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Blow up for a Holonomlc System

By

Orlando NETO*

Abstract

We introduce a functor that associates to a holonomic system of raicrodifferential equa-
tions ^i on a contact manifold X and a closed Lagrangian submanifold A of X a contact
manifold X and a holonomic system cjS on X. The manifold JT is an open set of the blow
up of X along a certain ideal of the sheaf of holomorphic functions on X. Moreover the
restriction of <jft to the complementary of A and the restriction of M to the complementary
of the exceptional divisor of X are isomorphic as systems of microdifferential equations.

§0a Introduction

The structure of a regular holonomic system is well known at a generical
point of the characteristic variety (cf. Kashiwara Kawai [11]). Nevertheless we
know very little about it near a general singularity.

Hironaka proved a celebrated Theorem of resolution of singularities (cf.
[7]). Roughly speaking it can be stated in the following way:

Given a complex manifold X and a subvariety Y of X there is a new

complex manifold X and a holomorphic and bimeromorphic map n: X-+X with

the following properties:
(i) If S is the singular locus of Y then the restriction of TU to jr"1(Jf\5') is a

biholomorphic map onto X\S.
(ii) The singularities of n~l(Y) are not "bad". The complex manifold X is
obtained by successively blowing up X along convenient submanifolds.

The purpose of this paper is to built a notion of blow up for a holonomic
system of microdifferential equations.

This should be a functor that associates to a holonomic 5-module 3tt
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on a manifold X and a certain submanifold A of X a holonomic <?-module <3li
on a manifold X with the following properties:

(i) There is a holomorphic bimeromorphic map n\ X->X.
(ii) If U, [U] is an open set of X [X] and n induces a biholomorphic map from

U onto U then the microdifferential systems JM | ̂  and c5f£ | u are isomorphiCo

(iii) The singularities of the support of JM are never "worse" then the singula-
rities of the support of <3H. Moreover if the submanifold A of X was well chosen

then the singularities of the support of JM will be not as "bad" has the singu-
larities of JM.

A first approach to the construction of this functor could be as follows.
Let X be a complex manifold, Jtt an c?z-module and let A be a point of X.

Let TC : X-*X be the blow up of X along {J} . The bimeromorphic map n in-
duces a bimeromorphic map £: T*X-+T*X. The domain of £ is T*(X\E)
where £'=7r~1({^}) is the exceptional divisor of the blow up (cf. the end of this
introduction). The domain of n is an open set of T*X and we did not get any-
thing interesting.

Nevertheless if we consider the associated map n: P*(X\E)-*P*X then we
notice that there is a canonical extension 7? of n to P* X\JPf X. Here P*X is
the projective cotangent bundle of X and P%X is the projective conormal
bundle of X along E.

We remember that in [SKK] the sheaf of microdifferenlial operators was
defined on the projective cotangent bundle.

There is a canonical isomorphism

(1)

There is a canonical sub ring «Jf(i) of Sx such that the restriction of (1) to Jl^

has a canonical extension to a morphism

0 : arUta-x^i | P*X\P*WX . (2)

A holonomic <?2-m.odule |s ^?(1)-coherent and therefore the £% \ F*x\p|z-niodule

c5K=52|p*^ll®c*oJK (3)

is coherent. Since the morphism (2) is flat the ^-module JM is holonomic.

We call <5M, the blow up of the <?-module <3tt along A.

We need a microlocal version of the notion of blow up of an <?-module
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introduced above. In order to do that some problems must be solved.
First we have to study the blow up of a contact manifold along a Lagran-

gian submanifold. The reasons why we use contact manifolds instead of
symplectic manifolds are the same why we use projective cotangent bundles in-
stead of cotangent bundles in the construction above. Roughly speaking con-
tact manifolds are the odd dimensional equivalent of homogeneous symplectic
manifolds. For its definition cf. §4 or [SKK]. We show in §9 that the
blow up of a Lagrangian submanifold has a canonical structure of "contact
manifold with logarithmic poles along its exceptional divisor". This generali-
zation of the notion of contact manifold is introduced in §4. Sections 2 and
3 study the equivalent generalization of the notion of symplectic manifold,
the notion of logarithmic symplectic manifold. In §1 we recall some basic
facts on logarithmic differential forms.

We also have to quantize logarithmic symplectic manifolds.
In Chapter II we built and study sheaves of microdifferential operators

on a logarithmic symplectic manifold. They are introduced in Sections 5 and
8. In Sections 6 and 7 we generalize the Division Theorems and results on
quantized contact manifolds to the "logarithmic" case. In §6 we also study
some special both side Ideals of the ring of microdifferential operators. This
ideals are essential in the construction of the blow up.

Finally in Chapter III we generalize the construction discussed in the
beginning of this Introduction. We present now a description in local coordina-
tes of that construction. Let X be a copy of C2 with coordinates (x, y). Let
^ be the origin. The blow up X of X along {/I} is the patching of two copies

X0, Xl of C2 with coordinates (x, — J, (— , y } by
\ x I \ y I

The restrictions of n to XQ, Xl are given respectively by

x = x, y = x~ , x = ~y, y = y .

If E=n~\X) is the exceptional divisor of X then E fl XQ= {x=0} , E fl Xl = {y=

0} . Since the construction is symmetric on x and y we will from now on ignore

Xv Put xQ=x,y0=—. Let (XQ, yQ,SQ9 T?O) be the canonical system of coordi-

nates of T*X0 associated to (xQ,y^. The bimeromorphic map n0: T*X-^*T*X
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is given by

x = XQ, y = xQyQ, 5 = £0— — ?0> -n = — VQ. (4)

Its domain is therefore {xQ^Q}. We can understand (4) as a description of
the bimeromorphic map n\ JP*X-»P*Jf in homogeneous coordinates. If we
multiply in (4) (f , rf) by x we obtain another description of T^.

We conclude from (4') that the domain of n contains the complementary of
ixQ^Q+yQT7Q=^Q=Q} . This last set equals jPfJf.

If

is the quantized contact transformation associated to the change of coordi-
nates x=x09 y=xQyQ then

If c^?d) is the sub <?z-algebra of 8X generated by xdy and dx(xdx+ydy) then
there is an extension of 0 \ n~lJL^ to a morphism
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Chapter III
§9. Blow up of a quantized contact manifold along a Lagrangian submani-

fold
§10. Blow up of a logarithmic contact manifold along its residual submani-

fold
§11. Total blow up of a logarithmic contact manifold along a Lagrangian
submanifold

Chapter I. Logarithmic Symplectic Manifolds

In this Chapter we introduce generalizations of the notions of symplectic
manifold, homogeneous symplectic manifold and contact manifold. We
allow the differential forms involved in the definitions of the concepts defined
above to have logarithmic poles along a fixed divisor with normal crossings.

These manifolds have properties very similar to the ones they generalize.
For instance, it is still possible to prove Darboux type Theorems in this context.
The local model of a logarithmic symplectic manifold is still a vector bundle,
the vector bundle n: T*(X/Yy-*X whose sheaf of sections is the locally free
0z-module ^z<r> of logarithmic differential forms of X with poles along a
divisor with normal crossings Y.

There is a canonical differential form 6 of degree 1 on T*(X/Yy with
logarithmic poles along n~l(Y) (cf. § 1.). Suppose that (xl9 • •• , *„) is a system
of local coordinates on a open set U of X such that Ffl U={x1=Q}. Then
there is a system of local coordinates (xl9 • • • , xn, fx, ••• , £„) in TC~\U) such that

The subsets {x1=0} and {x1=S1=0} are invariantly defined. They are called
respectively the set of poles and the residual submanifold of T*(X/Yy. The
existence of the residual submanifold is the main new phenomena that we find
in this generalization of the notion of symplectic manifold. For instance, the
residual submanifold contains involutive subsets of codimension superior to the
dimension of X. Moreover it has a canonical structure of symplectic manifold.
This two submanifolds will be essential in the construction of the blow up.

§ 1. Logarithmic Differential Forms

Let X be a complex manifold. A subset Y of X is called a divisor with
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normal crossings if for any x°^Y there is an open neighbourhood 17 of x°, a

system of local coordinates (x^ •••,:*;„) defined on U and an integer v such

that

Fixed a divisor with normal crossings Y and an open subset U of Xletj:UQ=

U\Y<^UbQ the inclusion map. Let /be a holomorphic function defined on U.

If the set of zeros of / is contained in Y f| U then we denote by df the global
section df/fofj#QuQ. Otherwise 5/will denote the differential dfoff.

We remark that the correspondence /V-»fl/ is not a morphism of sheaves.
Let <£*<y> be the smallest subcomplex of /#*0*0 stable by exterior product

and containing Oz and £/ whenever / is a local section of Ox> The local sec-
tions of *0f<7> are called logarithmic differential forms with poles along Y,

Let Ox be the sheaf of vector fields of X. Let IY be the defining Ideal of
F, that is, the Ideal of the local sections of Ox that vanish along Y. We say
that a vector field u of X is tangent to Y if uIYdIY. Let ®X^> be the sheaf
of the vector fields of X that are tangent to Y,

The 0^-modules @lx<Yy and $X^> are locally free and dual of each other.
Given an open set U and a system of local coordinates (x^ • • • , *B) on £/ verify-

( ^ \
- J the dual basis of (£#,-)•
o^C?- /

We notice that if moreover x{ vanishes at some point of U for v+l<i<n
then

te,=-^-, *,,.=xA, for l<i<^
•*«

^- - <&., ^. - 9,. for

Let Wm(@*x}<yy be tht smallest sub 0^-module of ^*<F> stable by exterior
product and containing £/i •••£// whenever (/L, ••-,//) is local section of Ox and
/<m. The 0z-modules (Wm) constitute an increasing filtration of *0|<F> by sub-
complexes. We will denote by Wm(Qk

x<jy) the sheaf of sections of ^(J2|<r>)
of degree k.

For l<l<v put Yl={xj=Q}. The set Yt is a closed submanifold of U
and an irreducible component of Y f t U . If 1 <4< -e <4<^ we put F/ir.. /A =

^0— ny/ A - If 0<m<p the support of the sheaf Gr£(0&<yni/>) is the

union of the submanifolds F/1,...,/w. Otherwise the sheaf G
vanishes.

Given integers 1 </!<••• <lm<v we can define a morphism of sheaves
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ResYllt...,lm: GrZ(fl&<y n tf>)^0fc".,i.

in the following way: If {j\, — ,jp} ft {//, ••• , 4} = 0 and / is a local section of
0tf then

We call the differential form ResYll9...tlnt
 a the Poincare residue of a along

Yllt...tlm. For a global construction of the Poincare residue cf. [2].

§ 2. Logarithmic Symplectic Manifolds

In this paper all the vector spaces will be over the field of complex numbers.

Let E be a vector space of dimension In and a a symplectic form on E.

Let
(2.0.1).,

where A, jBc {1, ••-,«}, be a family of vectors of E. We say that (2.0.1) is a

partial symplectic basis for a if

*(fj, ek} - *,-*, *(/„/,.) = o(ek, es) = 0 i,jt=A, k,

If ,4=/?={l, •••,«} then (2.0.1) is called a symplectic basis for a.

The symplectic form a defines an isomorphism H from the dual E' of E

onto E in the following way : given a linear form a on E then H (a) is the only

vector of E such that

<u,a> = a(u9H(a))9 u^E.

One calls //(«) the Hamiltonian vector of a.

(2.0.2) We notice that the isomorphism H determines o. Moreover the

isomorphism H defines a symplectic form {*, *} on E' by

{a, ft = o(H(d),

Definition 2.1. Let X be a complex manifold an Y a divisor with normal

crossings of X. Let

TU: T*<X/Y>-+X (2.1.1)

be the vector bundle with sheaf of sections J2^<y>. We will call (2.1.1) the

logarithmic cotangent bundle of X along Y. Let

X (2.1.2)
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be the vector bundle with sheaf of sections ®x<Yy. We call (2.1.2) the logarith-

mic tangent bundle of X along Y.

2820 Given a section a of Qx(Bx) we will represent its value at
XQ <EX as a section of Q\ (Ox) by a^^T$X (e J>JQ. Given a section a
of #i<y> (&x<Yy) we will represent its value at *0eX as a section of

by ^>

Definition 2B30 Let X be a complex manifold and Y a divisor with normal
crossings of X. We say that a locally exact section a of ^|<F> is a logarithmic

symplectic form with poles along Y if a<,o> is a symplectic form on T^X/Y^ for
any *0€E.T.

We say that a complex manifold X with a logarithmic symplectic form
along a divisor with normal crossings Y of 1" Is a logarithmic symplectic mani-
fold with poles along Y. If Xl9 X2 are logarithmic symplectic manifolds with
logarithmic symplectic forms al9 o2 and 9 is a holomorphic map form X1 Into X2

such that ^>*a2=ol then 9 is called a morphism of logarithmic symplectic mani-

folds. If moreover 9 is biholomorphic we say that 9 is an isomorphism of
logarithmic symplectic manifolds or a canonical transformation.

Remark 2A (i) If F is the empty set we get the usual definition of sym-
plectic manifold.
(ii) A logarithmic symplectic manifold has always even dimension,,
(iii) Suppose that X has dimension 2n. A locally exact section a of ^|<y>
is a logarithmic symplectic form with poles along Y if and only If on is a

generator of $!"<r> .
(iv) We notice that a morphism of logarithmic symplectic manifolds Is not
necessarily a local homeomorphism (cf. Remark 10.3.).

The Hamiltonian isomorphisms H^ : T*Q<(XI F> -> Tx0(X/ F> induce an
isomorphism of 0^-modules

If a is a local section of ^i:<7> then H(a) is the only local section u of
such that t(u)a=a9 where *(w)a Is the interior product of u and a. We notice that

where {*, *}/ Is the canonical symplectic form of

Deioition 2,58 Given a complex manifold JT we say that a C-billnear mor-
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phism

is a Poisson bracket if it verifies the following conditions:

(i) {/*,*} = — feJ}
(ii) {fg,h}=f{g9h}+g{f,h}

We call {/ g} the Poisson bracket of /and g.

If /is a local section of Qx the derivation g»— »{/g} determines a vector
field Hf, the Hamiltonian vector field off.

We call a complex manifold X endowed with a Poisson bracket a Poisson
manifold.

If (Z13 {*, *}x), (X2, {*,*}2) are Poisson manifolds and <p\Xl-^X2 is a

complex map such that {p*f, <P*g}i=<P*{f, g}2> f°r anY holomorphism func-
tions / g defined in an open set of X2 we call / a morphism of Poisson mani-
folds.

Example 2.6* A logarithmic symplectic manifold has a canonical structure
of Poisson manifold. Actually the bilinear form

is a Poisson bracket on Ox.

