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Topes of Oriented Matroids and
Related Structures

By

Keiichi HANDA*

Abstract

An oriented matroid can be viewed as a combinatorial abstraction of the facial incidence
relations of the polyhedral cones induced by a finite arrangement of oriented hyperplanes in
Rd through the origin. "Topes" of an oriented matroid correspond to maximal polyhedral
cones. This paper discusses three structures related to topes of oriented matroids, namely,
acycloids, L1-systems and median systems. It is shown that L1-systems are closely related
to convex geometries. Median systems are introduced as an equivalent notion of median
graphs, and they are, in particular, applied to characterize median graphs. Perturbations
of acycloids and L1-systems are studied.

§ 1. Introduction

Let E be a finite set and let A be an m x | E \ real matrix having Ae as the
column vector of A indexed by e^E. For each vector xeR£, a(x) denotes the
signed vector of x, that is, c;(x)e {—, 0, +}E and a(x)g is the sign of compon-
ent xe. Let V be the row space of A, i.e., V={xA: xeRm}. Then the set
a(V) = {o(v): veV} represents the partition of Rm by polyhedral cones induced
by the subspaces {xeRw:xAe=0} (ee£), and also represents the facial inci-
dence relations of the polyhedral cones. An oriented matroid is defined by a set
of signed vectors satisfying certain axioms (face axioms} that are trivially satis-
fied by o (V). Besides this, an oriented matroid can be viewed as abstractions
of many different concepts in linear space, see [9, 10, 26] for the basic theory
and applications.

"Topes" [27, 39] of an oriented matroid correspond to maximal polyhedral

cones in the above setting. Topes can be also considered an abstraction of
some properties of acyclic reorientations of loopless directed graphs, and further-
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more an abstraction of combinatorial properties of partitions {S, E—S} of a
finite subset E^Rd such that there is a hyperplane in R^ separating S strictly
from E~S. In this paper, we investigate oriented matroids through their
topess and introduce and study three structures related to topes of oriented
matroids, namely, acycloids [50], //-systems [28] and median systems.

^-systems are defined by the reorientation property of topes of oriented
matroids,, and acycloids by the negativity closedness property in addition to
the reorientation property. These two structures are useful to characterize
topes and tope graphs of oriented matroids. On the other hand, they are also
interesting when they are viewed from the corresponding graphs. Indeed,
//-systems are essentially equivalent to graphs isometrically embeddable in a
hypercube [19, 31, 36], and acycloids such graphs with antipodaHty [5, 32].

Median systems are essentially equivalent to median graphs [1, 429 44], and
they constitute a broad class of //-systems. Median graphs have been studied
under various names or viewpoints, e.g., median algebras [4] etc., median
semilattices [47], median interval structures [43, 46] and maximal Helly copair
hypergraphs [43], etc. Median systems, which we introduce in this paper,
axiomatize median graphs by signed vectors. Since signed vectors are easy to
deal with, one can give very simple proofs for propositions on median graphs.

This paper consists of 8 sections. In Section 29 we recall basic notions of
oriented matroids, which we need to explain the related structures. In Section 3,
we review the definitions of acycloids and //-systems, and we briefly summarize
their applications [28, 34, 35] to oriented matroids.

A convex geometry [24] is a structure which combinatorially abstracts the
notion of the convex hull of a finite set of points in Euclidean space In Section 4,
it is mainly shown that a convex geometry is essentially equivalent to the set of
positive "closed acyclons" of an acyclic //-system.

In Section 5, several propositions on median graphs are proved or reprov-
ed by using properties of median systems. In particular, a simple characteri-
zation of median graphs, similar to Djokovic's theorem [19], is obtained. In
general, their proofs are shorter and easier to understand than direct proofs by
the graph language or properties. Every median system is shown to be an
//-system, and hence we should note that the results on //-systems hold in
median systems, too.

In Section 6, we extend the point perturbation theorem [27, 39] of oriented
matroids to acycloids and //-systems. As an application, we obtain a way to
transfer (perturb) an oriented matroid to a non-matroidal acycloid. This
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section is a joint work with Fukuda, [29].
In Section 7, some examples of non-matroidal acycloids are given. It is

shown that there are exactly 4 non-matroidal acycloids on the 5-element set up
to reorientation. We conclude this paper in Section 8.

Through this paper, we assume graphs have neither loops nor muLipL edges.
We denote the vertex-set, the edge-set and the distance function of a graph
G by V(G}} E(G) and dG, respectively.

§ 2. Oriented Matroids

In this section, we will recall the basic notions of oriented matroid, which
we will need in this paper.

Through this paper, let E be a finite set. A signed vector X on E is an ele-
ment of {—, 0, +}*, that is, X is a vector (Xe\ e<=E} with JT,e {—, 0, +}. The
zero vector is denoted by 0. The negative —X of a signed vector X is defined
in the trivial way. For Ze {—, 0, -h}£ and S^E, we denote the restriction of
Xto E-S by X\S. For X, 7<EE {-, 0, +}*, we define D(X, Y)={e<=E: Xe=
- ye =^F0} and X<> Y=(Xe if Xe3= 0, and Ye otherwise:e^E). Here Xo Yis called
the composition of X and Y. Several concepts are used to define oriented
matroids. In this paper we will start with the definition by faces [27, 39].

An oriented matroid (on E) is a pair M=(E, 3?) where E is a finite set and
3 is a set of signed vectors on E9 called the faces of M, satisfying

(Fl) Oe£F, and Xt=3 implies -Zeff;
(F2) if X, Feff then Xo7e£F; and
(F3) if X, y e£? and/eDCr, 7), there exists Ze£F such that Zf=0 and

Z\D(X9Y)=(XoY)\D(X9Y).

We denote by ( ) the zero vector on the empty set 0, and define for convenience
that M=(0, {( )}) is an oriented matroid. A typical example is obtained from
the row space V of a real matrix A as we mentioned in Section 1. We will
denote by MLin(A) this oriented matroid. An oriented matroid M=(E9 £F) is
linear if there is a linear subspace V of RE such that £F=a(V).

For X, re {-, 0, +}*, X conforms to Y9 X<±Y, if Ye=Xe for all e with
Xe ^ 0. The notation X < Y denotes X<± Y and X^Y. This relation <1 is clear-
ly a partial order on {—, 0, +}E. For 3£^ {—, 0, -f }£, we denote the set of
minimal elements of 3£ by Min.3?, i.e. Min3£={X<^3C: X>Y^3£ implies
Z= 7}. Max a? is similarly defined.

Let M=(E9 £?) be an oriented matroid. A vertex of M is a minimal non-
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zero vector of £F, and a tope of M is a maximal vector of 3, We denote by
<3J and 2 the sets of vertices and topes of M, that is, cV=M.m(3— {0}) and
f-^Maxff. Note that the poset £F=(£FU {!}, ^)5 where 1 is the greatest
element, forms a lattice, called the face lattice of M. For 1", Fe£?, their join
in £F equals XoFif D(X, F)=0, and equals 1 otherwise. The lattice £?5 fur-
thermore, has the Jordan-Dedekind (J-D) chain property, i.e., £? is graded by

A

the height function, see [37, Thm. 1.1]. The height of coatoms of 9" is called
the rank of M. (For lattice theory terminology, see e.g. [7]). The sets CV and
2 are the sets of atoms and coatoms of £F, respectively, and the set 3 can be
described by them as follows; cf. [9,10],

<3 = {X: X = FoFV.-oF* for some elements Y\ Y\ -, Yk<=cy} (j {0}

- trrJSToreSforall Y<=2} .

Hence, an oriented matroids is uniquely determined by its vertices, and also
by its topes. The vertex axioms of an oriented matroid are given in the next
theorem. The tope axioms will be presented in Section 3.

