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Blow up for a Holonomic System

By

Orlando NEeTO*

Abstract

We introduce a functor that associates to a holonomic system of microdifferential equa-
tions (9 on a contact manifold X and a closed Lagrangian submanifold 4 of X a contact

manifold X and a holonomic system % on X. The manifold X is an open set of the blow
up of X along a certain ideal of the shcaf of holomorphic functions on X. Moreover the

restriction of .5 to the complementary of A and the restriction of . to the complementary
of the exceptional divisor of X are isomorphic as systems of microdifferential equations.

§0. Introduction

The structure of a regular holonomic system is well known at a generical
point of the characteristic variety (cf. Kashiwara Kawai [11]). Nevertheless we
know very little about it near a general singularity.

Hironaka proved a celebrated Theorem of resolution of singularities (cf.
[7]). Roughly speaking it can be stated in the following way:

Given a complex manifold X and a subvariety Y of X there is a new
complex manifold X and a holomorphic and bimeromorphic map =: X—X with
the following properties:

(i) If S is the singular locus of Y then the restriction of = to z~Y(X\S) is a
biholomorphic map onto X\S.

(i) The singularities of z~XY) are not “bad”. The complex manifold X is
obtained by successively blowing up X along convenient submanifolds.

The purpose of this paper is to built a notion of blow up for a holonomic
system of microdifferential equations.
This should be a functor thal associates to a holonomic &-module
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on a manifold X and a certain submanifold 4 of X a holonomic &-module %
on a manifold X with the following properties:

(i) There is a holomorphic bimeromorphic map z: X—X.

(i) If U, [O]is an open set of X [X] and # induces a biholomorphic map from
U onto U then the microdifferential systems .9 |, and M | 7 are isomorphic.
(iii) The singularities of the support of M are never “worse” then the singula-
rities of the support of 4. Moreover if the submanifold 4 of X was well chosen
then the singularities of the support of M will be not as “bad” has the singu-
larities of ..

A first approach to the construction of this functor could be as follows.
Let X be a complex manifold, % an €y-module and let A be a point of X.
Let =: X— X be the blow up of X along {4}. The bimeromorphic map = in-
duces a bimeromorphic map #: T*X¥—T*X. The domain of # is T*(X\E)
where E=z"({2}) is the exceptional divisor of the blow up (cf. the end of this
introduction). The domain of z is an open set of 7*X and we did not get any-
thing interesting.

Nevertheless if we consider the associated map 7: P*(X\E)—>P*X then we
notice that there is a canonical extension # of # to P*X\P%X. Here P*X is
the projective cotangent bundle of X and P%X is the projective conormal
bundle of X along E.

We remember that in [SKK] the sheaf of microdifferential operators was
defined on the projective cotangent bundle.

There is a canonical isomorphism
# x| pranem—=>E€x | v - 1)

There is a canonical sub ring A, of € such that the restriction of (1) to A,
has a canonical extension to a morphism

D: ﬁ_luzl(l)"*gilp*i\l”,‘gi )]
A holonomic €z-module is A;)-coherent and therefore the €% | p+3\p%z-module
M =C%| PP QA M 3

is coherent. Since the morphism (2) is flat the &3-module ¥ is holonomic.
We call H the blow up of the &-module . along .

We need a microlocal version of the notion of blow up of an &-module
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introduced above. In order to do that some problems must be solved.

First we have to study the blow up of a contact manifold along a Lagran-
gian submanifold. The reasons why we use contact manifolds instead of
symplectic manifolds are the same why we use projective cotangent bundles in-
stead of cotangent bundles in the construction above. Roughly speaking con-
tact manifolds are the odd dimensional equivalent of homogeneous symplectic
manifolds. For its definition cf. §4 or |[SKK]. We show in §9 that the
blow up of a Lagrangian submanifold has a canonical structure of “contact
manifold with logarithmic poles along its exceptional divisor”. This generali-
zation of the notion of contact manifold is introduced in §4. Sections 2 and
3 study the equivalent generalization of the notion of symplectic manifold,
the notion of logarithmic symplectic manifold. In §1 we recall some basic
facts on logarithmic differential forms.

We also have to quantize logarithmic symplectic manifolds.

In Chapter IT we built and study sheaves of microdifferential operators
on a logarithmic symplectic manifold. They are introduced in Sections 5 and
8. In Sections 6 and 7 we generalize the Division Theorems and results on
quantized contact manifolds to the “logarithmic” case. In §6 we also study
some special both side Ideals of the ring of microdifferential operators. This
ideals are essential in the construction of the blow up.

Finally in Chapter III we generalize the construction discussed in the
beginning of this Introduction. We present now a description in local coordina-
tes of that construction. Let X be a copy of C? with coordinates (x, y). Let
2 be the origin. The blow up X of X along {2} is the patching of two copies

X,, X; of C? with coordinates (x, %), (%, y) by

If E=z"%(2) is the exceptional divisor of X then E N X;={x=0}, ENX,={y=
0}. Since the construction is symmetric on x and y we will from now on ignore

X;. Put xp=x, _VO:%. Let (xy, Yo, €o» 7o) be the canonical system of coordi-

nates of T*X, associated to (xy, »o). The bimeromorphic map =;: T *X—>T*X
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is given by
1
X=Xy Y =Xy &= 50—*y—°770a 7 = —7q. )]
Xo Xo

Its domain is therefore {x,#0}. We can understand (4) as a description of
the bimeromorphic map #: P*X—P*X in homogeneous coordinates. If we
multiply in (4) (¢, 7) by x we obtain another description of z,.

X=Xy ¥ =X &=XEoFV%0 1= "

We conclude from (4') that the domain of z contains the complementary of
{xotyoo=71,=0}. This last set equals PiX.
If

0: 77| prve)—>E% | P\
is the quantized contact transformation associated to the change of coordi-
nates x==x,, y=Xx,), then
Q(x) = Xop» m(xay) = aym
O(y) = X Yo B8 ,(x8,+yd,)) = 0,0y,
If Ag) is the sub Ex-algebra of £y generated by xd, and 9,(xd,+y9,) then

there is an extension of @ | %-1_i, to a morphism

0: 7' Ap—=>Ex%| parpx -
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Chapter 111
§9. Blow up of a quantized contact manifold along a Lagrangian submani-
fold
§10. Blow up of a logarithmic contact manifold along its residual submani-
fold
§11. Total blow up of a logarithmic contact manifold along a Lagrangian
submanifold

Chapter I. Logarithmic Symplectic Manifolds

In this Chapter we introduce generalizations of the notions of symplectic
manifold, homogeneous symplectic manifold and contact manifold. We
allow the differential forms involved in the definitions of the concepts defined
above to have logarithmic poles along a fixed divisor with normal crossings.

These manifolds have properties very similar to the ones they generalize.
For instance, it is still possible to prove Darboux type Theorems in this context.
The local model of a logarithmic symplectic manifold is still a vector bundle,
the vector bundle z: T*{X/Y>—X whose sheaf of sections is the locally free
Ox-module 25¢y> of logarithmic differential forms of X with poles along a
divisor with normal crossings Y.

There is a canonical differential form 6 of degree 1 on T'*(X/Y)> with
logarithmic poles along z~!(Y) (cf. §1.). Suppose that (x, -+, x,,) is a system
of local coordinates on a open set U of X such that Y N U={x;=0}. Then
there is a system of local coordinates (xy, **+, X, &, =+, £,) in z=}(U) such that

D | oyt ot €,

0 | 1y = &,
1

The subsets {x,=0} and {x,=& =0} are invariantly defined. They are called
respectively the set of poles and the residual submanifold of T*(X/Y)>. The
existence of the residual submanifold is the main new phenomena that we find
in this generalization of the notion of symplectic manifold. For instance, the
residual submanifold contains involutive subsets of codimension superior to the
dimension of X. Moreover it has a canonical structure of symplectic manifold.
This two submanifolds will be essential in the construction of the blow up.

81. Logarithmic Differential Forms

Let X be a complex manifold. A subset ¥ of X is called a divisor with
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normal crossings if for any x°€ Y there is an open neighbourhood U of x°, a
system of local coordinates (x;, ---, x,) defined on U and an integer v such
that

YNU = {x;-+-x, = 0}. (1.0.1)

Fixed a divisor with normal crossings ¥ and an open subset U of X let j:U,=
U\Y < U be the inclusion map. Let f be a holomorphic function defined on U.
If the set of zeros of f is contained in ¥ N U then we denote by df the global
section df/f of j«2y,. Otherwise df will denote the differential df of f.

We remark that the correspondence f+ 0/ is not a morphism of sheaves.

Let 2%y > be the smallest subcomplex of jx2% stable by exterior product
and containing O and df whenever f is a local section of @y. The local sec-
tions of 2%<y> are called logarithmic differential forms with poles along Y.

Let 6 be the sheaf of vector fields of X. Let I, be the defining Ideal of
Y, that is, the Ideal of the local sections of O that vanish along Y. We say
that a vector field u of X is tangent to Y il ul, CI,. Let @x(y> be the sheaf
of the vector fields of X that are tangent to Y.

The @ x-modules 23¢¥> and O,y are locally free and dual of each other.
Given an open set U and a system of local coordinates (x;. :-+, x,} on U verify-
ing (1.0.1) we will denote by (3,) or (%) the dual basis of (3x,).

We notice that if moreover x; vanishes at some point of U for v+1<i<n
then

ox; = dx; , 0., = x,0,, for 1<i<y,
X;
ox; = dx;,, 0, =0, for v+1<i1n.

Let W, (2%xy> be the smallest sub O4-module of 2%¢y> stable by exterior
product and containing ¢ f;---6 f; whenever (f;, -++, f;) is local section of O% and
/<m. The Ox-modules (W,,) constitute an increasing filtration of 2%¢y> by sub-
complexes. We will denote by W,,(2%<y>) the sheaf of sections of W,,(2%y>)
of degree k.

For 1<I<vy put Y,={x;=0}. The set Y, is a closed submanifold of U
and an irreducible component of YNU. I 1</<--<[,<vweput¥, . ,=
Y, N--NY,. If 0<m<p the support of the sheaf Gry(24<ynup) is the

union of the submanifolds Y, .., . Otherwise the sheaf Grn(@ikynud)

m

vanishes.
Given integers 1</, <--- </, <v we can define a morphism of sheaves
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Resy, ...,.: Gra(QiKy nuy)—>e4 "

Yiiim

in the following way: If {j, ---, j,} N {/;, ---, l,} = ¢ and f is a local section of
Oy then

Resy,l,...,,m(fdx,-l---dxjpc?x,l---Bx,m) =flyi o im dx,-l---dx,-ﬂ .

We call the differential form Resy, .., a the Poincaré residue of « along
Y, .1, For a global construction of the Poincaré residue cf. [2].

§2. Logarithmic Symplectic Manifolds
In this paper all the vector spaces will be over the field of complex numbers.

Let E be a vector space of dimension 2n and ¢ a symplectic form on E.
Let
e, JEA4, fr. kKEB, (2.0.1)

where 4, BC {1, ---, n}, be a family of vectors of E. We say that (2.0.1) is a
partial symplectic basis for o if

a(f;'a ek) = 6jk: a(f;:f,) = G(eln el) =0 i,jEA, ky lEB.
If A=B={1, ---, n} then (2.0.1) is called a symplectic basis for o.

The symplectic form ¢ defines an isomorphism H from the dual E’ of E
onto E in the following way: given a linear form a on E then H () is the only
vector of E such that

<u, @ = o(u, H(@)), ucE.

One calls H(a) the Hamiltonian vector of «.
(2.0.2) We notice that the isomorphism H determines ¢. Moreover the
isomorphism H defines a symplectic form {x, *} on E’ by

{aa ﬁ} = O'(H(d), H(ﬂ)) «@, ﬂEE,-

Definition 2.1. Let X be a complex manifold an Y a divisor with normal
crossings of X. Let

z: T*X|Y>—>X @.1.1)

be the vector bundle with sheaf of sections 2x<y>. We will call (2.1.1) the
logarithmic cotangent bundle of X along Y. Let

v TX]Y > —>X (2.1.2)
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be the vector bundle with sheaf of sections @x<y>. We call (2.1.2) the logarith-
mic tangent bundle of X along Y.

Remark 2.2. Given a section a of 2%(@x) we will represent its value at
X EX as a section of 2% (Bx) by a,0=TEX (€T,0X). Given a section «
of 23<y> (Ox<y>) we will represent its value at X’ X as a section of 23<Y>
(Ox<1y) by a0 E THKX/YD (TXX/Y)).

Definition 2.3. Let X be a complex manifold and Y a divisor with normal
crossings of X. We say that a locally exact section o of 25y is a logarithmic
symplectic form with poles along Y if 0,0 is a symplectic form on T,0{X/Y ) for
any X’ X.

We say that a complex manifold X with a logarithmic symplectic form
along a divisor with normal crossings Y of X is a logarithmic symplectic mani-
fold with poles along Y. If X, X, are logarithmic symplectic manifolds with
logarithmic symplectic forms o, g, and ¢ is a holomorphic map form X, into X,
such that ¢*0,=o0, then ¢ is called a morphism of logarithmic symplectic mani-
folds. If moreover ¢ is biholomorphic we say that ¢ is an isomorphism of
logarithmic symplectic manifolds or a canonical transformation.

Remark 2.4. (i) If Y is the empty set we get the usual definition of sym-
plectic manifold.
(i) A logarithmic symplectic manifold has always even dimension.
(iii) Suppose that X has dimension 2n. A locally exact section ¢ of 2%<¥>
is a logarithmic symplectic form with poles along Y if and only if ¢" is a
generator of 27<ry>.
(iv) We notice that a morphism of logarithmic symplectic manifolds is not
necessarily a local homeomorphism (cf. Remark 10.3.).

The Hamiltonian isomorphisms H,: TE(X/Y>— T,<X/Y> induce an
isomorphism of O y-modules

H: 25Ky>—>0xY>.

If @ is a local section of 23y then H(a) is the only local section u of Ox(¥>
such that ¢(u)o=ea, where ¢(u)o is the interior product of ¥ and 6. We notice that

{a<x°>a ﬂ(x°>} P2 = {an ﬁ} (xO) s
where {*, ¥} ,0 is the canonical symplectic form of THX/Y).

Definition 2.5. Given a complex manifold X we say that a C-bilinear mor-
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phism
{*, *}: OxxOx—>0Ox

is a Poisson bracket if it verifies the following conditions:
0 {feg=—1ss}
i) {fg by =f1e, it +g{/. B}
(i) {{f g n+{{en./1+{{h s} g =0.

We call {f, g} the Poisson bracket of f and g.

If fis a local section of Oy the derivation g+ {f, g} determines a vector
field H,, the Hamiltonian vector field of f.

We call a complex manifold X endowed with a Poisson bracket a Poisson
manifold.

If (X, {*, *},), (X, {*, *},) are Poisson manifolds and ¢:X;—X, is a
complex map such that {p*f, *g},=¢*{f, g}, for any holomorphism func-
tions f, g defined in an open set of X, we call f a morphism of Poisson mani-
folds.

Example 2.6. A logarithmic symplectic manifold has a canonical structure
of Poisson manifold. Actually the bilinear form

(f, @)~ H(df)(g)
is a Poisson bracket on Oy.

Definition 2.7. Let X be a Poisson manifold. An analytical subset V'
of X is called involutive if {Iy, I} C1Iy.

Proposition 2.8. Let o be a logarithmic symplectic form on a symplectic
manifold X. Then we can recover o from the Poisson bracket it determines.

Proof. By (2.1.2) it is enough to show that, given xX’< X we can recover the
Hamiltonian isomorphism H,y: TH{X/T)— T,.{X/Y > from the Poisson brack-
et of Ox. This can easily be acomplished once we fix a system of coordinates
in an open neighbourhood of x° verifying (1.0.1). Q.E.D.

Corollary 2.9. Let X,, X, be logarithmic complex manifolds and ¢ a biholo-
morphic map jfrom X, onto X,. Then ¢ is a canonical transformation if and
only if it is a morphism of Poisson manifolds.

Example 2.10. If X is a complex manifold and Y a divisor with normal
crossings of X then the vector bundle #=: T*{X/Y>—X has a canonical struc-
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ture of logarithmic symplectic manifold with poles along z~'Y.

