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An Explicit Realization of a GNS
Representation in a Krein-Space

By

Gerald HOFMANN*

Abstract

On the tensor-algebra over the basic space C2, a P-functional is constructed. Using me-
thods which are due to J.P. Antoine and S. Ota, a Krein-space theory (i.e., a *-algebra of
operators which are defined on a common, dense, and invariant domain in a Krein-space JC)
is obtained via the GNS construction. It is shown that JC does not contain any it -invariant
dual pairs. This gives an answer to a problem first posed by J.P. Antoine and S. Ota.

The theory so obtained describes the complex superposition of two harmonic oscillators.
With this in mind, the annihilation and creation operators, the operator of total electric
charge, and the gauge group are explicitly given.

§ 1. Introduction

Within the algebraic approach to quantum field theory (QFT) one is led
to consider certain positive linear functionals W (Wightman functionals) on
tensor-algebras (Borchers algebras), [12], [29]. This is probably the most ele-
gant version of axiomatic QFT. In the case of massless or gauge fields, the
positivity condition on W has to be abandoned ([27]), and the GNS (Gelfand.
Neumark, Segal) construction will give a state space JC with an indefinite
metric. This was developed by PJ.M. Bongaarts in [9]. Using these methods,
the free quantized electromagnetic field in its various gauges was analyzed in
detail ([10], [11]).

Quantum field theory with indefinite metric was also considered by D.A.
Dubin and J. Tarski in [14], and there it was shown that the one-particle sector
of the free massless field in two dimensions is a Pontryagin-space. Further,
a quantum theory based on a Fock-space with indefinite metric was constructed
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and investigated by K.R. Ito ([19]).
In order to make the theory mathematically manageable, it is desirable to

obtain for JC a Krein-space ([6], [23]). For achieving that goal, W has to
satisfy certain special conditions of positivity. These are Krein-positivity
([22]), a-positivity ([21])3 and generalized a-positivity ([3]).

The aim in this note is to give an explicit realization of the GNS construc-
tion leading to a Krein-space, using methods which are due to J.P. Antione and
S. Ota ([3], [28]). This will answer a problem first posed in [3; p. 274].

Let us mention that a very similar model to that which is obtained in this
note was investigated by H. Araki in [4]. Among others a one-parameter

family of indefinite inner products such that the spaces of state vectors are Krein-
spaces was considered in [4].

In this note we consider the easiest case, namely a free-field like, ^-positive
linear functional T on the tensor-algebra (C2)@ over the basic space C2 (two-
dimensional complex plane). It is proved that T is a P-functional ([3]) on (C2)®.
Constructing then the GNS representation, all relevant objects are given ex-
plicitly. Among others it is shown that the *-algebra of (field) operators Jl is
generated by the operators of multiplication Al9 A2 that are defined on their
common, dense and globally invariant domain C[tl912] (algebra of polynomials
in two (commuting) variables). Here it is

Ajpfa, fa) = tjpfa, f2) ,

7=1, 2, p(tl9 t2)&C[tl9t2], and the vacuum-vector is given by the constant poly-
nomial 1 eCf[r1, fj. Further, the Krein-space JC and the spectral decomposition
J=P+—P- of its symmetry / are described. If follows also that JC does not
contain any ^-invariant dual pairs ([3; Definition 4]), and hence, our recon-
structed theory is not only a direct sum of two independent Hilbert space repre-
sentations.

The theory so obtained describes the complex superposition of two in-
dependent harmonic oscillators. With this in mind, the annihilation and
creation operators, the operator of total electric charge Q=i(t20l—tld2)9 d.=

dfitj C/=l»2), the gauge group £=U(l), and the sectors of electric charge
are described.

The motivation of the investigations of the present note is the following:
i) Showing by an example that the method of P-functionals ([3], or §2 of this
note) applies also to tensor-algebras, and thus it is possible to describe theo-
ries of the algebraic approach to QFT by this method (see § 5 of this note).
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ii) Giving a direct proof of the a-positivity of the Wightman-type functional

0 denned in §3, i.e., the proof does not use the method of functional integrals.
(In the context of this note, this means proving inequality (12') without using
(21).) Let us mention that even in the case of massive free fields, it is not
trivial to show directly the positivity of the corresponding Wightman functional
(see [26; Remark to Theorem 11.15], [5]). iii) Applying the methods developed
in §§3, 4 of this note to the Wightman functional of the free quantized elec-
tromagnetic field in a forthcoming paper.