Definition 2.1. Let X be a Poisson manifold. An analytical subset V
of X is called involutive if {Iv, Iv} C.Iy.

Proposition 2.8. Let o be a logarithmic symplectic form on a symplectic
manifold X. Then we can recover G from the Poisson bracket it determines.

Proof. By (2.1.2) it is enough to show that, given xQ^X we can recover the
Hamiltonian isomorphism HxQ: TfQ(X/Ty-*TxQ(X/Yyfrom the Poisson brack-
et of Qx. This can easily be acomplished once we fix a system of coordinates
in an open neighbourhood of x° verifying (1.0.1). Q.E.D.

Corollary 2.9. Let Xlf X2 be logarithmic complex manifolds and <p a biholo-
morphic map from Xl onto X2. Then <p is a canonical transformation if and
only if it is a morphism of Poisson manifolds.

Example 2.10. If X is a complex manifold and Y a divisor with normal
crossings of X then the vector bundle n: T*(XjYy->X has a canonical struc-
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ture of logarithmic symplectic manifold with poles along n~lY.

For z=l, 2 let Yi be a divisor with normal crossings of a complex mani-
fold Xj. Iff: Xl-^X2 is a holomorphic map such that f~lY2 = Y1 then we have
a canonical morphism of vector bundles

Pf: J^x
defined in the following way: if a is a local section of Q\^y^ then pf(a) =
f*a. The composition of ̂  with the diagonal map

defines a section 6 of
We call 0 the canonical l-form ofT*<X/Y>.

Given an integer v and a system of local coordinates (xl9 •••9xn)on an open
set U of X verifying (1.0.1), there is one and only one family of holomorphic
functions ff., l<i<n, defined on n~l(U) such that

The functions
v ... v A .*• £
-*lJ ? •*»? *=> 13 3 •= n

define a system of local coordinates on n~\U), called the system of canonical

coordinates with poles along Y associated to the system of local coordinates

(xl9 —,*»).

Remark 2.10.1. We notice that f1? • • • , £ „ depend not only of (xl9 -**,xn)

but also of v and i/. Nevertheless there is one and only one v verifying the
additional condition iixi vanishes at some point of U for v+ !</<«". More-
over if we fix v then f 15 • • - ,?„ will not depend of the open subset of U we choose.

The 2-form a =d6 is called the canonical 2-form of T*(X/Yy. The ca-
nonical 2-form is a sympletic form with poles along x~lY.

Given holomorphic functions /, g, defined on an open set V contained in

7c"lU9 we have

i ,

(2.10.2)

In particular

,xl = (Vy if l^J^> (2.10.3)
1 di} if j/+l <j<n.
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If l<i<v then

&i\ (,,=0) = dRes{x.=Q]o , \<i<v. (2.10.4)

We will now show that any logarithmic symplectic manifold is locally isomor-
phic to T*^Cn/{x1"-xv=0}y for some integer v.

Definition 2.11. Let (X, a) be a logarithmic symplectic manifold with
poles along a divisor with normal crossings Y. Let U be an open set of X and
YQ a global smooth hypersurface contained in Y R U. A holomorphic function
£ defined on U is called a residual function along 70 if

Remark 2.11.1. If f , if are residual functions along Y0 then there is a

constant ^ such that f — 77— /

Proposition 2.12. Let (X, a) be a logarithmic symplectic manifold with
poles along a divisor with normal crossings Y. Let x° be a point of X. Let

xv • •• , xv, ?!, ••• , f v be holomorphic functions defined in an open neighbourhood V
of x° such that Y fl V— {x^ • -xv =0} , dx^-'dx^ does not vanish along Y t\V and
f . is a residual function along {x—®} for l<i<v.

Then there is an open neighbourhood U of XQ and a differential form a of

degree 2 such that

Proof. There are holomorphic functions 37,., \<i<v, and a differential
form f) of degree 1, defined in a neighbourhood U of XQ such that

The functions rjt are residual functions along {^-—0}. By Remark 2.11.1
there are constants Xi and holomorphic functions /J such that

Corollary 2.13. Let (X, o) be a logarithmic symplectic manifold of dimen-
sion In with poles along a divisor with normal crossings Y. Then the number of
irreducible components of Y at XQ is smaller or equal to n at any point XQ of Y.

Proof. We will use the notations of Proposition 2.12. We fix x°£=:Y.

Let v be the number of irreducible components of Y at x°. Then by (2.12.3)
there is a constant C such that
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o'-EiCde^-dejXi—dxvd*-* (mod

Therefore the residue of dg^-dg^dx^-dx^ along {xl=—==xv=0} does
not vanish at XQ. Hence

dfi—dfv^r-^vC^O^O. Q.E.D.

Corollary 2.14. Let (X, a) 6e a logarithmic symplectic manifold with

poles along a divisor with normal crossings Y. Let (xlf •••, xnf Clt •••, £J be

a system of local coordinates in an open neighbourhood V of X such that xlf • • • > ,

*v> ^i* °"> <?v verify the conditions of Proposition 2.12, Then there are local

sections uit vf- ofBx<yy such that

Proof. For !</<v there are differential forms /?,-, rg- of degree 1 such
that:

( d } — dE- (- -®—}a-d -

Therefore

(2.14.1)

Q.E.D.

Remark 2.15, It follows from Proposition 2.14 that, with the notations
of Proposition 2.12, the following relations hold:
(i) There are holomorphic functions fij9 1 <i,j<v, such that

{f If */} = tijXj + XfCjfij .

(ii) Given a holomorphic function / the functions {£,-,/}, {xi9f} vanish
along {xi=Q}.
(Hi) For 1 <ij<i^{dS^ dx3}^=d...
(iv) For any differential form a of degree 1 {d£i9 a} ,o=0.

Definition 2e16, Let (X9 o) be a logarithmic symplectic manifold of di-
mension 2n with poles along a divisor with normal crossings Y. Let U be an
open set of X and let A, B be subsets of {1, ••-,»}. A family of holomor-
phic functions
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xJ9jt=A9 tk,ks=B (2.16.1)

defined on U is called a partial system of logarithmic symplectic coordinates
for (X, a) on U if it verifies the following conditions:
(i) There is an integer v such that {1, ••- , v} is contained in A and Y (1 U=

{*i—*v=0}.
(ii) The holomorphic function Sk is a residual function along {xk=Q}, for
l<k<v,k<^B.
(ii) For iJ&A, k

i*i if

•t if

and

(iv) The vectors

dXj,j<=A, d?k9 k<=B, (2.16.2)

constitute a partial symplectic basis of
A partial system of logarithmic symplectic coordinates is called a system of

logarithmic symplectic coordinates if A=B= {1, •••,«}.

Theorem 2.17. Ler X be a logarithmic symplectic manifold of dimension
In with poles along a divisor with normal crossings Y. Given xQ^X and a par-
tial system of symplectic local coordinates in a neighbourhood of of there is a
system of logarithmic symplectic coordinates that extends the partial system above.

We will first notice some properties of the vector space T*0(X/Yy.

Lemma 2.18. (i) The choice of a family of functions xlf • •- , xv defined in
an open neighbourhood U of x**, vanishing at x° and verifying (1.0.1) determines a
supplement of the subspace Im(T*0X-*T*0<X/Yy) of T%<X/Y>, the span of

(ii) Given a residual function along {xi=0}fi the vector r—df^^ does not de-

pend of the choice of the function £,..
(iii) The span of

dxlf —9dxv,rlt — ,rv (2.18.2)

is a symplectic vector subspace of T^X/Yy that admits (2.18.2) as a sym-

plectic basis. Moreover the vectors rlf • • • , rv are in the symplectic orthogonal of
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(iv) Given the partial syrnplectic basis (2.16.2) there is a symplectic basis of
r*a/y>

e,,/s, 1<7,&<«, (2.18.3)

such that ej=Sx,</f>,je.A,ft=tKk<f>, k^B, fk=rh, l<k<v and e,, /»€=
j, k>v+\.

Proof. There is one and only one linear map

r*0{x, = 0} -> r*0O7r> (2.18.1)
such that the diagram bellow commutes.

s— 0}

The vector re- is the image of ReS(x.=Q)a(x°) by the map (2.18.1). This proves
(ii). Statement (iii) is a straightforward consequence of Remark 2.15. Finally
(iv) follows from (iii). Q.E.D.

2,19. We will now prove Theorem 2.17.
Given the partial system of logarithmic symplectic local coordinates (2.16.2)

there is a symplectic basis (2.18.3) verifying the conditions of (iv) and holo-
morphic functions

4i> —,4»,Pi> °~>Pn (2.18.4)

such that, for l<j°, k<n, qj=xj, j <=A, pk=£k, k<=B; dqJ<xQ>=ej9 dpk<x0>=fk

and moreover^ is a residual function along {xk=Q} for l<k<v. The func-
tions (2.18.4) constitute a system of local coordinates for X° in some neigh-
bourhood of x°. Actually

constitute a local generator of <0|n<y> in some neighbourhood of x°.
Suppose that there is kQz£B such that kQ>v+l. Consider the system of

equations

kQ = -dkQj., j ^A5 Hs£kQ = 0, fce A (2.19.1)

We conclude from Corollary 2.14. that the vector fields ((l/xk)Hp]) (*°), 1<
k<v, span a supplement of Im(Txo(X/Yy-*Tx°X). Therefore the vector
fields
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H(dxk), k(=A9 —Htt, k<v, k<=B, H*9 k>v+l, k^B, (2.19.2)
xk

are linearly independent at XQ. Moreover, the vector fields (2.19.2) commute
two by two. Therefore we conclude from Frobenius Theorem that, for a
conveniently chosen initial condition along

{Pj = 0,7 e^, ft - 0, k^B} , (2.19.3)

d£k0<x°> will equal dpkQ<x*>. Hence we can extend (2.16.1) by £kQ. We can pro-
ceed in the same way to extend (2.16.1) by a function XJQ for anyjQ^A.

We can therefore suppose that A=[l9n] and that there is an integer /, 1 <
l<v, such that B=[l+\9 n}.

To finish the proof of the Theorem it is now enough to show that there
is a function /such that

{xj9f} = — {Pi, x}, » + l<j<n,

— {£*,/} = -1—ipi, f*}, /+! <k<n . (2.19.4)

We notice that, by Remark 2.15, the right hand sides of the equations in (2.19.4)
are all holomorphic in a neighbourhood of XQ. The existence of the function
/ is guaranteed by the Frobenius theorem. The function

£/ =Pi+xtf

is a residual function along {xt=Q} and we can extend (2.16.2) by £ /.
Q.E.D.

Remark 2.20. Let xjyj^A, Ek, k&B, be a partial system of logarith-

mic symplectic local coordinates in an open neighbourhood of a point x°^X.

Let el9 • • - , en,/], •••,/„ be a symplectic basis of T^X/Yy. Suppose that 5xy =
ey, d£k=fk, forj^A, k^B. Then we can choose functions Xj,j^A, £k, k^B
such that xl9 • • • , xn9 £ 19 • • • , f n is a system of logarithmic symplectic local coordi-
nates and dx.=ej9 d£k=fk, for I<j9k<n. Moreover we can arbitrate the
values of x^x0), Sk(x°) for j &A,kt£B.

Corollary 2.21. Let a be a logarithmic symplectic form on a complex
manifold X with poles along a divisor with normal crossings Y. Given
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let v be the number of Irreducible components of Y at x°. Then there is a sys-
tem of local coordinates (xlf '-fxnf£lt •-,£„) on U such that Y r\U={xl»-xv

=0} and

Proof, By Theorem 2.17 and Proposition 2.8 its enough to show that there
are holomorphic functions xl9 ••• , xv such that (2.12.1) holds and

This can be done in the following way: suppose that there are functions
*i> •"> *v verifying (2.12.1) and an integer /, 0</<> such that

{*„*,}=() l<ij<l.

We can show that there is a function / such that

= 0

Since the method of proof is similar to the one used in Theorem 2.17 we omit
it Q.E.D.

§3o Logarithmic Symplectic Manifolds

Let X be a complex manifold. A group action a: C*xX-^>X is called a
free group action of C* on X if for each x^X the isotropy subgroup {reC7*:
a(t,x)=x} equals {!}, A manifold X with a free group action a of C* is
called a conic manifold. We associate to each free group action a of C7*
on X a vector field p, the radial vector field of a, in the following way :

Here <*t(x)=a(t, x). We put

for any ^e£7 and

OT = ®k^0x(k) .

A section / of Ox(fy is called a homogeneous function of degree 1. Given
conic complex manifolds (X19 a^)9 (X29 «2)

 a holomorphic map 9 : JS^-*^ is

called homogeneous if it commutes with the actions al9 a2, that is, if
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a2,t<p = 9a\tt -> f°r any
Definition 3.1. A logarithmic symplectic manifold (X, o) with a free

group action OL is called a homogeneous symplectic manifold if

If (Xl9 o^, (X2, a2) are homogeneous symplectic manifolds and <p: X1-^X2 is a
canonical transformation we say that 9? is a homogeneous canonical transforma-
tion if it is homogeneous.

Given a homogeneous logarithmic symplectic manifold (X, o) we call the
logarithmic differential form of degree 1

6 = t(p)a

the canonical l-form of (X, cr).
We notice that a canonical transformation <p: X1->X2 is a homogeneous

canonical transformation if and only if <p*02=0lt

We will now prove a Darboux Theorem in the homogeneous case

Definition 3.2. We say that a partial system of logarithmic symplectic co-
ordinates xj9 j&A, £k, k^B, of (X, a) is a partial system of homogeneous log-

arithmic symplectic coordinates if the functions xj9j&A, are homogeneous of
degree 0 and the functions £k, k^S, are homogeneous of degree 1.

Let (X9 a) be a homogeneous logarithmic symplectic manifold with poles
along a divisor with normal crossings Y. Let U be an open set of X and YQ a
closed smooth hypersurface contained in Y fl U. A residual function along YQ

is called homogeneous if it is homogeneous of degree 1.
If f 0, <f o are two homogeneous residual functions along F0 then f 0— £<J van-

ishes along F0. Hence, given XQ e F0 we can define the residual value of A;°
along F0 as f 0(x°).

Theorem 3.3. Let (X, @) be a homogeneous logarithmic symplectic manifold
of dimension 2n with poles along a divisor with normal crossings Y. We fix ;t°GE
X. Let v be the number of irreducible components of F^o. Let

yJ9js=A,iik9kt=B9 (3.3.0)

be a partial system of homogeneous symplectic coordinates on an open neighbour-

hood U of XQ and bk, l<k<n, be a family of complex numbers verifying the fol-

lowing conditions:
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(i) The residual value of x° along Yk equals bkfor l<k<v.

(ii) rik(x
Q)=bk,foranyk^B.