For i=1, 2 let Y, be a divisor with normal crossings of a complex mani-
fold X;. If f: X;— X, is a holomorphic map such that f~'Y,=Y; then we have
a canonical morphism of vector bundles

Ot X1XX2T*<X2/Y2>—>T*<X1/Yl>

defined in the following way: if @ is a local section of 2k(y,> then oq(a)=
f*a. The composition of p, with the diagonal map

THX|Y>—>THX|Y> X s T*X|Y>

defines a section 6 of Q7x(x/yy<{n-1Y>.

We call 6 the canonical 1-form of T*{X|Y>.

Given an integer v and a system of local coordinates (xy, **-, X,) on an open
set U of X verifying (1.0.1), there is one and only one family of holomorphic
functions &;, 1<i<n, defined on z~*(U) such that

dx

X,

Ol e-1qy = 2ia1 E— 201y E5dx;

i
The functions

X5 °*s Xas E]a R En

define a system of local coordinates on z~%U), called the system of canonical
coordinates with poles along Y associated to the system of local coordinates
(%15 ++5 Xa)-

Remark 2.10.1. We notice that &, .-+, £, depend not only of (x;, -+, x,)
but also of » and U. Nevertheless there is one and only one v verifying the
additional condition “x; vanishes at some point of U for v+1<i<n”. More-
over if we fix v then &,, -+-, £, will not depend of the open subset of U we choose.

The 2-form o=d0 is called the canonical 2-form of T*{X/Y». The ca-
nonical 2-form is a sympletic form with poles along =Y.

Given holomorphic functions f, g, defined on an open set ¥ contained in

z~U, we have

i of g of og . (Of g Oof dog
{f. & _E'x’(ac‘:i dx; dx; afi)+ p2 (35,- Ox; Ox; a‘fi>.
(2.10.2)

i=V+1

In particular

0,.x, if 1<j<y;
X =i ’ 2.10.3
o} {a.. if v+1<j<n. (2.10.3)

L
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If 1<i<v then
df,l {z;=0} = dRes{,,Fo)a s 1<i<v. (2104)

We will now show that any logarithmic symplectic manifold is locally isomor-
phic to T*{C"/{x,---x,=0}> for some integer v.

Definition 2.11. Let (X, 0) be a logarithmic symplectic manifold with
poles along a divisor with normal crossings Y. Let U be an open set of X and
Y, a global smooth hypersurface contained in Y N U. A holomorphic function
& defined on U is called a residual function along Y, if

d¢ |y, = dResyy(d|y) -

Remark 2.11.1. If &, » are residual functions along Y, then there is a
constant 4 such that §{ —7—2€Iy,.

Proposition 2.12. Let (X, 0) be a logarithmic symplectic manifold with
poles along a divisor with normal crossings Y. Let x° be a point of X. Let
Xy, =00, Xy, &y, +++, &, be holomorphic functions defined in an open neighbourhood V
of x° such that Y N V={x;---x,=0}, dx,---dx, does not vanish along Y NV and
&, is a residual function along {x;=0} for 1<i<v.

Then there is an open neighbourhood U of x° and a differential form a of
degree 2 such that

oy =i dEpx+a. (2.12.1)

Proof. There are holomorphic functions 7;, 1<i<v, and a differential
form B of degree 1, defined in a neighbourhood U of x° such that

dXic1 10X, +p8) =o0.

The functions 7; are residual functions along {x;=0}. By Remark 2.11.1
there are constants 4; and holomorphic functions f; such that

2‘1{=1 77;5x;+ﬂ = E‘z{=1 E;3X,-+ﬂ+212=1f,-dx,~+2‘$=1 liaxi . QED

Corollary 2.13. Let (X, 0) be a logarithmic symplectic manifold of dimen-
sion 2n with poles along a divisor with normal crossings Y. Then the number of
irreducible components of Y at x° is smaller or equal to n at any point x° of Y.

Proof. We will use the notations of Proposition 2.12. We fix x’7Y.
Let v be the number of irreducible components of Y at x°. Then by (2.12.3)
there is a constant C such that
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0" =CdE,---dE ,8x,+--0x,0*"  (mod W, ,2%<r>).

Therefore the residue of dé,-:-d€,0x,---6x, along {x,=:-- =x,=0} does
not vanish at x°. Hence

dE o dE ydx,e--dx,(x°) 0 . Q.E.D.

Corollary 2.14. Let (X, 0) be a logarithmic symplectic manifold with
poles along a divisor with normal crossings Y. Let (x,, -+, X,, &y, ***, €,) be
a system of local coordinates in an open neighbourhood V of X such that x,, -+-,
Xy, &1, oo+, &y, verify the conditions of Proposition 2.12. Then there are local
sections u;, v; of O@x{Y> such that

1 0 d
_— L= : Ha ;) = —
b=t HOX) =7

i i é

+v;.

Proof. For 1<i<v there are differential forms g,, r; of degree 1 such
that:

z(x'. ai,- )a =dE;—x;$;, z(—x,- 6(?5; )a =dx;—x;r; .
Therefore
Hy, = x-2 +x,H(B), @2.14.1)
0x;
]
Hz. = — "—‘—‘_,1' !-H i) .E. o
’ Yrge X () Q.E.D

Remark 2.15. It follows from Proposition 2.14 that, with the notations

of Proposition 2.12, the following relations hold:
(i) There are holomorphic functions f;;, 1 <i, j <, such that

{60 x} = 0%, +xx,f;; -

(ii) Given a holomorphic function f the functions {&;,f}, {x;,f} vanish
along {x,=0}.

(iii) For 1<4,j<v{df;, ox;}0=0;;.

(iv) For any differential form @ of degree 1 {d¢;, a} ,0=0.

Definition 2.16. Let (X, o) be a logarithmic symplectic manifold of di-
mension 2 with poles along a divisor with normal crossings Y. Let U be an
open set of X and let 4, B be subsets of {1,-:+,n}. A family of holomor-
phic functions
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x,] €4, & kEB (2.16.1)

defined on U is called a partial system of logarithmic symplectic coordinates
for (X, o) on U if it verifies the following conditions:

(i) There is an integer v such that {1, ---, v} is contained in 4 and Y N U=
{oo+-x, =0} .

(i) The holomorphic function &, is a residual function along {x,=O0}, for
1<k<v,kEB.

(ii) Fori,jEA4,k,I€B

Eoxp = {ours 0 1ST=;
0;, if v+1<j<n

L
and

{Ek’ EI} = {xia xj} = 0 .
(iv) The vectors
0x;,jEA, di, kEB, (2.16.2)

constitute a partial symplectic basis of TH{X/Y .
A partial system of logarithmic symplectic coordinates is called a system of
logarithmic symplectic coordinates if A=B={1, ---, n}.

Theorem 2.17. Let X be a logarithmic symplectic manifold of dimension
2n with poles along a divisor with normal crossings Y. Given x’&X and a par-
tial system of symplectic local coordinates in a neighbourhood of x° there is a
system of logarithmic symplectic coordinates that extends the partial system above.

We will first notice some properties of the vector space TA{X/Y ).

Lemma 2.18. (i) The choice of a family of functions x,, +--, x, defined in
an open neighbourhood U of x°, vanishing at x° and verifying (1.0.1) determines a
supplement of the subspace Im(T{X— THKX|Y)) of THX|Y), the span of
0x¢s0, 15i<0.
(ii) Given a residual function along {x;=0}&, the vector r;=d¢ ;.,*y does not de-
pend of the choice of the function &,.
(iii) The span of

axl: 20ty ax\u r]_, se, ¥y (2.18.2)

is a symplectic vector subspace of TH(X|Y> that admits (2.18.2) as a sym-

plectic basis. Moreover the vectors ry, ++, 1y, are in the symplectic orthogonal of
Im(TEX—TEX]Y D).
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(iv) Given the partial symplectic basis (2.16.2) there is a symplectic basis of
TEX] Y
e, S 1<5j, k<n, (2.18.3)

such that e; :6xj<x0>, JEA, f,,=dé‘k<x
Im(TEX —THX|YD) for j, k>v+1.

oy KEB, fi=r, 1<k<v and e, f,E

Proof. There is one and only one linear map
Th{x; =0y — TXX/YD> (2.18.1)
such that the diagram bellow commutes.
THX - TEXY>

! /
Th{x; =0}

The vector r; is the image of Res(,,_yo(x°) by the map (2.18.1). This proves
(ii). Statement (iii) is a straightforward consequence of Remark 2.15. Finally
(iv) follows from (iii). Q.E.D.

2.19. We will now prove Theorem 2.17.

Given the partial system of logarithmic symplectic local coordinates (2.16.2)
there is a symplectic basis (2.18.3) verifying the conditions of (iv) and holo-
morphic functions

G1s **°s Gns P15 "5 Pa (2184)

such that, for 1<j, k<n, q,=x;, jEA, p,=&;, kEB; dq;<x°>=ej, a’p,,w,):f,e
and moreover p, is a residual function along {x,=0} for 1<k<v. The func-
tions (2.18.4) constitute a system of local coordinates for X° in some neigh-
bourhood of x°. Actually

d d
dpye-dp, ... My g . ...dg,

1 v

constitute a local generator of 2%<¢y> in some neighbourhood of x°.

Suppose that there is k,& B such that ky=>v-+1. Consider the system of
equations

H0x ey = =04y, JEA, Hg £, =0, kEB. (2.19.1)
We conclude from Corollary 2.14. that the vector fields ((1/x,)H,,) (x%), 1<

k<v, span a supplement of Im(7,K{X/Y>—>T,0X). Therefore the vector
fields
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HEx,), k€A, * Hy, k<v,kEB, Hy, k>v+1,kEB,  (2.19.2)
Xk

are linearly independent at x°. Moreover, the vector fields (2.19.2) commute
two by two. Therefore we conclude from Frobenius Theorem that, for a
conveniently chosen initial condition along

{p,=0,j€4, g, =0, kEB}, (2.19.3)

d€ % will equal dp, (,%. Hence we can extend (2.16.1) by &,,. We can pro-
ceed in the same way to extend (2.16.1) by a function x;, for any j,eE 4.

We can therefore suppose that A=[1, n] and that there is an integer /, 1<
[<v, such that B=[I+1, n].

To finish the proof of the Theorem it is now enough to show that there
is a function f such that

1

XX

1 .
;—{xj,f}z {ps, X} —x0,), 1<j=<v,
j

{x,.,f}=xi{pz,x,-}, vH1<j<n,
1

1

XeX1

L{f,,,f} = {pi €, 1H+1<k<n. (2.19.4)
Xk

We notice that, by Remark 2.15, the right hand sides of the equations in (2.19.4)
are all holomorphic in a neighbourhood of x°. The existence of the function
fis guaranteed by the Frobenius theorem. The function

& =pirtxf
is a residual function along {x;=0} and we can extend (2.16.2) by &,.
Q.E.D.

Remark 2.20. Let x;, jEA4, &, KEB, be a partial system of logarith-
mic symplectic local coordinates in an open neighbourhood of a point x’E X.
Let ey, **, e, f1, ==+, f, be a symplectic basis of T<{X/Y>. Suppose that dx,=
e;, d€,=fy, for jEA, kEB. Then we can choose functions x;, j €& 4, &, kB
such that x,, -+, x,,, &, -+, £, is a system of logarithmic symplectic local coordi-
nates and Ox;=e;, df,=f}, for 1<j, k<n. Moreover we can arbitrate the
values of x,(x%), £,(x°) for j & 4, k& B.

Corollary 2.21. Let o be a logarithmic symplectic form on a complex
manifold X with poles along a divisor with normal crossings Y. Given x’€X
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let v be the number of irreducible components of Y at x°. Then there is a sys-
tem of local coordinates (x,, ==+, x,, &, »++, €,) on U such that Y N U={x;---x,
=0} and

dx;

+ 20 v dEdx;

aIU = 2¥=1 dfi‘

Proof. By Theorem 2.17 and Proposition 2.8 its enough to show that there
are holomorphic functions x, -+, x, such that (2.12.1) holds and

frnx}=0  1<ij<v.

This can be done in the following way: suppose that there are functions
Xy, *°*, Xy verifying (2.12.1) and an integer /, 0</<v such that

fox} =0 1<i,j<lI.
We can show that there is a function f such that
{xa-, xH_lef}' =0 1<i<l.

Since the method of proof is similar to the one used in Theorem 2.17 we omit
it. Q.E.D.

§3. Homogeneous Logarithmic Symplectic Manifolds

Let X be a complex manifold. A group action a: C* X X—X is called a
free group action of C* on X if for each xEX the isotropy subgroup {tC*:
a(t, x)=x} equals {I}. A manifold X with a free group action @ of C¥ is
called a conic manifold. We associate to each free group action @ of C*
on X a vector field p, the radial vector field of @, in the following way:

of = %ai‘kf|t=h f€0;y.

Here a,(x)=ca(t, x). We put
Ox() = {f €0x: of = 4f}
for any 2&C and
O% = Biez0x(k) -
A section f of Ox(2) is called a homogeneous function of degree 2. Given

conic complex manifolds (X;, @), (X,, @) a holomorphic map ¢: X;—X, is
called homogeneous if it commutes with the actions «,, «,, that is, if
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Uy /P = QY 4, for any t=C* .

Definition 3.1. A logarithmic symplectic manifold (X, ¢) with a free
group action a is called a homogeneous symplectic manifold if

a¥o =to, tSC*.

If (X}, 0)), (X, 0,) are homogeneous symplectic manifolds and ¢: X;—X, is a
canonical transformation we say that ¢ is a homogeneous canonical transforma-
tion if it is homogeneous.

Given a homogeneous logarithmic symplectic manifold (X, o) we call the
logarithmic differential form of degree 1

0 = t(p)o

the canonical 1-form of (X, o).
We notice that a canonical transformation ¢: X;— X, is a homogeneous
canonical transformation if and only if ¢*6,=6,.

We will now prove a Darboux Theorem in the homogeneous case

Definition 3.2. We say that a partial system of logarithmic symplectic co-
ordinates x;, j €4, &, kEB, of (X, o) is a partial system of homogeneous log-
arithmic symplectic coordinates if the functions x;, j €A, are homogeneous of
degree 0 and the functions &,, k€ B, are homogeneous of degree 1.

Let (X, o) be a homogeneous logarithmic symplectic manifold with poles
along a divisor with normal crossings Y. Let U be an open set of X and Y, a
closed smooth hypersurface contained in Y N U. A residual function along ¥,
is called homogeneous if it is homogeneous of degree 1.

If &, &§ are two homogeneous residual functions along Y, then &,— £&§ van-
ishes along Y,. Hence, given x°€ Y, we can define the residual value of x°
along Y, as &,(x9).

Theorem 3.3. Let (X, &) be a homogeneous logarithmic symplectic manifold
of dimension 2n with poles along a divisor with normal crossings Y. We fix x*&
X. Let v be the number of irreducible components of Y,0. Let

yj’jEA, Tes kEB H (3.3.0)

be a partial system of homogeneous symplectic coordinates on an open neighbour-
hood U of x° and b,, 1 <k<n, be a family of complex numbers verifying the fol-
lowing conditions:
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(i) The residual value of x° along Y, equals b, for 1 <k<v.
(i) 7,(x")=b,, for any kEB.
(iii) There is an integer J such that b;=3=0 and J& A N[v+1, n].

Then there is a system of homogeneous logarithmic symplectic coordinates (x,,
e, X, &4, o0+, €,) on a neigbourhood V of x° such that

x,[y;€08V)  for 1<j<v,
x;=y; for v+1<j<n, (3.3.1)
E,=mn, for kEB.

Proof. We may assume that there is an integer / such that AN[1, v]=
[[4+1,v]. Let A, B, be subsets of [1, n] such that there is a partial system of
homogeneous symplectic coordinates

x;, €, JEA, kEB, (3.3.2)
verifying (3.3.1). Let
G1s *°*s Gus P15 ***> P (333)

be a system of logarithmic symplectic coordinates that extends (3.3.2). We
will introduce the following assumption:

Ay =[1L.v]U(v+1,n\{/}), B,=[l+1,n]. 33.4)

(3.3.5) We will now show that we can assume A4,=[1, x].
We can suppose J >v-+1. There are holomorphic functions a,, 1 <k </,
such that relatively to the system of local coordinates (3.3.3),

7] 0 0
0 =01+ ka1 G G— .
op, Opy  9q;
(3.3.6) Since dt(o)o —o=3;_, da,d0x,—dad€; the functions a, ay, -++, a; de-
pend only on x;, -+, x;, £;.
Choose a holomorphic {unction f depending only on x;, -+, x;, & such that

of _ _a

0¢; &
Then the function x;=gq;+f is a homogeneous of degree 0 and we have proved
the claim (3.3.5)
Suppose />2. There are holomorphic functions a,, 1 <k</, such that,
relative to the local coordinate system (3.3.3),



Brow up FOrR A HoLoNoMIC SYSTEM 185

9

1 a n
= _ +a)—+ D11 €
0 =>2%-1(ps ak)a ) Dlhais1 kGEk

By a reasoning analogous tc (3.3.6) the holomorphic functions a,, 1 <k</
depend only on xy, -+, x;. Therefore the holomorphic functions &,=p,-+}a,
are homogeneous of degree 1 and

g = Eg=1 d&'kaxk .

