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Fourier Hyperfunctions as the Boundary
Values of Smooth Solutions of

Heat Equations

By

Kwang Whoi KIM*, Soon-Yeong CHUNG** and Dohan KIM***

Abstract

We show that if a C°°-solution u(x, t) of heat equation in jR++1 does not increase faster

thanexp[e(—-f|jc|)] then its boundary value determines a unique Fourier hyperfunction.

Also, we prove the decomposition theorem for the Fourier hyper functions. These results
generalize the theorems of T. Kawai and T. Matsuzawa for Fourier hyperfunctions and solve
a question given by A. Kaneko.

§ 0. Introduction

T. Kawai and T. Matsuzawa have shown in [10, 15] that the boundary
value of a C°°-solution of heat equation in Rf1 which does not increase faster
than exp(s/t) is a well-defined hyperfunction. However, little is known about
the characterization of a solution whose boundary value determines a Fourier
hyperfunction near a characteristic boundary point. The purpose of this
paper is to discuss this problem, that is, if a C°°-solution U(x, t) satisfies some
growth condition (see (2.2)) then we can assign a unique compactly supported
Fourier hyperfunction u(x) to U(x, t). Furthermore we can find such a Fourier
tame solution U(x9 t) of heat equation for any compactly supported Fourier
hyperfunction u(x). To show this, we use the estimate for the heat kernel in
[15] and structure theorems of ultradistributions given in [11, 13].

We use the multi-index notations such as |a| =a1-\ \-an, d*=d^ d**"-
d%», d.=d/dxj for a=(al9 a2, ••- , aJeJVS where NQ is the set of nonnegative
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integers, and 0, =0/0f.

§ 1. Complex and Real Versions of Fourier Hyperfiinetions

First, we are going to introduce the complex and real versions of Fourier
hyperfunctions and show their equivalence.

We denote by Dn the compactification R*\J S^1 of Rn, where ST1 is an
(n— l)-dimensional sphere at infinity. When x is a vector in Rn\ {0} , we denote
by #00 the point on Sn~~l which is represented by x, where we identify Sn'1 with
R\{0}/R+. The space D* is given the natural topology, that is: (i) If a point
x of Dn belongs to Rn, a fundamental system of neighborhoods of x is the set
of all open balls containing the point x. (ii) If a point x^Dn belongs to S^1,
a fundamental system of neighborhoods of x (=y°°) is given by the following
family

"; x/\x\ el, \x\>A} U

where 2 is a neighborhood of y in S*"1.

Definition 1.1. Let K be a compact set in .D*. We say that 0 is in 3(K)
if 0 e C°°(«0 n J2B) for any neighborhood @ of K and if there are positive con-
stants h and fc such that

We say that 0y->0 in £F(JT) as7"->oo if there are positive constants h and
such that

sup J _ LJ^lLexp k\x\->0 as j->oo 3

a

where Q is any neighborhood of K.

We denote by 3'(K) the strong dual space of 3(K) and call its elements
Fourier hyperfunctions carried by K.

Definition L2o We say that 0 (z) is in Q (K) if 0 (z) is holomorphic in a
neighborhood of Q r\RH+i{\ y\ <r} for some r>0 and if for some

sup
* + i{.

where J2 is a neighborhood of JT in Dn.
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Remark. Let K be a compact subset of Dn. Then for any neighborhood
of K in Dn there exists a neighborhood F of K in JD* such that for some

where UB= {x<=Rn \ \x— y\ <d} for

We denote by E(x, t) the ^-dimensional heat kernel:

, t) = ,
' 0,

Theorem 1.3. For every

<f>t(x) =

Then <l>t&Q(Dn) and <f>t-^<f> in 3(K) as

Proof. Let 0e£F(^T). Then we can easily show that 0, is in Q(Dn).
There are positive constants C, h, k and d such that

(1.1) sup \d«<f>(x)\<ChWa\Qxp(-k\x\)
x&K8nRn

On the other hand we have for any S>0

E(y, 0 ^?(0(%-j)-0

E(y,t)d«x<t>(x)dy

Making use of (1.1), we have for | y \ <d

sup \d* 4(x-y)

for some C', C / xandjFf<l.
For any e>0, taking £>0 so small that C" d<e, we have
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and it follows from (1.1) that

sup
rn
a

and

sup -^ x\^c f E( 0 k] ,
Ji*i*«

as £-»0+. This completes the proof.

Theorem 1.4. S(K) is topologically isomorphic to Q(K).

Proof, Let <1>^Q(K). Then 0 is holomorphic in a neighborhood of

Q(}R*+ii\y\ ^r} for some r>0 and for some k>0

sup | <f>(z) | exp k | z | <°o ,

where @ is any neighborhood of K in I>*. Let — =h>Q. Then for ^e^ fi
^^5 we have

Let z=£+iii. If | x;. | ̂ 2r then we have

Therefore it follows that

sup
-*l =

sup 0(z)
.-X\=T 2

sup
z<=Qn

Hence we have

\°**(xy vwk\x\l2<.C sup
A1*1 «! ze^nJ

<00

for any |̂ .| >2r.
On the other hand9 we have for any 1 xj \ <2r

\d«<j>(x)\expk\x\/2
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<exp (fc vT/A) -a I h^ sup 1 0(z) ] exp k \ z \ .