(iii) There is an integer J such that

Then there is a system of homogeneous logarithmic symplectic coordinates (xlt

•••>xn,Elf •"> f») on a neigbourhood VofxQ such that

for \<j<v,

x.=y. for v+l<j<n, (3.3.1)

Proof. We may assume that there is an integer / such that Af][i9^] =
[/+!, v\. Let AQ, BQ be subsets of [1, n] such that there is a partial system of
homogeneous symplectic coordinates

(3.3.2)

verifying (3.3.1). Let

(3-3-3)

be a system of logarithmic symplectic coordinates that extends (3.3.2). We
will introduce the following assumption:

A-[l^]U(M-l,«]\{/})5 50 = [/+!,»]. (33.4)

(3.3.5) We will now show that we can assume A0=[l9ri\.
We can suppose J>v+l. There are holomorphic functions ak, \<k<I,

such that relatively to the system of local coordinates (3.3.3),

P =

(3.3.6) Since dt(p)a—tJ=2*-i dakdxk—dad£j the functions a, aly ••- , at de-
pend only on xl9 °-> xh f /.

Choose a holomorphic function/depending only on xl9 ••• , x/? f / such that

Then the function xj=qj+f is a homogeneous of degree 0 and we have proved
the claim (3.3.5)

Suppose />2. There are holomorphic functions ak, I<k<l9 such that,

relative to the local coordinate system (3.3.3),
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By a reasoning analogous to (3.3.6) the holomorphic functions ak,l<k<l
depend only on xl9 • • - , x/. Therefore the holomorphic functions £k==

are homogeneous of degree 1 and

<* = SI-i #**** -

(3.3.7) We will now prove (3.3.4) under the hypothesis J>v+\.
Suppose that there is kQ such that kQ>v+l and

Lemma 3.3.8. Let (E, a) be a symplectic vector space of dimension 2n.
Let bh, l<k<n be a family of complex numbers. Let PO be a vector of E and
e., j^A, $k, k£=:B, A, J?C[1, n] be a partial symplectic basis of (E, a) verifying
the following conditions:

(0 "oG°o, e.)=0,jGA, oQ(p0, <t>k)=bk, k^B.
(ii) £j,j^A, 0£, k£iB, pQ are linearly independent.
(iii) There is an integer J such that J<£A and bj^pQ.

Then we can find e., j&A, <l>k> k^B, such that e ., $kf l<j, k<n, is a symplec-
tic basis for (E, CTO) and

, oQ(p, <t>k)=bk, 1 <j, k<n. (3.3.9)

Proof, cf. (Hormander [6], Theorem 21.1.9).

Put £=rX*/r>, °*=°<x«>> Po=P<x°>, ^=H(ej) for j<=A, #h=H(fk) for
and <f>k=H(rk) for \<k<v. By the Lemma 3.3.8 there are vectors ej9

fk, k&B of r*oC*7O such that the vectors e.=H(ej)9 4>k=H(fk) satisfy
(3.3.9). We can suppose by Remark 2.20 that the functions (3.3.3) verify the
relations

*xj<f0> = ej for j&A and d£t<fQ> =fk, pk(x°) = tk, for

We want to find a function £AO such that

= o,

Therefore we want to find a function /, depending only on pj}j&A, qk,
such that

Pf-f = pko-PPk». (3-3.10)

The equation (3.3.10) is equivalent to the equation
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where pa is the vector field we obtain after dropping from p the coefficients of
k^B, 8/dpj9j^A. The coefficients of pl do not depend on qk,

Actually take P2
:=P—^^APj(dldPj)' Since

[ H f , f i ] = ( l - X ) H f (3.3.11)

for any holomorphic function /of degree /I we have

We conclude from (3.3.9) that for any constant p. there is one and only one
solution /of (3.3.10) such that/— pp. vanishes along {pj=bj}. We can choose
fjL in such a way that df(x°)=dpk(x

Q). We use the function £ *0 =/J*0+/to extend
the system of partial symplectic coordinates (3.3.2).

We can find in a similar way a function x/0 forj^AQ.
(3.3.12) Finally we will prove (3.3.4) under the hypothesis /<>.
Take A1=AQ\{J} . Suppose that there is a k0 such that k^v+l anc* ^o^

B. We can find, by the procedure described above, a holomorphic function

£kQ, homogeneous of degree 1, such that {gkQ9 xfr =dkQji {^^ %k} =Q> f°r 7 e^>
k<=B, d£kQ(x°)=fkQ, and the function f=gkQ—pkQ depends only on p.,j$Al9 qk,

Then we want a function g, homogeneous of degree 0, such that

{*,-, g} = {f *, £} =0, 7 e^, ^e5, {f,0, x/e«} =0.

That is, we want a function g depending only on pJ9 j$Al9 qk9 ks£B& such that

Since [p, jfiTg0]=0 the function g exists because of Frobenius Theorem. We
can substitute x/ by xjee and B0 by ^0 U {/c0} . We can enlarge the set AQ by
a similar method.

This ends the proof of Theorem 3.3.

Remark 3A We notice that, if there is a J such that J&A and
then we can suppose ^j^=yj for ./=}=/. If moreover />*>+! then we can sup-

pose Xj=yj for l<j <n.

A homogeneous logarithmic symplectic manifold is locally isomorphic
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to T*(X/Yy in the category of homogeneous symplectic manifolds.

Corollary 3.5. Let a be a homogeneous logarithmic symplectic form on a
complex manifold X with poles along a divisor with normal crossings Y. Given
x°^X let v be the number of irreducible components of Y at XQ. Then there is

a system of local coordinates (xlt • • • > x n , E l , • • • , f B) on U such that Y fl U={x1

•••xv=fy, xl} "-,xn are homogeneous of degree 0, fx, • • • ,£„ are homogeneous
of degree 1 and

Proof. It is quite similar to the proof of (2.15). Therefore we omit it

Remark 3.6. If (X, a) is a homogeneous logarithmic symplectic manifold
and Xj, l<j<n, Ek9 l<k<n, is a system of homogeneous logarithmic sym-
plectic coordinates for a on an open set U of X then

Definition 3.7. Given a homogeneous logarithmic symplectic manifold
(X, cr) with poles along a divisor with normal crossings Y and a smooth hyper-
surface YQ contained in Y we call residual submanifold of X along YQ to the set of
points of YQ of residual value 0. If Y is smooth we call residual set of X to the
residual submanifold of X along Y.

Proposition 3.8. Let X be a homogeneous logarithmic symplectic mani-

fold with poles along a smooth divisor Y. Let Z be the residual submanifold
ofX. Then:
(i) Y,Z are involutive submanifolds of X.

(ii) The manifold Z has a canonical structure of homogeneous symplectic
manifold.

Proof. Statement (i) is an immediate consequence of Corollary 3.5.

Let XQ be a Poisson manifold. We say that a submanifold YQ of XQ is

Invariant if {!YQ, OXQ} ^^YQ (cf- Kashiwara Fernandes [10]).
An invariant submanifold of a Poisson manifold has a canonical Poisson

structure.
By Corollary 3.5 the set of poles 7 is an invariant submanifold of X and

the residual submanifold Z is an invariant submanifold of Y. Moreover the
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C* action of X induces a £7*-action on Z. Given pQ e Z there is a conic
neighbourhood U of /?° in X and a system of local coordinates (xl5°°°9xn9

fu "•> fa) on ^ sucfr that ^ 1^=^^/^+27-2 dffdXj. We can easily verify
that the Poisson structure of Z r\U is determined by

where Jcf— # f . |zntf, £,-=£,• I z n t f - % Proposition 2.8 (3.8.1) does not depend of
the choice of the system of local coordinates (xl9 •••, .YM, £19 ••• , £ J. Q.E.D

Example 3990 Let X be a complex manifold and F a smooth divisor of

X Then the residual submanifold of f*<J*7F> is isomorphic to T*F.

§ 4 Logarithmic Contact Manifolds

Definition 41. Let X be a complex manifold of dimension 2«-t-l, w>0,
and r a divisor with normal crossings of X A local section o> of @l

x<yy is
called a logarithmic contact form with poles along Y \f o)(dco)n is a local genera-

tor of <S*+1<r>.
We say that a locally free sub C^-module X of $z<y> is a logarithmic con-

tact structure on X with poles along Y if it is locally generated by a logarithmic
contact form with poles along 7. We say that a complex manifold with a
logarithmic contact structure with poles along a divisor with normal crossings
Y is a logarithmic contact manifold with poles along Y. We call Y the set of

poles of the logarithmic contact manifold (X, X).

Let (X19 -Q, (X2, -Q be logarithmic contact manifolds. We say that a
holomorphic map <p : Xl-^X2 is a contact transformation if for any local genera-
tor of ~C2 its inverse image by <p is a local generator of X^.

Let ro be a smooth irreducible component of Y. We say that a point ;c°
of 7 is in the residual set of X along F0 if the residue along F0 of all the sec-
tions of X vanishes at x°.

Remark 42B (i) Given a logarithmic contact form co and a nowhere van-
ishing holomorphic function <p, <pco is a logarithmic contact form.
(ii) We say that two logarithmic contact forms o)l9 o>2? are equivalent if there
is a nowhere vanishing holomorphic function <p such that o)2=q>o)lm

(in) We notice that it is equivalent to give a structure of logarithmic contact
manifold along F and to give an open covering (C/f.) of X and logarithmic con-

tact forms <»,er(J7,, @\<Yy) with poles along Ui fl Fand verifying the condition
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"&; is equivalent to o>j on Ui fl U.".

Proposition 4.3. There is an equivalence of categories between the category
of logarithmic contact manifolds and the category of homogeneous logarithmic
symplectic manifolds.

Proof. Let (X, X) be a logarithmic contact manifold along a divisor with
normal crossings Y. We put

X = Specan (©Aez-£®<-*>) . (4.3.1)

We will denote by r the canonical projection X->X. The complex manifold
X with the projection r is the C*-bundle we obtain after removing the zero
section of the line bundle associated to X. Moreover X has a canonical struc-
ture of homogeneous symplectic manifold. Actually let o) be a local generator
of X. Locally

X = Specan (Ox[o)9 a®-1]).

Let TI be the image of a)®'1 by the canonical morphism r~lOx[o>, o)®-l]->Ox>
The logarithmic differential form rjr*a> does not depend on the choice of o> and
d(rir*o)) is a logarithmic symplectic form with poles along r~l(Y).

(4.3.2) The logarithmic differential form 7jr*G) is the canonical l-form of
the logarithmic symplectic manifold X.

Choose a system of local coordinates x{9 I<i<2n+l9 in the open set U
of X where o) is defined. Then 77, r*xiy l<i<2n+l, is a system of local co-
ordinates of X on r~lU and relatively to this system of coordinates the radial

A

vector fileld p of X is given by r\d\Qri. Now the statement (4.3.2) follows from
the equality

d

(4.3.3) We notice that if 70 is a smooth hyper surf ace contained in Y and
Z0 is the residual set of X along YQ then the set of poles of X equals r~lY and

A

the residual set of X along F0 equals r~1Z0.

Let now X be a homogeneous logarithmic symplectic manifold. Let 0 be
the canonical l-form of X and let Y be the set of poles of X. Let X* be the quo-
tient of X by its C* action. Then X* is a complex manifold and the canonical
epimorphism r: X-+X* is a C*-bundle. Put Y#=r(Y). Let J2* be the sub
0^-moduJe of £*,<**> generated by the logarithmic differentia] forms s*0,
where s is a holomorphic section of r. Then J7* is a structure of logarithmic



190 ORLANDO NETO

contact manifold with poles along 7*. Q.E.D.

Remark 4.4. Let X be a logarithmic contact manifold and X the associat-
ed homogeneous logarithmic symplectic manifold. Let r: X-+X be the canon-

A

ical projection. From now on we will often identify X with X. We will also

identify a sheaf 8 on X that is constant along the fibers of r with the sheaf

on X.

Let P*CT/7> be the projective bundle associated to T*<X/Y>. We call
P*(X/Yy the projective logarithmic cotangent bundle of X with poles along Y.

The projective bundle F*<Jf/7)> has a canonical structure of logarithmic
contact manifold. Moerover the associated homogeneous logarithmic sym-

plectic manifold equals

A logarithmic contact manifold of dimension 2n is locally isomorphic to
• *V

=0}X for some integer z/.

Theorem 4.5* Let X be a complex manifold of dimension 2n+l.
(i) Let co be a logarithmic contact form ofX. Given a point x° in the domain of

co there are holomorphic functions xlt •••fxn+lf Cx,
 8 B*,C«+ 1 defined in an open

neighbourhood U of X such that

(4.5.1)

Moreover there is an i such that C,-(;c0) ̂  0 and for any z'0 such that Cf-0(jc°)=|=0

the functions

xi9

*o

are a local system of coordinates for X on U.

(ii) Let X be a logarithmic contact structure on X with poles along a divisor
with normal crossings Y. Given a point x° of X, suppose that YXQ has irreduci-
ble components Ylt • • • , Yv and that the residual values of x° along Yi vanish for

l</<y. Then there is a system of coordinates (xlt •",xn+1,plt -°%/O in a
neighbourhood U of XQ such that the logarithmic differential form

(4.5.2)

is a local generator of X and Yi f| U= {^-=0} , for 1 <i



BLOW UP FOR A HOLONOMIC SYSTEM 191

Proof. Let X' be the domain of o). Let Y be the set of poles of a). Let

v be the number of irreducible components of Y at %°. Put -C=OX'°>- Choose
y°^Xf such that r(yQ)=x°. We can find a system of homogeneous symplectic

coordinates xj9 l<j<n+l, Ek9 l<k<n+l, such that

and r~1(Y)riV=ix1—xv=Q}9 *,.(/)=() for y+l<z<«. We can suppose V=
r~l(U) for some open neighbourhood U of JK°. The functions x,-, fg/ij, !</"<
H+l are homogeneous of degree 0 and therefore determine holomorphic func-
tions on U that we will denote respectively by xi9 £,-. They obviously satisfy
(4.5.1).

Suppose now that £,.(/)=() for !</</z+l. Then the set {/} would be
invariant by the action of a and a wouldn't be a free group action. Therefore

there is an / such that C^^^O.
Finally if C,0(x°)=*=0 then <?,-„(/) 4=0 and

determines a logarithmic contact form on U. Since there is a nonvanishing
constant C such thai

o^/sC^.^
C*o

the differential form dxl—dxn+lf\^^XJd^ does not vanish at jc°. This proves
(i). We can suppose iQ=n+l. If we putpi = — CilCH+i9 for l < f < w then o>Q=
(4.5.2). Q.E.D.

Chapter II. Quantized Logarithmic Contact Manifolds

Let X be a complex manifold and Y a divisor with normal crossings of X.