(3.3.7) We will now prove (3.3.4) under the hypothesis J >v-1.
Suppose that there is k, such that ky>v-1 and k,& B,.

Lemma 3.3.8. Let (E, 0) be a symplectic vector space of dimension 2n.
Let b, 1 <k<n be a family of complex numbers. Let p, be a vector of E and
€, JEA, ¢, kKEB, A, BC[1, n] be a partial symplectic basis of (E, o) verifying
the following conditions :

() ooleg, €,)=0, jE4, o0y, 5)=b;, kEB.

(i) ¢, jEA, ¢y KEB, o, are linearly independent.

(iii) There is an integer J such that J& A and b;=+0.

Then we can find €, jEA, by ke B, such that €, 0 1<j, k<n,isa symplec-
tic basis for (E, o,) and

ao(p» ej):OJjEA’ 00(10-' ¢k):bk1 1£]: kSn. (33'9)
Proof. cf. (Hormander [6], Theorem 21.1.9).

Put E=T,X]|YD, 0,=09, py=0¢%, €;=H(e,) for jEA, ¢,=H(f;) for
k€B and ¢,=H(r,) for 1<k<v. By the Lemma 3.3.8 there are vectors e;,
JEA, i kEB of TXX/Y > such that the vectors ¢;=H(e;), ¢,=H(f;) satisfy
(3.3.9). We can suppose by Remark 2.20 that the functions (3.3.3) verify the
relations

6xj(x = ei for JQEA and d6k<x0> :f;n Pk(xo) = lk, for quB

0
>
We want to find a function &, such that

afko
apj

0&,,
0q;

= 04i» JEA, =0, kEB, p&}, =&, .

Therefore we want to find a function f, depending only on p;, jéE4, q;, K€ B,
such that

Of —f = Pry—PDs, - (3.3.10)

The equation (3.3.10) is equivalent to the equation
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plf—f=pko_plpko ’

where p, is the vector field we obtain after dropping from e the coefficients of
8/8q;, kEB, 8/0p,;,jEA. The coefficients of o, do not depend on g;, kEB, p;,
JEA. Actually take p,=p—3>],c,p(0/0p;). Since

[Hy, 0] = (1—2X)H; (3.3.11)

for any holomorphic function f of degree 2 we have

o 0 ,
) =| —H, i ]_ =0 s EA’
[apj ,02:] l: a2 op. J

J

bo)
l:a—qk’ pz] = [—Hpk, .0] =0, ke B.

We conclude from (3.3.9) that for any constant u there is one and only one
solution f of (3.3.10) such that f—up; vanishes along {p;=b;}. We can choose
 in such a way that df(x°)=dp,(x"). We use the function &, =p,,+f to extend
the system of partial symplectic coordinates (3.3.2).

We can find in a similar way a function x;, for j €t 4,.

(3.3.12) Finally we will prove (3.3.4) under the hypothesis J <v.

Take A;=A,\{J}. Suppose that there is a k, such that k,>»v-+1 and k,&
B. We can find, by the procedure described above, a holomorphic function
&4, homogeneous of degree 1, such that {€,,, x;} =04,j, {€x,, &4t =0, for jE 4,
k€ B, d&,(x)=f4,, and the function f=&, —p,, depends only on p;, j€E 4y, g
keeB. Then we want a function g, homogeneous of degree 0, such that

'{xj, g} Z{Ek’ g} =0, JEA, ke B, {Ekw xfeg} =0.
That is, we want a function g depending only on p;, j & 4, g, kK € By, such that

{4 8 = — 97 and pg =0.
op;
Since [0, H; ]=0 the function g exists because of Frobenius Theorem. We
can substitute x; by x;e¢ and B, by B,U {k;}. We can enlarge the set 4, by
a similar method.

This ends the proof of Theorem 3.3.

Remark 3.4. We notice that, if there is a J such that J& A4 and b;=0
then we can suppose x;=y; for j%=J. If moreover J>v+1 then we can sup-
pose x;=y; for 1< j<n.

A homogeneous logarithmic symplectic manifold is locally isomorphic
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to j"*(X /Y>> in the category of homogeneous symplectic manifolds.

Corollary 3.5. Let o be a homogeneous logarithmic symplectic form on a
complex manifold X with poles along a divisor with normal crossings Y. Given
X°&E X let v be the number of irreducible components of Y at x°. Then there is
a system of local coordinates (x, -+, X,, €1, +++, &,) on U such that Y N U={x,
ceexy, =0}, xq, +++, X, are homogeneous of degree 0, &,, -+, &, are homogeneous
of degree 1 and '

oly = zv} de; &; + éldgidxi'
i=1 X i=v+

1]

Proof. It is quite similar to the proof of (2.15). Therefore we omit it

Remark 3.6. If (X, o) is a homogeneous logarithmic symplectic manifold
and x;, 1<j<n, £, 1 <k<n, is a system of homogeneous logarithmic sym-
plectic coordinates for o on an open set U of X then

oly =2n6,-i and 0|, =§”]E,-6x,-.
1 6§‘. i=1

Definition 3.7. Given a homogeneous logarithmic symplectic manifold
(X, o) with poles along a divisor with normal crossings Y and a smooth hyper-
surface Y, contained in Y we call residual submanifold of X along Y, to the set of
points of Y, of residual value 0. If Y is smooth we call residual set of X to the
residual submanifold of X along Y.

Proposition 3.8. Let X be a homogeneous logarithmic symplectic mani-
fold with poles along a smooth divisor Y. Let Z be the residual submanifold
of X. Then:

(i) Y,Z are involutive submanifolds of X.
(i) The manifold Z has a canonical structure of homogeneous symplectic
manifold.

Proof. Statement (i) is an immediate consequence of Corollary 3.5.

Let X, be a Poisson manifold. We say that a submanifold Y, of Xj is
invariant if {ly,, Ox,} Cly, (cf. Kashiwara Fernandes [10]).

An invariant submanifold of a Poisson manifold has a canonical Poisson
structure.

By Corollary 3.5 the set of poles Y is an invariant submanifold of X and
the residual submanifold Z is an invariant submanifold of Y. Moreover the
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C* action of X induces a C*-action on Z. Given p’ € Z there is a conic
neighbourhood U of p® in X and a system of local coordinates (x;, -+, X,,
&, -+, &,) on U such that o|,=d& dx,[x,+>i.. dé;dx;. We can easily verify
that the Poisson structure of Z N U is determined by

Voo dEdR, (3.8.1)

where X;=x;| 700> 5,-*—*5,-] zau- By Proposition 2.8 (3.8.1) does not depend of
the choice of the system of local coordinates (x;, «-+, X,, &1, ***, &,). Q.E.D

Example 3.9. Let X be a complex manifold and Y a smooth divisor of
X. Then the residual submanifold of T°*<X /Y is isomorphic to T*Y.

§4. Logarithmic Contact Manifolds

Definition 4.1. Let X be a complex manifold of dimension 2n-+1, n>>0,
and Y a divisor with normal crossings of X. A local section @ of 2x(y> is
called a logarithmic contact form with poles along Y if w(dw)” is a local genera-
tor of 2%+y>.

We say that a locally free sub O x-module L of 2%<y> is a logarithmic con-
tact structure on X with poles along Y if it is locally generated by a logarithmic
contact form with poles along Y. We say that a complex manifold with a
logarithmic contact structure with poles along a divisor with normal crossings
Y is a logarithmic contact manifold with poles along Y. We call Y the set of
poles of the logarithmic contact manifold (X, -L).

Let (X3, -£3), (X,, -£;) be logarithmic contact manifolds. We say that a
holomorphic map ¢: X;—X, is a contact transformation if for any local genera-
tor of L, its inverse image by ¢ is a local generator of _£].

Let Y, be a smooth irreducible component of ¥. We say that a point x°
of Y is in the residual set of X along Y, if the residue along Y, of all the sec-
tions of L vanishes at x°.

Remark 4.2. (i) Given a logarithmic contact form w and a nowhere van-
ishing holomorphic function ¢, ¢ is a logarithmic contact form.
(i) We say that two logarithmic contact forms ,, @,, are equivalent if there
is a nowhere vanishing holomorphic function ¢ such that w,=¢wo,.
(iii) We notice that it is equivalent to give a structure of logarithmic contact
manifold along Y and to give an open covering (U;) of X and logarithmic con-
tact forms w; €I'(U;, 25¢y>) with poles along U; N Y and verifying the condition
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“; is equivalent to w; on U; N U;”.

Proposition 4.3. There is an equivalence of categories between the category
of logarithmic contact manifolds and the category of homogeneous logarithmic
symplectic manifolds.

Proof. Let (X, L) be a logarithmic contact manifold along a divisor with
normal crossings Y. We put

X = Specan (Pez-LEP). 4.3.1)

We will denote by 7 the canonical projection X—>X. The complex manifold
X with the projection 7 is the C*-bundle we obtain after removing the zero
section of the line bundle associated to -£. Moreover X has a canonical struc-
ture of homogeneous symplectic manifold. Actually let @ be a local generator
of L. Locally

X = Specan (Ox[w, ©®71)).

Let # be the image of @®~! by the canonical morphism 7 'Ox[w, ©¥®1—(O4%.
The logarithmic differential form #7*® does not depend on the choice of ® and
d(nr*w) is a logarithmic symplectic form with poles along 7~(Y).

(4.3.2) The logarithmic differential form nr*w is the canonical 1-form of
the logarithmic symplectic manifold b'é

Choose a system of local coordinates x;, 1 <i<2n-1, in the open set U
of X where o is defined. Then 7, r*x;, 1<i<2n+1, is a system of local co-
ordinates of X on 7~'U and relatively to this system of coordinates the radial
vector fileld o of Xis given by 79/07. Now the statement (4.3.2) follows from
the equality

i(ﬂ—a—> (ndr*@—+dn-r*w) = 7% .
97

(4.3.3) We notice that if Y, is a smooth hypersurface contained in Y and
Z, is the residual set of X along Y, then the set of poles of b equals 77'Y and
the residual set of X along Y, equals r~'Z,.

Let now X be a homogeneous logarithmic symplectic manifold. Let 6 be
the canonical 1-form of X and let Y be the set of poles of X. Let X, be the quo-
tient of X by its C* action. Then X, is a complex manifold and the canonical
epimorphism 7: X—X, is a C*-bundle. Put Y,=r(Y). Let L, be the sub
Ox,module of 2%<v,> generated by the logarithmic differential forms s*6,
where s is a holomorphic section of 7. Then Ly is a structure of logarithmic
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contact manifold with poles along Y. Q.E.D.

Remark 4.4. Let X be a logarithmic contact manifold and X the associat-
ed homogeneous logarithmic symplectic manifold. Let 7: X—>X be the canon-
ical projection. From now on we will often identify X with X, We will also
identify a sheaf € on X that is constant along the fibers of 7 with the sheaf
7€ on X.

Let P*{X/Y > be the projective bundle associated to T*(X/Y>. We call
P*{X|Y > the projective logarithmic cotangent bundle of X with poles along Y.

The projective bundle P*{X/Y> has a canonical structure of logarithmic
contact manifold. Moerover the associated homogeneous logarithmic sym-
plectic manifold equals T*{X/ Y>.

A logarithmic contact manifold of dimension 2# is locally isomorphic to
P*C" {x, -+ x,=0} >, for some integer v.

Theorem 4.5. Let X be a complex manifold of dimension 2n+1.
(1) Let @ be a logarithmic contact formof X. Given a point x° in the domain of
® there are holomorphic functions xy, +++, X,11, €1, ***, {441 defined in an open
neighbourhood U of X such that

0ly = z ¢.ox, . @.5.1)

Moreover there is an i such that {(x°)=%0 and for any i, such that {;(x°)=0
the functions

x;, 1<i<ntl, fi  1<i<nd1, i+,

io

are a local system of coordinates for X on U.

(ii) Let L be a logarithmic contact structure on X with poles along a divisor
with normal crossings Y. Given a point x° of X, suppose that Y, has irreduci-
ble components Y,, -+, Y, and that the residual values of x° along Y; vanish for
1<i<v. Then there is a system of coordinates (x,, ->*, X,41, Py, ***, D,) N a
neighbourhood U of x° such that the logarithmic differential form

dx;

X;

dxyy1—23i1P; — 2V imvi1 PidX; 4.5.2)

is a local generator of L and Y; N U={x,;=0}, for 1 <i<v.
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Proof. Let X’ be the domain of @. Let Y be the set of poles of w. Let
v be the number of irreducible components of ¥ at x°. Put L=04w. Choose
ye X such that 7(»*)=x’. We can find a system of homogeneous symplectic
coordinates x;, 1 < j<n+1, £, 1<k<n+1, such that

nr¥e = 31,£,0x;

and r YY) N V={x;:--x,=0}, x,;(3°)=0 for v+1<i<n. We can suppose V=
77Y(U) for some open neighbourhood U of x°. The functions x;, &;/7, 1 <i<
n+1 are homogeneous of degree 0 and therefore determine holomorphic func-
tions on U that we will denote respectively by x;,{;. They obviously satisfy
4.5.1).

Suppose now that &;(3°)=0 for 1<i<n-+1. Then the set {y°} would be
invariant by the action of @ and @ wouldn’t be a free group action. Therefore
there is an i such that ;(x°)==0.

Finally if ¢, (x°)==0 then &, (°)==0 and

£,
030+ Dlisy0X;
i
determines a logarithmic contact form on U. Since there is a nonvanishing
constant C such thai

@g(dwg)" = Cdxy»+ 0%, A\ i#iod% (modW,_, (2% '<Y>))
io
the differential form dx;-++dx,; A\ j+;,d¢;/C;, does not vanish at x°. This proves
(i). We can suppose ip,=n-+1. If we put p;=—C;/{,,, for 1 <i<n then w,=
4.5.2). Q.E.D.

Chapter II. Quantized Logarithmic Contact Manifolds

Let X be a complex manifold and Y a divisor with normal crossings of X.
In §5 we will build a sheaf &4y on the vector bundle 7#{X/Y>. This sheaf
is a natural generalization of the sheaf &y of microdifferential operators on
T*X. It is a “microlocalization” of the sheaf 9x(y> of the differential opera-
tors tangent to Y in the same sense €y is a ““microlocalization” of 9y.

Theorem 5.10 and its Corollaries will be systematically used through all
the paper. Roughly speaking they allow us to extend results on ‘“noncom-
mutative polynomials” to ‘““non commutative power series”.

In §8 we introduce the notions of quantized logarithmic contact manifold
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and self dual quantized logarithmic contact manifold. Roughly speaking a quan-
tized logarithmic contact manifold is a ringed space (M, £€) where M is a loga-
rithmic contact manifold and moreover (M, €) is locally isomorphic to the ringed
space (P*(X]Y>, E¢xyy). We call the sheaf € a quantization of the contact
manifold M. A self dual quantized logarithmic contact manifold is a quantized
logarithmic contact manifold with a globally defined adjoint morphism similar
to the adjoint morphism locally defined in £y.

We introduce a globally defined notion of subprincipal symbol of a sec-
toin of a self dual quantized logarithmic contact manifold and use it to prove
the global existence of the both side ideals that where locally studied in §6.
This ideals are deeply related with the set of poles and the residual sub-
manifold of the underlying logarithmic contact manifold.

§5. The Sheaf of Logarithmic Microdifferential Operators

Let X be a complex manifold and £ a Lie algebra of derivations of Oy
that is a locally free Ox-module. Let 9 . be the sub Ox-algebra of the sheaf
of differential operators 9 generated by -L. We endow 9 . with the filtration
induced by the canonical filtration of Dy.