Theorem 2.1([10])9 A set CV of signed vectors on E is the set of vertices
of another oriented matroid on E if and only if it satisfies

(01) 0<EjEq^, and X^^V implies -Xeq7;
(02) ifX.Y&CV and X<± Y, then X= F; and
(03) (elimination property) if X, Fe^, X* -Y andf<^D(X, F), there

exists Zeq; such that Z/=0 and Z\D(X, Y)^(X<> Y)\D(X, Y),

For a signed vector X on E, the set X= {e^E: Xe3=Q} is called the support of
X. Note that in Theorem 2.1, we may replace (O2) with

(O2J) if X, Y<=CV and X^Y, then X= ± Y.
Signed vectors X and Y on E are said to be orthogonal, denoted by X*Y, if

either X nY=0, or D(X, F)^0 and D(X9 —7) 4=0. For an oriented matroid
M=(E, &), the set C=Min {X: X4=05 and Z*Ffor all FeE3> is called the set of
circuits of M. This set C determines £F by 3" = {X: X* Y for all F <E£> . Thus
the circuits also determine the oriented matroid. Its axiom system is the same
as vertex axioms (O1)~(O3), which is the original definition of oriented
matroids by Bland and Las Vergnas [10]. In [10], a vertex is called a cocircuit
and the set of faces is called the span of cocircuits. The reader should note
that the set Cj; Of vertices of an oriented matroid M is the set of circuits of
another oriented matroid M*. This oriented matroid M* is called the dual of
M and it has C as the set of vertices, see [10]. Hence we have (Af*)*=M. In
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the linear oriented matroid MLin(A) on E={e^ •••, ej, the set of circuits is the

set Min {o(X): I=(ll9 -, ^4=0 and SLi *, A'<=0>, and MLin(A)*=(E, a(V*)),
where V* is the orthogonal complement of the row space V of A, cf. [10].

Finally, we look at topes of oriented matroids from some different viewpo-

ints.

Maximal cells of sphere systems

Let H be a finite collection of oriented hyperplanes in Rd through the
origin. When we consider the facial incidence relations of the polyhedral
cones induced by H, we may restrict our attention to the unit sphere Sd =

{xeRrf+1: ||x||=l}. Such a restriction is generalized to a sphere system [26, 39],
which is equivalent to an oriented matroid.

A d-sphere is a topological space homeomorphic to Sd. A subset S' of a
J-sphere S is a hyper sphere of S if there exists a homeomorphism / from Sd to
S with S'=/({xeSd:xd+1=0}). The two components of S—S' are called
the sides of S'. A sphere system [39] is a triple (S, E, M) where E is a finite set,
S is a d-sphere and M is a collection {si: e^E, i e {—, 0, +}} of subsets of S
satisfying

(51) for every e^E, either (sj, s°e, Se)=(0, S, 0) or s°e is a hypersphere
of S with sides s~ and ^;

(52) for every subset A of E, fl {s°e: e^A} is a sphere (possibly empty),
called a, flat; and

(53) for every flat F and hypersphere sQ
e not containing it, Fns°e is a hy-

persphere of F with sides F f! JJ and F fl J7-
For a sphere system (S, E, M), we define the map o from S to {—, 0, +}E

by ff(xX=i if and only if xe^. The "topological representation theorem"
[26, 39] says: given a sphere system (S, E, M), the set (j(S) U {0} is the set effaces
of an oriented matroid on E, and conversely every oriented matroid is obtained

this way.
A sphere system (S, E, M} is said to be linear if S=Sd

9 and for each e^E,

s°e is either Sd or a linear hypersphere. An oriented matroid is linear if and only
if it can be represented by a linear sphere system We give an example of
linear sphere system in Fig. 2.1 (a), and that of non-linear one in Fig. 2.1 (b),
called the Non-Pappus sphere system. Here note that (b) is shown by drawing
only a half of it, i.e., s% U s%. In general, when we draw a sphere system, it is
sufficient to draw its closed "hemisphere" s/ U s/ for some/because hemispheres
Sf and sj are symmetric.
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(a) (b)

Fig. 2.1

For Jre{-,0, +}*, we define X+ = {e<=Ei Xe = +} and similarly define
X". We denote by sX, S^E, the signed vector on E obtained from Xby re-
versing signs on S. For 3?c {_, 0, +}E and S^E, define s3£=isX: X^2£}.

Acyclic reorientation

An oriented matroid is acyclic if it has the positive tope (+ + •••+), i.e.,
it has no positive circuits (circuits Jfwith X~=$). Let M=(E, 3) be an orient-
ed matroid and let S^E. Then sM=(E, 5 3") is also clearly an oriented
matroid, the reorientation of M by S. The sets of topes, vertices and circuits of
sM are described in the obvious way. If an oriented matroid M has no circuits
X with | X | =1, then the set 3 of topes of M can be denoted by

2 = {XGE{-9 +}E: 3-Mis acyclic} .

This has a very natural meaning in examples of graphs. Let G=(V, E) be a di-
rected graph. Let A be the (0, ±1)-vertex-edge incidence matrix of G, and put
M(G)=MLin(A). This oriented matroid M(G) is called the oriented cycle
matroid [10, Ex.3.3] of G. For a subset S^E, denote by sG the directed graph
obtained from G by reversing directions of edges in S. Then the set of topes
of M(G) is given by 2={Xe {—, +}E: x~-G is acyclic}.

Non-Radon partition

Let A be an m x \E\ real matrix and let A be the (m+1) x \E\ matrix obtained
from A by adding as a row the vector (1, —, l)eR*. Put M=MLin(K). This
oriented matroid M is said to be determined by affine dependence over R and
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denoted by MAff(&), see [10, Ex 3.5]. Here note that MAff(A) is acyclic. We

identify the set {A*: e^E} of column vectors of A with the index set E, and
call a partition {S, E—S} ofEa non-Radon partition of E if there is a hyper-

plane in R* separating S strictly from E—S. The set of topes of MAff(K)

is then given by 3={A re{—,+}E: {X~, X+} is a non-Radon partition of

E}, see [14, 15]. Remark that it is a well-known open problem to characterize

the non-Radon partitions of finite subsets of Rw, and that this problem is

equivalent to the characterization problem of linear oriented matroids in terms

of topes, cf. [6,20].

Other papers related to topes of oriented matroids can be seen in [11, 16,

17, 30, 45].

§ 30 Acycloids, /^-Systems and Their Applications

Let 3 be the set of topes of an oriented matroid M on E. An element

of E is called a loop of M if it is not contained in the support of any tope, and

the set of loops of M is denoted by E0. Two distinct elements e,f^E—E0 are

parallel if either Xg=Xf for all X<=3 or X. = -Xf for all X<E2. The set of

elements which are parallel to e is denoted by [e] and called the parallel class

containing e. It is well-konwn that the set 2 satisfies the following three

properties [13, 23, 27, 39]:

(Tl) X9 F <E 2 implies X=Y;

(T2) X e 2 implies -X e 2; and

(T3) (reorientation property) if X, re2 and X^pY, there exists /e
D(X, Y) such that mX&3.

The property (T3) is the most essential property of topes and it is closely related

to isometric-embeddability in hypercube.

An acycloid [50, 51] is a pair A=(E, 2) where E is a finite set and 2 is a

nonempty set of signed vectors on E, called the topes of A, satisfying (T1)~~(T3).

An acycloid is simple if it has no loops and every parallel class is a singleton set.

For non-matroidal acycloids, i.e. ones which are not oriented matroids, see

Section 7.

The tope graph GA of an acycloid A=(E, 2) is a graph such that V(GA)=3

and such that X5 Y^.V(GA) are adjacent if and only if D(X, Y) is a parallel

class.This definition is the same as in oriented matroids, [8, 27, 39].

^-systems [28] are defined by the reorientation property of topes for simple

oriented matroids: an U-system is a pair A=(E9 2), where E is a finite set and
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3 is a nonempty set of elements of {—, +}E, called the topes of A9 satisfying

(LI) if X5 Fe£ and X* Y, there exists/eD(X, F) such that jX<=3;
and

(L2) for every e<=E, there exist X, Y^3 such that Xe3= Ye.

The condition (L2) is not essential but we include it for simplicity. The tope

graph GA of an Z^-system A is similarly defined to that of an acycloid: V(GA) =

3 and E(GA)={[X, Y\:X,Y&3 and \D(X,Y)\=1}. Fig. 3.1 (a), (b) show
examples of tope graphs of Z^-systems.