In §5 we will build a sheaf Sa/Y> on the vector bundle r*<X/7>. This sheaf
is a natural generalization of the sheaf 8X of microdifferential operators on

T*X. It is a "microlocalization" of the sheaf -Sz<r> °f tne differential opera-
tors tangent to Fin the same sense 8X is a "microlocalization" of 3)x.

Theorem 5.10 and its Corollaries will be systematically used through all
the paper. Roughly speaking they allow us to extend results on "noncom-
mutative polynomials" to "non commutative power series".

In §8 we introduce the notions of quantized logarithmic contact manifold
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and self dual quantized logarithmic contact manifold. Roughly speaking a quan=

tized logarithmic contact manifold is a ringed space (M, 8) where M is a loga-

rithmic contact manifold and moreover (M, 6) is locally isomorphic to the ringed

space (JP*O77>, 8<x/Yy). We call the sheaf 8 a quantization of the contact

manifold M, A self dual quantized logarithmic contact manifold is a quantized

logarithmic contact manifold with a globally defined adjoint morphism similar

to the adjoint morphism locally defined in 8X.

We introduce a globally defined notion of subprincipal symbol of a sec-

torn of a self dual quantized logarithmic contact manifold and use it to prove

the global existence of the both side ideals that where locally studied in § 6.

This ideals are deeply related with the set of poles and the residual sub-

manifold of the underlying logarithmic contact manifold.

§ 5, The Sheaf of Logarithmic Mfcrodifferential Operators

Let X be a complex manifold and X a Lie algebra of derivations of Ox

that is a locally free C^-module. Let 2)j* be the sub 0z-algebra of the sheaf

of differential operators 3>x generated by X. We endow S)x with the filtration

induced by the canonical filtration of S)x-

Proposition 5.1. The vector bundle ^=Specan(gr.2)_£) has a canonical

structure of Poisson manifold.

Proof. Let K be the canonical projection from Xj£ onto X. The Lie
bracket of 3)j, induces a structure of Poisson algebra in gi3) ~ Moreover the

sheaves Ox=^'l^Oh
X, and n~l^3)x are isomorphic. We obtain in this

way canonical morphisms of sheaves

Let U be an open set of X, (xl9 — , xn) a system of local coordinates of X on U

and ul9 — , uk a basis of X\v. Then (xl9 — , xn, fl9 — , fk) is a system of local
coordinates of Xj*on x~l(U), where £i=o(ui) for l<i<k.

The Poisson structure of Orx -i is determined by

for/, ^ local sections of n~lOx, l<i,j<n. Since for any if^Xj* there is a

unique extension of the Poisson structure of OrX -i ̂ 0 to 0^- ^ then it is
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enough to show that it is possible to extend the Poisson structure of Orx i to

Ox locally. If wf— S/fyd*/ an (ui> Uj]=^liblijUi we define

for any section/, g of Ox . Q.E.D.

Definition 5.2. Let 7 be a divisor with normal crossings of X. We
denote by 3)x<jy the ring 3)@x<Yy and call it the ring of differential operators
of X tangent to Y. We will denote by OY the principal symbol morphism
C70X7> introduced in the proof of Proposition 5.L

Proposition 5.3. The vector bundles Jf@^<r> and T*(X/Yy are isomorphic
as vector bundles and as Poisson manifolds.

Proof. Since gr^)z<^> is isomorphic to S(@z<7>)5 the symmetric algebra
of (®x<Yy\ ^en Specan(gr.2)X7>) equals the dual of the vector bundle with
sheaf of sections @^<7>. Given a system of local coordinates (xl9 •••, xn) on
an open set U of X subordinated to Y fl U let (x, f ) be the associated system of
canonical coordinates in r*<Z/7>. For !</<« put fl,—^^.), where ^. is
the vector field introduced in section 1.1. The functions (xl9 •••9xn97jl, ••-, qn)
define a system of homogeneous logarithmic symplectic coordinates outside the
zero section. Therefore {£,-— 7ji9 Xj} vanishes for I<i9j<n. Hence <?,-— ̂  de-
pends only on xl9 •••,*„. We conclude that the functions Si—'ni are homo-
geneous of degree 0 and 1. Therefore

*r(*,,)=£«, l<i<n. Q.E.D.

Definition 5.4. Let U be an open set of X and let (xl9 •••,xn) be a sys-
tem of local coordinates subordinated to the divisor with normal crossings
Y r\U. Given a section P of 3)x<Yy we define the total symbol of P as the

element (P;.) of 0[r*<z/r>] determined by

where <x, f>v=S!-i f i

Proposition 5.5. (i) Given two sections P, Q o

(5.5.1)

(PQ)i = 23 - (9?Py) Wfi*) - (5.5.2)
/=y+*-i*i a! J
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(ii) If(xlf "',xn) is another system of local coordinates of Xn on U such that
Yft U={xlf •••, xv=G} and xi/xi is holomorphic for l<i<v then the associ-
ated systems of canonical coordinates are related by

(> = '<*'*>*, l<k<n.
dxk

Moreover, for any 7eZ,

~ 1
-<»<rp (~ P^ ft ^ 1\"Jr^X, CJ . (J.j.j)

r/ze indexes run over k^Z, a^N, a^, ..., o^e JV", such that

>2

Proof. The proof of this Proposition is the obvious generalization of the
proof in the case y=0. By (5.5.1) its enough to prove (5.5.2) and (5.5.3)
when P=£ *. This can be accomplished by induction in \a\. The induction
step of (5.5.3) uses (5.5.2). Q.E.D.

Definition 5.6. Let Xn be a copy of Cn with coordinates (*1? •", xn). Let
v be an integer smaller or equal to n and Fv the divisor with normal crossings
{^...^=0} of Xn. Let U be an open set of T*<iy Fv>. We denote by

the space of formal series ^j^mPj where P. is a section of OT*(XnjY^(fi
The correspondence

defines a sheaf of C»modules denoted O<ZM/FV>(W). We put

Given sections P=^Pjt Q=l>]Qk of &<xn/Yv> defined in an open set U of
T*(XJYvy we define the sum and product of P and 2 respectively by the for-

mulas (5.5.1) and (5.5.2). We say that a section 2Py of £<Xn/Yv>(U) is a tog-
arithmic microdifferential operator if for any compact set ^ of U there is a con-
stant C such that
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We will denote by S^Xn/Yv> the subsheaf of o<zM/rv> whose sections are loga-
rithmic microdifferential operators. We will consider <?<jrB/rv> endowed with

the filtration induced by o<z«/rv>.
We wih denote the section (<?g-) by dx. for 1 <i <n. If v+ 1 <i < n then we

will usually denote (<f ,-) by dx. instead of dx.. We introduce the following con-
vention. If in a statement we denote a (£,.) by 3X. we will do it in that state-
ment whenever possible.

Let Xn be a copy of Cn with coordinates (xl9 ••-, #„). Suppose #<> and
put Yiftv={^f*+i""^v=0}- Let * denote the canonical isomorphism

If we consider in T*<XJYvy[T*<XH/Ypy] the system of canonical coordinates

^s f )] associated to (^) then

**f,. =£, if !</<

. =

Proposition 5.7. (i) TOe sheaves £<xn/Y^> and £<xn/yv> we associative C-
Algebras.

(ii) Let Xn [Xn] be a copy ofCn with coordinates (xlt ••• ,%„) [(yit ••• , yn)]. Let
x=(xlf •-, xn) be a biholomorphic map from an open set U of Xn into an open
setVofXn. PutYv = {x1"'Xv=Q}fYv={yl"'y^=Q}. Ifx-\YJ=Y*[\Uthen
formula (5.3.3) defines isomorphisms of filter edC- Algebras

\u~e<zjY#\v (5.7.1)
I u ~ &<xn/Yv> \ v

(iii) There are canonical isomorphisms

H\YpV (5.7.2)

The isomorphisms (5.7.2) «re explicitly given by

= S -- — (SL^if«)*e?+-+-'P*(x,f). (5-7.3)
-

Here the indexes run over &eZ, a l f — , (*.„<= {Q^xfT^X {0}B-V

l a iU •"* l a <r l ^2 andl=k-i-a— ST.ila,-|. In particular
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a,,^*,,, for
dXs M> xfl^ , for

0Xi^dXi, forv+l<i<n.

(iv) The correspondence "Ft-* total symbol of P" defines an immersion of

^"1^)xn<Yvy into <S<Xn/Yv>,

(v) The restriction ofS<Xn/Y^ [<5<Xn/Yv>] to the zero section of T*(XJYV> equals

Lemma 5.7.1. Let X£ be the open set {0<Imzg.<27r3 #+!</<>} of a

copy Zn ofCn with coordinates (zv ••- , zn). Let (z, C) be the system of coordi-

nates of T\ZJY^y associated to (z). Let X: Xi-*>Xn\Ym be the biholomorphic

map defined by:

Z*x. = ezt ,

LetZ: T*<XJYV> | Zs\FjUtv->r*<Zjrv> | x,n be the biholomorphic map induced by

X. Then the following morphism of sheaves is an isomorphism of filtered C-

Algebras

x^SXn/Y^ \ XH\Y (5.7.4)

Moreover S;-P/ ^ a logarithmic microdifferential operator iff SyP;-°* is a

logarithmic microdifferential operator.

Proof. It is an immediate consequence of the following facts. For !<£/<»

z;) = ^. Q-E.D.

c?/ Proposition 5.7. (i) By Lemma 5.7.1 if P9 Q,

then (PQ)R=P(QR) in an open dense subset of £/. Therefore <?<zM/rv> is an as"
sociative Algebra. Also by Lemma 5.7.1 if P,Q are logarithmic mierodifferen-

tial operators then PQ is a logarithmic microdifferential operator outside of a

divisor with normal crossings of U. By the Cauchy estimates PQ is a loga-

rithmic microdifferential operator on U.

(ii) By the remarks made in the proof of Lemma 5.7.1 we can deduce (ii)

from its particular case y=0 using the isomorphisms (5.7.2). For the proof

of statement (ii) with v=0 cf. [SKK] and [9].

(iii) By (ii) there is an isomorphism
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X'9
(5.7.5)

associated to the change of coordinates introduced in Lemma 5.8. We define
(5.7.2) as the composition of (5.7.5) with the inverse of (5.7.4). Q.E.D.

Lemma 5.80 Let X be a complex manifold and Y a divisor with normal

crossings of X. Let U be an open set of X and let (xlf • • • , xn), [(xv • • • , xn)] be a

system of local coordinates for X on U such that Y fl U={xl "8 *v — 0}[— {*T"
*v=0}]/0r a certain integer v [P]. Let s [£] be an imbedding of U into a copy
Xn[Xn] such that e-\Y^)=e-1Y-=Yv. Let V [V] be the image ofe [s]. Let n [ft]

be the canonical projection of T*<XJY^ onto XH[T*<XJY~> onto Xn}. There
is a canonical isomorphism

*-l®xu<YJ> 1 y ̂  ft-l3)xn<Y^ | y (5.8.1)

Moreover there is one and only one isomorphism

£<XH/YV> I v ^X G&JY$> I v (5.8.2)

that extends (5.8.1).

Proof. The existence follows from Proposition 5.7. The uniqueness fol-
lows from the fact that the Lemma is true when v=$=Q and from Lemma
5.7.1. For the prove in the case y-P-0 cf. [SKK] or [15]. Q.E.D.

Let X be a complex manifold and Y be a divisor with normal crossings of
X. We can cover X with copies of open sets X& of Cn such that there is
an integer v. verifying X& fl Y={x[i^--x(^=0}. We can glue the sheaves

£<jrco/zco n r> [<^<jrco/^co n r>l using the morphisms introduced in Lemma 5.8.
Again by Lemma 5.8 the sheaf obtained in this way does not depend of the
choices of the open sets, the coordinate systems or the integers v{.

We will denote it by £<X/Y> [<?<z/r>]- We call <?<*/r> [£<z/r>] the sheaf of
[formal] logarithmic microdifTerential operators of X with poles along Y.

The sheaf £<X/Y> [<?<^/r>] nas a canonical structure of sheaf of filtered C-

algebras and gr<?<z/y> is canonically isomorphic to 0r*<z/r>- We will denote
respectively by cr, am the natural morphisms of sheaves of sets [sheaves of C-
modules]

If Pe<Sa/F>(m)j Q^<X/Y>M then [P, 2]eea/rXm+B+1) and
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°m+n-J\P, Q]) = K(n *.(0> • (5-83)

Proposition 5.9, (i) TTiere w a canonical isomorphism £<X/Y> I z\r ^»

(ii) There is a canonical imbedding of n~l£)x(Yy into XY-

(in) The restriction of G^X/Y> t° ^ne zero section of T*(X/Yy equals

Theorem 5010e The filtered C-Algebras £<X/Y> an& &<X/Y> have zariskian
fibers,

Corollary 5.11. (I) The rings £<X/Y> an& &<X/Y> are deft an^ right) noe-
therian rings.

(ii) The inclusions ^-1^)z<ir>c~><?<z/r>* <?Cxyr> c~* &<X/Y> are flat morphisms.

In order to prove Theorem 5.10 we will now introduce an immersion of

the ring of logarithmic microdifferential operators into the ring of microdiffer-

ential operators of a higher dimensional manifold.

Sol28 Let Xw+v be a copy of C*+v with coordinates (yl9 -"^y^z^ • • • , zv).

Put Ar?+v=JSTJI+v\{y1'-^v=0}. Let (y, z, y, C) be the canonical coordinates of
r*lt+v. For \<i<v let ai9 [a] be the action of C*(C*V x Cv) in J*X?+V

given by

a.(ti9 y, z, rj, C) = (t^y, tjlz, tT1*!, tf)

a(t, h, y, z, ̂  C) - (ty'9 y", t~lz, r1]', n", C+h) ,

where t=(tl9 — , rv), h=(hl9 — , Av)» ̂ =(^1, — >^)» ^'=(^i» — ̂ v), //=CVv+i, — ,

yH)9 z=(zl9 — ,zv), ??'=(?7i, — ,37vX '7//=(37v+i» —^»)J ^=0;i> —» ̂ > ° ° ° 5 J«X
0''=(/i^i, — , ^vJv) and so on.

For \<i<v let

be the radial vector field of the C*-action a.. Define

by:

The fibers of ^ are the orbits of the action of a. Given a complex number

A define Or^;+vW={/eOT*^;4V(A): Pif=ds.f=0, \<i<v}. The map ̂  in-

duces isomorphisms of sheaves
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Let <?xa+v be the sheaf of the formal microdifferential operators
such that

[zfr-ytd,,, P] = [P, z,] = 0 for 1 <i<».