Proposition 5.1. The vector bundle X £=Specan(gr.@ ) has a canonical
structure of Poisson manifold.

Proof. Let = be the canonical projection from X  onto X. The Lie
bracket of 9 ,induces a structure of Poisson algebra in grg . Moreover the

sheaves @[X.L’]:zn—lﬂ*@gf .L’ and =~'grd) . are isomorphic. We obtain in this
way canonical morphisms of sheaves
L g1
oL:z71g) _E(m)—>@X_£(m) ,
G'°C: TU—IQ-L’_>03(£-
Let U be an open set of X, (x,, -+, x,) a system of local coordinates of X on U
and w,, -+, u, a basis of L|;. Then (x,, «--, x,, &, -+, &) is a system of local
coordinates of X . on z~}(U), where £;=0(y;) for 1 <i<k.
The Poisson structure of 0[ X is determined by
{f,gt=0, {ufr=uf, € &}=0(u,u)),

for f, g local sections of 7'y, 1<i, j<n. Since for any x’€X . there is a
unique extension of the Poisson structure of O[X_L’]’ 5 to @X_D 5o then it is
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enough to show that it is possible to extend the Poisson structure of @[ X /] to
OX.L’ locally. If u;=3]4;,9,; an [u;, u;]= bt u; we define

R O R A

for any section f, g of O X Q.E.D.

Definition 5.2. Let Y be a divisor with normal crossings of X. We
denote by D<) the ring Do <¥> and call it the ring of differential operators
of X tangent to Y. We will denote by o, the principal symbol morphism
09z<Y ) introduced in the proof of Proposition 5.1.

Propesition 5.3.  The vector bundles Xo <y> and T*{X|Y) are isomorphic
as vector bundles and as Poisson manifolds.

Proof. Since grdy<y> is isomorphic to S(Ox<y>), the symmetric algebra
of (<Y >), then Specan(grd;(yy) equals the dual of the vector bundle with
sheaf of sections @x¢y>. Given a system of local coordinates (x, :-+, x,) on
an open set U of X subordinated to Y N U let (x, &) be the associated system of
canonical coordinates in T7*{X/Y)>. For 1<i<n put 7;=0y(9,), where 3, is
the vector field introduced in section 1.1. The functions (x;, **+, X,, 71, ***, 7,,)
define a system of homogeneous logarithmic symplectic coordinates outside the
zero section. Therefore {€;,—7;, x j} vanishes for 1<{7, j<n. Hence &;—7; de-
pends only on xy, -+, x,. We conclude that the functions &;—7; are homo-
geneous of degree 0 and 1. Therefore

oy(0.) = &;, 1<i<n. Q.E.D.

Definition 5.4. Let U be an open set of X and let (x;, -+, x,) be a sys-
tem of local coordinates subordinated to the divisor with normal crossings
Y NU. Given a section P of Dx<y> we define the total symbol of P as the
element (P;) of Orre¢xjyy1 determined by

e~ B E>y Pplsitdy ,
where <{x, E>y=2:‘=1 ¢; logx;+3% v x£;.
Proposition 5.5. (i) Given two sections P, Q of Dx(¥>

P+0) = P10, (5.5.1)
POy = 3 - @P) 0300 (55.2)

asp”
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@) If (%, -+, ®,) is another system of local coordinates of X, on U such that
YNU={%, -, %,=0} and %;/x; is holomorphic for 1<i<v then the associ-
ated systems of canonical coordinates are related by

g, = X%y 1 ck<n.
0x;,

Moreover, for any |EZ,

= rn F 1
Pl(xsf)z Z T 1
g U'a],"..

al <E, 6?:152>v"'<2:, 5;’o-g>va?1+---+aapk(x, 5) . (5_5'3)

@y -

Here the indexes run over kEZ, 0 EN, a,, -+, @, €N", such that |e,]|, -, | a,|
>2 and I=k+0—3%..1|e;|. For B=N" <§, O8%>, denotes

y-1 €08 log %4300, £ 08%,

Proof. The proof of this Proposition is the obvious generalization of the
proof in the case »=0. By (5.5.1) its enough to prove (5.5.2) and (5.5.3)
when P=£%. This can be accomplished by induction in |@|. The induction
step of (5.5.3) uses (5.5.2). Q.E.D.

Definition 5.6. Let X, be a copy of C” with coordinates (x;, ---, x,). Let
v be an integer smaller or equal to n and Y, the divisor with normal crossings
{x;++-x,=0} of X,. Let U be an open set of 7%{X,/Y,>. We denote by

é<x,,/¥,.><"’) )

the space of formal series 3 <, P; where P; is a section of Or«xv,>(j on U.
The correspondence

U Ex ppyym (V)
defines a sheaf of C-modules denoted c?(xﬁ,yv) m). We put
é<x,,/n,> =U mé<X,,/Y\,> (m) .

Given sections P=3 P, Q=>10, of 8@”/“) defined in an open set U of
T*{X,]Y,> we define the sum and product of P and Q respectively by the for-
mulas (5.5.1) and (5.5.2). We say that a section >} P; of é<Xn/Yv>(U) is a log-
arithmic microdifferential operator if for any compact set K of U there is a con-
stant C such that

supg| P_;| <Cjt, j=0.
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We will denote by E¢x, /y,> the subsheaf of é’gn,yv) whose sections are loga-
rithmic microdifferential operators. We will consider E(x,/y,, endowed with
the filtration induced by t’:’o{n,yv).

We wili denote the section (£;) by J,, for 1<i<n. Ifv+1<i<n then we
will usually denofe (£;) by 9,, instead of §,,. We introduce the following con-
vention. If in a statement we denote a (§;) by 8, we will do it in that state-
ment whenever possible.

Let X, be a copy of C” with coordinates (x;, *-+, x,,). Suppose #<v and
put Yu,={xps,--x,=0}. Let ¢ denote the canonical isomorphism

T*<Xn/YI‘> |Xﬂ\Yp_u = T*<Xn/Y‘u> IX”\Yy,y

If we conmsider in T*{X,/Y,> [T*{X,/Yu>] the system of canonical coordinates
(x, &) [(x, £)] associated to (x) then

e, =E,, if 1<i<vorv+1<i<n,
e, = x£;, if p+1<i<,

Proposition 5.7. (i) The sheaves E(x v,> and <§’<Xﬂ,yv> are associative C-
Algebras.

(i) Let X, [X,] be a copy of C" with coordinates (x,, -+, X,) [(J1, ***» ¥a)]. Let
X=(%,, -++, X,) be a biholomorphic map from an open set U of X, into an open
set Vof X,. Put Y,={x;--x,=0}, ¥y ={p--y,=0}. If%(¥,)=Y,NU then
Jormula (5.3.3) defines isomorphisms of filtered C-Algebras

€<x,,lyv> lv X 5<5’:,,/17,,> lv (5.7.1)

Exury lv 3 é(}?,,/?,,) |y

(iii) There are canonical isomorphisms

8<X,,/y,,> lX,,\Y,_w = 8<X,,/Yp> lx,,\y,,,,, (5-7-2)
&€ &
(X Yy> [X,,\Y,w — ULX, /v lx,,\y,w

The isomorphisms (5.7.2) are explicitly given by

;a—.IT (Siown )07 0Py(x, £).  (5.7.3)
o, l-a, ]

P(x,5)= 3

@pyerns

Here the indexes run over k&Z, a,, -+, a, € {0}* X N " x {0}*~ such that
‘allx A ‘aa'i >2 and l=k+0'—2cir=1

a;|. In particular
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Oy, 04y, Jor 1<i<y,
0, x;0,,, Jor p+1<i<y,
0,,—0,,, Jor v+1<i<n.

(iv) The correspondence ‘‘Pitotal symbol of P> defines an immersion of
7Dy ¥y 1110 E x>

(V) The restriction of E¢x yv,> [é<xn/yv>] to the zero section of T*{X,|Y,> equals
QX ,,<Y'v>-

Lemma 5.7.1. Let X! be the open set {0<Im z,<2x, u+1<i<v} of a
copy Z, of C" with coordinates (z,, -+-, z,). Let (z,¢) be the system of coordi-
nates of T*{Z,/Yu) associated to (z). Let x: X;,—X,\Yuv be the biholomorphic
map defined by:

X¥x, = ¢, if u+1<i<y,
X*x; =z;, fl<i<uworv+1<iZn.

Let Z: T X,/ Yy | x\vu,—>T*<Z,/Y\) | x:, be the biholomorphic map induced by
X. Then the following morphism of sheaves is an isomorphism of filtered C-
Algebras

é<2,,/Yp.>‘ X',,:éanY,, ‘ X \Ypy (5.7.4)
Ej Pi = Ej Pjoi?

Moreover 33, P; is a logarithmic microdifferential operator iff ) J.PJ.OJ? is a
logarithmic microdifferential operator.

Proof. 1t is an immediate consequence of the following facts. For 1<i<n
x*(az,- I X;) = 6::,-, i;*(i = Ei’ 7(65, | X:,) = ag’,. Q'E'D'

Proof of Proposition 5.7. (i) By Lemma 5.7.1 if P, 0, REEx,y,5(U)
then (PQ)R=P(QR) in an open dense subset of U. Therefore 8A< X,/v,> IS an as-
sociative Algebra. Also by Lemma 5.7.1 if P, Q are logarithmic microdifferen-
tial operators then PQ is a logarithmic microdifferential operator outside of a
divisor with normal crossings of U. By the Cauchy estimates PQ is a loga-
rithmic microdifferential operator on U.

(ii) By the remarks made in the proof of Lemma 5.7.1 we can deduce (ii)
from its particular case y=0 using the isomorphisms (5.7.2). For the proof
of statement (ii) with v=0 cf. [SKK] and [9].

(iii) By (ii) there is an isomorphism
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8(2,,/1/,0 |X',, = 8<X,,IY,.,.) |x,.\y,w (5-7-5)

associated to the change of coordinates introduced in Lemma 5.8. We define
(5.7.2) as the composition of (5.7.5) with the inverse of (5.7.4). Q.E.D.

Lemma 5.8. Let X be a complex manifold and Y a divisor with normal
crossings of X. Let U be an open set of X and let (x, *+, x,), [(%y, ++, X,)] be a
system of local coordinates for X on U such that Y N U= {x; -+ x,=0}[={%; -
X5=0}] for a certain integer v [¥]. Let ¢ [€] be an imbedding of U into a copy
X,[X,] such that e~ Y(Y,)=&"'Y;=Y,. Let V [V] be the image of ¢ [¢]. Let = [7]
be the canonical projection of T*X,|Y,> onto X,[T*{X,/Y;> onto X,]. There
is a canonical isomorphism

' Dy 0> v 37 Dz K¥3) | v (5.8.1)
Moreover there is one and only one isomorphism

Exury lv 3 Eyriy |9 (5.8.2)

that extends (5.8.1).

Proof. The existence follows from Proposition 5.7. The uniqueness fol~
lows from tbe fact that the Lemma is true when v=#=0 and from Lemma
5.7.1. For the prove in the case y=9=0 cf. [SKK] or [15]. Q.E.D.

Let X be a complex manifold and Y be a divisor with normal crossings of
X. We can cover X with copies of open sets X® of C” such that there is
an integer v; verifying X® N Y={x{"..-x{?’=0}. We can glue the sheaves
E x5 ny> [é’@(o,xc:)ny)] using the morphisms introduced in Lemma 5.8.
Again by Lemma 5.8 the sheaf obtained in this way does not depend of the
choices of the open sets, the coordinate systems or the integers v;.

We will denote it by E¢x/ys [6A’<X,y>]. We call E¢xp> [é’<X,Y>] the sheaf of
[formal] logarithmic microdifferential operators of X with poles along Y.

The sheaf Ex/yy [é<X,y>] has a canonical structure of sheaf of filtered C-
algebras and gré<x,y> is canonically isomorphic to Q%+¢xyy. We will denote
respectively by o, o,, the natural morphisms of sheaves of sets [sheaves of C-
modules]

. O i
0: Exrry—>Oreix, v »
T’ Exrrsim=Ore<xrrsim -

If PEExrsems QEEurson then [P, Q1€ E cxyysimensy and
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Omsn-1([P, O]) = {O',,,(P), Un(Q)} . (5.8.3)

Proposition 5.9. (i) There is a canonical isomorphism E x|y =3
Exl vy
(ii) There is a canonical imbedding of =~*Dx(y> into E(xyyy-
(ili) The restriction of E¢xpyy to the zero section of T*CX|Y ) equals Dx(Y>.

Theorem 5.10. The filtered C-Algebras E¢x)yy and 5’<X,Y> have zariskian
fibers.

Corollary 5.11. (i) The rings E¢xyyy and é<X,Y> are (left and right) noe-
therian rings.
() The inclusions - Dy > Exsys, Ecxry> < é< x/v> are flat morphisms.

In order to prove Theorem 5.10 we will now introduce an immersion of
the ring of logarithmic microdifferential operators into the ring of microdiffer-
ential operators of a higher dimensional manifold.

5,12, Let X,,, be a copy of C**¥ with coordinates (1, ***, Vs Z1, ***» Zy)-
Put X}.,=X,.,\{y1--y,=0}. Let (3, z n,¢) be the canonical coordinates of
T*X¥,.,. For 1<i<v let a;, [a] be the action of C*C*'xC") in T*X},,
given by

ai(ti’ Y, 2,7, C) = (tiya tTIZ: t7177’ tic)
a(t,h,y,z,7,8) =@y, ¥y, t7'z, t 70, 0, {+h)

where t=(t;, --, 1,), h=(hy, *>*, hy), y=(1, ***5 Va)s Y= 5 1), y”=(yV+ls )
Vs 2=(2ss 5 2) 0" =(@p s 1) B =(Wy1s s M)y LY =1 s Lsr 5 Vs
ty'=(ty1, *++, t,y,) and so on.

For 1<i<v let

0; = Ziaz,-_Csaé’,-“(yiay;—ﬂ,-awi)
be the radial vector field of the C*-action @;. Define y: T*X}, ,—>T*(X,/Y,>
by:
vEiIx; =2y, Y =y, 1<i<y,
VX =Y,  YFE =7, v+1<i<n.
The fibers of v are the orbits of the action of a. Given a complex number

A define Orexz, (N={fEO0rxs, (A): 0;f=0¢,f=0,1<i<v}. The map v in-

ntv

duces isomorphisms of sheaves
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Yy O T*(Xn/Yy)(l)_)w*OT*Xﬁ H(Z) s 2eC.

Let é’é;,” be the sheaf of the formal microdifferential operators PE(‘:’X"”
such that

[Ziaz,-—yiay,q P] =[P’ Z;‘] :0 fOI' lsisy.
We will now build an isomorphism of filtered C-modules
V2 Expry—>¥Cng,, - (5.12.0)

We define ¥: 6A’X” [Xn\yvew*éxﬁw lxavy by 23,0, 33,0 09 Let now
21, P; be the total symbol of a section P of c_‘:’< x,\vy- 1f 23;0; is the principal
symbol of P |x .y, as a section of &y, then by (5.7.3) all the Qs have a
unique extension Q ; to the domain of P. We can now define #(P)=3]; Qjoga.
We can easily verify that ¥, is a morphism of filtered C-algebras and therefore
the same happens with 7.

Once we prove the morphism % is an isomorphism then Theorem 5.10
will be a consequence of the following Lemma.

Lemma 5.12.1. The sheaves £ ﬁgﬁ” and & Sfﬁw have zariskian fibers.

Proof. Let é}’;;“ be the sheaf of formal microdifferential operators P&

& %, such that [P, z,]=0 for 1<i<v. The sheaf & %; ., has zariskian fibers.
(cf. [SKK] and [15]). Fixed p°c T*X, define, for 0<i<v,

E, ={P&&%;,, such that [o;, P]=0 for 1<i<l}.

Lemma 5.12.2. For 0<i<v there is a sub C-module E| of E, such that
E,BE!=E,.

Proof. If [=0 the statement is obvious. Suppose 1</<v. There
are holomorphic functions p,, ***, p,y-;, homogeneous of degree 0, and a
holomorphic function #, homogeneous of degree 1, such that

Vo 1<i<n, z;, 1<i<v, il z;y, p;, 1<i<n+v—1, 7 (5.12.2)

is a system of local coordinates for X¥,, in a neighbourhood of p°. Relatively
to this system of coordinates

oy =—Y0y, 0 =1n0y.