Therefore it follows that

sup l exp*W
a

<exp (2k^/~n|h) sup 1 0(z) | exp fc ] z ]
ze£riJRB + /{;M^r}

<oo.

Let 0^3^). Then it follows from Pringsheim Theorem that 0 can be

analytically continued to a strip {z=x+iy\x&£ ClR", \y\ <r< — }
h

Therefore we have

sup 1 0(z) | exp k | z | <oo ,

which completes the proof.

Remark. Let K be a compact set in Dn and let u^^'(K). Then for any

A, &>0 there is a constant C such that

sup

where ^ is any neighborhood of K in Dn.

This is equivalent to the condition that for every neighborhood Q of K

and for every fc>0 there is a constant C such that

(1.2) K0)|<C sup

Proposition 1.5. Let P(^)=SKI.O «* #* ie a differential operator of in-

finite order with constant coefficients satisfying the following: For any L>0

there exists a constant C>0 such that

for all a. Then the operators
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(1.3) P(d): 3(D") -* £F(D")

and

(1 .4) P (d) : 3'(Dtt) -» 3'(D")

are continuous.

Proof. Let $5 eS^U") and h>Q. Then it follows that

i05|=0

1*1=0

|0!|=0

Thus if we choose h>0 so small that 2Lh<l then we obtain

which proves that (1.3) is continuous. The continuity of (1.4) is easily ob-
tained by this fact.

§ 2o Main Theorems

The following lemma is very useful later. For the details of the proof we
refer to Komatsu [13], Lemma 2.9 and Lemma 2.10.

Lemma 2.1. For any ^>0 there exist a function v(t)^C^(R} and an
ultradifferential operator P(djdt) such that

supp

for any A>0 ? P(d/dt) = j ak(d/dt)k, \ak\ <Chh
k/k\2 ;

fe=0

(2.1) P(d/dt)v(t)=d+w(t).

Here w(/)eC?(J2), supp ivC^/2, ^] ^^^ fe a D/mc measure, and

where hp=(fi'"l^)m'1for some sequence lp decreasing to 0.
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In fact, we can construct the above ultradifferential operator P(d/dt) by

taking

Let K be a compact set in Dn. Then we denote by 3"gme the totality of

C°°-solutions of heat equation (dt— A) u(x, t)=0 on Rn
+

+1 which satisfy the fol-

lowing:

For any e>03 there is a constant C such that

(2.2) \u(x,t
t r

in Rn++1. Then we have:

Theorem 2.2. Let u <E £?'(#) and let

(2.3) U(x,t)=u£E(x-y,t))9 t>0 .

Then U(xft)^^meand

(2.4) U(x,t)-*u in &(K) as t -> 0+ .

Conversely, every element in EF^me can be expressed in the form (2.3) with

unique element u^(3'(K).

Proof. Let u&3'(K). Then it is obvious that the function U(x, t) de-

nned by (2.3) belongs to C°°(J2++1) and satisfies the heat equation on R**++1'9

If follows from (1.2) that for t>Q

\ U(x, t)\<C sup | E(x—y -iy, t) \ exp k \ x \
y^K8nRn

\n\<r

<C sup (to)-^ exp - I "y 1 2

4t

exp

Let e-max {2^2
? k, r2/4}. Then we obtain (2.2). Hence U(x,

Now let

G(y,t) = ( E(x-y,t)t(x)dx9
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Then by Theorem 1.3 we can easily see that

(2.5) G(-,t)->4 in 3(K) as t -> 0+ .

Also, we have

(2.6) u
* R

by taking the limit of the Riemann sum of the left side. Then applying (2.5)
to (2.6) we obtain (2.4).

Now we will prove the converse. Let Ufa t) e£Ff rae and let

*; t^=0 or

Since the heat operator is hypoelliptic the condition (2.2) implies

lim P(dt, dx) Ufa t) = 0 , x<£K R R"

for any linear differential operator (with constant coefficients) P(dt, dx) of
finite order. It follows that there is a C°°-function c(x, t) satisfying the follow-
ing:

cfa t) = Ufa t) in Rn
+

+1

and

c(x, t), together with all its derivatives vanishes on @\Rn
+

+1.

The assumption (2.2) implies that Ufa t) does not increase faster than exp

[e (—+ | x |)] as f-»0+. We see that there exists a Fourier hyperfunction i/rfa t)

which satisfies the following:

ty = c on @

and

SUpp ty C R*l+1 .

In fact, let functions v, w and an ultradifferential operator P(d/dt) be as in
Lemma 2.1. Define

d f a t ) = cfat+s)v(s)ds.
JQ

Then we have

(dt-*)dfat)=0 in izr1.