We will now build an isomorphism of filtered C-modules

. (5.12.0)

We define ^0: SXn\Xn\Yv-*^*Sx*^ \Xn\Y^ by Syg^^e,0^- Let now

Sy-Py be the total symbol of a section P of <?<*w\rv>- If Sy 2y is tne principal
symbol of P \ XH\YV as a section of 6Xn then by (5.7.3) all the g/s have a

unique extension Q,y to the domain of P. We can now define Sr(P)=Sy CLy0^-
We can easily verify that WQ is a morphism of filtered C-algebras and therefore
the same happens with W.

Once we prove the morphism W is an isomorphism then Theorem 5.10
will be a consequence of the following Lemma.

Lemma 5.12.1. 77?^ sheaves <?z* v and <?z*+v have zariskian fibers.

Proof. Let £x*+v be the sheaf of formal microdifferential operators Pe

4*+v such that [P, zy]=0 for l<i <v. The sheaf <SJ;+v has zariskian fibers.

(cf. [SKK] and [15]). Fixed / e T*X0 define, for 0 < / < v,

El = {Pe<?J*+v such that [p£, P]=0 for !</</}.

Lemma 5.12.2. For 0<z'<y there is a sub C -module E'i of EQ such that

£,&£',=£,.

Proof. If l=Q the statement is obvious. Suppose !</<>. There

are holomorphic functions pl9 •••,^M + V-I J homogeneous of degree 0, and a
holomorphic function 57, homogeneous of degree 1, such that

yi9 l<i<n, zi9 l<i<v, /=»=/ , z^,/?,, !</<«+^~l, 37 (5-12.2)

is a system of local coordinates for Xf^ v in a neighbourhood of pQ. Relatively
to this system of coordinates

Pi = -yfiyl , P = Vfi-nl -

Given P^El.l there are holomorphic functions af, i&Z, such that P=^iai^
i
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and pai=pkai=Q for l<k<l— 19 i^Z. For each i there are holomorphic
functions a{. such that

and P,flgV-0 for all./. Therefore El^=El®(yl—yl(f))El^l. We take £J =

i-i. Q.E.D.
Lemma 5.12.1 is a consequence of Lemma 5.12.2 for l=v and the fact that

if / is a left ideal (right ideal) of £X*^.P° then f@Ev is a left ideal (right ideal) of

<^i* ,o. Q.E.DOA « v > " ~

Theorem §.13, Le? & be afield and A a (left) noetherian k-algebra. Sup-
pose that there is a both side ideal I of A such that [A, A]dl, [A, J]C/2 and 1N

=0 for 7Vr>0. Then, given a both side ideal Jl of A the ring @k^JLh is noe"
therian.

Corollary 5,14 If for any a^32 I— a is invertible in A then the filtration
of A defined by FkA=32~k ifk<Q, FkA=A if k>0 is zariskian.

Proof of the Theorem 5.13. There are elements wi3 "
B

5 w/ of A such that
3Z=SJ-i ^w,-- Let S be the Lie algebra over k generated by the indetermi-
nates Tl9 • • • , Th and verifying the relations (adg)N£=Q. We define recursively
a family (3Z*)ft>0 of left ideals of A by 570-^? mk+l=A[m, 32k]dlk. Let 5 be
the Lie algebra of the derivations of ®k^JlkT

k, where Tis an indeterminate.
Let <p: Q->33 be the morphism of Lie algebras defined by <p(T^=\u& *]T.

Let Utp(B) be the A>algebra generated by Q and A with fundamental relations

[x,a]=<p(x)(a)9

We have an epimorphism

defined by s(d)=a for a<=A and j(ry)=i/yrfor !</</.
It is therefore enough to show that £/?(-#) is a noetherian ring. Let

be the universal enveloping algebra of 3. We introduce a structure of right
^(-module in A®kU(<2) by

(\®x)a := a®x+<p(x)(a)®I .

We endow in this way A®kU(Q) with a structure of ring for which A®kU(3)

and U9(3) are isomorphic. The canonical filtration of U(3) induces a filtra-
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tion on A®kU(S). The associated graduated ring is an epimorphic image of

A[T19 • • > , I*,]. Q.E.D.

CoroMary 5.15. Let A be a k-algebra with a zariskian filtration. Let

32 be a both side ideal of A0 verifying the conditions of Corollary 5.14. Let

B be a k-subalgebra of A and consider in B the induced filtration. If B contains

an element of A, invertible of order 1, and ruC#o+^2*) equals ^o then B equals
A.

Proof. Given a nonnegative integer / put Jll=(^l-\-A^jAi. Then by

Corollary 5.14 the filtration of A/A, given by Fk(A/Al)=A/Al if fc>0?

Fk(A/Al)=yiTk if k<Q is zariskian. Consider in (BQ+Al}IAl the induced filtra-
tion. Since

is exact then (BQ+Aj)/At equals AQ/At. Therefore BQ+At equals AQ. Since

the nitration of A is zariskian then BQ equals A0. Q.E.D.

We will now finish the proof of Theorem 5.10. Choose /?°e r*X*+v. Put

A = <^ ' B =

Let m be the maximal ideal of grAQ and put Jl=o^lm.

If p° is in the zero section the surjectivity of Wp* is trivial. We can there-

fore suppose that /ef*r*+v. Put

w~yf for v+l<i<n. (5.15.1)

We can choose pl9 —,Pn+v-i^OT*x*n+VipQ(0)9 ^^O^x*+VtP
Qm invertible, Pl9—9

Pn+v.l^BQ,P^Bl such that ^Q(P,)=piy l<i<n+v-I9 0^=7] and (w, /?,??)
is a system of local coordinates for r*Jf?+v in some neighbourhood of p°.

Moreover B contains an invertible element of A of order 1. Given Q^AQ and

a nonnegative integer k there is a polynomial function II of

such that o(Q)—n^mk. Therefore by the Corollary 5.15 5 equals A.

This ends the proof of Theorem 5.10.

§6. Division Theorems

We will associate to each logarithmic microdifferential operator P the
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C-linear isomorphism adp of <?<z/r> defined by adP(Q)=[P, Q\.

Theorem 6.1. Let P be a logarithmic microdifferential operator defined
in a neighbourhood of (x°, f°)e T*(XjYy. Assume that d^^P) is zero at
(x°, <f°) for 0<j </— 1 and different from zero for j=I. Then for any section

Q of £<X/Y> defined in a neighbourhood of (x°, f °) there are unique sections S and

R of &<X/Y> defined in a neighbourhood of (x°, f °) such that

Q = SP+R and adl
x^(R) = 0 .

Moreover ord R<ord Q.

Remark 6.20 (i) We notice that adk
x^R=Q iff there are microdifferential

operators RW,—,^*-1) such that adXvR^=0 for !</</— 1 and R=

(ii) With the same hypothesis there exists also 5 and R such that Q=PS+R

and adX[A=Q. Moreover X and R are unique and ord .R<ord Q.

(iii) We can interchange Xp adn SXfli in the statement of the theorem.
(iv) If an operator A commutes with P, Q and x& then A also commutes with
S and R.

Proof. We will admit the Theorem with the additional hypothesis Y=<f>

(cf. [SKK] or [15]). We will use the constructions introduced during the proof
of Theorem 5.10.

We will consider in X%+v the system of coordinates (5.15.1).
Let U be an open neighbourhood of (x°, c°) in which P and Q are defined.

Put P=V(P), fi=y(0. Given (/, z°, if, C°)er*JT*,v if ^(/,z°,^C°)=
(jc°,£°) then ^^(P) (/, z°, 37°, C°) equals zero for 0<j</-l and is different
from zero for j= 1. Then there are unique microdifferential operators *?and R

defined in a neighborhood of (/, z°, 77°, C°) such that Q=SP+R and adl
W[lR=0.

By Remark 6.2 z$- and p,- commute with R and ^for 1 <i<v.

Hence there are logarithmic microdifferential operators R, S, defined in a
neighbourhood of (*°, f°), such that ^(J?)—^, V(S)=S. We can easily verify
that they have the desired properties. Q.E.D.

Corollary 6,30 With the same hypothesis on P there exists an invertible
microdifferential operator A and a microdifferential operator W such that

y=o

^Rj]=0for0^j^l—lt
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We will now use the Division Theorem to study the both side ideals of

Let A be an associative ring with identity. We say that a proper both
side ideal / of A is prime if given two both side ideals Il9 12 of A, IiI2=I im-
plies /=/! or I=I2> We notice that a both side ideal / of A is prime if and
only if aAb^I implies a^I or b&I for any a,b^A. A maximal both side
ideal is always prime.

Definition 6.4. Let Jl be a coherent sheaf of rings over a topological space
X. We say that a coherent ideal [both side ideal] S of Jl is proper [prime,
maximal] along a subset Y of X if the stalk Sx of S is a proper [prime, maxi-
mal] ideal of JLX for any x^Y and <5* equals cJ^ for ,T$ 7.

Remark 6.5. The following relations are a consequence of the Division
Theorem for 1 </<>.

(6-5.1)

(6.5.2)

(<^.+^ ) (6.5.3)

Theorem 6.6. (i) For 1 </ <> (*,-) w /Ae only both side ideal of <S(Xn/yv>
that is prime along {x~Q} .
(ii) For l<z<> the both side ideals (dx.-\-X), h£=C, are the only both side
ideals ofS^Xn/Yv> that are maximal along {x —£—$}.

Proof. Let's fix an integer /, \<i<v. The fact that (x{) is a prime ideal
along {x~Q} is an obvious consequence of the Division Theorem and Remark
6.5.

Let S be a prime ideal along {xf-=0}. Suppose that x^S. Given a
non zero section P of S there is a holomorphic function /and a positive integer
m such that a(P)=fx™ and / does not vanish along {*f.=0}. Suppose m>2.
Then there are logarithmic microdifferential operators AQ, Al9 •-, Am such that

P = 27=0 A,*, , [dXi, Aj]=Q, (6.6.1)

and ord ^4;.<ord Am for 0<j <m — 1.

Then p,,, P]=([^, ̂ J^-'+S"-!^^'"1)^- Hence -̂." ̂ K1^ J and
@([^., P]x7l)=f'xJ?~l for some holomorphic function /' that does not vanish
along {x—fy. We can therefore suppose m = l. Repeating the reasoning
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above with m=l we conclude that A1+[dx.9A1]^J. Since this logarithmic
microdifFerential operator is invertible in a generic point of {#,•=()} then the
assumption xt^<3 leaded us into a contradiction. We can now conclude from
the Division Theorem that S equals (xg-).
(ii) Let S be a maximal ideal along {x,.=f ,— 0} and P a local non zero sec-
tion of 3 defined in a neighbourhood of a point in the residual set {x~f~0} .
The logarithmic microdifFerential operators [dx.9 P] and [P, #J cannot vanish
simultaneously otherwise P would be invertible in a generic point of {#.=£,.=
0} . Since [dx., P], [P, xi]^(xi) we can repeat the argument of the proof of (i)
and conclude that (jcg-)Cc5.

Choose now Pe<^\(.xf.). We can suppose that, at a generical point of
{*f-=ff-=0}, ff(P)=f?. Hence we can suppose that, at a generical point of

{*i=£i =0}, P^+Sy-o1 P/4, where [Uy, *,]=[?„, *,.] =0 for 1 <i <m-L
If the logarithmic microdifFerential operators Rj are constant then there

are complex numbers Al9 • • • , <*„ such that

P = H7-i (*„+*,-) - (6.6.2)

Otherwise let m0 be the highest j such that Py is not constant. Then ri> 1 and
there is a microdifFerential operator $ such that [S^^J^O and [£,,,£] =[£,#,•]
=0. The integer m0 must be positive. There is a microdifFerential operator
C/ defined in a generical point of the support of [S9 P] such that o(U[S9 P]) =

£*° and

where P/ verifies the same conditions as the operator Ry. considered above.
After repeating this operation a finite number of times we will obtain an opera-
tor P verifying (6.6.2). Therefore there is a /I such that (fl^.+^Cc? in a
generic point of {xg— <?g— 0}. We conclude now from the Division Theorem
that Jd(dx.-rX). Q.E.D.

§?«, Quantized Contact Transformations

Definition 70le Let X [X] be a complex manifold and Y [Y] a divisor with
normal crossings of X [X]. Let U be an open set of T*(X/Yy and 9: £/->

r*<Z/7)> be a symplectic transformation, homogeneous outside the zero sec-
tion. We say that a filtered Cf-algebras isomorphism
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is a quantization of 9 if the following diagram commutes for any integer m,

0

:\
<?*

9 lOT*(x/Y)(m) - » O

We call the pair (99, 0) a quantized contact transformation.

Definition 7.2. Let X be a complex manifold and Y be a divisor with

normal crossings of Y. We say that a family

(Pl9-,Pn,Ql9-9QJ (7.2.1)

of logarithmic microdifferential operators defined in an open set U of T*(X/Yy

is a system of quantized contact coordinates for <5<X/Y> on U if
(i) P19 "',Pn have order 1, Q19 • • - , gw have order 0.

(ii) The principal symbols of the logarithmic microdifferential operators

(7.2.1) define a system of homogeneous logarithmic symplectic coordinates for
the homogeneous logarithmic symplectic manifold U.

(iii) The following commutation relations hold :

* «<[*,, fi,D = <*fi,)
if <7([py, e.]) = i ,

IP,, P,} = (Qi, Qj] = o i </,./<«.
Theorem 7.3. Let X be a complex manifold and Y a divisor with normal

crossings of X. Let (Plf • • • , PH, Qlf • • • , gn) be a system of quantized contact co-

ordinates for S^X/Y> on U. Let v be the only integer such that [Pk, Qk]=Qk for

l<i<v and [Pk, Qk] = l for v+\ <i<n. Let Xn be a copy of Cn with coordi-

nates (xlt ••• , xn) and let (x, f) be the associated system of canonical coordinates

ofT*<X/Y>. Let?: t/->J*<JrM/7v> be the contact transformation defined by

Then there is one and only one quantization ® of the contact transformation

<p such that

Proof. We can identify U with its image by (p. We are then reduced to

prove the following statement.

(7.3.1) Let U be an open set of T*<XJY*y and (Pl9 • • - , Pn, gl5 — , Qn) be

a system of quantized contact coordinates for <?<zn/rv> on U such that a(Qf)=
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xi9 a(Pi)=^i, l<i<n. Then there is an automorphism 0 of <?aB/Fv> I IT sucri

that 0to)=fi,, 00,,)=P,, l<i<n.

We will first prove the uniqueness. Let ®, 0' be two quantizations of id^

and let/?0 be a point of U. Put A=S<Xn/Yv>tpo and B={P^A: ®(P)=®'(P)}.
Then B equals A by Theorem 5.10 and Corollary 5.15.