The pattern of the present note is as follows. The main definitions and con-
cepts of the theory of unbounded representations in Krein-spaces and of the
theory of tensor-algebras are recalled in §2. §3 is devoted to an explicit con-
struction of a P-functional on (C2)® (see Theorem 3). Further, it is shown
that there is an abstract conditional expectation (Lemma 1). Using the P-

functional from §3, the aim of §4 is to give a realization of the GNS repre-
sentation. § 5 is devoted to some applications to physics.

§2. Preliminaries

Let us recall some concepts of the theory of indefinite inner product spa-
ces ([6], [23]). Let us be given a Hilbert space JC, a symmetry / on JC (i.e.,
J=J*=J-l^<B(JC))9 and a sesquilinear form

[£, *]/ - (/£, *) ,

£, rj^. JC, where (-, •) denotes the scalar product of JC. Then, JC equipped
with [•, •]/ is called a Krein-space (or /-space).

Let SI, S3 be *-algebras with unit 1 such that leSScSl, and suppose S3 is
a *-subalgebra of SI. A linear mapping P of SI onto S3 is called abstract condi-
tional expectation ([25]), if

ii) P(axb) =aP(x)b, for all a, b eS3, x e SI,
iii) P(x*) =P(x)*, for all x e SI.

Following [3], an hermitean linear functional 0 on SI is said to be a P-functio-
nal if it satisfies the condition

ii)



270 GERALD HOFMANN

for all xeH, where a(x)=2 P(x)—x. Further, the cone

K = convex hull ({«**))*;

will be refered as the cone of generalized a-positivity.
For (SI, 33, P) and 0 as above, the GNS representation for T consists of

unbounded operators acting on a Krein-space. In order to decide whether or
not the representation so obtained is the direct sum of two independent Hil-
bert space representations (and thus the indefinite metric is irrelevant), S. Ota
introduced the concept of invariant dual pairs, see [3; Definition 4], [28; Defi-
nition 4.1],

To recall some definitions from the theory of tensor-algebras let us be
given a (complex) vector space E, and let

stand for the w-fold (algebraic) tensor product of E by itself, n^N. The ten-
sor-algebra E® over the basic space E is then defined by

' (direct sum) ,

i.e., the elements f^E® are terminating sequences

where fn^En, n=Q, 1, 2, ••• (E0=C9 E1=E). Defining algebraic operations by

(/+*).=/.+*.,

\CJ )n CJn '

=/0gJ ,

for/, g^-E®, ce£7, n=0, 1,2, • • - , E® becomes an (associative) algebra with

unit 1=(1, 0,0,-).
In the following let • denote the canonical embedding of *in E®9 i.e.,

If an antilinear bijection "*53 satisfying /1**=/1,^e£', is given on E, then
let us define antilinear mappings on En (which are also denoted by *) by

for /ll=g(1)®-"®gcil)e^ll, H=l,2, 3, ••- . Using antilinearity, the mappings
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"*" are extended to an involution on E®. Notice that E® becomes a ^-algebra.
If dim(E)=n^N, then there is a * -isomorphism p. between E9 and the

^-algebra of polynomials C{tl9 • •• , tn} in n non-commuting variables tl9 •••, tn,

where ^ is given as follows. Let {e(l\ •-, e(w)} be a basis for E such that e^ =

9 /=!, 2, — , w. Define then

where ceC, /ye {1, 2, •-, /?} O'=l, 2, — , m).
For further investigations in tensor-algebras the reader is refered to [17].

§ 3. Definition of a Free-Field Like P-Functional

Let us consider the tensor-algebra (C2)® over the basic space C2. Let

-0- -0
denote the canonical basis of C2. On C2 let us be given two involutive mapp-

ings *, «! by

(£S-H«)* = ?S+W (antiUnear), (1)

(linear) , (!')

