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Asymptotic Stability of the
Relativistic Maxwellian

By

Robert T. GLASSEY* and Walter A. STRAUSS**

Abstract

Solutions of the relativistic Boltzmann equation are studied for all initial data which
are periodic in the space variable and near equilibrium. An equilibrium is a relativistic
Maxwellian distribution of momenta. Under appropriate conditions on the scattering kernel,
this equilibrium is asymptotically stable in a variety of function spaces.

Introduction

Although the classical (non-relativistic) Boltzmann equation has been
heavily studied, the relativistic version has received scant attention. The rela-
tivistic Boltzmann euqation is

V-?XF=-C(F,F). (RB\

Here the dot represents the Lorentz inner product (H ) of 4-vectors,
v=(vl9v29v3)9 V=(v0,vl9v29v^9 X=(xQ9 xl9 x2, x3), x=(xl9 x29 x3\ xQ=—t and
C(F, F) is the collision integral. Normalizing the speed of light c=l and the
particle mass m=l9 we have K-F=1 or v0=\/l + \ v \ 2 - For our purposes it
is convenient to separate the time and space variables and to divide (RB\ by v0

to obtain

8tF+v-rxF=Q(F9F) (RB)

where Q(F, F)=VQI C(F, F) and
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(0.1).
^ \/ l+M2

The collision integral has the form

Q(F.F)(v) = ̂ ~ \\\ d(U*-l)d(U'*-l)d(V'*-l)
2vQ J J J

-U'-V) sa(s, 0) [F(u') F(v')~F(u) F(v)] d* Ud* U'd* V (0.2)

where U2=U*U=ul~ u2, u2=ulj
riil+ul, d is the delta function in one vari-

able, d^ is the delta function in four variables, and all the F are evaluated at
the same space-time point (t, x). Furthermore a(s, 0) is called the differential
cross section or the scattering kernel; it is a function of variables s and 6 which
will be defined later. The delta functions express the conservation of momen-
tum and energy:

u'+v'=u+v, (0.3)

Of course, the 12-fold integral (0.2) defining Q may be reduced to a 5-fold
integral by carrying out the delta function integrations (see Section 1).

A relativistic Maxwellian is characterized as a particle distribution /JL(V)

which minimizes the entropy subject to constant mass, momentum and energy.

It is an equilibrium solution of (RB\ since Q(#, /0=0, and it has the form

fi(v) = exp (a+b-v-c^/ l+v
z) (0.5)

where a, 6 and c> \b\ are five parameters (constants). We consider a solution
F(t, x, v) of (RB\ which has period 2?r in each x variable and satisfies an initial
condition F(Q, x,v)=F0(x9v). We shall assume that the initial distribution
FQ(X, v) is close to a Maxwellian ju(v). The 5 parameters a, 6, c are chosen so
that F° and ju have the same total mass, energy and momentum:

0 = ( ( GF°-JH) dxdv = || v(F°-v) dxdv = i( VT+v* (F°-j>t) dxdv

(0.5a)

where the integration is over x^£=(Q, Inf and v^R3. (See Appendix I).
The following is a special case of our main result.

Theorem Qe Let a(s, 6) satisfy (1.16)-(1.18) below. Let F°(x, v) be a non-

negative continuous function which has period lit in each x-variable. Assume

that ju(v) is a Maxwellian (0.5) and CQ is a positive constant such that
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sup \F\x, v)-#(v)\ <c0(l + H2)-*/2 v^j (0.6)

where a> — (3+/?) is fixed. If c0 is sufficiently small, then there exist constants

cl and /z>0 and a unique global continuous solution F(t, x, v) of(RB\for Q<t<
oo such that F(0, x, v)=FQ(x, v) and

sup \F(t, x, v)-ti(v)\ <c, e-"(\+v*)-* ^/^{v) (0.7)
X

for all v<=R3 and t e [0, oo).

Furthermore we prove that if the ^-derivatives of F° satisfy similar esti-
mates, so do the ^-derivatives of the solution F9 and hence Fis smooth in x. We
also prove analogous results using L2 norms in x. As is well-known, the peri-
odicity condition in x implies that we have solved (RB\ in a box with specular
boundary conditions,

The classical Boltzmann equation was first solved in the spatially homo-
geneous case by Carleman [4], and more generally by Grad [15] locally in time,
and by Ukai [22] [23] and Nishida and Imai [19] globally in time near a Max-
wellian. Important contributions to the global problem have also been made
by Caflisch [3], Shizuta [20], Illner and Shinbrot [17] and many others. More
recently, global weak solutions with arbitrary initial data have been constructed
by DiPerna and Lions [8], All of the proofs of stability are based on the fact
that the linearized equation possesses some dissipation, due to the decrease of
the entropy.

In the relativistic case, we write the linearized equation of (RB)Q as

where K is a certain integral operator in v9 and v(v)>Q is a scalar function
of v which represents the dissipation. In order to prove dissipation on the
operator level in the sense of spectral theory, some compactness property of
the solutions of (0.8) is required. Some compactness in the v variable follows
from the form of K, while some compactness in the x variable follows from the
fact that -^-averages of solutions of transport equations tend to be .x-smoothing.
The precise condition we use is a kind of relative compactness of operators,
called ^-smoothing. To a certain extent we follow the abstract approach that
Shizuta [20] applied to the classical Boltzmann equation.

For background on the relativistic equation we mention the books of Ste-
wart [21] and deGroot et. al [7]. There are some analyses of (RB\ by Cercig-
nani and Majorana [6]. The linearized relativistic equation (0.8) is solved by
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Dudynski and Ekiel-Jezewska [9],
In § 1 we explicitly write the equation and derive the collision invariants

and entropy inequality. Then we linearize the equation, and we formulate the
function spaces Y and the main theorem. In §2 we essentially show that the
(nonlinear) collision integral is bounded on Y. The relativistic energy plays an
important role here.