We will now prove the existence. We assume the Theorem proved in the
case y=0 (cf. [SKK] or [15]). By the Division Theorem there are unique
microdifferential operators Ai9 B^ Ci9 D^ \<i<v9 such that

Q, = A&+D, , [dxi, D,]=0, (73.2)

[̂ , cj=o.

Moreover Ai is invertible of order 03 Bi9 C^G(Q)9 Dg.ec?(-i). We conclude
from the commutation relations 7.2 (iii) and Remark 6.5 that [Ci9Di]=Di

(mod (*,)). Therefore [Q, Dt]=Dit Henceforth Dt=0.
We will first prove the (7.3.1) under the following assumption.

(7.3.3) Q is constant for 1 <>i<v.

We will use again the construction introduced in the proof of Theorem 5.10.
For \<i<v put

P, = *W1(0,l+zlr(*i)+-cl) ,

sn+i =

Then (P, R, Q, S) is a system of quantized contact coordinates for

on if~\U). Let G> be the quantization of id^-i^j such that

Since ^(yi^yi—zi
:dz^=yidyi—zidZi-}-Ci for l</<^, 0 induces an automor-

phism of Gs* U-i(c/) and the Theorem is proved under the assumption (7.3.3).

Example 7 A Given ^eC7v there is one and only one quantization $A of
tnat
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«>*(«„)=»„, v+l<i<n.

Actually the system of quantized contact coordinates (xlt •••, xn, 8,,.+^, •••, £,„+
^,S^+1,-,dXa) verifies (133).

Put A=S<xjTt>tto and S={P^A: P^+^+C,, P]e(*,)}. Once more
B equals A by Theorem 5.10 and Corollary 5.15.

Therefore [C{, x}] =[C{, 8tj] =0 for 1 < j < n, j =(= z. We conclude from the
commutation relations that [C,-, Afx^(x\). If ord Q</

Since ^(Q) only depends of ff. and ^(^4,-) is invertible then 9^.al(Ci)=0. There-
fore

the symbol of Q is constant. (7.4.1)

Put ^f—00(Q) for 1 <f <^ and ^ = — (^, • - - , ̂ v). By Example 7.4 the family of
logarithmic microdifferential operators

constitute a system of quantized contact coordinates for T^XJY^ on C/.
Moreover 0X(P,.) belongs to (8x)+£<Xn/Yv>(—l) for l<z<^. Therefore by
(7.4. 1) fl>x(P,) e (^). Hence P. verifies (7.3.3).

This ends the proof of Theorem 7.3.

Corollary 7.5. Let X be a complex manifold and Y a divisor with normal
crossings of X. Let U be an open set of T*(X/Yy and (Q, P) a system of quan-
tized contact coordinates for <?<£/?> on U.

Let <p : U-* U be the only canonical transformation such that

Then there is one and only one quantization 0 of<p such that

§8. Quantized Logarithmic Contact Manifolds

We remember that a ringed space over C is a pair (X, JK) where Z is a to-
pological space and Jl a sheaf of C-Algebras on X. Usually we will omit the



208 ORLANDO NETO

expression "over C"5.
Given ringed spaces (X, <JL) and (Y, 33) a morphism of ringed spaces from

(X, JK) into (Y9 S) is a pair (9, 0) where <p is a continuous map from X into
Fand 0 is a morphism of C-Algebras from <p~l<B into JL.

Definition 8.1. Let (X, JK) be a ringed space. We call an adjoint morphism
of (X, JK) to an anti isomorphism (a, *): (X3 Jl)-^(X, a~l<Jl) such that a"1^ is
isomorphic to Jl and (a, #)2=id^.

We will in general write Jla and JH* instead of a~lJl and *(<Jl).
We call a ringed space with an adjoint morphism a self dual ringed space,

We say that a subsheaf <B of a self dual ringed space is self dual if <3*=J$.
We say that a morphism of ringed spaces between two self dual ringed spaces
is self dual if it commutes with the adjoint morphisms.

Example 8.2- (i) Let Xn be a copy of Cn with coordinates (xlf •••txn).

Given an open set U of T*Xn and a total symbol P==S*-P*^^JI(C/) we denote

by P* the total symbol ̂ kQk^Sxn(
u^ where

= k-\C6\

We call * the adjoint morphism ofSXn. The pair (a, *) is an adjoint morphism.

(ii) There is one and only one morphism of filtered C-Algebras

such that the following diagram commutes.

xn\yv ^ &xn I xn\

i*
This morphism is an adjoint morphism.

For the proof of (i) cf. [SKK]. The existence of the morphism introduced
in (ii) is a straightforward consequence of Theorem 5.10 and Corollary 5.15

Proposition 83. A quantized contact transformation

0' 9~

is self dual iff
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*(*,)*=«(*,), !</<«,

Proof. It is a straightforward consequence of Theorem 5.10 and Corol-
lary 5. 15. Q.E.D.

Definition 8.4. A [self dual] quantized logarithmic contact manifold is

given by the data (i), (ii), (iii) verifying the condition (iv).
(i) A filtered [self dual] ringed space (X,8) where X is an homogeneous
logarithmic symplectic manifold X.
(ii) An open covering U^ /GEl, of X by conic open sets and homogeneous
canonical transformations <pf: U^T^XJY^y

(iii) Isomorphisms of [self dual] filtered C- Algebras

(iv) The isomorphisms of filtered C- Algebras

ViJ •

is a quantization of q>ijf Here Vf. equals <pj(Ui f! U.) and q>ij equals <pffjlm. Vi.

Remark 8,5. (i) In general we will speak of the quantized contact mani-
fold (X, 8), omiting the other data. If the homogeneous logarithmic contact
manifold X has poles along a divisor Y we say that (X, 8) has poles along Y.
(ii) If X is a homogeneous symplectic manifold we say that (X, 8) is a [self
dual] quantized contact manifold.
(iii) There are obvious generalizations of the notions of [self dual] quantized
contact transformation and quantized contact coordinates to the context of
[self dual] quantized logarithmic contact manifolds.
(iv) We understand a [self dual] quantized logarithmic contact manifold as a
pair (X, 8) where X is the patching of a family of copies Ui of homogeneous
open sets of logarithmic cotangent bundles T*(XJYVi} by homogeneous
canonical transformations and 8 is the glueing of the sheaves <?<z«/rv.> along
[self dual] quantizations of the homogeneous canonical transformations refered
above.

Example 8.6. (i) Let X be a complex manifold and Y a divisor with
normal crossings of Y. Then
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is a quantized contact manifold. In general it is not self dual.

(ii) Put Q)x=@dimX' Let -Cl9 X2 be invertible 0z-modules defined in an open
set of X. If 919 9>2: X^-^X^ are isomorphisms such that pi(s)®2=s®2 for any
local section s of Xl then <p± = ±<p2. Locally there is allways an isomorphism
9 : £^£1. Moreover locally there is always an invertible 0z-module -Cv

such that X®21^o)x. Therefore we can glue in a canonical way the sheaves

where Xv is a locally free C^-module defined in an open set U of r*<X/T>
such that -£f2 is isomorphic to o>x \U9 into a sheaf on T*(X/Y} that we will
denote by

r>®*>i-1/2 (8.9.1)

The adjoint morphism introduced in 8.2 (ii) induces an adjoint morphism in

(8.9.1) and the restriction of (8.9.1) to r*<Jf/7> has a canonical structure of
self dual quantized contact manifold with poles along n~\Y).

Definition 8.7. Given a self dual quantized logarithmic contact manifold
(X, <?), a connected open set U of X and P^S(m) (U) we define

We call o'm(P) the subprincipal symbol of P of order m.
We define a'(P) as cr^(P) if J° has order m^Z and zero if P equal zero.

We call a'(P) the subprincipal symbol ofP,

Proposition Oa (i) IfP^S(m-i) then a'm(P) equals om

(ii) TjT P e <?(m),

(iii) Le^ (^, •", xn) be a system of coordinates on a open set U of a complex
manifold X and let (x, £ ) Z?e £/ze associated system of canonical coordinates of
T*X. Let V be an open set ofn-^U) and P a section ofSx(m)(V\

Then o/
m(dx®1/2®P®dx®^1^) equals

?<0*i
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Proposition 8.9. Let (X, 8) be a self dual quantized contact manifold with

poles along a smooth divisor Y. Let Z be the residual submanifold of X.
(i) There is one and only one both side Ideal 3Y of Q that is prime along the
set of poles ofX.
(ii) For each A&C there is one and only one both side Ideal <3X that is maxi-
mal along Z and moreover is contained in the set of the local sections P of G
such that

£a'(P) = Xa(P) (mod 7r+/|). (8.9.1)

Here £ denotes an arbitrary residual function.
The ideal JK is self dual iff * =0.
The sheaf of C- Algebras 8\3§ is a self dual quantization of the contact

manifold Z.

Definition 8.10. (i) We call Jr the ideal of the set of poles of (X, 5).
(ii) We call J70 the self dual residual ideal.

Proof of Proposition 8.9. Statement (i) is a straightforward consequence

of Theorem 6.6. It is enough to prove statement (ii) locally. By Theorem

6.6 it is enough to show that O^+^+i) is contained in

{P(=e<Xtt/Yl>: ^a'(P) = V(P) (mod (*,)+(£!))}

By Remark 6.5 if Pe^+^+i) then there are R, S^8<Xn,Yl> such that
S(dXl+^+^)+x1R. Now, by Proposition 8.8 (ii),

a'(P) = *'(S)£i+MS) (mod fo)

e^'OP) = ^o(S) (mod (*)

= *<*(P) (mod (*,)+(£?))

Moreover £^'(^+^+4)=^^) and (^-^0)^ = 0 (mod (jcO+(f i)) ifiF^=^.
Q.E.D.

Chapter III. Blow up of a Holonomic System

In §9 we show that the blow up n\ X->X of a contact manifold X along
a closed Lagrangian submanifold A has a canonical structure of logarithmic
contact manifold with poles along the exceptional divisor of X. We also show

that, given a quantization 6 of X there is a canonical quantization 8 of X and

a canonical morphism 0 : K~lSA-*8, where GA is a well known subsheaf of Q.
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Let X be a logarithmic contact manifold with poles along a smooth divi-

sor. In § 10 we study the blow up n\ X-*X of X along its residual submani-
fold. We show that X has a canonical structure of logarithmic contact mani-
fold. We also show how to associate to a quantization of X a quantization of
X.

Proposition 11.13 relates the construction presented In this Chapter with
the construction described in the Introduction. Let X be a complex mani-
fold and X a point of X, Let nx: P*X-*X be the projective cotangent bundle of
X. Put A=7c-1(Z). Let X0 be the blow up of P*X along A and let Xl be the
blow up of XQ along its residual set. Let Y1 be the set of poles of X^. Then
X1\Yl Is a contact manifold Isomorphic to P*X\P^X, where X is the blow up
of X along {<*} and E the exceptional divisor of X.

Nevertheless we do not define the "total blow up of P*X along A" as
XJYt. There is a loss of Information when we take away the set Ylf To mini-
mize it we define recursively a family (Xk) of logarithmic contact manifolds by
putting Xk+1="blovt up of Xk along its residual submanifold". We put Yk =
66set of poles of AY'. Finally we define the total blow up P*X of P*X as the
union of the family of contact manifolds (Xk\Yk). Here we identify Xk\Yk

with a canonical open set of Xk+1\Yk+1.

We show that P*X has a canonical quantization. Finally we show how

to associate to a holonomic <?z-module <5St a holonomic 5-module JM.

a Lagrangiaii

9.1. Given a scheme S of finite type over C we will still denote by S the
associated analytic space. Given a nonnegative integer n we will call the ana-
lytic space Spec(C[*l3 °">, xj) a ffj^we complex manifold of dimension n.

aLlL An o^Tze logarithmic contact manifold X of dimension
2n+l Is given by the following data:

(i) A polynomial algebra A over C.

(II) An algebraic basis xl9 ° ° ° 9 x2n+i of A.
(iii) A subset tsr of [1, «+!].

If tar=0 we call Xan aj?w^ contact manifold.

Put Z^Spec ^4 and Y={£[iG<arxi=Q}. The set 7 is a divisor with nor-
mal crossings of X. We call
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the canonical logarithmic contact form of X.
For instance, if -&={!, 2, n+l}, then

v~Xn
Xn+l Xi ^2

We will in general denote the affine logarithmic contact manifold X simply by

(9.1.1)

Given (9.1.1) we recover the data (i), (if), (iii) in the following way. We put
A=C[xly ••• , x2n+1] and we choose for ter the smallest subset / of [1,^+1] such

that (Hi^rX^a) is a differential form on X.

Definition 9.1.2. An affine homogeneous logarithmic symplectic manifold
Xof dimension In is given by the following data:

( i ) A polynomial algebra A over C with a structure of graded ring.
(ii) An algebraic basis (xl5 • • - , xn, fl5 • • • , <? n) of A such that xl9 ••• , xn are
homogeneous of degree 0 and fl9 • • - , f „ are homogeneous of degree 1.
(iii) Subsets -or, t of [1, «], where r is nonempty.

If -or equals 0 we call -X" an affine homogeneous symplectic manifold.

Put ;r=Spec>4\rWf,=0} and r={nie-pr^ = 0}nJT. We call 6 =
S f ,-^^f- the canonical \-form of X. We will in general denote the affine
logarithmic contact manifold X simply by

(9.1.3)

If r = {£} then we denote Xby E"-i £<**,-]*• If ^=[15 "] then we denote JTby

ELieMl-
Definition 9.1.4. Given an affine logarithmic contact manifold X of

dimension 2«+l we associate to it the affine homogeneous logarithmic sym-

plectic manifold X given by the following data.

(i) The C-algebra A®cC[o)®(~V], where co is the canonical contact form
of X. We endow A®cC[o)®(~1)] with the only graduation such that all the
elements of A have degree 0 and G)®(-V has degree 1.
(ii) The algebraic basis xl9 • • - , xn+l9 S19 • • - , fw+1, where
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(iii) The sets tir and
A

We call -X=E?ii£fdkJn+i the q$z«e homogeneous logarithmic symplectic man-
ifold associated to the affine logarithmic contact manifold X.

Remark 9oL§0 Given an affine homogeneous symplectic manifold X of
dimension 2n let M be the Spectrum of the subalgebra of A generated by

xl9—,xn. Put N= {Hie-*** =0} CM. We identify T*<M/N> with Spec A.
Let e be the open inclusion X<^>T*<M/Ny. We call the sheaf of G-algebras
G=rl8(M/N> the quantization of the affine homogeneous logarithmic symplectic
manifold X.

Let (X9 X) be a contact manifold. Let A be a closed Lagrangian sub-
manifold of X and /^ the defining ideal of A. Let

be the blow up of X along A). Let £" be the exceptional divisor of x and IE

its defining ideal We can identify the dual O(E) of IE in a canonical way with

a subsheaf ofj*0x\s, where j: X\E^X is the inclusion map.