. Define then antilinear and linear mappings on (C2)n by setting

and

• ® ai(gw\ respectively,

where gCD, -.gWeC8, /ietf. Putting f*=(f»ft,ft, -), «(/)=(/0,«i(/i),
a2(^,), ~'),f &(C2)®9 the mappings *, a are defined on (C2)®. Then, the cone
of generalized a-positivity is given by

Recall that a basis of (C2)n is given by the 2n elements

, (2)

where </«e{j:,l)} , J=l,2, — ,n. 1^1^=^® — ® ^ , ^ = ® — ® be
elements of the basis (2). Further, let zn (resp. zj denote the number of ele-
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ments £ occuring in hn (resp. hn). Then, let hn stand before hn if i) zn<zn, or

ii) zn=zn and the word d™ •••&*> stands before d& •••&*> with respect to lexio-
graphic order. Using this ordering, let us number the basis (2) by

(20

Further, let z£v) denote the number of elments J occuring in A£°.
For every mapping an let us consider the projection Pn given by

. (3)

Define

S3, = range (PJ - span {/z<v); z<v) is even}5

and notice that

dim (33,,) ==- dim (£,,) = 2«-1,

n=l, 2, 3, -. Further, let />„=/ on (C2)0=aS0=Cf.

00

Lemma 1. a) 93= © 93 w w a *-subalgebra of(C2)@.
n=0

b) JP=(P0, Px, P2, - ° e ) w fl« abstract conditional expectation o/CC2)® owfo 93.

Pr0o/. a) is obvious.

b) i) Property i) holds because of P(1)=(P0(1))V=1=1. ii) Let a=(a09

a\-> • ••)> b=(bfr bl9 •••)^33, x=(xQ9xl9 •••)e(C'2)@. Further, let all the homo-
geneous components of a, b, x be given with respect to the basis (2'):

p=l

where d^=0 and ]3(P=Q if z^v) and z^M>) are odd, respectively. Then,

(P(axby>u = Pu( 2
fe+/+s=»

= s s
k + t+s=n v,M, jp

= S S
ft + /+s=« V,M-,p

where
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(f P
J) if the number of J occuring in

?y ' is even,
\0 otherwise.

Notice that

Hence,

are implied, «=0, 1, 2, ••• .
iii) It is sufficient to prove iii) for the elements of the basis (2'). For any

given #v)=rf«®-®<P>, let /£W>®-®</w. Then, 2&=g\ (3) and

#*>*=#> imply

w=0, 1, 2, • • • . This completes the proof.

Let us define a linear functional 02 on (C2)2 by

^ 0 .

Notice that

02(«2fe)) = ^2fe) , (4)

g2e(Cf2)2. As in the case of free fields, define now

= S ft «2(rf^)®^r)) , (5)
r=l

where rf^e {j, t)} (j=l, 2, — , 2«), and the sum is over all the (2ri)l/(2nnl) per-
mutations ft,./!, i2,./2, — , injn} of {1, —, 2n} such that /1<4< — </„ and /x<

7'u 4<J29 "% |"»<7ii> «^^V". Let us now consider the functional

Sfc.OU, (6)

Considering <t>2n(fk®gi)>fk^(C2)k9 gi^(C2)h k+l=2n, let us distinguish be-
tween pairings of 1st and 2nd order in (5). A pairing is called to be of 1st order
(resp. of 2nd order) if 02 applies only either to elements of fk or to such of gi
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(resp. 02~applies to one element of fk and one of gt). (E.g., iff2=d&®d(2\ g2=
\ then

and the two pairings of the first summand of the right-hand side of the equa-
tion given above are of 1st order while the remaining pairings are of 2nd order.)

Let us introduce operators -fiki2s: (C2)k-^(C2)k-2s, k^N, s=Q9 1, — , — L by

= 2 <!>2(d«J®dVJ)d^®-"®d^k-^ (7)
'"l<"<»* r=l
ir<3r

^O2<-^e{l>2, -9k}\{il9 -, W15 -,jj (f=l,2, -,fc-2y),l.J and de-
notes the integral part of °. Notice that T/^^ constructs s pairings of 1st

order in each summand of (7).
Let us define bilinear forms x^: (C%x (£?%-» C7 by

where n=(n^ ••- , TT^) runs through the set of all the permutations of
, jM=l, 2, 3, — . Note that (5) implies