(a) (b)

Fig. 3.1

The hyper cube Q(E) on E is the graph that has {—, +}E as a vertex-set and
{[X, Y]: \D(X, 7)| = 1} as an edge-set, cf. [36]. For two connected graphs G
and G', G is isometrically embeddable in Gr if there exists an injection/: V(G)-^

V(G'), called an isometric embedding of G into G', such that dG(u, v)=dG'(f(ti)9

/(v)) for all u, veF(G). It is clear that the tope graph GA of an ^-system
A on E is isometrically embeddable in Q(E). Conversely, if G is a graph
isometrically embeddable in some hypercube and if we choose an isometric
embedding/: G-*Q(E) such that E is minima], then AG=(E,f(V(G))) is an
I^-system and the tope graph of AG is exactly G. Hence we have

Proposition 3010 ([28]) A graph G is isomorphic to the tope graph of an

Ll-system if and only if G is isometrically embeddable in some hypercube.

Note that the tope graph of an Z^-system determines the Z^-system
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uniquely up to reorientation, see [28, Note].
For graphs isometrically embeddable in a hypercube, Djokovic's theorem

[19] is well-known. Let G be a connected graph. A subset X^V(G) is con-

vex in G if for all u, v^X all shortest (u, v)-paths are contained in the subgraph
induced by X. For each [a,b]GE(G)9 define C(a, b) = {x^V(G)\ dG(a,x)<

dG(b,x)}.

Theorem 3.2 (Djokovie [19]). A graph G is isometrically embeddable in
some hyper cube if and only if G satisfies

(1) G is connected bipartite, and

(2) C(a, b) is convex for all [a, b] <=E(G).

Some other versions of this theorem can be seen in [2, 12, 28, 52, 53], etc.
In [28, 34, 35], we have applied acycloids and ^-systems to oriented ma-

troids. In the following we will briefly review the main results in them.
For JTe {-, 0, +}E, S^E and i e {-, 0, +}, the notation X+S* denotes

the signed vector on E obtained from X by replacing Xe by i for all e^S. Let
A =(E, 3} be an acycloid. For e^E, let 3/e = {(X+ [e]°)\e: X, mXe 3}, where
if e is a loop then consider [e]=0. Then we define A/e=(E—e, 3/e) and, for an
ordered subset S={el, ez, • • • , en} of E, inductively define AIS=(AI(S—e^)len,
the contraction of A by S. The contraction A/S satisfies the conditions (Tl) and
(T2). but does not always satisfy (T3), see [35, 50], also see Example 7.2. The
following theorem, which characterizes oriented matroids in terms of topes, was
obtained by proving a conjectrue of Tomizawa [50]: if every contraction of an
acycloid A is an acycloid, then A is matroidal.

Theorem 3.3([35]). An oriented matroid is a pair M=(E, 3) where E is a
finite set and 3 is a nonempty set of signed vectors on E, satisfying (T1)^(T3)
and

(T4) every contraction of M has the reorientation property.

For other characterizations, see [6, 18, 38].
In the subsequent paper [34], we have suggested another characterization,

which uses the relation between "faces" and "coboundaries" [50, 51] of acy-
cloids.

Let 3?c {-, 0, +P, X€E {-, 0, +P and S^E. Then we define X(X)=

{F GE3?: X<±Y} and T\S= {X\S: X<=%}. A signed vector X is a face of an
acycloid A =(ES 3) if Xo Y e 3 for all Ye 2; and a coboundary of A if X con-
forms to a tope and 3(X)\X is closed under negativity. We denote the sets of
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faces and coboundaiies of A by £F and J3"1", respectively. Between these two
sets, the Inclusion EF^^J~ holds, see [34]. For a geometric Interpretation of
coboundaries, see [34, 50].

For an acycloid A=(E, 3) and S^E, the pair A— S=(E—S, 3\S) Is also
an acycloid. This acycloid is called the deletion of A by S; in particular, the
elementary deletion If S is a singleton set.

Proposition 3o4([34])0 An acydloid A is matroidal if and only if 3" = ^

and every elementary deletion of A is matroidal.

Since faces and coboundaries are simply defined by topes, by this proposi-
tion, we obtain the following characterization.

tioii 3050 An oriented matroid is a pair M=(E, 3) where E is a
finite set and 3 is a nonempty set of signed vectors on E, satisfying (T1)^"(T3)
and

(T5) if X conforms to a tope and 3(X)\X is closed under negativity, then

(T6) every deletion of A satisfies (T5).

In relation to Proposition 3.4, we proposed an open question and conjec-
tured that It Is negative.

). If an acycloid A satisfies 3=<B^, then A is matroidall

Coo|ectiire([34])o There exists a non-matroidal acycloid satisfying 3?=J$-L".

Independently, da Silva [18] has also thought of the same problem above, al-
though she does not use the terminology of acycloids. Contrary to our con-
jecture, she conjectures that the question has the affirmative answer.

Next we consider the problem to characterize tope graphs of oriented
matroids. This problem is fundamental because its complete answer will lead
to an axiomatlzation of oriented matroids using only the graph language. Note
that such an axiomatlzation of linear oriented matroids is equivalent to that of
the 1-skeltons of zonotopes, see e.g. [25] for zonotopes. In [28], Fukuda and
the author characterized tope graphs of acycloids and those of oriented mat-
roids of rank at most three.

A graph G, which contains at least one edge, is antipodal [5, 32] if for any
veF((j% there exists a unique veF(G)9 the antipode of v, such that dG(v, u)<
dG(v, v) for all neighbours u of v. For convenience, we define a one-vertex
graph ^ is antipodal.
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Theorem 3.6([28])e A graph G is isomorphic to the tope graph of an acy-

cloid if and only if G is an antipodal graph isometrically embeddable in some
hypercube.

Theorem 3.7([28]). A graph G is isomorphic to the tope graph of an
oriented matroid of rank at most three if and only if G is antipodal., planar and
isometrically embeddable in some hypercube.

This characterization enables us to test in a polynomial time whether a given
graph is isomorphic -to a graph representing adjacent relations of regions of an
arrangement of pseudolines in the real projective palne P2, for arrangements,
see e.g. [25, 33].

Finally, for ^-systems and acycloids, we will define some similar con-
cepts to those of oriented matroids. Let A=(E93) be an ^-system or an
acycloid. The sets of faces, acyclons and circuits of A are defined by

3 = {X\ XoY<=:3 for all

Jl - {X: X:< Y for some Fe2} , and

C = Min {X: X^ Y for all

respectively. By these definitions, we immediately obtain

3 = Max Jl = Max 3 ,

JL =• {X: X^ Y for all Y^C} , and

C = Min({-,0, +}*-JJ).

If A is an acylcoid, we have moreover

(1) E0={e<EE: X={e} for some X^C},
(2) [e] = {e} U {e'&E: {e, e'} =X for some X(=C} (e(=E—E0),
(3) 3= {X: X* Y for all Y^C} , and
(4) C -Min {X: X =1= 0, and X* Y for all Y e 3}

=Min {X: Jf ̂ 0, and X*7for all 7e2}.

To check the above relation between 3 and C is an easy exercise.
One can immediately verify that the set 3 of faces of an acycloid satisfies the

conditions (Fl) and (F2). By (F2), it follows that the poset 3= (3\J {!}, <L)
forms a lattice, the face lattice of A, where 1 is the greatest element. Unlike
the case of oriented matroids, however, this lattice does not always satisfy the
J-D chain property, see Example 7.1. Hence the notion of "rank" is not intro-
duced in acycloids. Also, we do not define "vertices" of an acycloid and the
"dual" of that. Because, as we will see in Example 7.2, the set Min (3— {0})
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does not determine the acycloid.