Given PE€E,_, there are holomorphic functions a;, i €Z, such that P=3};a;7'
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and pa;=p,a;=0 for 1<k</—1,ieZ. For each i there are holomorphic
functions a;; such that

=2 a;;()’x—yz(Po))i
>0

and p,a,;=0 for all j. Therefore E;_,=E,B(—y(p°)E;-;. We take Ei=
E11®(y1—y(p") Ej-:- Q.E.D.

Lemma 5.12.1 is a consequence of Lemma 5.12.2 for /=v and the fact that
if I is a left ideal (right ideal) of e %3, then I@E] is a left ideal (right ideal) of

A Q.E.D.

Theorem 5.13. Let k be a field and A a (left) noetherian k-algebra. Sup-
pose that there is a both side ideal I of A such that [A, A|CI, [4,I1CI? and T¥
=0 for N»0. Then, given a both side ideal Tl of A the ring @;,J1* is noe-
therian.

Corollary 5.14. If for any a=Jl 1—a is invertible in A then the filtration
of A defined by F,A=J17"* if k<0, F,A=A if k>0 is zariskian.

Proof of the Theorem 5.13. There are elements u,, ---, u; of 4 such that
J1=31t_1 Au,. Let G be the Lie algebra over k generated by the indetermi-
nates 73, -+, T}, and verifying the relations (adg)¥G=0. We define recursively
a family (J7,)s, of left ideals of 4 by Jly=4, T, =A[T1, T, JCI*. Let B be
the Lie algebra of the derivations of €,,J1,T%, where T is an indeterminate.

Let ¢: G— B be the morphism of Lie algebras defined by ¢(T)=[u;, *]T.
Let U,(B) be the k-algebra generated by & and 4 with fundamental relations

[x,a] = o(x)(@), xEG, acsA.
We have an epimorphism
8t Up(B)— D2 JI*T*

defined by s(a)=a for a€ 4 and s(T;)=u;T for 1<j <.

It is therefore enough to show that U,(B) is a noetherian ring. Let U(G)
be the universal enveloping algebra of §. We introduce a structure of right
A-module in AR ,U(Z) by

(1®x)a := aQx+o(x)(@R1 .

We endow in this way 4®Q,U(&) with a structure of ring for which 4Q,U(Q)
and U,(Q) are isomorphic. The canonical filtration of U(Q) induces a filtra-
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tion on A®,U(4G). The associated graduated ring is an epimorphic image of
ATy, -+, T)). Q.E.D.

Corollary 5.15. Let A be a k-algebra with a zariskian filtration. Let
Jl be a both side ideal of A, verifving the conditions of Corollary 5.14. Let
B be a k-subalgebra of A and consider in B the induced filtration. If B contains
an element of A, invertible of order 1, and N (By+JI*) equals A, then B equals
A.

Proof. Given a nonnegative integer [/ put Jl,=(Jl+A4,)/A;. Then by
Corollary 5.14 the filtration of A4/A4; given by F,(4/4,)=A4/4, if k>0,
F(A/A)=317* if k<0 is zariskian. Consider in (B,~+4;)/4, the induced filtra-
tion. Since

0—>gr((By+4)/Ar)—>gr(4y/4;)

is exact then (By,+4,)/4; equals Ay/A,. Therefore By+A4,; equals 4, Since
the filtration of A4 is zariskian then B, equals A,. Q.E.D.

We will now finish the proof of Theorem 5.10. Choose p*€T*X¥,,. Put
A= 8;(;‘,”,1:“ , B =Im(¥p: 8<X,,/Y.,>,1:(p°)—’éx",;+,,,p°) .

Let m be the maximal ideal of grd4, and put Jl=ag5'm.
If p° is in the zero section the surjectivity of ¥, is trivial. We can there-
fore suppose that p°eT*X¥,,. Put

W; = YiZ; Wi, = z; for 1<i<y, w;=y; for v+1<i<n.  (5.15.1)

We can choose pi, **, Ppiy-1€0rxs,, 0@, 1€ Orexy,, /() invertible, Py, -,
P,iv-1EBy, PEB, such that o(P;,)=p;, 1 <i<n+v—1, 0(P)=7 and (w, p, 7)
is a system of local coordinates for T*X¥,, in some neighbourhood of p°.
Moreover B contains an invertible element of 4 of order 1. Given Q& 4, and
a nonnegative integer k there is a polynomial function I of

wi—w (P, 1<i <n-t, p—pi(p"), 1<i<ntv—1,

such that o(Q)—II €m*. Therefore by the Corollary 5.15 B equals 4.
This ends the proof of Theorem 5.10.

§6. Division Theorems

We will associate to each logarithmic microdifferential operator P the
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C-linear isomorphism ad, of E¢yyy defined by adp(Q)=[P, O].

Theorem 6.1. Let P be a logarithmic microdifferential operator defined
in a neighbourhood of (x°,E)ET*{X|Y)>. Assume that 8},0(P) is zero at
(x% &% for 0<j<I/—1 and different from zero for j=I. Then for any section
0 of Exyyy defined in a neighbourhood of (x°, £°) there are unique sections S and
R of E¢xyyy defined in a neighbourhood of (x°, £°) such that

Q = SP+R and ad; (R) = 0.
Moreover ord R<ord Q.

Remark 6.2. (i) We notice that adﬁszo iff there are microdifferential

operators R®, ..., R*-D such that ad, R?=0 for 1<i</—1 and R=
ety CLHN

(ii) With the same hypothesis there exists also S and R such that Q=PS+ R
and adf;“:O. Moreover X and R are unique and ord R<ord Q.
(iii) We can interchange xu adn d,, in the statement of the theorem.
(iv) If an operator 4 commutes with P, Q0 and x. then A also commutes with
S and R.

Proof. We will admit the Theorem with the additional hypothesis ¥Y=¢
(cf. [SKK] or [15]). We will use the constructions introduced during the proof
of Theorem 5.10.

We will consider in X¥,, the system of coordinates (5.15.1).

Let U be an open neighbourhood of (x° &° in which P and Q are defined.
Put P=¥(P), 0=¥(Q). Given (3°,2° 7° ) T*X5E,, if v 2,7, "=
(x°, €% then 87,0(P)()", 2% 7°, ¢°) equals zero for 0<j</—1 and is different
from zero for j=/. Then there are unique microdifferential operators S and R
defined in a neighborhood of (3°, 2% #°, ¢°) such that 0=SP+R and ad’,,R=0.
By Remark 6.2 z; and p; commute with R and § for 1<i<».

Hence there are logarithmic microdifferential operators R, S, defined in a
neighbourhood of (x°, %), such that Z(R)=R, ¥(S)=S8. We can easily verify
that they have the desired properties. Q.E.D.

Corollary 6.3. With the same hypothesis on P there exists an invertible
microdifferential operator A and a microdifferential operator W such that

. sl -1 .
P =AW, W=0.,+31Rp},

and [xu, R;]=0 for 0< j </—1, ord W </.



BrLow UP FOR A HOLONOMIC SYSTEM 203

We will now use the Division Theorem to study the both side ideals of
Exrry-

Let 4 be an associative ring with identity. We say that a proper both
side ideal I of A is prime if given two both side ideals I, [, of 4, I,I,=I im-
plies I=I, or I=1I,, We notice that a both side ideal I of A is prime if and
only if adbel implies a1 or b1 for any a, bEA. A maximal both side
ideal is always prime.

Definition 6.4. Let .4 be a coherent sheaf of rings over a topological space
X. We say that a coherent ideal [both side ideal] J of A is proper [prime,
maximal] along a subset Y of X if the stalk J, of J is a proper [prime, maxi-
mal] ideal of A, for any x& Y and 9, equals A, for x& Y.

Remark 6.5. The following relations are a consequence of the Division
Theorem for 1<i<v.

(x) = ExrpXi = XExuvy> » (6.5.1)
[6::,-7 8(X,,/Y,,>] c (xi) > (652)
O+ = EayryyXitEix,yryy@e4-2) (6.5.3)

= xie(X,,le>+(6x,~+2)8<X,,/Y\,> .

Theorem 6.6. (i) For 1<i<v (x;) is the only both side ideal of E¢x v.>
that is prime along {x;=0}.
(i) For 1<i<v the both side ideals (0,+2), A&C, are the only both side
ideals of E¢x v, that are maximal along {x;=¢&;=0}.

Proof. Let’s fix an integer 7, 1 <i<v. The fact that (x;) is a prime ideal
along {x;=0} is an obvious consequence of the Division Theorem and Remark
6.5.

Let J be a prime ideal along {x;=0}. Suppose that x;&J. Given a
non zero section P of J there is a holomorphic function f and a positive integer
m such that ¢(P)=fx7 and f does not vanish along {x;=0}. Suppose m>2.
Then there are logarithmic microdifferential operators A, 4;, **+, 4,, such that

P =70 d;xi, [0.,A4]=0,  (6.6.1)

and ord 4;<ord 4,, for 0<j <m—1.

Then [0,,, P1=([0,,, 4,]x7 ' +>37-1j4,;x"")x,. Hence [0,, Plxi*€J and
S([0,,, Plx7)=f"x7"! for some holomorphic function f* that does not vanish
along {x;=0}. We can therefore suppose m=1. Repeating the reasoning
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above with m=1 we conclude that 4;+[0,, 4,]€J. Since this logarithmic
microdifferential operator is invertible in a generic point of {x;=0} then the
assumption x, €J leaded us into a contradiction. We can now conclude from
the Division Theorem that J equals (x;,).

(i) Let J be a maximal ideal along {x;=¢&;=0} and P a local non zero sec-
tion of J defined in a neighbourhood of a point in the residual set {x;=&;=0}.
The logarithmic microdifferential operators [9,, P] and [P, x;] cannot vanish
simultaneously otherwise P would be invertible in a generic point of {x;=¢,=
0}. Since [0, P], [P, x;]€(x;) we can repeat the argument of the proof of (i)
and conclude that (x,)CJ.

Choose now PeJ\(x;). We can suppose that, at a generical point of
{x;=¢€,=0}, o(P)=¢£7. Hence we can suppose that, at a generical point of
{x;=¢;=0}, P=07 42170 R,0%, where [R, x;,]=[0,,, R;]=0 for 1<i<m—1.

If the logarithmic microdifferential operators R; are constant then there
are complex numbers 4,, --, 4,, such that

P=TI"%:(0,+2). (6.6.2)

Otherwise let m, be the highest j such that R; is not constant. Then n>1 and
there is a microdifferential operator S such that [S, R,, ]#0 and [0, S]=[S, x;]
=0. The integer m, must be positive. There is a microdifferential operator
U defined in a generical point of the support of [S, P] such that o(U[S, P])=
E70 and

ULS, P] = 070+ 337%5" Rj0),

where Rj verifies the same conditions as the operator R; considered above.
After repeating this operation a finite number of times we will obtain an opera-
tor P verifying (6.6.2). Therefore there is a 4 such that (0, +4)CJ in a
generic point of {x;=¢&,=0}. We conclude now from the Division Theorem
that JC(0,,+4). Q.E.D.

§7. Quantized Contact Transformations

Definition 7.1. Let X [X] be a complex manifold and ¥ [f’ ] a divisor with
normal crossings of X [X]. Let U be an open set of T*(X/Y> and ¢: U—
T*(X’/ I7> be a symplectic transformation, homogeneous outside the zero sec-
tion. We say that a filtered C-algebras isomorphism

0: 07 x> —>Exmy v



BLow UP FOR A HOLONOMIC SYSTEM 205

is a quantization of ¢ if the following diagram commutes for any integer m.

)
o Ex7y(m) —> Exryim) v
aml O
o

_ @
7' Or+¢x73(m) —> Opeixyyy(m) |y

We call the pair (¢, @) a quantized contact transformation.

Definition 7.2. Let X be a complex manifold and Y be a divisor with
normal crossings of Y. We say that a family

(Pla"'7Pn5 Ql’ B Qn) (721)

of logarithmic microdifferential operators defined in an open set U of T*{X/Y >
is a system of quantized contact coordinates for E¢xy> on U if

i) Py, -, P, have order 1, Q,, -+, Q, have order 0.

(ii) The principal symbols of the logarithmic microdifferential operators
(7.2.1) define a system of homogeneous logarithmic symplectic coordinates for
the homogeneous logarithmic symplectic manifold U.

(iii) The following commutation relations hold:

. aijj if a([Pj: Q_,]) = G(Qj)
Po Ol =1o, " wotr, o) =1,

[P;, Pj] = [0Q; Q]] =0 1<i, j<n.

Theorem 7.3. Let X be a complex manifold and Y a divisor with normal
crossings of X. Let (P, -+, P,, Q, -+, Q,) be a system of quantized contact co-
ordinates for E¢xyyy on U.  Let v be the only integer such that [P,, Q,]=Q, for
1<i<v and [P,, Q;]=1 for v+1<i<n. Let X, be a copy of C* with coordi-
nates (x;, *++, x,,) and let (x, &) be the associated system of canonical coordinates
of TX|Y)>. Letp: U—>T*X,/Y,> be the contact transformation defined by
o*x;=0(Q,), ¢*€;=0(P)) for 1<i<n.

Then there is one and only one quantization @ of the contact transformation
@ such that

Q)(xi) = Qi s @(ax,) = Pi 5 ISZSI’I

Proof. We can identify U with its image by ¢. We are then reduced to
prove the following statement.

(7.3.1) Let U be an open set of T*{X,/Y,> and (P, +-+, P,, Oy, -+, Q,) be
a system of quantized contact coordinates for E¢x,/y,»> on U such that o(Q;)=
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x;, 0(P;)=€;, 1<i<n. Then there is an automorphism @ of E¢x sy, |y such
that O(x)=0Q;, (6, )=P;, 1<i<n.

We will first prove the uniqueness. Let @, @’ be two quantizations of id,
and let p° be a point of U. Put A=5~’<x,,/y,,>,p0 and B={Pc 4. ®(P)=9'(P)}.
Then B equals 4 by Theorem 5.10 and Corollary 5.15.

We will now prove the existence. We assume the Theorem proved in the
case v=0 (cf. [SKK] or [15]). By the Division Theorem there are unique
microdifferential operators 4;, B;, C;, D;, 1 <i<v, such that

Q,' = A,-x,-—}-D,- » [Bx,v: D,-]=0, (732)
P, = 6,,‘."|‘B,'x,'+ci s [6::,-’ C;]=0.

Moreover 4; is invertible of order 0, B;, C;E&(0), D;=&(—1). We conclude
from the commutation relations 7.2 (iii) and Remark 6.5 that [C;, D,]=D;
(mod (x;)). Therefore [C;, D;]=D;. Henceforth D;=0.

We will first prove the (7.3.1) under the following assumption.

(7.3.3) C,; is constant for 1<i<v.

We will use again the construction introduced in the proof of Theorem 5.10.
For 1<i<v put

P, = W(Ai)—l(ay;—i_ziw(Bi)_l_;lTCi) »

Qi =y ¥(4,),
Rn+z‘ = az‘.—‘—in(B;), Sn+i =2z, ISISV,

~ ~

P, — w(p), 0, = ¥(Q), »+1<i<n.

Then (P, R, Q, S) is a system of quantized contact coordinates for T*XF,,
on v~ Y(U). Let @ be the quantization of idy-1(y) such that

d’;(yt) = Q~i’ 5(831') == Qi’ 1£l£n,
b(z) =S, ©(@,) =R, 1<i<v.

Since &( ¥:0y,—2:9,)=y:0,,—20,+C; for 1<i<y, ® induces an automor-
phism of &,* | y-1¢;) and the Theorem is proved under the assumption (7.3.3).

Example 7.4. Given ASC" there is one and only one quantization @, of
idT*<le> Such that
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D,(x;) = x;, 1<i<n,
w}t(ax,') = 6;,-_1_1,' s 1Si£u,
@A(axi) = 63,— > V—I—l SiSn,

Actually the system of quantized contact coordinates (xy, ***, Xp, 04,42, *++, 0, +
Ay, 04y yrs o005 0,,) verifies (7.3.3).

Put A=E¢x 1v,,* and B={PEA:[0,+4;x;+C;, PIE(x,)}. Once more
B equals A by Theorem 5.10 and Corollary 5.15.