) = 2 X>-llfr>M, ^t,l-k+2s(gl)) (9)
s = 0

where ^P— 1, and ̂ .,=0 if j<0 or fc<0 or fc-5<00

Let us introduce the diagonalized block-matrix

A = (*,y)£y-i - diag [^0, A19 -, ^] , (10)

where 4. =(-!)* (^f.-i, ^°=(^)' 47^^-m)! ml Further, let <-, •> de-

note the scalar-product in (Cz)ti,=Czli'a

Lemma 2. a) CAswg rt^ basis (2;), ?Y

b) A fa ̂ K(/$X /**) > 0 /^ all f ft e (CT2),,, A = 1 , 2,

. a) Let us consider h(^=
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from (2'). Notice that zg^z^ yields x^\ h(^)=Q. Further, if m=z^=
z$'\ then there are (/j.—m)\ ml non- vanishing summands in (8). Since each of
these non- vanishing summands is equal to (— l)w, it is

= (-If (/i-w)! ml

implied. Noticing that there are P=\j elements /4v/) such that w=zJ?/), a)

follows.
b) Notice that (!') implies ^(h^)=(-~l)m h(^\ where m=z(

tH\ Using a),
it follows now that

*A«itffi,gd=<fi*,Jgi,>, (11)

^=(**/)r/-i=diagl/o> ̂  -> ̂ ii ^-(^l5)?.^, /n=0, 1, -, /«. Checking the
minors J^det((0,v)',y==i), /=!, 2, ••• 2^, one gets

Hence, ^>0. This yields <//*,^f/i»0 for all /^(C2^. Using (11), the
assertion to be shown follows.

Theorem 3. 0 w a P-functionaL

Proof, i) Apply 02M to the elements AS?, J> = 1, 2, — , 22B, taken from the
basis (2'). If zg? is odd, then (3) and (5) imply P2w(/z(

2
v
w

))-0 and 02ll(A£))=0, re-

spectively. Hence, <!>2n(h
(ti)=<I>2n(P2Mh\

Assume now that z^ is even. Using again (3), P2n(h
(2n)=h2n and

=<t>2n(P2n(h(2J)) are impUed.
Finally, (6) yields

ii) Using (6) and (9),

0(«/*))/) = S S 02«(a*(/*)®//) (I2)

00 00 00

NH Vi X~^ y /%//> f/v ^ /**^ »!» ^ (f \\== ' ' x ' -^ ' k—2s\rk 2s\ k\J k ))i r^2n~~k 2(n~k+s) \J2n~~kJ) 3

are implied, where f=(fQ9 —9fN9 0, 0, —)e(C72)® yields that all the sums con-
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sidered in (12) are actually finite ones, and ^^,=0 for #<0. Introducing new
indices v=k—2s9 t=n—k+s for n, k9 one gets

0 («(/*)/) = 2 2 23 Z^W
f* = 0 s = 0 # = 0

00

Set g> = 2 lA>+2f,2//p+2*) and notice that
s = 0

00

«f*fe£) = S ^ +2S,2S
s=0

<a=09 1, 2, — . Applying now Lemma 2b),

#(«(/*)/) = 2 ^K(gJ), fr)> 0 (12')
^• = 0

follows for all/e(C2)s. This completes the proof.

§4a GNS Represeetatioe for the Functional 0

Using the functional 0 introduced above, let us do the construction de-
scribed by Antoine and Ota in [3; Section 3],

Let n&N,n^2. Using the basis (2'), let us define

Nn =

where Aiv)=Jd.1')®...®rf(«.v), ^'^efe,^, and Hw denotes the set of all the

permutations of {1, 2, ° ° 8 , ??}. These spaces will enable us to quotient out the
left kernel of the state $.

If z^v)=m, then there are - - -- 1 linearly independent elements
ml (n—m)\

,, occuring in (13). Hence,

= 2 ( . "' , -1) = 2?-n-l . (14)
«=o m! (n—m)l

Using (%\fn^Nn implies

*.te«A) = o (15)
for all g.e(C«)..

Furthermore, let us introduce the symmetrization operator Sn by

JL
n\



AN EXPLICITE REALIZATION 277

d& e {j, 9} 9 j = 1 , 2, • • • , n. Notice that

dim (range (SJ) - n+1 . (16)

Using that h^-Sn(h
(^^Ntt9 »=l, 2, -, 2*, (14) and (16) imply

range(/B-5J=^, (16')

where In denotes the identity operator on (C2)^.