§ 4 /^-Systems and Convex Geometries

A function 0: &(E)-^3?(E), where E is a finite set, is called a closure

(operator) if it satisfies

(1) 5c=0(5)=0(0(5));and
(2) R c S implies 0(J?) c 0(5),

for all R.S^E. A subset 5 of £ is said to be cfojerf if 0(5) =5. For the
purpose of simplicity, the empty set is assumed to be closed. A closure 0 is
said to be anti-exchange [21] if 0 satisfies

(3) given a closed set S and two distinct elements e,f of E—S, then

e e 0(5 U /) implies / <$ 0(5 U e).

The anti-exchange closure is a generalization of the order ideals of a poset
and it has many natural examples, such as the convex hull on finite points in
RM, the transitive closure on the edges of an acyclic directed graph, the tree closure
on the edges of a tree, etc, see [21]. The collection of closed sets of an anti-
exchange closure has been studied under the name of a convex geometry.

A convex geometry [24] is a pair (E9 G) where E is a finite set and
satisfying

(Gl)

(G2) G is closed under intersection; and
(G3) if 5 (EG and S3=E5 then there exists /e E—S such that 5U

Anti-exchange closures 0 on E and convex geometries (E, G) are equivalent un-
der the following correspondences :

G = the collection of closed sets of 0 ;

0(5) = n {R^G: S^R} (S^E) .

In this section, we mainly show that a convex geometry is essentially equivalent
to the set of positive "closed acyclons" of an acyclic Z^-system.

Given two signed vectors X, Fe {— , 0, +}E, define their intersection by

X n Y = (Xe if Xe = Ye, and 0 otherwise: e^E) .

LstA=(E, 2) be an ^-system with acyclons JL. For an acyclon X^JL,

we define cl(X)=r\3(X) and call it the closure of X. It is easy to see that
this operator cl on Jl satisfies the following properties :

(i)
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(ii) if X<* Y, then cl(X) <, cl(Y).

In particular, c/(0)=0. We say an acyclon X^Jl is closed if cl(X)=X, and we

denote by 3) the set of closed acyclons of A, i.e., 3)={X^JL\ cl(X)=X}.

Then it is easily checked that X\X2^£) implies X1r\X2^3). Hence for

X^<JL9 cl(X) is the smallest closed acyclon to which X conforms, and we can

describe cl(X)= n<3)(X). Note that 2-Max 3) and 3^<D hold.

Lemma 4.1 . For every X^3)f there exists a unique minimal acyclon,
A

denoted by Xt whose closure is X.

Proof. Put fy =Min { Y e JL : cl( 7) =X} . Since X e Q/, ̂  =1= 0 . Suppose

that K1 and Y2 are distinct two elements of VJ. Let ^e Y^_— Y\ By the mini-

mality of Y\ cl(Yl4-e°)<X. Since cl(Y^-=X* Yl^cl(Yl+e*). So there are

Z1, Z^SCc/CF^he0)) such that ZJ = -Z?=A;. Since F^Z1, Ar=c/(r1)^Z1

holds. By the repeated application of the axiom (LI) to Z2 and Z1, we get

Z3(=3(X+eQ) such that Z* = -X9. Then 72^Z+e°-ZnZ3e^}5 a contra-

diction. Hence | <V |=1. This completes the proof. H

Now we consider the poset L(3J)=(3)\J {!}, ̂ ), where 1 is an imaginary

greatest element, i.e., an element such tha* X<1 for all Ze^}. This poset

L(3)) forms a lattice as in the following theorem. We show in Fig. 4.1 the
lattice USD) of the ^-system in Fig. 3.1 (a).

(++ + 0) ( + + 0 + ) ( + + -0) ( + + 0-) (0++-) ( + 0-O (+0 —) (+ —0) (-0 + -) (0- — ) ( - -0-)

(++00) (0++0) (+00+) (0+0-) (+00-) (+0 -0 ) (00+- ) (00- - ) (0--0) ( -00-) (0-0-)

( 0 + 0 0 ) (+000 ) ( 0 0 + 0 ) ( 0 0 - 0 ) ( 0 0 0 - ) ( 0 - 0 0 )

( 0 0 0 0 )

Fig. 4.1
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Theorem 4.2. Let A=(E, 3) be an Ll-system with closed acyclons 3),
Then the poset L(£D) forms a coatomic lattice, in which the meet X/\Y and the
join X V Y are defined by

XV Y= n{Z&3)\Jil}:X^Z and

for X, 7<EE^U{1}, where consider X /\l=X for X^WU{1}. Moreover
L(3J) has the J-D chain property and the height function h is given by h(X)= | X \
forX^.3).

Proof. It is clear that L(2)) is a coatomic lattice. By Lemma 4.1, it fol-

lows that for any X &3) and e<=X, X+e°^£) if and only if e(=X. Hence if
satisfies Yl<Y\ then since P^Y1, there is e^Y^-Y^ such that

Thus the second statement of the theorem follows. i§

In the case where A is a simple aeycloid, the above theorem was proved by
Tomizawa [50]. In simple acycloids, moreover, the set of atoms of L(3)) is
given by Min (^-{0})--pfGE {-, 0, +}E: \X\ =1} and L(3)) is also atomic
[50].

We denote the signed vectors (+ + •••+) and ( -- * --- ) on E by + and —
for short, respectively. Also we define, for 3?Q {-, 0, +}E, !£*={X^T: X~
=0} and 3?= {X: X^3£} . An ̂ -system A is acyclic if it has the positive tope

+3 or equivalently it has no positive circuits.

Proposition 4.3e Let A be an acyclic Ll-system with closed acyclons 3).
Then the pair (E, 3)^} is a convex geometry.

Proof. Immediate from Theorem 4.2. H

Next, we show that every convex geometry is obtained this way. By the
definition of convex geometries and by [21, Lemma 3.2], we have the following
lemma.

Lemma 4A Let (E, G) be a convex geometry. Then the poset L=(G, ci)
is a lattice with the J-D chain property and the height function h satisfies h(S) =
\ S \ f o r al l

Proposition 485o Let (E G) be a convex geometry and put S =
{— , +}E- X+eG}. Then the pair A=(E, 8) is an acyclic Ll-system with
G=13)^, where 3) is the set of closed acyclons of A.
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Proof. To show the condition (LI), let X, Y be distinct elements of 3. If
c 7+, then, by Lemma 4.4, there is e<= Y+—X+ such that -eX<=3. Other-

wise, consider the signed vector Z=(X fl Y)+D(X, 7)". By (G2), Z+=X+ fl
7+ e G, and so we have Z e 5. By Lemma 4.4, there is / e Z+ -Z+ c D(Z, 7)

such that jX<E.3. Thus >*=(£, 3) satisfies (LI). Since 0, + ^S, A satisfies
(L2) and acyclic. Hence A is an acyclic I^-system.

Next, we put S' = {X<^{§, +}E: X+^G} and show that 3'=3)+ holds.

lfX<=3', then X° - e£, so X=(X° -) n + ^^+. Conversely, if XeE.2)+, then
for every ei e £- JT there is P e 5 such that rjf = - . By (G2), A>= n ;(r')+ e
G, and so X^3'. Hence 3'=3)+, and hence G=^;. This completes the
proof. •

Denote by JC the set of all convex geometries, and by JCL1 the set of convex
geometries obtained from //-systems as in Proposition 4.3. As an immediate
consequence of Propositions 4.3 and 4.5, we have

Theorem 4.6. JCLl=J£.

For an acyclic oriented matroid M with circuits C, Las Vergnas [37] defined
the following closure, called the convex hull in M;

ConvM(S) = 51) {e^E-S: ^X^C such that X~ = {e} and X+^S} (S^E).

This closure is a generalization of the notion of convex hull in Rn and the clos-
ed sets are called the convex sets of M. Edelman showed in [22] that if M is
simple, this closure is anti-exchange, and hence the convex sets of M froms a
convex geometry.

The following proposition shows that the related anti-exchange closure
of the convex geometry obtained from an I^-system is a natural extension of
the convex hull ConvM in M above.