Therefore [C;, x;]=[C;, ij]=0 for 1<j<n, j==i. We conclude from the
commutation relations that [C;, 4,x;]€(x}). If ord C,</

00,(C;
o) 2D 1 {0,(C), o) €.
Since o(C;) only depends of &; and 0(4;) is invertible then 8¢,0,(C;)=0. There-
fore
the symbol of C; is constant. (74.1)

Put 2;=0(C;) for 1<i<v and A=—(4;, :+-, 4,). By Example 7.4 the family of
logarithmic microdifferential operators

(@A(Ql)’ °tt Q)A(Qn)a ®)\(P1): "t 0)\(Pn))

constitute a system of quantized contact coordinates for 7*{X,/Y,> on U.
Moreover @,(P;) belongs to (3,)+E¢x,vyy(—1) for 1<i<v. Therefore by
(7.4.1) O,(P)E(0,,). Hence P; verifies (7.3.3).

This ends the proof of Theorem 7.3.

Corollary 7.5. Let X be a complex manifold and Y a divisor with normal
crossings of X. Let U be an open set of T *<A~’ / f’) and (Q, 13) a system of quan-
tized contact coordinates for Eczzy on U.

Let ¢: U—U be the only canonical transformation such that

P*(o(P)) = o(P), 9*9(Q)) = a(Q), 1<i<n.
Then there is one and only one quantization @ of ¢ such that
o(P) = F;, 9(Q) = Qi; 1<iLn.

§8. Quantized Logarithmic Contact Manifolds

We remember that a ringed space over C is a pair (X, /) where X is a to-
pological space and ./ a sheaf of C-Algebras on X. Usually we will omit the
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expression “over C”.

Given ringed spaces (X, 1) and (¥, ) a morphism of ringed spaces from
(X, A) into (¥, B) is a pair (¢, P) where ¢ is a continuous map from X into
Y and @ is a morphism of C-Algebras from ¢~ into A.

Definition 8.1. Let (X, A) be a ringed space. We call an adjoint morphism
of (X, A) to an anti isomorphism (a, *): (X, A)—(X, a~*A) such that a7 7 is
isomorphic to A and (g, *)*=id 1.

We will in general write J° and A* instead of a~*.A and #(_A).

We call a ringed space with an adjoint morphism a self dual ringed space.
We say that a subsheaf B of a self dual ringed space is self dual if B*=3B.
We say that a morphism of ringed spaces between two self dual ringed spaces
is self dual if it commutes with the adjoint morphisms.

Example 8.2. (i) Let X, be a copy of C" with coordinates (x,, -+, x,).
Given an open set U of T*X, and a total symbol P=>,P,c& x,(U) we denote
by P* the total symbol 33,0, € E% (U), where

el
(™ geeg, .

Ql(x’ _E) = =B al

aEnN

We call * the adjoint morphism of € x,- The pair (a, *) is an adjoint morphism.
(ii) There is one and only one morphism of filtered C-Algebras

*: 8(X,,/Y-.,> - 8?x,,/n>

such that the following diagram commutes.

8<x,,/y,,> IX,,\YV = 8X,, |X,,\Y,,
]

82X,,/Y-“> IX,,\Y,, = 83{,, IX,,\Y,,

This morphism is an adjoint morphism.
For the proof of (i) cf. [SKK]. The existence of the morphism introduced
in (i) is a straightforward consequence of Theorem 5.10 and Corollary 5.15

Propesition 8.3. A quantized contact transformation
?: ¢_18<X,,/Y~,> - Exps lu

is self dual iff
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D(x)* = O(x;) 1<i<n,
1 if1<i<y

f J—
PO)TPO)* =g iryr1<i<n

Proof. 1t is a straightforward consequence of Theorem 5.10 and Corol-
lary 5.15. Q.E.D.

Definition 8.4. A [self dual] quantized logarithmic contact manifold is
given by the data (i), (ii), (iii) verifying the condition (iv).
(i) A filtered [self dual] ringed space (X, &) where X is an homogeneous
logarithmic symplectic manifold X.
(i) An open covering U, i€, of X by conic open sets and homogeneous
canonical transformations ¢;: U;—T*{X,/Y, >
(iii) Isomorphisms of [self dual] filtered C-Algebras

?;: 9"718(.3:,,/1/\,'.) - & lv; -
(iv) The isomorphisms of filtered C-Algebras

07'0,: 907j18<x,,/y,,,.> - 8<x,/ij> lv;,: .

is a quantization of ¢;;. Here V;; equals ¢, (U;NU)) and ¢;; equals 07 V;;
—>T*X,/Y, ).

Remark 8.5. (i) In general we will speak of the quantized contact mani-
fold (X, €), omiting the other data. If the homogeneous logarithmic contact
manifold X has poles along a divisor Y we say that (X, &) has poles along Y.
(i) If X is a homogeneous symplectic manifold we say that (X, €) is a [self
dual] quantized contact manifold.

(iii) There are obvious generalizations of the notions of [self dual] quantized
contact transformation and quantized contact coordinates to the context of
[self dual] quantized logarithmic contact manifolds.

(iv) We understand a [self dual] quantized logarithmic contact manifold as a
pair (X, &) where X is the patching of a family of copies U; of homogeneous
open sets of logarithmic cotangent bundles 7*CX,/Y,> by homogeneous
canonical transformations and &€ is the glueing of the sheaves 8<Xﬂlyvi> along
[self dual] quantizations of the homogeneous canonical transformations refered
above.

Example 8.6. (i) Let X be a complex manifold and Y a divisor with
normal crossings of Y. Then



210 ORLANDO NETO

Ecxrry lT*( X/Y>
is a quantized contact manifold. In general it is not self dual.

(i) Put wy=8%m%_ Let L}, -L, be invertible O x-modules defined in an open
set of X. If ¢, @,: L1—_L, are isomorphisms such that ¢,(s)®?=s5%? for any
local section s of -£; then ¢,=+¢,. Locally there is allways an isomorphism
¢: L;—.L,  Moreover locally there is always an invertible @x-module L,
such that -L®?~ wy. Therefore we can glue in a canonical way the sheaves

Lo®@Exrr> 10@-LEFY,

where Ly is a locally free Oy-module defined in an open set U of T*X/Y)>
such that L§? is isomorphic to wy |y, into a sheaf on T*{X/Y that we will
denote by

R LQRE x1ryR0F 1 (8.9.1)

The adjoint morphism introduced in 8.2 (ii) induces an adjoint morphism in
(8.9.1) and the restriction of (8.9.1) to T*X|Y > has a canonical structure of
self dual quantized contact manifold with poles along z=(Y).

Definition 8.7. Given a self dual quantized logarithmic contact manifold
(X, €), a connected open set U of X and P=E(m) (U) we define

o4(P) = —;-a,,.-,(P—(—)'”P*) .

We call ¢/,(P) the subprincipal symbol of P of order m.
We define ¢'(P) as 0,,(P) if P has order m&Z and zero if P equal zero.
We call ¢'(P) the subprincipal symbol of P.

Proposition 8.8. (i) If PEE(m—1) then o,,(P) equals o,,_,(P).
(i) IfPeEm), Q=& ), then

0hsn(PQ) = am(P)o:,(Q)+a:n(P)a,,(Q)+~;~{am<P), o,(O)}.

(iii) Let (x,, ---, x,,) be a system of coordinates on a open set U of a complex
manifold X and let (x, &) be the associated system of canonical coordinates of
T*X. Let V be an open set of z=Y(U) and P a section of & x(m)(V).

Then o, (dx®*Q P Qdx®(-*?) equals

n

dx®/2 (m_ > dx®(-12)
R l.Elaax@)
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Proposition 8.9. Let (X, &) be a self dual quantized contact manifold with
poles along a smooth divisor Y. Let Z be the residual submanifold of X.
(1) There is one and only one both side Ideal 9y of € that is prime along the
set of poles of X.
(ii) For each 2<C there is one and only one both side Ideal 9, that is maxi-
mal along Z and moreover is contained in the set of the local sections P of €
such that

Eo'(P) = 20(P) (mod I,+1%). (8.9.1)
Here & denotes an arbitrary residual function.
The ideal 9, is self dual iff 2=0.

The sheaf of C-Algebras £/9, is a self dual quantization of the contact
manifold Z.

Definition 8.10. (i) We call 9, the ideal of the set of poles of (X, £).
(ii) We call 9, the self dual residual ideal.

Proof of Proposition 8.9. Statement (i) is a straightforward consequence
of Theorem 6.6. It is enough to prove statement (ii) locally. By Theorem
6.6 it is enough to show that (3,,4-24-%) is contained in

{P58<anyl>: £,0'(P) = 4,0(P) (mod (x1)+(‘=:§))}
iff 2=2,.

By Remark 6.5 if P€(9,,+2+1%) then there are R, SEE(x, v, such that
P=8(0,,+2+%)+xR. Now, by Proposition 8.8 (ii),

a'(P) = a'(8)&,+2a(S) (mod (x,))
£,0'(P) = 2£,0(S) (mod (x,)+(&%)
= 10(P) (mod (x)+(1))
Moreover &,0°(8,,-+4+4)=20(3,,) and (A—2,)&;=0 (mod (x,)+(£})) iff 2=2,.

Q.E.D.

Chapter III. Blow up of a2 Holonomic System

In §9 we show that the blow up z: ¥—X of a contact manifold X along
a closed Lagrangian submanifold 4 has a canonical structure of logarithmic
contact manifold with poles along the exceptional divisor of X. We also show
that, given a quantization € of X there is a canonical quantization & of X and
a canonical morphism @: z-&,—&, where &, is a well known subsheaf of &.
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Let X be a logarithmic contact manifold with poles along a smooth divi-
sor. In §10 we study the blow up =: ¥—X of X along its residual submani-
fold. We show that X has a canonical structure of logarithmic contact mani-
fold. We also show how to associate to a quantization of X a quantization of
X

Proposition 11.13 relates the construction presented in this Chapter with
the construction described in the Introduction. Let X be a complex mani-
fold and 2 a point of X. Let zx: P*X—X be the projective cotangent bundle of
X. Put A==z"%2). Let X, be the blow up of P*X along 4 and let X; be the
blow up of X, along its residual set. Let Y, be the set of poles of X;. Then
X,\Y; is a contact manifold isomorphic to P*X\P%X, where X is the blow up
of X along {4} and E the exceptional divisor of X.

Nevertheless we do not define the “total blow up of P*X along A4” as
X,/Y,. There is a loss of information when we take away the set ¥;. To mini-
mize it we define recursively a family (X,) of logarithmic contact manifolds by
putting X,.,=“blow up of X, along its residual submanifold”. We put ¥,=
“set of poles of X,”. Finally we define the total blow up P*X of P*X as the
union of the family of contact manifolds (X,\Y;). Here we identify X;\Y,
with a canonical open set of X\ Yz,

We show that P*X has a canonical quantization. Finally we show how
to associate to a holonomic &€ y-module .9 a holonomic E-module .

§9. Blow up of a Quantized Contact Manifold along
a Lagrangian Submanifold

9.1. Given a scheme S of finite type over C we will still denote by .S the
associated analytic space. Given a nonnegative integer n we will call the ana-
lytic space Spec(C[xy, -°+, x,]) a affine complex manifold of dimension n.

Definition 9.1.1. An affine logarithmic contact manifold X of dimension
2n+-1 is given by the following data:

(i) A polynomial algebra 4 over C.
(ii) An algebraic basis x;, *>*, X,,4, of 4.
(iii) A subset @ of [1, n+1].

If w=¢ we call X an affine contact manifold.
Put X=Spec 4 and Y={[licwx;=0}. The set Y is a divisor with nor-
mal crossings of X, We call
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® =0, —2V 1% 01104,
the canonical logarithmic contact form of X.

For instance, if w=1{l, 2, n+1}, then

dx dx, dx, "
=" X, —Xn+3 2173 Xppr i -
Xa+1 X1 Xz

@

We will in general denote the affine logarithmic contact manifold X simply by
[0x41—201 =1 Xjn10x;] - (9.1.1)

Given (9.1.1) we recover the data (i), (i), (iii) in the following way. We put
A=C[x,, -**, X,,4,] and we choose for @ the smallest subset I of [1,n+1] such
that (I];e;x;)@ is a differential form on X.

Definition 9.1.2. An affine homogeneous logarithmic symplectic manifold
X of dimension 2# is given by the following data:

(i) A polynomial algebra 4 over C with a structure of graded ring.

(ii) An algebraic basis (x, -+, X, &, **+, &,) of 4 such that x,, -+-, x,, are
homogeneous of degree 0 and &, -+, £, are homogeneous of degree 1.
(iii) Subsets @, ¢ of [1, n], where ¢ is nonempty.

If w equals ¢ we call X an affine homogeneous symplectic manifold.

Put X =Spec A\ N;c.{6;=0} and Y={II;co x;=0} NX. We call 6=
21&,0x; the canonical 1-form of X. We will in general denote the affine
logarithmic contact manifold X simply by

[2?=1 fgax,‘]; . (913)
If e={k} then we denote X by [>7., £,0x;],. If ¢=[1, n] then we denote X by
[ ';sl E;ax,-].

Definition 9.1.4. Given an affine logarithmic contact manifold X of
dimension 2n+1 we associate to it the affine homogeneous logarithmic sym-
plectic manifold X given by the following data.

(i) The C-algebra AQ C[w® Y], where @ is the canonical contact form
of X. We endow AR C[w® ] with the only graduation such that all the
elements of 4 have degree 0 and @® has degree 1.

(if) The algebraic basis x;, -+, X,41, &1, ***, €441, Where

Ei = —p,-CU@(_l) 2 lglsn ’ "En+1 = O)®(—1) .
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(iii) The sets @ and {n-+1}.
We call X=[317*1&,dx;],+, the affine homogeneous logarithmic symplectic man-
ifold associated to the affine logarithmic contact manifold X.

Remark 9.1.5. Given an affine homogeneous symplectic manifold X of
dimension 2z let M be the Spectrum of the subalgebra of 4 generated by
Xy, oty X Put N={I];cox,=0} C M. We identify T*(M/N > with Spec A.
Let ¢ be the open inclusion X>T*{M/N>. We call the sheaf of C-algebras
E=1"Cyn> the quantization of the affine homogeneous logarithmic symplectic
manifold X.

Let (X, L) be a contact manifold. Let 4 be a closed Lagrangian sub-
manifold of X and I, the defining ideal of 4. Let

7 : X = Projan (@ysel?) = X

be the blow up of X along A). Let E be the exceptional divisor of = and I
its defining ideal. We can identify the dual O of I in a canonical way with
a subsheaf of j,Ox z, where j: ¥\E<X is the inclusion map.

Proposition 9.2. The Oz-module L= gyz*L is a structure of logarithmic
contact manifold with poles along E. It is the only structure of logarithmic
contact manifold on X such that the restriction of = to X\E is a contact trans-
formation.

Definition 9.3. We call the pair (z: £—X, L) blow up of the contact
manifold (X, -£) along its (closed) Lagrangian submanifold 4.

Proposition 9.4. Let X be a complex manifold. Let 2 be a point of X and
put A=z ()T P*X. Then the blow up of P*X along A equals the logarith-
mic contact manifold P*{X|E>, where X is the blow up of X along {3} and E
is the exceptional divisor of X—X.

Proof of Proposition 9.2. Since the problem is local in X we can suppose
that X is the affine logarithmic contact manifold [dx,,, —>1.1 p;dx,] and that
A={x,=+=x,,=0}. Put z=x,,,—3V_1x;p;, Then X is the obvious
patching of the affine complex manifolds.

X, = Spec (C[x;, g: j=k, ;f-k pi»j=kl), 1<k<n,

Xy = Spec (Clz, %, 1<j<n, p;, 1<j<n]).
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Moreover ENX, ={x,=0}, 1<k<n, ENX,,,={z=0}. Put o,=7%0|y,
1<k <n+1. Then the Ox-module _L is determined by the logarithmic dif-
ferential forms

O _ a2 5 _Svpay i 1<k<n

X X¢ Xk X JFk

Our1 _ 924 $2 314, QE.D.
z z i=12Zz

Proof of Proposition 9.4. There is a canonical open immersion
PHX|EY| 3 — P*X . (9.4.1)

Here P*{X/E> denotes the blow up of P*X along 4.

Since P*(X/E>|zr is dense in P*(X/E> then its enough to show that
(9.4.1) admits locally an extension to P*{X/E>. This can be easily shown
by some simple computations with local coordinates. Q.E.D.