Lemma 4. Let n^N,n^2. Then, the following are equivalent:

ii) ^..J/Jetf.-*, 5=0, 1, »., ,

iii) 5.(/J=0.

Pro0/. i)=Mi) : Take some element

d<^ e {£, *)} , 7 = 1 , 2, • • • , n, n <E #M. Let us consider

iM".) = +n£dV®--®dn)-+n£#^^^^^ .

Using (7) for s=l9 there is a one-to-one correspondence d between all the

(2) summands of the right-hand side (r.h.s.) of (7) for ^M>2(^
1)®---®^w)) and

those for ^»i2(rf
(ir(1))® — ®^(ir(ll)))- d is given as follows.

Take any summand

A =

of the r.h.s. of (7) for ^nt2(d^®-"®d^\ where l^i<j^n, and r denotes
that • does not occur. Then there is exactly one summand

B = 02(dw»®rfw*)>) d(*ci>>® ...®d<*c«)>® — ®</w»® ...®d(*W)

of the r.h.s. of (7) for V^C^1"® — ®dW*})) such that either <j)=i, <0=7 or

w(0='» *(s)=j- Define now 5(^)=A
Recalling that 02(d, d')=</>2(d',d), d,d'& {j,^}, it follows from (13) that

^4— d(A)&Nn-2. Hence, ^W)2(wB)eAr
w_2. Noticing that the linear span of the

set of all the wn considered above is just Nn,

is implied. Using finally that irnf2S=
='fin-2(8-i),20"'0'frn-2,20'{/rn,2> the proof of i)
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ii) is completed.
ii)=H): Setting s= 0 in ii), i) is implied. i)=^>iii): The implication un-

der consideration follows readily from (13). iii)=^i): Assuming iii),

follow. (16') implies nowfHGNM. This completes the proof.

Let us consider the left kernel of 0 :

8^ - {*G(C%; #(y*x) = 0 for all je(C%}.

Set NQ=Q, ^=0. Let us define the symmetrization operator

S(x) = O05 *!, S2(x2\ S3(x3), — )

for x=(x09 xl9 — )e(C2)®, (and Sn, n=29 3, — , is given beforehand of (16)).

Lemma 5, It holds $J^= © Nm.
m = Q

Proof, a) Let x, e ^,, j^ e (C2)^, k+l=2n. Applying (9), Lemma 4 i) <=>
ii), and (15), it follows that

= S Xk-2Jfr**&f)> ^J-k
s = 0

where o = - . For x=(x0, xl5 -)e © Nm, y=(ya, yt,
2

= j 2 ] X
« = 0 &+/ = £» S = 0

oo

is implied by (6) and (17). Hence. 0 Nm

b) Let O=|=A:=(^O, — ,^,0,0, — )e9i^, and x& ® Nm. Consider x=

S(x). Then

x = x-xe= © Nm
m=Q

due to Lemma 4 i)<=>iii)D Using a)?

<f>(yx) = 0 (18)

follows for all y^C2)®. Further, x& ® Nm implies x= (XQ, xl9 — , XM? 0, 03 — )
»z = 0

4=0. Let JcM=f=0. Using (12'), Lemma 2b), 5M(xM)=JcM and (11),

(18')
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follow. (18)5 (18') yield

*(«(**)*) = *(<*(&)x)+t(a(S*)x)>0

which is a contradiction to the assumptions of b). This completes the proof

of the lemma under consideration.

It is straightforward to prove the following characterization of 3^.

Remark. It holds 9t*={jce(C%; 0(a(jc*)jc)=0}.

Let us consider the quotient space

= C®C2®(C2)2/N2®(C2)3/N3®'" .

Observe that S(x)=S(y) if-^and only if x— j>e9i$. Further, S(x)Gij(x), and

j?(x) denotes the residue class of x in (C2)®/^. Hence, there is a linear iso-
morphism

- - : DM . (19)

For each y ^(C2)® let us define the (field) operator n(y) acting on D(x) by

<F)(S'W) = S(

. Further, define sesquilinear forms

x, j^(C2)®. Noticing that (• ,•) defines a (positive definite) scalar product, the

completion D(K)~ becomes a Hilbert space M.