Proposition 4.7. Let A be an acyclic Ll-system with closed acyclons 3) and
circuits C and let d be the anti-exchange closure associated with the convex
geometry (E, J3Q. Then, for all Sc^E, we have

cl(S) =S\J {eEEE-S: IXE^C such that X~ = {e}

Proof. Denote the right hand of the equation by Conv^(S). Since c/(0) =
Conv^(0)=0, we assume S=t0. If e(=ConvA(S)—S, there is X^C such that
X~ = {e} and X+^S. Hence 7e3 and S^Y+ imply Ye=+, and hence

Thus ConvA(S)^cl(S). Conversely, let e^cl(S)—S. Since 0+5+
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&.JI and (0+S+)+*r$cJ, there is X^C such that X~ = {e} and X+cS'.
Hence e<=ConvA(S). Thus cI(S)=ConvA(S) follows. if

What convex geometries airse from the convex sets of some acyclic simple
oriented matroid [22, 24]? This open problem can be now restated as follows:
characterize the set JCom of convex geometries obtained from simple oriented
matroids as in Proposition 4.3.

Since the lattice L(3J) of closed acyclons of a simple acycloid is atomic,
in particular, we have

Proposition 4.8. If a convex geometry (E, G) is an element of JCom, then
the lattice (G, ci) is atomic.

By this proposition, we know that the interval [0, +] of the lattice in
Fig. 4.1 belongs to JCLl—JCom (=JC—JCom). An atomic example belonging to
JC~JCom is given in [21]. The above mentioned problem is still open.

§ So Median Systems and Median Graphs

A graph G is median [1, 42, 44] if G is connected, and for any three vertices
x, y, z there exists a unique vertex u such that u lies on a shortest (x, j)-path,
a shortest (y, z)-path, and a shortest (z, x)-path. This vertex u is denoted by
m(x9 y, z) and called the median of x, y and z. All trees, and all undirected
Hasse diagrams of distributive lattices are median. Median systems, introduced
in this section, axiomatize median graphs by signed vectors.

Before introducing median systems, we need the following theorem by
Mulder [41, Thm. 1; Lemma 2]. We will present below a simple proof using
Djokovic's theorem (Theorem 3.2).

Theorem 50l(Mulder)0 A graph G is median if and only if G is isome-

trically embeddable in some hypercube Q such that for any three vertices of G

their median in Q is also a vertex of G.

Proof. The if part is clear. Let G be a median graph. It is trivial
that G is bipartite and connected. Let [a,b]&E(G) and suppose C(a5b) =
ix^V(G): dG(a, x)<dG(b, x)} is not convex. Then there are two vertices
u, veC(a, b) such that some shortest (u, v)-path ju, is not contained in C(as b).

Choose such a shortest (u, v)-path JUL so that the length of p. is minimum. Since
all shortest paths between a and any vertex x^C(a, b) are contained in C(a9 b),

we have u=^=a and v^pa. Also by the minimality of /*, there are u', v'^C(b, a)
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such that [u, u']9 [v, v']^E(G) and such that y. is denoted by ju=[u, u', &', v', v],
where the subpath ju,' is contained in C(b, a).

Now consider the median m(a, u, v). This vertex m(a, u, v) is contained in

C(a, b) because it lies on a shortest (a, w)-path. Hence there is at least one
shortest (u, v)-path T in C(a, b). Let w be the neighbour of v on r and consider
the median m(w, w, v'). Since G is bipartite, d(w, v')=2. By J(M, w)<d(u, v)

and by the choice of u and v, all shortest (u, w)-paths are contained in C(a, b)
and they are not through v. Hence we have m(u, w, v')=w, and so d(«, v') =
d(u, w)+d(w, v'), which contradicts d(u, v')=d(it, w). Thus C(a, b) is convex.
Therefore by the Djokovic's theorem, G is isometrically embeddable in a hyper-
cube Q. Now it is immediate that the median in Q of any three vertices of
G is also a vertex of G. H

Note that every hypercube Q(E) is median, and that the median of X, Y, Z
^V(Q(EJ)={—, +}E is the signed vector U such that, for all e<=E9 Ue=i if
and only if at least two of Xe, Ye and Ze are /. We will denote this signed
vector £/by<JT, 7,Z>.

A median system is a pair A=(E, 2) where E is a finite set and 3 is a non-
empty set of elements of {—, +}E, called the topes of A, satisfying

(Ml) X, Y, Z <EE2 implies <% Y, Z>e2; and
(M2) ^4 is simple, i.e., for every e^E, there exist X3 Y^.3 such that

Xe^p Ye, and for every distinct e,f<=E, there exist X9 Fe 2 such that Xe = Xf

and r.=-7/.

We define for convenience that ^4=(0? {( )}) is a median system. A connect-
ed graph G is diametrical [41] if each vertex v of G has a unique vertex v' such
that dG(v, v') equals the diameter of G. Every antipodal graph is diametrical,

see [5]. By [41, Cor. 5], a graph G is isomorphic to the hypercube Q(E) if and
only if G is diametrical and median with diameter \E\. Since the tope graph

of an acycloid is antipodal, it follows that the pair (E,3={—, +}E) is the only

Fig. 5.1
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acycloid (oriented matroid) on E which is a median system on E.
For a median system A=(E, 3) and a subset S^E, the pair A—S=(E—S,

3—S), where 3~S=3\S, is also a median system, called the deletion of A
by S. The tope graph GA of a median system A is a graph with V(GA)=3&nd

E(GA)={[X, Y]: X, Y^3 and \D(X,Y)\=l}. An example of such a graph
is given in Fig. 5.1.

Proposition 502. Every median system A=(E, 3) is an Ll~system.

Proof. Suppose that there are topes X, Y^3 which do not satisfy the
condition (LI), and we choose such X, Y so that \D(X9 Y) \ is minimum. Then
there are two distinct elements /, g<=D(X, Y). By (M2), there is Z^3 such
that either Zf=Xf and Zg = Yg or Zf=Yf and Zg=Xg. By the minimality of
\D(X,Y)\,X and <Jf, 7, Z> ( e 3 by (Ml)) satisfy (LI). Hence there is h e=
D(X,<X, Y,Zy)^D(X, Y) such that gJIfef?, a contradiction. Therefore ^
satisfies (LI). By (M2), A satisfies (L2), too. S

Median systems are equivalent to median graphs by the following propo-
sition (cf. Proposition 3.1).

Proposition 53, A graph G is isomorphic to the tope graph of a median
system if and only if G is median.

Proof. If G is a median graph and if/: G-*Q(E) is an isometric ebmed-
ding, where E is minimal for this property, then AG=(E,f(V(G)) is a median
system and the tope graph of AG is exactly G. The median of x9y and

ze V(G) in G corresponds to the signed vector </(*), /(j>),/(z)> by Theorem 5.1.
Conversely, if a graph G is isomorphic to the tope graph GA of a median

system A=(E, 3), then by Proposition 5.2, G is isometrically embeddable in
Q(E). Moreover, by (Ml), G is median. M

Let A=(E9 3) be an ^-system. Let 3l9 32^3 be such that 3^32=3

and 31n323=0, and such that for any X^3l— 32 there exists no e^E with
-eX^Sz-Si. Let ;?$£, and put 3' ={X+p+: XtES^ U {X+p~: X<=32}9

where X+/?*' (/e {— , +}) denotes the signed vector Z on E\J {p} with Z^=/
and Ze=Xe for other element e. (Note that the notation X+p* can be used for
either cases of p^E and p$E.) Then we call the pair A'= (E\J {p}3 3') the
expansion of A with respect to 3i and 32. The expansion A' is called convex if
there exist closed acyclons X1 and X2 of ^ such that 3l=3(Xl) and 32=3(X2).
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Lemma 5.4. If A=(E, 3) is a median system, any convex expansion A'
of A is a median system.

Proof. We use the same notations 2l3 32, p, 3', X1, X2 as in the above defi-
nitions, and denote by 3) the set of closed acyclons of A. Clearly, A' satisfies
(M2). To show (Ml), let X', 7', Z'e3'. Then we may assume, without loss
of generality, that at least two of X', Yf and Z', say X' and Y'9 are elements of
the set {X+p+ :X^3^. Now for some X9Y<= 3l9 X' =X+p+ and F = Y+p+.