Let (X, &) be a quantized contact manifold and 4 a (closed) Lagrangian
submanifold of X. Let I, be the defining ideal of 4, J, the sub &(0)-module
of €(1) of the microdifferential operators P €&(1) such that o;(P)e1;. Follow-
ing Kashiwara-Oshima [13] we define

Ei=29%.

k21

The C-algebra &, is noetherian and has zariskian fibers. Moreover if (X, &)
is self dual then &, is also self dual.

Theorem 9.5. Let (X, &) be a [self dual] quantized contact manifold and
A a closed Lagrangian submanifold of X. Then there is a [self dual] quantiza-
tion & of the blow up of the contact manifold X along A and a [self dual] morphism

O:27E— & 9.5.1)
such that @ | 3\ : 778 4| 7, =] %\ IS an isomorphism. Moreover the pair (9, 1)
is unique up to a unique isomorphism.

Definition 9.6. The pair (z: X—X, @: z18,—E) is called the blow up
of the [self dual] quantized contact manifold (X, €) along the Lagrangian sub-
manifold A.

Lemma 9.7. There is one and only one morphism of =~'0 x-modules

pialgr E4— @kezj®(-k) 9.7.1)
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that extends the natural isomorphism
7l gr &l e = Prez-LB P 15
induced by =.

Remark 9.8. The sheaf of graded algebras gr& equals Bz -LEP.
Moreover the morphism

gr@:algrEy—gré
equals the morphism (9.7.1).

Proof of the Lemma 9.7. Since X\E is dense in X it is enough to prove the
existence of ¢ locally on X. We will use the notations and assumptions of
the proof of Proposition 9.3. We notice that

gr €4 = Drez [jQLEH,
where I equals O if k<0. Given an open set U of X, f=(fi, ./, ) EO(U)**,
g€0(U) put LA =<£, ,Ji’ﬂ) Put I,={a = N""*: |a|=k}. The free
& g g

O x-module I4® L8 admits the basis

xd®w®(_k) s aEIk 5
and
ZPXPRw®H | o, HEI, .
Since
X a
TH(x*Q@wO) |, = <~) Wb, 1<i<n,
X;
and

x \B
- -
HZXP)RwPM) |4, . = <—Z> Qw7

then we can built morphisms
go,-:n"gr8A|xi—>69kaZ'®(‘k)|Xi, 1<i<n+1,
that extend the natural isomorphisms
7 gt &l xae —> Dy LOP | xpp, 1<Ki<ntl,
We can glue the morphisms ¢; into the desired morphism ¢. Q.E.D.

We will now prove the Theorem in the case X is the quantization of the affine
contact manifold [dx,.;—>37.1p,dx;]. We will use this assumption in para-
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graphs 9.9, 9.10, and 9.11.

9.9. We will now quantize the homogeneous logarithmic symplectic man-

ifold X; . We know from the proof of Proposition 9.2 that X is the patching
of the affine logarithmic contact manifolds X, 1 <k<n-1, where

[dx,.ﬂ + z ka j#kpjd;‘i]’ 1<k<n,
X

Xn+1 = [ +2|-1 ' dp:] .

For 1<k<n put

X; .
Xpj = 2L, Ekj::xlzfj’ ]:i:ka
X
= ntl
Xee = Xp » Epe = 20101 XE; .
Put Xut+1,; = Pj» Earr, j = X6t JFn+1,
_ N+l
Xptt,ne1 = Z5  Eppr = 20021 x£€; -

Now X’ is a patching of affine homogeneous logarithmic symplectic manifolds
AA’,,, 1<k<n-+1, where AA’,, equals

dxy
I:Ekk R Ekjdxkj N
Xer n+1

along the obvious contact transformations ¢,;: AA’,,,—>AA’,. Here X, =X\ {x,,=
0}. For 1<k<n-+1 let &, be the quantization of X,. We glue the sheafs &,
by quantized contact transformations

Oyt 91Cy — <91[2:,,,

defined as follows. If 1<k, [<n, k==/, then we define @, by

—1 .
Xej 2> XXk s 0, xp0s,;, J=Fk. 1,
Xee 7> XuXi » Ospe > 02, 5
-1 n
Xp > X1 ax,,, = X (ax”_ 2:’*1 xliax“—'z’) .

If k=+n+-1 then we define @, ,.,: 971,:E4—>Cinl x,, ., BY

a 1

Zn+1,i 2n+1,k >

axh = xn-l-l,jaxnﬂ,k ’ .] =l=k' n+l ’
Xpe axn+1,ka;n1+l,n+l xn+1,n+1

0, 0

Xkk In+l,n+1 >

.|—>6
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-1 n -1 naa
X, n+1 axn+1,n+laxn+l,k+ a1 xn+1,iaxn+1,iaxn+1,»‘|‘ 2 axn+1,re
0

Zk,n+1 = a’«'ﬂ-’!’l,k °
We obtain in this way a sheaf & on X. Since the quantized contact trans-
formations @,, are self dual then & is a self dual quantization.

9.16. We will now build the morphism (9.5.1). We will first introduce
self dual quantized contact transformations

mk H 71?'-18] Xk\‘xkk":m - 8k | Xh\(xkk=0) s lSkSH‘I-l H
in the following way. If 1<k <n then we define @, by
j=Fk, 9.10.1)

-1 n
X P X 85, > Xig (0, —2pes X201y, —7) -

—1
X; > XpXj az,- = Xk Oy, 5

We define @, by
(9.10.2)

-1
xj s 6xn+1,n+1xn+1,n+laxn+1,j ’
-1 .
04; > —Xpi1.0010 0001, wrrXnr1, j 5 jFn+1,

n _i -1
Xpt+1 xn+1,n+1+(2i=1 Xn-H,iaxnﬂ,i + 2)6xn+1,n+1xn+1,n+1 ’

—1
ax,,ﬂ B Xoe 1m0 1001001 -

We will now extend @,, 1 <k<n-+1, into a morphism from z~1&| x, Ainto élxk
that we will still denote by @,. Choose p° = ENX,. Let EAE] be the
formal analog of 8,1[(‘:’]. Put 4A=E, 1.5°. Let B be the subalgebra of 4 of the
formal microdifferential operators P € 4 such that thcAere is a neighbourhood £
of p° in X, a representative P’ of Pin £ and Q € é(Q) such that (P’ | p\g)=
Oloz  We conclude from Theorem 5.10 and Corollary 5.15 that B equals 4.
One can show, using the Cauchy estimates, that if P €&, » then QEépo. We
can glue the @,’s into the desired morphism @. This morphism is self dual by
construction.

Definition 9.10.3. We call the pair (z: X —>X, 0: z-'€—&) the quantization
of the blow up of the affine contact manifold [dx,,, —31.1p; dx;] along the
Lagrangian submanifold {x,=---=x,,,=0}.

9.11. Still under the assumption (9.8.1) let & be another [self dual] quanti-
zation of X and @': z~'€,—&" another [self dual] morphism such that @’| E:
7t &6 | %\ is an isomorphism. There is at most one morphism Z: &—&’
such that ¥o®=0'. Put z9=2?l§xi6x’.+%. We notice that, for 1<k<n,
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Dy(xz) = X D) =04, »
q)k(xkaxj) = ax,,,' s q)k(xjaxj) = xkiaxk,‘ >
Di(x;) = XXy » Jj=Fk.

Put @;=0'|x, for 1<k<n-+1. Since o(P;(P))=0(Py(P)) for 1<k<n+1and
any P then @;(x,0,,)Pi(x;0,,)" is defined outside {¢,;=0} and Of(x;)P'(x;)™
is defined outside {x,,=0}. Since this sections coincide in the intersections of
their domains then there is one and only one extension of both to X, that we
will denote by @;(x;/x;). We define ¥: E—E"] x, as the quantization of idy,
determined by

X > Dr(xy) 0, > O,

*kk
xkj = @,:(xj/x,,) s ax,,j (and q)l:(xkaxj) 3 J#k :

We can build a morphism ¥,.,: £,,,—>E"|x,,, in a similar way. We define
¥ as the glueing of the morphisms ¥, 1 <k <n+1.

9.12. We will now finish the proof of Theorem 9.5.

Let X,, =1, be an open covering of 4 and for each a let ¢,: X,—»X=
[dx,41—>Yi-1p,dx;] be quantized contact transformation such that ¢;*{x;=---
=x,11=0t =4NX,. Let &, denote the quantization of the affine contact
manifold X and put &,=:3'C,11, Xup=X, N Xp, X=X\ 4.

We can understand the quantization & of X as the glueing of &, a1,
& | x\1 by quantized contact transformations

Dypt gleaﬂ - 8ﬂ|X¢5 s
Ds: Eulxy—>Elxy -
The contact transformation ¢, induces a quantization
®w: ”Elgu/l,, - ga

of the blow up of X, along 4,. If X, NXz=+¢ then @,z induces a quantized
contact transformation

D 8&'20&5—)85'1?,»3 .

If @,p is self dual then 5,3 is also self dual. The proof of the existence of
®,, is quite similar to the reasoning of paragraph 9.9.

We can glue the morphisms of self dual filtered C-Algebras @, into a mor-
phism of [self dual] filtered C-Algebras.
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0. 7:'18/1—3‘3.

Let now ®':z"'€,—~&’ be another quantization of =:X—X. The local
uniqueness of a quantization ¥ of the identity such that ¥®=®’ is obvious.
Therefore it is enough to prove the existence locally. This is trivial outside
the exceptional divisor. This was proven near the exceptional divisor in para-
graph 9.11.

This ends the proof of Theorem 9.5.
Proposition 9.13.  The morphism @: z-'€,—& is flat.

Proof. The morphism @ is flat outside the exceptional divisor. Choose
p’€E. We can suppose that (X, &) is the quantization of the affine con-
tact manifold [dx,;—>37-1p;dx;] and x(z(p°))=p(=(p°))=0 for 1<i<n+1,
1<j<n. Since the filtrations of £, «(,% and & ,» are zariskian and the sequence

0= E e —> Epp
is strictly exact it is enough to prove that the morphism
Py 8 8A,¢(p°) — gr gp"

is flat (cf. for instance Schapira [15]). Suppose that there is a k, 1<k <n,
such that p’eX,. Put

Ay = ClxX,40, 1<j<n+1, p;, 1<j<n, 77:41],
Bk = C[xkp 1£J£n+la ij’ 1S]Sn, 77k,n+h 77;2-.1n+1] .

There are canonical immersions of A4,[B,] into gr & [gr 67,0]. The morphism
¢, induces morphisms ¢,: A,—>B,.

Let I,[9,] be the ideal of A,gr &, «,0] generated by x;, *=+, X1y, D1y ***5 Dy
Let J,[J9,] be the ideal of B,,[grg,t)] generated by x;,; —x, (%), 1 <j<n+1,
Prj—Pai( P%), 1<j<n. The completion of 4,[B,] relative to the I,-adic topology
[J:-adic] topology equals the completion of gr & .,n[gr e 0] relative to the J,-
adic topology [4,-adic topology]. Since the maps ¢, @, are continuous and
have the same completion relatively to the topologies introduced above it is
enough to show that ¢, is flat (cf. Bourbaky [1]). The morphism ¢, is flat be-
cause @,(x;7,+1) is invertible in B, and ¢, induces an isomorphism

~
Akxla”n+l - Bk :

If € X, ., then we can prove the proposition in a similar way. Q.E.D.
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Theorem 9.14. Let (z: X— X, @: '€ ,—&) be the blow up of the quantiz-
ed contact manifold (X, £) along a closed Lagrangian submanifold A. Let J] be
a coherent & -submodule of a coherent E-module. Then

codim supp ER e Il > codim supp Tl .

Theorem 9.15. Let (X, &) be a quantized logarithmic contact manifold
and A a coherent sub E(0)-algebra of £ with zariskian fibers. Let Jl be a co-
herent A-submodule of a coherent E-module. Then, for j<d,

codim supp I >d iff Ext’y(T1, A) =0.

Proof of Theorem 9.14. Let Jl be a coherent & ,~submodule of a coherent
&-module. Suppose codim supp J1>d. Then by Theorem 9.15.

E’xté,/l(fﬂ, EY =0, for j<d.
Hence by Proposition 9.13.
Ext] 1 @1, E) =0 for j<d.
Therefore
ExtHERT, ) =0 for j<d. (9.15.1)
Theorem 9.14 is now a consequence of (9.15.1) and Theorem 9.15. Q.E.D.
Theorem 9.15 is a consequence of the two following Lemmas.

Lemma 9.16. Let Jl be a coherent A-submodule of a coherent E-module.
Then
() Ext?y(T1, A)=0 iff j<codim supp Jl.
(i) codim supp Ext’y (TN, A)= .

Lemma 9.17. Let W be an irreducible component of the supports of a coher-
ent A-module Jl. If W has codimension d then

W Csupp Ext? (T, A).
Proof of Theorem 9.15. If codim supp JI>d then, by 9.16 (i),
Ext?y(TN, A) =0 if j<d.

Suppose that Ext/( M, A)=0 for j>d and let W be an irreducible component
of supp M. By Lemma 9.17 W is contained in supp Ext’y(J1, A) for some
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Jj =d. Therefore, by 9.16 (ii), codim ¥V >d. Q.E.D.
Proof of Lemma 9.16, 1t is well known that

supp Ext?y(T1, A)Csupp 8xt§r lerdl, gr )y, j=0.
We notice that the morphism gr A—Oy is flat. Actually gr A—gr& is flat
because for any p& Xgr&, is the localization of gr.f, by any invertible

homogeneous element of gr &€ of negative order. It is well known that gr&—
Oy is flat. Therefore

supp Exth (Ox®gr M, Ox)Dsupp Ext? y(T1, A) . 9.16.1)

Let 9 be a coherent £-module that contains JI as a .A-submodule. We can
suppose that J] generates M. Then gr JI generates gr ¥ as a gr &-module
and

supp gr EQgr 1 8 Il = supp gr M = supp Jl .
Since the morphism gr &—Cy is faithfully flat
supp Ox®gr 1 gr I = supp JI . (9.16.2)

Statements (9.16.1) and (9.16.2) allow us to deduce Lemma 9.16 from the
well known theorem of Analytic geometry we obtain when substituting 4 by
Oy in the statement of 9.16. Q.E.D.

Proof of Lemma 9.17. Let p° be a generical point of W. If j<<d then
Ext!(Tl, A)=0 by 9.16 (i). If j>d then we can suppose by 9.16 (ii) that
Ext(T1, ) vanishes at p°. Suppose now that Ext4(Jl, A),0 equals 0. Then

RJWJ(W, uQ)Po =0.
Hence
321,0 = R o#@lﬂuq (R al/muq(ms J)’ J)Po =0.

The assumption above lead us into a contradiction and therefore there is an
open dense subset of W that is contained in supp Ext? )(T1, A).

This ends the proof of Lemma 9.17.

§10. Blow up of a Quantized Logarithmic Contact Manifold
along Its Residual Submanifold

Let (X, -£) be a logarithmic contact manifold. We will suppose in this section
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that the set of poles Y of (X, -£) is smooth. Let Z be the residual submani-
fold of X. Let

z: X = Projan (@self) = X

be the blow up of X along Z. Let E be the exceptional divisor of z and ¥
the proper inverse image of Y.

Proposition 10.1. (i) The Oz-module L=x*.L is a structure of logarith-
mic contact manifold with poles along Y. Moreover L is the only structure of
logarithmic contact manifold on X for which = is a morphism of logarithmic
contact manifolds.

(ii) There is one and only one morphism of .conic manifolds #: -2 such

that the following diagram commutes.

3>

¥— 2%
|, |
X— X.

Moreover # is a morphism of homogeneous symplectic manifolds.

Definition 10.2. (i) We call the pair (z: ¥ — X, I’) the blow up of the
contact manifold (X, -L) along its residual submanifold.

(i) We call #: J? —> X the blow up of the homogeneous logarithmic sym-
plectic manifold X along its residual submanifold.

Remark 10.3. We notice that z[z] is a morphism of logarithmic contact
manifolds [homogeneous logarithmic symplectic manifolds] but is not a local
homeomorphism.