Let us consider the two subspaces of the right-hand side of (19):

where

DK
+ = span {5.(/4v>); zlv) is even, i> - 1, 2, -., 2n},

D- = span iSn(W, 4V) is odd, i/ = 1, 2, •• - , 2B>,

»=1,2, ••• . Observe that D(x)=DJr®D~ is an (algebraic) direct sum. Let

P+: D(K)->D+, P_: D(n)->D~ denote the corresponding projections. Using

with respect to the scalar product ( - , - ) > l l ^ + * l l > - = ( IWI + I I * I I ) for

V2
a, b^D(n) with (a, 6)=0, IHI 2 = ( '> •)» ̂  follows the orthogonal decomposition
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If P+ and P_ denote the projections concerning this decomposition of M9 then

satisfies [S(x)9 S(y)]=(S(xl JS(y))9 x,
Consider now the symmetrized basis

{h^; m — 0, 15 29 >**9 n}

on Sn((C\\ n=29 3, 4, —, where h(
n

m}==Sn(h
(P) with z(^=m9 and h?} is taken

from (2'). Using this basis, / is given on D(n) by

7" /T\ j /TN 7 /T\
— «'0^-^ 1 vO«'2^I^ 9

where

/I
0

denotes an (n+l, «+l)-matrix, n=Q, 1, 2, ••• .

Using the isomorphism # between (C% and C{rl5 r2} , there is a more con-
venient description for the objects considered above. Let

Note that ji$l+)=<39 where J denotes the two-sided ideal generated by t^—

t2ti in C-(tl9 12} . Hence,

4((C%/^) - C{tl9 t2}/J « C[̂ 19 /J ,

where the *-isomorphism between (C2)®/?^ and C[rl5 ?2] (resp. between D(^)
and £7[rl5 f J), which is induced by /«, is denoted by /i. The action of the opera-
tor n(x) is now given by multiplication with the polynomial A(S(x)), i.e.,

Recalling the solution of the (two-dimensioal) problem of monents

T(tl'tl') = (2r)l (2s)\l(2'+' r\ s\\ r, s = 0, 1, 25 *»,

T(t{ tf) = 0 if / or m are odd (/, m e SR*),
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one obtains

B2

\, t& dp(tv tj = J- exp{-(/f+/D/2} dti dtt, (e.g., see [26; I.I]).
2?T

Let us now introduce automorphisms c, & on the algebra C[tl9 /J by setting

, fj. Noticing that (5) implies

= (2/-)! (2j)'-/(2r+5 r! 5!) (-l)r,

where 2r (resp. 2s) denotes the number of j (resp. rj) occuring in {rf(1), •••,
r-\-s=n, one gets

-1 )̂) = T(t(pj) .

Recalling (1), (!'), it follows

[X, y\ = <t>(x*y) = T(tH(x*y}) = zH^P)) '400 dp

). Setting *=S(*), ^=

= J

« , (21)

(-it,, tj [4001 0>i. « *>fo. ^ (22)

, are implied. Further, (21) yields

M at L\R2, dp) .

Notice also that the cyclic vacuum vector is given by

fi= 4(5(1)) =

in L\R2, dp). For further investigations on the so-called g-space method the
reader is refered to [19; §9].
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Let us now show that the indefinite metric is intrinsic for the theory con-

structed above. Thus, one is led to answer the question whether or not there

are ^-invariant dual pairs.
For a given subspace M<^-D(n)^ let us define

Recall that if {<_% 32} is a ^-invariant dual pair, then

ii) E(<3K), E(m) are left-ideals in (C%,
iii) <f>(x*x)>0 (resp. 0(jc*jt)<0) for all x

(see [3; Lemma 6]).

Proposition 60 There are no n-invanant dual pairs in the theory construct-

ed above.

Proof. Assume that {3tt, 31} is a ^-invariant dual pair. Because of , t)]

=0$*$) =020) <gNj) = l, there is a zeE(<3M) with z$9i*. Choose wSCC2)® so
that

where w=£(w)? 2=S(z). ii) yields now

Swze

Applying (20), (22), a contradiction to iii) follows from

- -J ̂ IX^

where X^i. t^=A(2)^C[tl9 12], and

were applied. This completes the proof.