Let Z'=Z+p{ (Ze2, i e {-, +}). Since X^Xf} Y, Xl<^<X, Y, Z>, so <X,

7,Z>e21. Hence <JT, Y'9Z'>=<X9 Y, zy+p+^3'. This completes the
proof. •

Proposition 5.5. A pair A=(E, 2) o/ a finite set E and 03= 3^ {— , -f }*
w 0 median system if and only if A can be obtained from the smallest median
system (0, {( )} ) by a sequence of convex expansions.

Proof. The elementary deletion of a median system A is exactly the
converse operation to convex expansion. Hence by induction the only if part
is proved. The if part follows by Lemma 5.4. •

Let G be a graph. For X,Y<^ F(G), [X9 Y] denotes the set of edges with
one endpoint in X and the other in Y. Now let Vl9 F2c F(G) satisfy Vl\JV2=

V(G\ Fxn F2^0 and [F^F,, K2-KJ=0. The expansion [40] of G with res-
pect to Vl and V2 is the graph G' constructed as follows:

(i) replace each vertex vG Vl f| V2 by two vertices uV9 u'v, which are joined
by an edge;

(ii) join uv to the neighbours of v in Vl— F2 and u'v to those in V2~Vl\
(iii) if v, we Vl n F2 and [v, w] &E(G), then join wy to ww and u'v to w^.

The expansion G' is called convex if Fx and F2 are convex subsets of F(G).

Lemma 5.6. In the tope graph GA of an Ll-system A=(E, 3), a set 3£ of
vertices (topes) is convex if and only if 3£=3(X) for some closed acyclon X of

A.

Proof. The if part is clear. To show the only if part, let 3£^ 3 be convex
in GA and put X= n X Then X is a closed acyclon of A and 2£e 3(X). Now

suppose 3C=tp3(X). Then we can choose Y^3(X)—3£ such that -eY<=3£ for
some e<=E-X. Since e^E~ X9 there is U^3£ such that eU^3£ and £/e=Fe.
Since >4 is an //-system, Y lies on a shortest (C/, ?7)-path in GA, which contra-
dicts the convexity of 3£. This completes the proof. •
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By this lemma and Proposition 5.5, we immediately obtain

Theorem 5.7(Mulder [40])0 A graph G is median if and only if G can be
obtained from a one-vertex graph ^ by a sequence of convex expansions.

Let A=(E, 3) be a pair with a finite set E and 03=3^ {—, +}*. For
X, F<EE33 we define 1A(X9 Y)={Z^3:D(X5 Z)cD(JT5 7)}9 called the interval

between X and F. The index A of IA(X, Y] is often omitted when it is clear
from the context. Note that if (X, 7, Z> is an element of 3 then it is the
unique element of IA(X, Y) fl7^(7, Z) HIA(Z, X).

Proposition 5.8. An Ll-system A—(E, 3) is median if and only if A satis-
fies

(M3) ife^EandX, Y ̂ 3 satisfy Xe=Ye and-eX, -eY^3, thenZ(=IA(X, Y)
implies -eZ e 3.

Proof. Let A be a median system. Let e^E and X, Y^3 satisfy Xe=Ye

and -eX, eY^3, and let Ze/(X? F) (=7^, F)). Then ?Z=<?*i «F? Z>e2.
Hence J satisfies (M3).

Conversely, let an ̂ -system A satisfy (M3). Suppose there are X, Y9 Z e 3
such that <X, Y, Z>$23 and choose such X, Y and Z so that Min (|D(Jf9 F) |,
| D(F, Z) |, | D(Z9 X) |) is minimum. We may assume \D(X9 Y) \ is minimum.
If the set-inclusion relation holds for some two of D(X, Y), D(Y, Z) and
D(Z, X), then (X, Y, Z> equals one of X, Y or Z, a contradiction. Hence there
is eeE£ such that Xe=-Y.=Z.. If there is Pe7(JT, F)n/(F? Z)-{7}9

|D(X?P)|<|D(Jr3 F)|. By the minimality of 17) (JT, 7) |, <JT, 7>, Z> G 2.
Since <JT5 P, Z>eE/(X5 P)R7(P, Z)n7(Z, Jr)e/(X3 F)n/(F9 Z)fl7(Z, X)5

<X3 I
r,Z>=<JT,P,Z>e£T, a contradiction. Hence 7(JT, F)n/(F, Z)-{F>,

Now let X'^I(X, Y) with X^Xe and ̂ eS5 and let Z'e7(F, Z) with Z^-Ze

and jZ'eS. (The existence of X' and Z' is by the condition (LI).) Then by
the minimality of | D(X, Y) \, <?Jf? SZ'9 F>e2. Since 7( '̂, F) n 7(7, 5Z') =
{7},<5^^y>=y and 7e7(?i

r/,yZ/). By (M3), ^Fe3. Hence ,Fe
7CA"', 7) 07(7, Z')ci(X, 7) R7(7, Z), a contradiction. Thus ^ satisfies (Ml),
and clearly (M2). Therefore A is median. H

The next theorem is similar to Djokovic's theorem that characterizes the
graphs isometrically embeddable in a hypercube.

Theorem 509S A graph G is median if and only if G satisfies

(1) G is connected bipartite, and
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(2) U(af b) is convex for a/I [a, b]^E(G), where U(a, b) is the set of all
vertices x such that dG(a, x)<dG(b, x) and x is adjacent to some vertex y with

dG(a,y)>dG(b,y).

Proof. The only if part is proved in [40, 44]. But here we will prove it by
another way. By Proposition 5.3, a median graph G is isomorphic to the
tope graph GA of a median system A. Hence G is connected bipartite and, by
Proposition 5.8, U(X, Y) is convex for all [X, Y]<=E(GA). This proves the only

if part.
Conversely, let a graph G satisfy the conditions (1) and (2). For [a, 6]e

E(G), if 17 (a, b) is convex, so is C(a, b). Hence, by Djokovic's theorem, G is
isometrically embeddable in some hypercube. The Z^-system AG corresponding
to G satisfies the condition (M3) by (2). Hence, by Proposition 5.8, AG is medi-
an. This proves the if part. H

We proved Theorems 5.7 and 5.9 by using median systems. Such proofs
are indeed shorter and easier to understand than direct proofs by the graph
language or properties. Jn the following, we will show another example like
this.

The next proposition is useful, which contains the fact that the "face lat-

tice" 3?=(3?\J {!}, <D of a median system satisfies the J-D chain property.

Proposition 5.10. Let A=(E, 3) be an Ll-system with faces 3 and closed
acyclons 3). Then A is median if and only if 3= 3) holds.

Proof. Let A be median, and suppose that there is X^3)—3. By
there is Yl&3 such that XoY^3. Put Z=XoY1 and choose
so that D(Z9 Y2) is minimal. Since X&3), for any e^D(Z, F2), there is 73e
2(X) such that Y3

e = ~Y2
e. Now put Y=<Yl, Y\ F3>; then Y^3(X) and

D(Z, Y)dD(Z9 Y2). This contradicts the minimality of D(Z, Y2). Thus
3=3) holds. Conversely, if 3=3) holds, then for any X\ X2, X3(=3, X1 fl X2

)=3, and so <Arl, X\ X^=(Xl nX2)oX3<=3. Hence A is median. M

Now, extend the definition of <JT, 7, Z>, X, Y, Ze {— , +}E, to the case of
any odd numbered elements of {-, +}E. That is, for X\ X2, — , X2k+1<=
{-, +}*, &>0, <X\ X2, —, X2k+iy denotes the signed vector U such that,
for all e^E, Ue=i if and only if at least k+l of X\, X2

e, ••-, X2
e
k+1 are i. We

have

Proposition 5.11. Let A=(E, 3) be a median system and let Xl,X2, ••-,
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X*k+l e 2. Then <X\ X2,-, X2k+1> e 3.