Proof of Proposition 10.1. (i) Since the problem is local in X we can
assume that X is the affine logarithmic contact manifold [dx,,, —p,dx,/x; —
1.1p;dx;]. Then X is the patching of the affine logarithmic contact manifolds

X = Spec (C[xl’ s Xnt1s z—]', D2 ""Pn]) and
1

X
X' = Spec (C[p—ls Xas ***s Xp+15 Xg+1—P1> Pa> ""pn]) .
1

Statement (i) follows from the equalities
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T*0 |y = dXp4y— %dx1 — -2 pydx;
1

m*@ | g = d(Xy41—Py) —Pldﬂ/'p&— —2l-2 pdx; .
1/ Py

1P

1

(i) Put X1 =X, Xas1 = Xpi1, p
X1

3

1 _ X o " o__
X1 = p— s Xnal =Xpgpy—P1>s D1 =Dy
1

The logarithmic contact manifold X is the patching of the affine logarithmic
contact manifolds
X = [dx,’,+1—p{dxi—2',?=z P,'dxi] ’

Wi
X" = [dx;il—p{’d;"l, —2i-2 pdx;] .
1

We notice that X=[6],.,, X'=[0"],+1, X"/ =[0"],+,, where
0 =11 6.0x;,
0" = £10x,+ 2% a2 Eidx;+ 20 € pidxn
0" = E0x1+D32 Edx; € adXl .
Some simple computations show that
0| xraxrr = 0" | xraxr, 70|y =0", n*0|yn = 6". Q.E.D.

Remark 10.4. We notice that

Y= {"eXx”: (" =0 and X\V =X".
1
Theorem 10.5. Let (X, &) be a quantized contact manifold with poles along
a smooth divisor Y of X. Then there is a quantization & of the blow up of the
logarithmic contact manifold X along its residual submanifold and a self dual
morphism of self dual filtered C-algebras

0: 278 > &
such that © | z: 7€ | 2.e—>E | \x is an isomorphism and the right Ideal 9_,,E

of & is proper at least along E.
Moreover, the pair (D, €) is unique up to a unique isomorphism.

Definition 10.6. We call the pair (z: ¥—X, @:z7'6— &) the blow up
of the quantized contact manifold (X, &) along its residual set.
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Proof of Theorem 10.5. We will prove the Theorem in the case (X, &) is the
quantization of the affine logarithmic contact manifold (10.3.1). The generali-
zation of this result is similar to (9.12) and therefore omited.

We patch the quantizations &', & of X', X/ by the self dual quantized
contact transformation ' : £&'—&" determined by:

4 /7a—1
=0 X 0
*1 =M LA

/7/7—-1
x> X1 0pr |
1\49-1
Xpa1 o xplzfx-l‘“(ax{"‘l‘i)ax,.“
Osta = Oty -

We introduce self dual quantized contact transformations

2" 75—18[x'\(x{=o) - &| X\(#{=0)

re - o
o": z7E |X"\(p;'=o) -& |X”\Uz§’=o) )

determined respectively by:

Xy X1 84y > X108,
X4 F> Xrs1 a"n+1 = a";ﬂ

X = —6,,;/)(?{'6:/';1“ 3,1 = 3,{/
Xg41 x;z:-l'_(a::/{ +’12")a;"}+1 ax,,ﬂ = ax”‘{(_l

Just like in (9.10) there is one and only one morphism @: z~'€—¢& that ex-
tends @' and ©”.

We call the pair (z: X—X, O: 8—>£:’) the blow up of the affine logarithmic
contact manifold (X, &) along the residual ideal (0.,).

Let <§’0 be another self dual quantization of X and ®@,: n“18—><§’° another
morphism of self dual filtered C-algebras such that @] z\z: 778 | 5\ 2—E | %\£ 1S
an isomorphism and the right ideal (6,,1)5’0 is proper at least along E.

The C-algebra &, is the glueing of &' and &” along some quantized contact
transformation ¥, Put @;=0| s, ¢’ =Py|x~. Then there are unique

microdifferential operators A4, BEE’D(O)(X ") such that
®(,)(6x1) = x{ax{+x{A+B s

and [8.;, B]=0. Since x,&’ is the maximal right ideal of &’ that is proper
along {x,=0} then B equals 0. We define a quantization X’ of idy- by
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x, = Of(xy), 0,1 0+4,
x; > Of(x;), 8,,; — 04(9,,), 2<j<n+1.

Since @¢’(x;) belongs to the right ideal of & generated by @;(9,,) there is a
logarithmic microdifferential operator A =&”(X"”’) such that

D' (x)) = 05’ (0:,)4
We define a quantization x” of idx. by

JC{, g _‘Adjél(ax,,_i,l) s 8::{’ = q)(,l’(axl) >

x}’ = ®(S’(xj) s ax;-’ - ¢6/(axj) s ZSJ <n s
$th1 o OF (@, + s Osy, ) 052,
ax;,’_u = q)él(ax,,_“) .

We can patch the morphisms %', 2’/ into a morphism 2 such that 0 =@,
Q.E.D.

§11. Total Blow up of a Logarithmic Contact Manifold
along a Lagrangian Submanifeld

Let (X, &) be a quantized logarithmic contact manifold with poles along
a smooth divisor Y. We define a morphism of ringed spaces

(Tho: Xi = Xoo Pt 7o Eo—>E3) s (11.0.1),

where (X,, £,) is a quantized logarithmic contact manifold with poles along a
smooth divisor Y, inductively as follows. Put my=idy, Py =idg. Given
(11.0.1),, £ >0, we define

(Tprr, 1t Xpr1 = Xi, Pigr 7ri1,4C% = Crr)
as the blow up of (X,, &,) along its residual set and put
Tpr1,0 = TaoTrrre> Prt1,0 = Prar,1Prot 74180 —>Chyy

Definition 11.1. We call the pair (11.0.1), the k-blow up of the logarith-
mic contact manifold (X, &,) along its residual set.

Let (X, &) be a quantized contact manifold and 4 a closed Lagrangian
submanifold of X. Let (z: X;—X, 9,: 75" £,~E;) be the blow up of (X, &)
along 4. Let (74 X;—>Xy, Opot 7o E—E,) be the k-th blow up of (X,, &)
along its residual set. Define 7, =mym;1; 3, P =P D,
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There is a canonical immersion X,\ Y, X,,\Y;,, such that the following

diagram commutes.

X <~ Xin

U U

X\ = Xi\Yiy .
Put
X =1lim (X;\Y,) .
T—)

The contact structures L] x,r, define a contact structure Lon X The
morphisms 7; =, | x,\y,: X;\Y,—>X define a morphism z: X—X. The quantiza-
tions & | x,r, of X,\Y, define a quantization & of X. The morphisms @} =
9, | x,\r, define a morphism of self dual filtered C-Algebras

o 71-'"18/1 g é
Definition 11.2. We call the pair
(@ X—>X, 0:276,—E),

the total blow up of the quantized contact manifold (X, &) along the (closed)
Lagrangian submanifold A.

Given a coherent &,module J! we call the &-module e Re Aﬂl the total
blow up of Tl along A.

Definition 11.3. Let (X, &) be a quantized contact manifold. A coherent

&-module M is called holonomic if its support is a Lagrangian submanifold of
X.

Theorem 11.4. Let (X, &) be a quantized contact manifold and A a closed
Lagrangian submanifold of X. Let M be a holonomic E-module and let J1 be a
coherent sub & ~module of M such that Jl generates M as an E-module and
that locally there is a polynomial b and a microdifferential operator ¥ verifying
the following conditions.

(i) # €9

(ii) do(®) =0 mod I,2%.

(iii) o'(MH+iel,

@iv) b(k)=+0, k=0,1, 2, ---.

(v) (I TU(-1).

Then EQ ¢,J1 does not depend on the choice of Jl.
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Let (X,) be a covering of X by copies of open sets of affine logarithmic
contact manifolds. Put X,=z"(X,). For each « there is a sub &, x,-module
Jl, verifying the conditions of Theorem 11.4. This was proven by Kashiwara
and Kawai in the regular holonomic case in [12] and generalized to holonomic

systems by Laurent in [14]. We can patch the g | z,-modules é |2, Qe 4| xdfﬂ,
into a coherent &-module .

Definition 11.5. We call the &-module ¥ the total blow up of the holo-
nomic E-module M along A.

Theorem 11.6. The &-module M is holonomic.

In order to prove Theorems 11.4 and 11.6 we will first introduce a family
of subrings of & Let 4 be a closed Lagrangian submanifold of X. For any
integer k>0 let A,y be the subring of & locally generated by £, and £(1)8%,
where ¢ is a microdifferential operator verifying the conditions (i), (ii), (iii) of
Theorem 11.4. The C-Algebra Ay, is noetherian, with zariskian fibers and self
dual (cf. 11.11). Theorems 11.4 and 11.6 are a consequence of the follow-
ing Lemmas.

Lemma 11.7. For any integer k>0 there is one and only one morphism

Sfrom zi* A | XAy, into &€ | x,\v,that extends the morphism @y introduced before
Definition 11.2.

We will still denote this morphism by ;.
Lemma 11.8. The morphisms
O myt A | XA\Ys glxk\y,,
are flat for any non negative integer k.

Lemma 11.9. Let M be a holonomic E-module and Tl a & -submodule of

M verifying the hipoteses of Theorem 11.4. Then A;,Qz AﬂZ is isomorphic to
M.

Proof of Theorem 11.4, 1If M and J] verify the hypothesis of the Theorem
then

Elxar®e, I = Elxp\r,® 4, A0 B g, Il
= 8' Yk\Yk®uq(k)‘% . Q.E.D.

Proof of Theorem 11.6. Let M be an holonomic &-module. Then
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M| xr, €quals &l xr, ® Jcn“%' Since the morphism
uzl(k) g 8k | Xp\Yg

is flat we conclude by a reasoning similar to the one used in the proof of
Theorem 9.14 that

codim supp (| xr,) =codim supp . Q.E.D.

Proof of Lemma 11.7. The uniqueness is obvious. Therefore we can sup-
pose that (X, &) equals the quantization of the affine logarithmic contact mani-
fold of dimension 2n-+1 and 4 equals {x;=-:-=x,,,=0}.

11.10. We will first study the k-th blow up of the quantization of the

affine logarithmic contact manifold

X, = [dyqul% —é q,-dy.-] .
»o =2
We notice that X, is the patching of k affine logarithmic contact manifolds
X{, -+, X{ and an affine logarithmic contact manifold X}’ isomorphic to Xi.
Actually suppose that the statement above is true. Then X,,, is the patching
of X1, -, X4, (X#), (X#')” and by the proof of Proposition 10.1. (X7’)" is
an affine contact manifold and (X}’)” is isomorphic to X, We put X, =
(X#)" and Xi5,=(X})’. We introduce global sections X, X s41, P& of X4,
Yi» Vs 9r Of X/ inductively as follows:

_9n

Xg+1,1 = Vm » Xet1,841 = Vi,n+1 » Drv1g = — »
1
_In _ _ _
Yre+11 = p s YVet1,841 = Venr1— 90 » 9r+11 = 9n -
31

We notice that, for any non negative integer k,

Xi = [dxy, ni1—P0dxm — X2 4;4y,],

d "
Xy = [dyk,n+1"'qk1—yﬂ — 22 qidy;] .

Yu

Then the morphisms @i =0y | x;: 73 'Eo| X j>Ep| v, 1<K,
B = Oyl xy: 7 ' Egl xiy = El xys

are determined respectively by:
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= (_leale)j-llea;;:i.pl , 0y 35,-18:‘-].1 >
Ya+t1— x,-,n+1—j(xjax,+%)a;}t,,+l s ay,.ﬂ = ax;_nﬂ s
X X5, 0,0, 2<5i<ln.
B2 Rand ("Byh)kykla}z,,ﬂ s 0y, 0y, ,
Va1 72 Ve w1 —k(ay,,l‘l“%‘)ay,,',,ﬂ > 9y, ayk,,,.ﬂ >
Vit Vi, 9, —9,, 2<iZn.

11.11. We will now finish the proof of Lemma 11.7. Let X denote the
affine contact manifold

[@X p1y— 2311 pd%;]
and 4 its submanifold {x,=-.-=x,,,;=0}.
Notice that ¢ is determined modulo J4(—1). Therefore #* is determined

modulo €4(—1) and the sub £(0)-algebra of & generated by £, and £(1)#* does
not depend of the choice of #. We can choose

8 = S a0+

Notice that (9,, #%)*=(—)**19,  #*. Since &, is self adjoint the &,module
generated by £, and £(1) and E(1)2* is also self adjoint.

We will denote by X the blow up of X along 4 and by X, ---, X,, the
affine logarithmic contact manifolds introduced in the proof of Theorem 9.5.
Then the morphism

0;: ”I:ISAIX/;\Y,, — & X\Yg
is the patching of its restrictions
N AP 1</<n,
where X,;=7;1(X;)) N (X;\Y,). We can suppose /=1. We will identify X; and
Xo=[dy 11—y, —1-2p;dy;]. Then
O[(B)| x,, = Xads,, > 1<s<k,

w£1(61n+1)'X51 = xs_ll(xslaxn)l-sa:s:;,nﬂ .

Therefore
@l’zl(ax,,_,,lzgk) l Xsy — axu(xslaxﬂ)k—saxs,nﬂ .
This ends the proof of Lemma 11.7.

Proof of Lemma 11.8. The proof of this Lemma is very similar to the proof
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of Proposition 9.13. Therefore we will only prove the following fact.
Fact 11.12, Put

4= C[xl—' ***s Xpt+10 P1s ***5 Do g, E_I] B
B=Clyy, ***s Yur1, 1 ***» G 1,07 -

For k>1 let A, be the subring of A generated by
X6, 1<j<n+1, p;, 1<j<n, zZFH E71,

where z=x,,,— S\i.1x;p;. For k>1 let ¥,: A,— B be the morphism of C-
algebras defined by:

7, x> ym, 2<5j<n+1,
z> yitigt, pi—4;, 2<j<n+1,
6—1 — y’i’q’f"lﬂ‘l .

Then ¥, is a flat morphism.

Proof. Let Aj be the localization of 4, by x;6. Then ¥, extends to a
morphism ¥}: A}—B and

(), x )X y;, 2<5j<n,
Zk5k+1(x15)—(k+1) - q
y(x) =y, -
Therefore #'{ is an isomorphism.

For k>2 let A7’ be the localization of A; by z*~'6*(x,£)~%*. Then ¥} ex-
tends to a morphism Z';’: A;’—B and

(zk'IEk(xlf)‘k)‘l ;.

Therefore ¥’/ is an isomorphism.
This ends the proof of Lemma 11.8.

Proof of Lemma 11.9. We will show that the morphisms (11.12.1) are iso-
morphisms.

Aw®g, N — M (11.12.1)
PQRQuwr Pu.

Put & ,(0)=EWE=E L(1), T1)=E)T1. Then the sequence

8
0 — T/ T —1) = T/ TN(i—1) = 0
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is exact for any />0. Hence #*JI(1)+Tl(1—1)=Tl(). Therefore
Ey#* T+ Ty = Tle+1) .
Henceforth Jl(yC ATl for any integer /.

We will now show that (11.12.1) is a monomorphism. Let A y be the
right sub &, -module generated by (9,2%)", 1<v<N. We will now show by
induction in N that the sequence (11.12.2) is exact.

O——>L/Z(,,),N®8A32—>ﬂ4 (11.12.2)

Suppose N >1. We will show that
if u€Jl, (0,9 "uc A, y-1 then u€Jly . (11.12.3)

Actually if the hypothesis of (11.12.3) is satisfied then (9,#%)¥&€JI(N —1).
Therefore
(B—=N-+1)--(3—=2) (% —1) DucsTi(-1).

Hence uJl(—1) .
Given sections u, «-+, u, of J1 if 3% (8,5*) ®u; is mapped into 0 then
uyeJl(—1) by (11.12.3). Taking v=0,uy
(0,2" Q@uy equals (8,24)V0;'Qv .
Therefore by the induction hypothesis
SW, (8,9 Qu, = 0. Q.E.D.

Proposition11.13. Let M be a complex manifold and 2 a point of M.
Let M be the blow up of M along {3} and let E be its exceptional divisor. Put
X=P*M and A=="Y2). Then. with the notations introduced in the begining
of this chapter, there is a canonical isomorphism

X\Y, ~ P*I\PH .

Moreover the canonical morphism from P*M\PE M into P*M equals the canon-
ical morphism from X\ Y, into X.

Proof. There are canonical open immersions of P*(X\E) into X;\Y; and
P*M\P%M. Therefore there is at most a morphism from X;\Y; into
P*M\ P} M. Hence it is enough to prove locally the existence of the iso-
morphism. This can be easily done using local coordinates. We can prove
the second statement in a similar way. Q.E.D.
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