Proposition 9e20 17ze Ox-module £=O(Eyc*£ is a structure of logarithmic
contact manifold with poles along E. It is the only structure of logarithmic
contact manifold on X such that the restriction of n to X\E is a contact trans-
formation.

9<3o We call the pair (n: X-»X, X) blow up of the contact
manifold (X, JC) along its (closed) Lagrangian submanifold A.

Proposition 9.4. Let X be a complex manifold. Let 1 be a point of X and
put A= jcx1(X)C.P*X. Then the blow up of P*X along A equals the logarith-
mic contact manifold P*(X/Ey, where X is the blow up of X along {A} and E

is the exceptional divisor ofX->X.

Proof of Proposition 9.2. Since the problem is local in X we can suppose

that X is the affine logarithmic contact manifold [dxn+1 — S?-i/V&J and that
A = {xi ="" = xn+1 =0}. Put z = xn+l — ̂ n

i==ixipi. Then X is the obvious
patching of the affine complex manifolds,

Xk = Spec (C[xk, **, j*k, ^ Ph j*k}) , 1 <k<n ,
Xk xk

Xn+1 = Spec (C[z, &, l<j<n, Pj, !<;<«]) .
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Moreover Ef}Xk={xk=0}9 l<k<n, Eft Xn+1 = {z = fy. Put &k=**<»\zt9
1 < k <«+!. Then the 0z-module X is determined by the logarithmic dif-
ferential forms

if l<k<n
xk

 xk xk

J=l

Proof of Proposition 9.4. There is a canonical open immersion

P*<*/£>l3:\*->PS*. (9.4.1)

Here P*<J?/E> denotes the blow up of P*X along A.
Since P*<-?/£>lx\* is dense in P*<Jf/£> then its enough to show that

(9.4.1) admits locally an extension to P*(X/Ey. This can be easily shown
by some simple computations with local coordinates. Q.E.D.

Let (X, 6) be a quantized contact manifold and A a (closed) Lagrangian
submanifold of X. Let IA be the defining ideal of A,<9A the sub <?(o)-module
of 8(i) of the microdifferential operators P e<?(i) such that a^P) e /^ Follow-
ing Kashiwara-Oshima [13] we define

The C-algebra <?^ is noetherian and has zariskian fibers. Moreover if (X, £)
is self dual then 6A is also self dual.

Theorem 9.5. Let (X, 6) be a [self dual] quantized contact manifold and
A a closed Lagrangian submanifold of X. Then there is a [self dual] quantiza-
tion 8 of the blow up of the contact manifold X along A and a [self dual] morphism

®:n-l8A^8 (9.5.1)

such that 0 \ %\E • 7C~18A | *\£-><? | X\E is an isomorphism. Moreover the pair (<&, 8)

is unique up to a unique isomorphism.

Definition 9.6. The pair (*: X-+X, Q\n-l8A-*G) is called the blow up
of the [self dual] quantized contact manifold (X, 8) along the Lagrangian sub-

manifold A.

Lemma 9.7. There is one and only one morphism of x~lO x-modules



216 ORLANDO NETO

that extends the natural isomorphism

induced by TC.

Remark 9.8. The sheaf of graded algebras gr£ equals ®k

Moreover the morphism

gr 0 : a'1 gr QA -> gr €

equals the morphism (9.7.1).

Proof of the Lemma 9.7. Since X\E is dense in X it is enough to prove the
existence of <p locally on X. We will use the notations and assumptions of
the proof of Proposition 9.3. We notice that

where I\ equals Ox if k < 0. Given an open set U of X, f=(fl9 • - • ,fUl) e O(C0*+1,

£ W' ' g
0z-module Ik

A®^C^^~^ admits the basis

geO(J7)put — =f^-, — ,-^V Put /^{ae^y**1: |a|=fc}. The free

and

zV®®®^*) , (6,

Since

and

. - f— V®f("*} ,1 \ /

then we can built morphisms

<Pi'.K-l&eA\Xi^

that extend the natural isomorphisms

We can glue the morphisms ^i into the desired morphism <p, Q.E.DD

We will now prove the Theorem in the case X is the quantization of the affine
contact manifold [dxn+1— SJ-i/V&J- We will use this assumption in para-
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graphs 9.9, 9.10, and 9.11.

9.9. We will now quantize the homogeneous logarithmic symplectic man-

ifold X. We know from the proof of Proposition 9.2 that X is the patching
of the affine logarithmic contact manifolds Xk9 1 <k<n+l, where

^l , l<k<n ,
**->

For l<k<n put

— xj
~*k

xn+ltj = p. , Sn+lt . = xfn+l , j 3=n-rl

Now Jf is a patching of affine homogeneous logarithmic symplectic manifolds
A A

Xk, I<fc<w4-l, where Xk equals

[fM^-Sy^f^y]^,

A A

along the obvious contact transformations <pkt: X^-^Xj. Here Xkl=Xk\{xki =
0}. For 1 <k<n+l let Gk be the quantization of Xk. We glue the sheafs 8k

by quantized contact transformations

defined as follows. If 1 <fc, /<«, k^l, then we define ®ki by

Xkk h^ XuXlk ,

then we define <2>^w+1: ̂ V/^^^+ilz,,.^ by

~ >
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Xk,n+l l~~> ^*» + l.« + l^*« + l,*+ SjsLl Xn+l,i®xn + i,i®xn + l9k'^~~2®xn + isk

®xk,n + i !"* ®xn + i,k •

~ £,
We obtain in this way a sheaf 8 on X. Since the quantized contact trans-
formations ®M are self dual then 6 is a self dual quantization.

9e10o We will now build the morphism (9.5.1). We will first introduce
self dual quantized contact transformations

in the following way. If 1 <k<n then we define 0k by

Xj H> xkkxkj , a,. H* Xkk
ldXk. , 7 =*=* , (9.10.1)

We define 0w+1 by

*y «-* ^+l9n+ixn+ltn+1dxn+lj , (9.10.2)

^«+l f— * ^«+isM+l+(S?=l ^"»+lff^jr« + ifi+"2")"*ii + i,» + i^»+lfii+l J

*» + ! '""̂  •^»-*'l.«+1 *» + l.» + l '

We will now extend 0k, I <k<n+l, into a morphism from w"1^ | Xk into c? | z&

that we will still denote by ®k. Choose p*&Er\Xk. Let £A[€] be the
formal analog of <SA[£], Put A=£Atip. Let 5 be the subalgebra of A of the
formal microdifferential operators P ^A such that there is a neighbourhood J2

of/?0 in Jf, a representative P' of P in £ and Q e <?(£) such that <Z>(P' |IAJB)=
Glf i \£- We conclude from Theorem 5.10 and Corollary 5.15 that B equals A.
One can show, using the Cauchy estimates, that if P^SA^ then gefi^o. We
can glue the 0/s into the desired morphism 0. This morphism is self dual by
construction.

Definition 9,10.3,, We call the pair (n: X-*X9 <Z> : ̂ ~lS-^8) the quantization
of the blow up of the affine contact manifold [dxn+1~ Sf-i/^i^J along the
Lagrangian submanifold {x1 = - - • =xn+l =0} .

9.11. Still under the assumption (9.8.1) let 8' be another [self dual] quanti-
zation of X and ®': n~l8A-^8f another [self dual] morphism such that ®'\X\R:
TC~I 8A-^8\x\E is an isomorphism. There is at most one morphism *F\ 8-^8'
such that Vo0=®'. Put &=5?£\xids.+-% . We notice that, for 1 <k<n,



BLOW UP FOR A HOLONOMIC SYSTEM 219

= xkkxkj,

Put 0'k=0' \Xk for !<&<«+!. Since a(0i(P))=a(0k(py)foTl^k^n+l and
any P then ®l(xkdxf)0'k(x.dxj)-

1 is defined outside {£kj=fy and ®k(x^®'(xkY
l

is defined outside {xkk=Q}. Since this sections coincide in the intersections of
their domains then there is one and only one extension of both to Xk that we
will denote by 0/

k(xj/xk). We define Wk : 8k->8' \ Xk as the quantization of idXk

determined by

xkj ^ 0i(x3fxk) , dXk. K> ®'k(xkdx.) , j*k.

We can build a morphism ^w+1: <?w+1->c?' | Xn+l in a similar way. We define
W as the glueing of the morphisms Wk, l<k<n+l.

9.12. We will now finish the proof of Theorem 9.5.

Let X^ ae/, be an open covering of A and for each a let ^: X06->X=
[dxn+1— ^l^iPidXf] be quantized contact transformation such that ^I{x1 = "-
=xn+l=Q}=Af}Xc6. Let Sn+l denote the quantization of the affine contact

manifold Xand put Sa=^lSn+l, X^=X.nXp, X'«=X«\A.
We can understand the quantization 8 of X as the glueing of Q

S | X\A ̂  quantized contact transformations

The contact transformation ^ induces a quantization

of the blow up of X^ along Aa. If Xa n Xp =1= 0 then 0^ induces a quantized
contact transformation

If (2)a}^ is self dual then 0^ is also self dual. The proof of the existence of
00P is quite similar to the reasoning of paragraph 9.9.

We can glue the morphisms of self dual filtered C- Algebras 0^ into a mor-
phism of [self dual] filtered C-Algebras.
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Let now 0': n-lGA-*G' be another quantization of ic:X-*X. The local
uniqueness of a quantization W of the identity such that W®=d>f is obvious.
Therefore it is enough to prove the existence locally. This is trivial outside
the exceptional divisor. This was proven near the exceptional divisor in para-

graph 9.1 1.

This ends the proof of Theorem 9.5.

Proposition 9.13. The morphism ®: n~l8A-^8 is flat.

Proof. The morphism 0 is flat outside the exceptional divisor. Choose
pQ^E. We can suppose that (X, 8} is the quantization of the affine con-
tact manifold [dx*+i— S*_i/^J and xi(n(ff})=pj(n(fft))=0 for 1 </<«+!,
l<j<n. Since the nitrations of SA,*(p^ and Qf are zariskian and the sequence

o -* eA«(o) -> 50
is strictly exact it is enough to prove that the morphism

is flat (cf. for instance Schapira [15]). Suppose that there is a k, l<k<n,
such that/?0 e*V Put

There are canonical immersions of Ak[Bk] into gr <SAiQ[gr <3P<>]. The morphism
<pf induces morphisms <pk: Ak-+Bk.

Let Ik[Jk] be the ideal of XJgrd^^o,] generated by xl9 — , xn+l9pl9 ~°,pn.

Let Jk[Jk\ be the ideal of Bklgr6p°] generated by xkj-—xkj(p°)5 I<j<n+l9

Pkj—Pkj(p°)> 1 <j<n. The completion of Ak[Bk] relative to the /radic topology
[Jradic] topology equals the completion of gr<?^(/)[gr<£^o] relative to the Jk-
adic topology [^-adic topology]. Since the maps <pk, <pp° are continuous and
have the same completion relatively to the topologies introduced above it is
enough to show that <pk is flat (cf. Bourbaky [1]). The morphism <ph is flat be-
cause Vk&k7! n+i) i§ invertible in Bk and <pk induces an isomorphism

If p°&Xn+l then we can prove the proposition in a similar way. Q.E.D.
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Theorem 9.14. Let (x: X-+X, 0: n~l8A-*8) be the blow up of the quantiz-
ed contact manifold (X, 8) along a closed Lagrangian submanifold A. Let 32 be
a coherent 8A-submodule of a coherent 8-module. Then

codim supp 8®g Jl> codim supp Jl .

Theorem 9.15. Let (X, 8) be a quantized logarithmic contact manifold
and Jl a coherent sub 8(Q)-algebra of 8 with zariskian fibers. Let Jibe a co-
herent Jl-submodule of a coherent 8-module. Then, for j<d,

codim supp 31 >d iffSxt^m, J?) = 0 .

Proof of Theorem 9.14. Let 37 be a coherent c^-submodule of a coherent
(^-module. Suppose codim supp Jl>d. Then by Theorem 9.15.

pl, 8A) = Q, for

Hence by Proposition 9.13.

Gx*i-ieA(*~l3l>€) = Q for J<d-

Therefore

8xt*8(e®m,8) = Q for j<d. (9.15.1)

Theorem 9.14 is now a consequence of (9.15.1) and Theorem 9.15. Q.E.D.

Theorem 9.15 is a consequence of the two following Lemmas.

Lemma 9.16. Let Jl be a coherent Jl-submodule of a coherent 8-module.

Then
(i) Sxt^(mfJL)=Q iff j<codim supp 32.

(ii) codim supp 8x1^(31, Jl)>j.

Lemma 9.17. Let W be an irreducible component of the supports of a coher-
ent Jl-module Jl. If W has codimension d then

Proof of Theorem 9.15. If codim supp 32 > d then, by 9. 1 6 (i),

0 if

Suppose that <Sxt3(JM, Jl)=Q forj>d and let W be an irreducible component
of supp <3tt. By Lemma 9.17 W is contained in supp Gxt'jffll, JK) for some
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j>d. Therefore, by 9.16 (ii), codim V>d, Q.E.D.

Proof of Lemma 9.16, It is well known that

mppGxtffll, JftCmppext^jjiffSl, gr JL) , j>0.

We notice that the morphism grJl->Ox is flat. Actually grcJJ->gr<? is flat

because for any p^Xgr£p is the localization of grJlp by any invertible

homogeneous element ofgrS of negative order. It is well known that gr<?-»

Ox is flat. Therefore

supp extbz(Oz®p JM, 0*) iDsupp Gxt{jpl9 JL) . (9.16.1)

Let JH be a coherent <?-module that contains 37 as a cJ?»submodule. We can

suppose that 37 generates JM. Then gr32 generates gr<3tt as a gr£~module

and

supp gr 6® gr ji gr 32 == supp gr c3K = supp 37 .

Since the morphism gr <5->Ox is faithfully flat

supp Ox®gr JL gr 32 = supp 32 . (9.16.2)

Statements (9.16.1) and (9.16.2) allow us to deduce Lemma 9.16 from the

well known theorem of Analytic geometry we obtain when substituting Jl by

Ox in the statement of 9.16. Q.E.D.

Proof of Lemma 9.17. Let/?0 be a generical point ofW. If j<dthen

<?xf'(37,o?)=0 by 9.16 (i). If j>d then we can suppose by 9.16 (ii) that

<Sxtj@2, JL) vanishes at p°. Suppose now that Gxtd(JL9 JL)P* equals 0. Then

R ^omjt (32, JK)f = 0 .

Hence

l9 JL), JL)P« = 0 .

The assumption above lead us into a contradiction and therefore there is an

open dense subset of W that is contained in supp Sxt^ffl, Jl).

This ends the proof of Lemma 9.17.