Proof. The vector ^X1, X2, ••• , Z2A+1> is the composition of all vectors
such that JT^ = n ,-« ̂  for some (/r+l)-dement subset tfc{l,2, — ,

2/c+ 1} . Here note that this composition does not depend on the order of vec-
tors X(K). By Proposition 5.10, X^^.3*. In general, in any ZA-system, the set
of faces is closed under composition. Hence (X1, X2, • • • , X2k+iy^3. H

For vertices vl5 v2, •• • , vp of a connected graph G, any vertex m that mini-
mizes the sum S?-i ^(X vf), xe F(G), is called a median of vl9 v2>

 8 0 0 j V Note
that a median graph is a connected one in which any three vertices admit a
unique median. It is clear that Proposition 5.11 proves the following result by
Bandelt and Barthelemy [3] : a connected graph G is median if and only if each
odd numbered family of vertices in G admits a unique median.

§ 6. Perturbation of Aeyeloids and /^-Systems

Perturbation of oriented matroids, studied by Edmonds, Fukuda and
Mandel [27, 39], is an operation which transfers an oriented matroid on E to
another oriented matroid on E. It can be also viewed as a topological opera-
tion to locally deform a hypersphere, see [39]. Several different types of pertur-
bations of oriented matroids were studied in [27, 39]. Here we extend the
"point perturbation theorem" to acycloids and ^-systems.

Theorem 6.1(Point perturbation theorem [27, 39]). Let M = (E, 9) be an
oriented matroid. Let f&E and let V be a vertex of M satisfying Vf=Q and
jr+/+eE£F for all X<=EF with V<X and Xf=0. Then M'=(E, 3') is an ori-
ented matroid, where

3" = £F-{F, -F} U {F, -F}

ijl = {X+f: F^Ze£F and Xf = -} (for i = 0, +) .

Corollary 6.2. Under the same assumptions as in Theorem 6.1, let 3 be
the set of topes of M, and let

and Xf = -} .

Then the set 3'=3\J ^UU — °U is the set of topes of the new oriented matroid

M'.

It is not too difficult to see that one can obtain a nonlinear oriented
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matroid from a linear one using point perturbations. Let's show an example.
The "Pappus oriented matroid" is represented by the sphere system such that,
in Fig. 2.1 (b), the hypersphere si is through the points A", B", C" and their
opposite points on the hemisphere sT. Now, take f=3 and V=a(C") =
( — [-00— OH --- h) in the Pappus oriented matroid. Then by Theorem 6.1 we
have the Non-Pappus oriented matroid (sphere system) in Fig. 2.1 (b).
Topologically speaking, the Non-Pappus sphere system is obtained by slightly
pushing down the hyperplane s\ around the point C11 (and pushing it up
around the opposite point — C" on s£). Another interesting example is a
construction of Non-Bom's, a certain class of nonlinear oriented matroids that
are of special importance in oriented matroid programming, see [27]. For the
reverse operation of perturbation, see [49].

Now we show that point perturbations of oriented matroids have natural
extensions in acycloids.

Theorem 6.3([29]). Let A=(E, 3) be an acycloid, let f^E and let W
be a face of A satisfying Wf=Q. Let

V = {7X:

Then A'=(E, 3'), where 3'=3\J V U -<U, is an acycloid.

Proof. The set of loops of A1 is the same as that of A. Denote by [•] a
parallel class of A. If /is a loop of A or ] [/] | = 1, then the set of parallel clas-
ses of A1 is the same as that of A. Otherwise both [/]— / and / are parallel
classes of A', and the parallel classes of A' except these are the same as those
of A except [/].

If /is a loop of A, then clearly A'=A, so assume that /is not a loop of A.
Let 3'=3(J C0r U — V be a disjoint union, where 'U'Q^U. Since the axioms
(Tl) and (T2) are clearly satisfied, it is enough to show that (T3) is satisfied.
Let X9 FEES' and X*Y. Put D=D(X, 7), X'=fXznd Yf=7Y. For con-
venience, put 3(W)J={X<E:3(W)\ Xf = -}. We first check the following 5
cases (O)-(iv).

(0) X, FGE 3: Trivial.
fi) X, Fe^U': X', Y'^3(W)J. Applying (T3) to X' and r, there is

[g] ^D(X'9 F ) =D such that ^X' <E 3. Here note that [g] 4= [/]. Since mX' e
3(W)J, [7] X=f([fiX')^cU. Thus [g] is our required parallel class of A'.

(ii)
(iii)
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(iii-1) Xf=~: Then note that/eD. If X=Y', 7X=Y<=CU'. Other-
wise there is [g]^D(X, F')cD such that ^-Yef?.

(iii-2) -*>= + and X^3(W): If there is [g]G.D(Jsr, F)-[/]cD such
that EJ JT e 3, there is nothing to do. Otherwise f/]X e 3 holds. Then if | [/] |
=1, there is [h]^D(jX, Y')=D such that ffi(fX)&3(W)j9 i.e. [Tj^eSL/, and
if |[/JI >2, 071=^=7073^0 eV.

(iii-3) *>=+ and X&3(W): Put Z=WoX(<=2). Applying (T3) to
Xand Z, there is [g]cl}(X, Z)c/> such that ^X<=3.

(iv) Xe<U'3 Y<=3:X't=3(W)j.
(iv-1) Yf=-:fGD and 7X=X' e 2.
(iv-2) ?>=+ and Fe2(PF): There is [g]£D(X'? F)-DU {/} such that

If | [/] | =1, clearly [g] =*=[/], and so [T]Z'eS(^)7? i.e. mX=7(W]X')
When | [/] | >2, if [g]=[/], (T7F7I^[7IX'e£T, otherwise mX=f(m

(iv-3) r/=+ and Y&3(W): Put Z-^oF(e3)0 Applying case (iv-2)
with Y=Z, since D(X, Z)cD this case is proved. The remaining cases are (f)
X, YtE-W, (ii^X^-V, YtEW, (Mi5) X(=25 Y^-V, and (iv5) X<E
—V, Y&3. Each case follows immediately from the corresponding case
considered above,, B

Proposition 684([29])0 Under the same assumptions as in Theorem 6.3,

if A is matroidal, ®=$=W^3<— Cl? (where 3! and ty are the sets of faces and

vertices of A) and A'^pA, then A' is non-matroidal.

Proof. Since ®*W^S$-CV, there is VefV such that V<W. Put W

=(_ v)o W (e£F). By Proposition 3.49 W is a coboundary of A, Moreover9

by the fact that W'^X for all X^3'~3, W is also a coboundary of A'. If
A' is matroidal, by Proposition 3.49 W is a face of A'. Then choose aay
V-S and put Z=WoF(e2'). Z/=+ and Z^FF3 Z
we have Y=W<>Z^3, a contradiction. Therefore A' is non-matroidal. ffl

For example, let M be the oriented cycle matroid of the graph in Fig. 6.1.
Now E={1,2,3,4,5} and 3={(+ + + ++), (+ + + + -), (-

-+),(+ + --- X (- + -- +),(- + --- ), and their negatives} . Take
/=3 and ^-(0+0+0) in Theorem 6.3. Then we have CU = {( — h + + — ),
( — j__l__j__(_) ? (_j_ _(__[__] — )j.e Here note that W is not a vertex of M because
FF>(0+000)GCF. By Proposition 6.4, we know that the new acycloid A' is
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non-matroidal. Indeed, A' equals the acycloid A3 in Example 7.2. We can
see in [29] the topological representation for this example, which is similar to
that of an oriented matroid. In general, however, a way to topologically
represent acycloids is not known.

'\ A

It is easy to see that Theorem 6.3 can be extended to ^-systems as follows.

Proposition 685. Let A=(E, 2") be an Ll-system, let f^E and let W be a
face of A satisfying Wf=Q. Let

V = {-fX: Xf=3(W), Xf = -} .

Then A'=(E, 3') where 2'=3l) c\3, is an ^-system.

For example, let A be the ^-system in Fig. 3.1 (a), and take /=3 (E=

{1, 2, 3, 4}) and W=®. Then 2'-2-{(+-+-), (+-++)}, and the tope
graph of the new Z^-system A' equals the graph in Fig. 6.2.

