 1967.

[3] Diaconis, P., Applications of non-commutative Fourier analysis to probability prob-
lems, In: Hennequin, P. L. (ed.) Ecole d'etc de probabilites de Saint-Flour XV-XVII
1985-1987. (Lect. Notes Math., 1362, pp. 51-100) Berlin Heidelberg New York,
Springer, 1988.

[4] Diaconis, P., Group representations in probability and statistics, Hayward, Cali-
fornia, Inst. Math. Stat., 1988.

[5] Feller, W., An introduction to probability theory and its applications, vol. 1, third
edition, New York London Sydney, John Wiley & Sons, Inc. 1968.

[6] Heyer, H., Probability measures on locally compact groups, Berlin Heidelberg
New York, Springer, 1977.

[7] Humphreys, J.E., Introduction to Lie algebras and representation theory, New
York Heidelberg Berlin, Springer, 1972.

[8] Kawada, Y. and Ito, K., On the probability distribution on a compact group. I,
Proc. Phys.-Math. Soc. Japan, 22 (1940), 977-998.

[9] Serre, J.-P., Linear representations of finite groups, New York Heidelberg Berlin.
Springer, 1977.