§ 10. Blow up of a Quantized Logarithmic Contact Manifold

along Its Residual Submanifold

Let (X, -£) be a logarithmic contact manifold. We will suppose in this section
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that the set of poles Y of (X, X) is smooth. Let Z be the residual submani-
fold of X. Let

TC: X = Projan (©^0/l) -> X

be the blow up of X along Z. Let E be the exceptional divisor of n and Y
the proper inverse image of Y.

Proposition 10.1. (i) The Ox-module -£=n*JC, is a structure of logarith-
mic contact manifold with poles along Y. Moreover J2 is the only structure of
logarithmic contact manifold on X for which it is a morphism of logarithmic
contact manifolds.

(ii) There is one and only one morphism of ^conic manifolds h: X-^>X such

that the following diagram commutes.

A

1^1

I . I
X >X.

Moreover h is a morphism of homogeneous symplectic manifolds.

Definition 10.2. (i) We call the pair (niX-*X9£) the blow up of the
contact manifold (X, X) along its residual submanifold.

(ii) We call x: J?-> X the blow up of the homogeneous logarithmic sym-
plectic manifold X along its residual submanifold.

Remark 10.3. We notice that n[tc\ is a morphism of logarithmic contact
manifolds [homogeneous logarithmic symplectic manifolds] but is not a local
homeomorphism.

Proof of Proposition 10.1. (i) Since the problem is local in X we can
assume that X is the affine logarithmic contact manifold [dxn+1 —pldxljxl —
^H^iPidXj]. Then X is the patching of the affine logarithmic contact manifolds

X1 = Spec(C[xl9 ...9xH+l9-£^,p29—9pj) and
*i

X"= Spec (C[^±-, x2, • • - , xn+l9 xu+l—pl9 p2, ~',pj) •
Pi

Statement (i) follows from the equalities
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(ii) Put *i = *i , *£+i = **+i , Pi =—,
X1

v't Xi // //
*1 = - > *m-l = *»+l~ A J jPl =Pl-

Pi

The logarithmic contact manifold X is the patching of the affine logarithmic
contact manifolds

X' =[dx'n+i-p'1dx'L-

X" = [dxi'^-pi'^L- -

We notice that l-[^]«+1? ^=^l.+i, ^^[^l.+i, where

o =S7-i
tf ' - f {faj

Some simple computations show that

Remark 10.4. We notice that

Y = {xQ^X":^-(xQ) = 0} and X\Y = X' .
Pi

Theorem 10.5. Let (X, 6) be a quantized contact manifold with poles along
a smooth divisor Y of X. Then there is a quantization 8 of the blow up of the
logarithmic contact manifold X along its residual submanifold and a self dual
morphism of self dual filtered C -algebras

such that 0 1 X\E'- x~l£ \ X\E-*£ \ $\E is an isomorphism and the right Ideal S-
ofS is proper at least along E.

Moreover, the pair (®, 8) is unique up to a unique isomorphism.

Definition 10.6. We call the pair (xiX-^X, ®:n-l8-*S) the blow up
of the quantized contact manifold (X, S) along its residual set.
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Proof of Theorem 10.5. We will prove the Theorem in the case (X, 8) is the
quantization of the affine logarithmic contact manifold (10.3.1). The generali-
zation of this result is similar to (9.12) and therefore omited.

We patch the quantizations <?', Q" of X', X11 by the self dual quantized
contact transformation &:£'-+£" determined by:

We introduce self dual quantized contact transformations

determined respectively by:

Just like in (9.10) there is one and only one morphism <Z>: n~l8\^8 that ex-
tends 0' and 0".

We call the pair (n: X-+X, ®\8->8) the blow up of the affine logarithmic
contact manifold (X, 8) along the residual ideal (dXl).

Let <?0 be another self dual quantization of X and 00: n~l8-^8Q another
morphism of self dual filtered C-algebras such that ®0 1 X\E '• n~l8 \ x\E-*8 1 X\E is
an isomorphism and the right ideal (8Xj)£0 is proper at least along E.

The C-algebra <50 is the glueing of 6' and 6" along some quantized contact
transformation ^0. Put <Z>£ = <Z>0 1 j/, 0$7 =0Q\x,,m Then there are unique

microdifferential operators A, B^£Q(Q)(X') such that

and [^/, j8]=0. Since x^S' is the maximal right ideal of 8' that is proper
along {xl==Q} then B equals 0. We define a quantization X1 of id^/ by
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dxi+A ,

dx, ^ ®'0(dXj) ,

Since ®o'(xj belongs to the right ideal of 6" generated by fl"^) there is a
logarithmic microdiiferential operator Ae.6"(X") such that

We define a quantization x" of idX" by

X(> ,_ -A0'0'(dfm+l) , dx,,

We can patch the morphisms %', X" into a morphism ^ such that ¥® = ®Q.

Q.E.D.

§ lle Total Blow up of a Logarithmic Contact Manifold
along a Lagr angian Submanifold

Let (J!r0, <?0) be a quantized logarithmic contact manifold with poles along
a smooth divisor Y. We define a morphism of ringed spaces

(*M: X, -> ZOJ 0>w: ^o1 <?0 - 6?*) , (H.0.1)*

where (Xk9 Sk) is a quantized logarithmic contact manifold with poles along a
smooth divisor Yk inductively as follows. Put xQQ = idXo, ^oo = id^oe Given
(1 1.0.1)*, A: ̂ 0, we define

as the blow up of (Xk9 Sk) along its residual set and put

Definition 11.1. We call the pair (11.0.1)* the k-blow up of the logarith-
mic contact manifold (XQ, <?0) along its residual set.

Let (X9 8) be a quantized contact manifold and A a closed Lagrangian
submanifold of X. Let (*0: XQ-*X, ®Q: n^1 8A-*6^ be the blow up of (X, 6)

along A. Let (^kQ- ^k-^^o^kQ-^o S-^Sk) be the fc-th blow up of(JT0,£0)
along its residual set. Define T^^
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There is a canonical immersion Zfe\Ffe
c^Zft+1\Fft+1 such that the following

diagram commutes.

XH <~" Xk+l

U U
Xk\Tk ^ XM\YM.

Put

X = lim(Xk\Yk).
k

The contact structures J2k | Xk\r k define a contact structure X on X. The
morphisms n'k =itk | Xk\Yk ; Xk\ Yk-*X define a morphism n : X-+X. The quantiza-

tions 8k\xk\Yk of Xk\Yk define a quantization <? of X. The morphisms 0* =
define a morphism of self dual filtered C-Algebras

Definition 11.2. We call the pair

the total blow up of the quantized contact manifold (X, 8) along the (closed)

Lagrangian submanifold A.

Given a coherent ^-module 37 we call the 5-module 8®SJI the total
blow up of 37 along A.

Definition 11.3. Let (X, 8) be a quantized contact manifold. A coherent

5-module JM is called holonomic if its support is a Lagrangian submanifold of
X.

Theorem 11.4. Let (X, 8) be a quantized contact manifold and A a closed
Lagrangian submanifold of X. Let Jtt be a holonomic 8-module and let 71 be a

coherent sub 8A-module of <3tt such that 37 generates <3tt as an 6-module and

that locally there is a polynomial b and a microdifferential operator & verifying
the following conditions.

(i) ^ej^.
(ii) do(#)==6modIAQl

x.

(iii) a'(*)+ie/x.
(iv) *(*)=*= 0, fc=0, 1,2, -.
(v) &(z5»)3Zc3Z(-l).

Then £(S)gn does not depend on the choice of 32.
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Let (XJ be a covering of X by copies of open sets of affine logarithmic
contact manifolds. Put Xct=7c~1(Xtt). For each a there is a sub 8 A I ̂ -module
Tin verifying the conditions of Theorem 11 A. This was proven by Kashiwara
and Kawai in the regular holonomic case in [12] and generalized to holonomic

systems by Laurent in [14]. We can patch the <?| ^-modules 8\xt&®^A\x 31*
into a coherent (^-module c5K.

Definition 11.5. We call the 5-module Jit the total blow up of the holo-
nomic 8-module 3tt along A.

Theorem 11.6. The 8-module <3tt is holonomic.

In order to prove Theorems 11.4 and 11.6 we will first introduce a family
of subrings of 8. Let A be a closed Lagrangian submanifold of X. For any
integer k>Q let Jl(k) be the subring of 8 locally generated by 8A and <?(!)#*,
where & is a microdifferential operator verifying the conditions (i), (ii)5 (iii) of
Theorem 11.4. The C- Algebra <JL(k) is noetherian, with zariskian fibers and self
dual (cf. 11.11). Theorems 11.4 and 11.6 are a consequence of the follow-
ing Lemmas.

Lemma 11.7. For any integer k>0 there is one and only one morphism

from n^Jltid \ Xk\yk into 8\ xk\Ykthat extends the morphism ®'k introduced before

Definition 11.2.

We will still denote this morphism by 0£.

Lemma 11.8. The morphisms

xk\Yk -» xk\yk

are flat for any non negative integer k.

Lemma 11.9. Let <3ttbe a holonomic 8-module and 37 a 8A-submodule of

*5tt verifying the hipoteses of Theorem II A. Then Jlh®g 31 is isomorphic to

Jtt.

Proof of Theorem 1 1 .4. If Jtt and 31 verify the hypothesis of the Theorem
then

. Q.E.D.

Proof of Theorem 11.6. Let c5K be an holonomic c?-module. Then
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xk\yk equals Sk \ xk\Yk®j^k^i- since the morphism

Jl(ti -* 8k I Xk\Yk

is flat we conclude by a reasoning similar to the one used in the proof of

Theorem 9.14 that

codim supp (c^|^\rA)>codim supp JM. Q.E.D.

Proof of Lemma 11.7. The uniqueness is obvious. Therefore we can sup-

pose that (X, 8) equals the quantization of the affine logarithmic contact mani-

fold of dimension 2w+l and A equals {x1 = -"=xn+l=Q},

11.10. We will first study the fc-th blow up of the quantization of the

affine logarithmic contact manifold

We notice that Xk is the patching of k affine logarithmic contact manifolds

X{, "*,Xk and an affine logarithmic contact manifold X" isomorphic to XQ.

Actually suppose that the statement above is true. Then Xk+l is the patching

of X{9 — , X'k, (X'k'y, (X'k')" and by the proof of Proposition 10.1. (X'k')
r is

an affine contact manifold and (Xif)" is isomorphic to XQ. We put Xi+i =

(Xi'y and X(f^=(Xi'yf. We introduce global sections xkl9 xktH+1, pk of X'k,

y^ yki-> <2ki of X" inductively as follows:

— yki » xk+i,n+i — yk,n+i 3 Pk+i,i — — 9xl

— — -

We notice that, for any non negative integer k,

X( = [dxkttt+l-pkldxkl —

X"= [dyktn+1-qkl^ - 27.2 ?
yki

Then the morphisms ®'ko=®ko\x'/' ^S^X

®" =®kQ\x>>'.Xk1£o\

are determined respectively by:
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11.11. We will now finish the proof of Lemma 11.7. Let Jf denote the
affine contact manifold

and ^i its submanifold {x! = — =jfll+1=0}.
Notice that # is determined modulo ^(-i). Therefore t?fe is determined

modulo SA(—I) and the sub <?(0)-algebra of 8 generated by 6 A and G(l)&k does
not depend of the choice of &. We can choose

Notice that (^M+1^)*=(— )*+1^w+i^*. Since 5^ is self adjoint the ^-module
generated by 8A and 8(1) and <£(!)#* is also self adjoint.

We will denote by X the blow up of X along -4 and by Jfl3 ••- , ̂ +1 the
affine logarithmic contact manifolds introduced in the proof of Theorem 9.5.
Then the morphism

is the patching of its restrictions

where XH=n^\^^r((X^\Y^. We can suppose 7=1. We will identify J?i and
Then

Therefore

This ends the proof of Lemma 11 .7.

Proof of Lemma 1 1.8. The proof of this Lemma is very similar to the proof
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of Proposition 9.13. Therefore we will only prove the following fact.

Fact 11.12. Put

A = C[xl9 — , xn+l, plf — , pnf e, e-1] ,
B = C[ylf — , yn+l, q l f — , qn, n, i]-1] .

For k>l let Ak be the subring of A generated by

where z=xn+l—^n
i=ixipi. For k>l let ¥k:Ak-*B be the morphism of C-

algebras defined by :

Then ^ is aflat morphism.

Proof. Let A'k be the localization of Ak by x-f. Then Wk extends to a
morphism W( : A(-*B and

(X -e)^)-1 ̂  y. , 2<j <n ,

Therefore W[ is an isomorphism.

For k>2 let A(' be the localization of Ai by zk'1Sk(xle)"k- Then w'k ex-
tends to a morphism W(f: A(f—*B and

Therefore ?F" is an isomorphism.
This ends the proof of Lemma 11.8.

Proof of Lemma 11.9. We will show that the morphisms (11.12.1) are iso-
morphisms.

JlM®eA32->Jtt (11.12.1)
P®u H» Pu .

Put SA(l)=S(l)SA=S^S(l)9 3?(/)=£(/)3?. Then the sequence
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is exact for any />0. Hence ^k32(l)+32(l-i)=32(l). Therefore

Henceforth 37(/)C^?a)57 for any integer /.

We will now show that (11.12.1) is a monomorphism. Let Jl(^tN be the
right sub 6 A -module generated by (dy#

k)v, l<v<N. We will now show by
induction in N that the sequence (11.12.2) is exact.

0 -* JLu>tN®eA
 m-*M (11.12.2)

Suppose N>1. We will show that

if ut=m, (d^Yu^JL^^^ then uG3l(-i> . (11.12.3)

Actually if the hypothesis of (11.12.3) is satisfied then (dy&
k)N <^3l(N - 1).

Therefore

Hence

Given sections ul9 • • - , un of 57 if Sf=o(d/?*y®w;. is mapped into 0 then

i^e3Z(-l) by (11.12.3). Taking v=9suN

(dy$
k)N®uN equals (

Therefore by the induction hypothesis

= 0 - Q.E.D.

Proposltionll813o Le£ M be a complex manifold and & a point of M.
Let M be the blow up of M along {/I} and let E be its exceptional divisor. Put
X=P*M and A=n-\X). Then, with the notations introduced in the begming
of this chapter, there is a canonical isomorphism

Moreover the canonical morphism from P*M\P*M into P*M equals the canon-

ical morphismfrom X\Yl into X.

Proof. There are canonical open immersions of P*(X\E) into Xl\Yl and
P*M\P^M. Therefore there is at most a morphism from X\Yl into
JP*M\Pf M. Hence it is enough to prove locally the existence of the iso-
morphism. This can be easily done using local coordinates. We can prove
the second statement in a similar way. Q.E.D.
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