Remark, a) Proposition 6 implies that the indefinite metric is intrinsic

for the theory constructed above, see [3; Chapter 4]. b) For the contrary9

if one considers the Wightman-functional of a free field with positive mass, then

the GNS representation consists of (unbounded) operators acting on a Hilbert

space. Thus, there is no indefinite metric in this theory. For details of this

GNS representation the reader is refered to [5], [8; Exercise 3.4.6].
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§5. Applications to Physics

a) Harmonic Oscillator of Quantum Mechanics ([13; C/z.2.3], [15; CA.1.5])

Let us recall some results from quantum theory with positive definite

metric. Let us consider the tensor-algebra over the complex plane C:

and the linear functional T=(TQ, Tl9 F2, •••)eC4, where

n=Q, 1,2, • • • . Solving the corresponding problem of moments, one gets

+ 00

= \[»(f)](t)dp'(t), (23)

where dp'(t)=(27u)-l/2 exp(— t2/2) dt (Gaussian measure), and
y=o

f=(f09fl9 •~)^C®, is given in §2. Applying (23), the positivity of Tis implied.

Considering the scalar product

(/. 8) = T(S*f) ,

f, g e Cg,, an ortho-normal basis of C[t] is given by the Hermite poly-

nomials {Pm; W=0, 1, 2, -}, Pm(0=(2'"m!)-1/2 Hm(t/^/2), Hm(t)=(-l)m exp(O

(dm/dtm) (exp(-i2)).
Let us construct the GNS representation for T. It follows for the left

ideal

Hence, the field operators rc(g), geC®, are defined on D=C®. Consider the

operator <p=n(e), where e=e* is a (complex) basis of C. If the basis {/w;

«=09 1, 2, •••} is used in C[t], then 9? is given by

(24)

- Note that the annihilation and creation operators are defined on

C[t] by

(24')

respectively. Notice that the Hilbert space of s.tate vectors is given by

M' = (C[t])~ tat L^R, dp') .
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The theory so obtained describes the harmonic oscillator of quantum mechanics

in one degree of freedom.

b) Complex Superposition of Two Harmonic Oscillators

Let us consider the field

<p = -^-=(<Pz+i<Pi),
V2

where 9y=0y+0* are harmonic oscillators satisfying 9*=9,- (7'==1,2), p^—
1 V V

Wi =0- Observe that (20) implies <p= — m^+zj). Hence, the theory recon-
\/2

structed in §4 describes the complex superposition of two independent har-
monic oscillators.

Defining the annihilation and creation operators of electric charge by

V2

, respectively 9

one obtains <p=A*(— 1)+^(1), where aj=d/dtJ9 af=tj~d/dtj. (j=l, 2). Now5

the operator Q of total electric charge is given by

where 0ye{l, —1} (7 =1,2, ••-,«), and & = l^C[t] denotes the vacuum. It
follows that

Introducing new variables rl= - (t2—iti), *2= — =(^2+^i)» ^e following sec-
\/2 ' V2

tors of electric charge

D(0> = span {(̂ 2)*; /i = 0, 1, 2, — } (vacuum sector),

r=l, 2, 3, — , may be considered. Notice that/eD(f) yields Qf=sf9 s=Q, ±1,

±2, - ° B . Obviously, the following decomposition of the domain of the field

operators holds:
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Further, the operators <p and 9* act as multiplication by r2 and rl9 respect-

ively.
Noting that Q is essentially self-adjoint on D(n\ let us introduce a one-

parameter group of operators

V(X) = e~iKQ ,

AeJS. Then, a straightforward calculation yields the following gauge trans-
formations of the first kind:

<p^9' = V(X) <p V(X)~l = e* 9 ,

9*_»9*' = v(Z)<p* V(X)~l = e~iK<p* .

Hence, the gauge group is given by S=U(\\ and the *-algebra of observables
(i.e., the gauge invariant elements of the *-algebra of field operators, see [7;
Chapter 10.1.B]) is generated by 959?*, 9*9.

Following [4], let us consider the operator

#o = *

in LZ(R2, dp). Setting

and using the differential equations P'n'—tP'H-{-nPn=to for Hermite polynomials,
it follows that {frQ(n, m); n, m^N*} is a complete set of vectors such that

#o^o(«, m) = (n+m+ 1) ̂ Q(n, m) , (25)

[16; Chapter A. 5]. Let us mention that (25) is a particular case of Theorem
1(1) from [4].
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