It follows from Lemma 2.1 and (2.2) that
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\d(x, t)\<C exp e(\x\+t), t>0 .

Thus c(x, t) is a continuous function of an infra-exponential type in Rn++ 1.
Using (2.1) we obtain for t>0.

(2.7) P(-A) c(x, t) = P(-djdt) d(x9 0

= c (x, t) + \ c (x9 t+s) w (s) ds .
o

Since c(x,t) and the second term of the right hand side of (2.7) can be con-
tinuously extended beyond the hyperplane £ = 0, we obtain the extension

Since c(x, t) is a C°°-solution of heat equation on Q9 we have

t)=Q on £.

In what follows, a Fourier hyperfunction "fr(x, t) thus obtained shall be
called a Fourier tame extension of U for short.

S
oo

c(x, s) w(s) ds. Then g and h are also
o

continuous functions of an infra-exponential type, and hence Fourier hyper-
functions. We define a Fourier hyperfunction u as

u(x)=P(-A)g(x)+h(x).

Since

lim U(x, t) =Q,x&K9
f-XU

we see that we5P(£T).
We define a Fourier hyperfunction a(x, t) by

{SE(x-y,t)u(y)dy9 t>0
a(**') = U

Let a+(x, 0 be the restriction of a to fi*+1. Then we have a+(x, t)&3%mo.

Let ^(x, t) be a Fourier tame extension of «+(x, f). Note that p does not
coincide with a in general. It follows from (2.4) that

lim a(x9 1) = lim /?(^r, t)
t-*Q+ t-+0+

= lim ir(x, t) .
t+Q^

Hence we have

t)-ax9t))=0 in Rn+l .
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By the well known uniqueness theorem for the solutions of the Cauchy prob-
lem to the heat equation we have ^=a (See [4]).

Remarks, (i) The estimate (2.2) for K=Dn is the following:

(ii) If Kd c JR* then the estimate (2,2) is replaced by

In this case, T. Kawai and T. Matsuzawa have shown in [95 14] that its boun-
dary value determines a unique hyperfunction with carrier K so that the vani-

shing of g(x) implies the vanishing of u(x, t).
(iii) Since it suffices to consider the estimate (2.2) for sufficiently small t>Q,

we may omit the term et in (2.2).

Corollary 23. There exists an isomorphism

b:3%me-*EF' (K).

From the proof of Theorem 2.2, we obtain the following corollaries:

Corollary 2.4. Each function in £F^me is real analytic.

Corollary 205o Ifu^S'(K), then there exist an ultradifferential operator
P(d/dt) of Gevrey order 2, a continuous function g of an infra-exponential type
and a C™ -function h of an infra-exponential type such that

u(x)=P(-A)g(x)+h(x),

where g<=C°°(Rn\K).

We can consider 3\K^ C.3'(K2} if ̂  C K2 C C Dn. Let 9"' - (J 3'(K).
Then we have:

Theorem 2.6. If wef?' then there is a smallest compact set KCLCLDn

such thatu&3'(K).

Proof. Let u^.3' and let K be the intersection of all compact set K' in
Dn such that u^3r(K'}. By Theorem 2.2 a defining function

U(x,t)=uy(E(x-y,t)),

is uniquely defined and satisfies the heat equation in Hn+1\(Kx {0}). Noting
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that u=limM+ U(-, t\ we see that

Theorem 2.7. Let Klt •••, Kr be compact subsets of Dn and

U Kr). Then we can find u.G.3'(Kd so that u=ul-\ ----- \-ur.

Proof. It is sufficient to prove the statement when r=2. Let U(x, t) be
the function defined by (2.3). The theorem will be proved if we can split U into
a sum U=Ul+U2 where £/ye£F!?y

me,>/ = l,2. Let U be a Fourier tame ex-
tension of U. Then U satisfies the heat equation in R^^K^ K2) where
K.=Kj X {0} n Rn+\j = l, 2. We take a function ^ e C^R**1^ (1 ̂ 2) con-
structed in [7, Corollary 1.4.11] such that ^=0 for large |*|+f and near

(K2\(K, n^2)), ^ = 1 near (^\^i H^2) and ̂ eL"(^w+1). Here "near" means
in the sense of the slowly varying metric defined in [6, Chap. 1]. We will split
U as follows :

U, ^^U-V, U2=(l-T/r)U+Y.

We define i/rU(=$'(Dn+1) such that <^#-0 near (^\(^ n K2)) and (1 -^) C/-0

near (K\(K^ n K£). We can write

where F and/are in ^'(Dn+l) such that

F =

and/ e2r/(7?"+rK supp/c ̂  x {0}. Now we define

V(x, t) = E*F(x, t)<=EF'(Dn+

and V(x, t) = V(x, t) for />0. Then we have

iiM+1\^1 n 4) , supp V c J?

and

K(-,0 -> 0 uniformly in {x; dis (jc, ^

for every £>0 as /->0+. Since we have

we have for any

|]) as
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Thus we have the desired property that

£/!

and
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