Remark that Proposition 6.5 gives an operation to construct graphs isometri-
cally embeddable in the same hypercube Q(E). (All such graphs cannot be con-
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structed this way, e.g. a cycle of length 6.) It is interesting that this proposi-
tion was obtained not from graph theory but from oriented matroid theory.

§ 7* Non-matroidal Aeyeloids

In this section, we first give some examples of non-matroidal a cycloids
to show properties contrary to oriented matroids. Then we show that there
are exactly 4 non-matroidal acycloids on the 5-element set up to reorientation.

An example of non-matroidal acycloid was first discovered by Fukuda, see
[50] and [28, Fig.l (b)]. We will refer to the Fukuda's example as Al=({\9 25

•••.5K3,).

Example 7.1. A2=({19 2, -, 5}? 22), where 3^=3^ {(- + - + +), (+-
H )} =V(GA^. Here GA2 is the tope graph of A2 and shown in Fig.7.1 (a).
The set ̂ —32 of vectors X such that X is not a face but a coboundary is
{(0+00—), (0+0-0), (000+ —), and their negatives}. The poset in Fig.7.1
(b) is an interval of the face lattice £F2 of A2.

<+""-'T / NJ / T ̂ K «--> <-«---> <-°-> <-~0'^se5?F=^_
(00—) (0-0-) (0—0) (-0-0-) (-0-0) (—00)

(-+--+) •
\\ \

(-0-00)

(00000)

Example 7,2([34]). ^,=({1, 2, -, 5}s 3,), where 23=22U {(+ + - + -),
( +-+)}. Then 23/l/2/3 = {(+0), (-0)} and 23/l/3/2={(00)}. For the
set £F3 of faces of A3, Min (ff,- {0})= {(+0+00), (00+0+), (+000-), (0+ +
+0), (0+0+-), (—hO+0)}. This set equals the set of cocircuits of the ori-
ented cycle matroid of the graph in Fig. 7.2.
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v \
2

A
f \

\l

/

4

3

Fig. 7.2

Example 7.3. A4=(E,3J, where £={1,2, —,6} and 24={-, +}E-
{( — h + + + +), (H ---- h + +), and their negatives}. The set of circuits of
A± is {( — h + + + +),(H ---- h + +), and their negatives}, which does not
satisfy the axiom (O2').

Next, consider non-matroidal acycloids on the 5-element set.

Proposition 7.4. If an acycloid A=(E, 3) is non-matroidal, then \E\>5.

Proof. Let C be the set of circuits of A. If A is non-matroidal, there exist
X, Y<=C such that X=£ — 7, and f<^D(X, 7), such that the axiom (O3) is not
satisfied. First we show \D(X, Y)\ >3. It is trivial to show \D(X,Y)\^l.

Now suppose \D(X, 7)| =2. Since (X°Y)+f° and (Y°X)+f° are acyclons of
A, there are Z1, Z2e2 such that (AroY)+/°^Z1 and (7o^)+/°^Z2. Here
note that we have Z} = —Xf and Z/ = — F/. By repeated applications of (T3)
to Z1 and Z2, we get eventually Z e 2 such that ^f<lZ or F^Z5 a contradic-
tion. Hence |/>(*, 7) |=<=2. Thus |Z)(Jr, 7)|>3.

Case (i): ^^Xor ^^Z- We may assume from symmetry that Xc:Y.
Then, since X, -YeC, D(X, -7) =1=0. If D(X, -Y) = {g} for some g^E,
then ^"conforms to a tope T such that (— Y)+g°<,T, a contradiction. Hence

F)| >2, and so \E\>5.

Case(ii): X<£ Y and X 5 7. Trivial. •

Lemma 7.5. Le/ ^4 be an acycloid with circuits C. Then:

(1) IfX, Y<^C,X*±YandX<^Y, then \D(X, 7)|>3 and \D(X, -7)|

(2) // X, Y^C with X^p — Y do not satisfy the axiom (O3) for some
f<=D(X, 7), then \D(X, 7)| > 3. Moreover if X and Y are minimal with
respect to D(X, 7), then X, Y do not satisfy (O3)for eny e<=D(X, Y).

Proof. Left to the reader. •
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Lemma 7060 If A is a non-matroidal acydoid on the set E— {1, 23 39 4, 5}
with circuits C, then the following statements hold:

(1) \X\=4forallX^C,
(2) X and Y are not orthogonal for any X, Y^C.

Proof. (1) Since | E \ =5, by Proposition 7.4, A is simple. Hence | X \ >3
for all X&C. If there is X^C such that \X \ =5, by Lemma 7.5 (1), C={±X}.
This implies A is matroidal. Hence |X|=3 or 4 for all X^C, Now by
hypothesis, there exist X\ X2<=C (where X1^ — X2) for which (O3) does not
hold. Then by Lemma 7.5 (2), \D(X\ X2)\ =3, \X1\ = \X2\=4 and X\ X2

does not satisfy (O3) for any e^D(X\X2). Without loss of generality, let
Xl=(+ + -0+) and X2=(-Q-\ --- ). Suppose that there is X3 <=C such that
|X3|=3. Then note that X* must contain {2,4} . We may assume X3 =
{2, 4, 5} without loss of generality. By the second statement of Lemma 7.5 (2),
we see that it is enough to check the following 2 cases.

Case (I): X3=(0+0+-). Since by Lemma 7.5 (2), X2 and X3 must sat-
isfy (O3), some circuit Y conforms to ( — h+0-). The fact of X\ Y<=C con-
tradicts the axiom (O25).

Case (II) : X3 -(0+0+ +). Since X\ X3 ̂ C and 4 <=E must satisfy (O3),
some circuit Z conforms to ( — h+0+) or ( — h+0—). The fact of X1. Z<=C
contradicts the axiom (O25).

(2) Suppose two circuits X1 and X2 are orthogonal. By (1) we may
assume Xl=(+ + -| — 0) and X2=(+ -\ — 0— ) without loss of generality. Since
X1 and X2 (resp. X1 and ~X2) must satisfy (O3), there are circuits X3-
(++0 -- ), X*=(0i+ — h) and Jf5=(jOH --- h). Here we can check that if
i=+ then 7= — , and that if /=— then 7= + . In each case, we have C=

\ ±X2
9 — , ±X5}S and C satisfies (O3), a contradiction. M

7o7o There are exactly 4 non-matroidal acycloids on the 5-
element set up to reorientation.

Proof, The following 4 acycloids Ai (i=Q, ly 29 3) are known to be non-
matroidal, where Al9 A2 and A3 are the same acycloids to those in the first half
of this section. We will give them by listing the sets Ct of circuits of At:

CQ = {(0+-++)3 (+0- + +), (++0++)? (+ + -0+)3

and their negatives} (Tamura [48]),

and their negatives},
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C2 = {(+0-++), (+ + -0+), (+ + -+0), and their negatives},
C3 = {(+0- + +), (+ + -0+), and their negatives}.

By Lemma 7.6, we know that there are not acycloids satisfying the condition

of the proposition except these 4 acycloids. H

§ 8. Conclusion

As we saw in Section 2, topes are very important elements of oriented
matroids and they play an essential role in typical examples. We character-
ized oriented matroids in terms of topes in [35] and tope graphs of oriented
matroids of rank at most three in [28]. These results, reviewed in Section 3, were
obtained from the study of acycloid and //-system, which are generalized
notions of oriented matroid. In this paper, we have discussed the recent results
on acycloid and //-system, and also we have introduced median system. The
main contents are as follows.

(1) the close relation between convex geometries and //-systems,
(2) applications of median systems to median graphs,
(3) extension of the point perturbation theorem of oriented matroids

to acycloids and //-systems, and
(4) non-matroidal acycloids.

Finally we will mention some of remaining important problems.
(1) Inductive axiom systems of oriented matroids using deletion and

contraction are rather non-practical. Is there a non-inductive axiom system
by topes? Cf. Qusetion in Section 3.

(2) Characterize tope graphs of oriented matroids of any rank.
(3) Characterize the set JCom. This is an open problem in [22, 24] as we

mentioned in Section 4.
The properties of related structures shown in this paper will be probably use-
ful for the characterizations.
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