In §3 we estimate the kernel of the linearized collision operator. The
relativistic estimates, which are related to those of Dudynski et. al. [9], are
quite distinct from the classical ones of Grad and others. The smoothing
property of the linearized equation is proved in §4, following in part the ap-
proach of Shizuta [20]. Finally in §5 we solve the nonlinear problem by itera-
tion by making use of the exponential decay of the linearized problem. In
particular, we get a classical solution of (RB\ where each term is at least a con-
tinuous function.

In a succeeding paper we shall use the methods developed here to solve a
relativistic Vlasov-Boltzmann system near equilibrium.

We thank R. Caflisch and A. M. Anile for providing us with several refer-
ences on the mathematical theory of the Boltzmann equation.

§ 1, Formulation

We begin by defining the remaining variables in the collision integral (0.2).
We define

s = (U+ V)2 = (uQ+vQ)2- \u+v\2

= 2uQvQ-2u°v+u2
Q~\u\2+vz

0-\v\2

4gz = _(C/-F)2 = -(uQ-v0)
2+\u-v\2

= 2u0vQ-2u*v-u2
J+\u\2-vt+\v\2

= 2(v
/l+\u\

2v/l+\v\2-u-v-l)

= s-4, (1.2)

and

. (1.3).
(V-U)2

Furthermore, we define the M011er velocity as the scalar VM given by
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or

(1.4)

The two expressions for v2
M are equal because

— S(s—4) =Sg* = (UQVQ—U-V+1)(UQV0-U-V — 1)

= \u\2+\v\2+\u\2\v\2-2u0v0u-v+(u-v)2

= u2
Q\v\2+v2

0\u\2-2uQvQu-v-\u/\v\2

i+Mi_2^.^-|AA^ 21 .
VQ U0 UQ VQ \UQ VQ J

In deGroot et al. [7] the delta functions in the collision integral are car-

ried out, resulting in the equation

dt F+v-rx F = ^3 52 VM o(g, 6).[F(u') F(v')-F(u) F(v)] d® du (RB)

where dQ is the element of surface area on *S2 and we have written a as a

function of g and 6. The variables u, v9 u
f, v' are related by the equations

(0.3) and (0.4). These equations allow u' and v1 to be written in terms of u and

v and a pair of variables 6 and 9? which run over the unit sphere S2. Equa-

tion (RB) is the result of one such representation. A slightly different repre-

sentation is given in Appendix II.

We remark that in the center-of-mass coordinate frame where u+v=Q,

\f~s~ is the energy, — 2g is the relative momentum, and 6 is the scattering angle.

In the classical limit, where | u\ + \ v \ < 1, we have s~4+ \ u—v \ 2, so that

VM~ \u—v\ and (RB) is the classical Boltzmann equation.

Invariants

Next we discuss the collision invariants and the entropy. While the main
discussion is standard, there are some differences from the classical theory.

Define the symmetrized collision operator

2*(/; g) = VM a[f(v') g(u')+f(uf) g(v')-f(v) g(u)-f(u) g(v)] du dQ .

(1.5)

The collision operator in (RB) is Q(F, F)=Q*(F, F).

Lemma 1.1. For any functions <p(v),f(v) and g(v), sufficiently smooth and

small at infinity, we have the four identities
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2 | Q*(f, g) 9 dv = J j J vu *[/(*') g(u')+f(u') g(v')-f(v) g(u)

<p(v) -

ffl. d.6)

The proof is given in Appendix II.

Lemma 1.2. For f, g as in Lemma 1.1, rte collision operator satisfies

(a) J e*(/9g) * = o, J «e*(/,g) * - a J VHV = o .

Proof. For (a) we choose successively <p(v) = 1, <p(v}=vj (j=l, 2, 3), and
9?(^)= \/l+^2' The identities follow easily. For (b) we choose <p(v) = l -\-logf
and add the four identities in (1.6) to get

J Q(f,f) (1+log/) * = JJJ VM °[f(u')f(v')-f(u)f(v}]

= J J J VM 'U(u')f(v')-f(u)f

This is non-positive because the logarithm is increasing.

It follows from Lemma 1.2 that, for the solutions of (RB\ the mass
/ Fdvdx, the momentum / vFdvdx, and the energy / \/l+v2 Fdvdx are invari-
ants. Furthermore J Flog Fdvdx is a non-increasing function of t.

Linearization

We shall now state our stability results in greater generality. First of all, we
may normalize the Maxwellian to be

0-7)

See Appendix I. It is convenient to change variables from F to / by

F^+vTT/. (1.8)

Substituting (1.8) into (RB)9 we have
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~ f ..M I 1
P> J>v.

or

9*f+v-rff= -»Wf-Kf+Q(f,f)
where

£>(/,/)= :

= f f 2A/I+? a(g, 6) V XtO U(u')f(v') -f(u)f(v)] du dQ , (1.9)
JJ w0z;0

fr) = f f
JJ

and

Kf(v) =•-
JJ WQ^O " ' L

(1.11)

If F is a solution of (&S) and (0.5a) and (1.8) hold, then we have

° == IS V~^fdvdx = (\v^~Hfdvdx= \\\/l+\v\2\/~i*fdvdx. (l.lla)

The entropy implies the following dissipative property of the linearized op-
erator ~v—K.

Lemma 1.3.

J (-v-K)f(v).f(v) dv<Q (1.12)

/or any function f(v) which satisfies (l.lla).

Proof. We notice that

v /*

In (1.6) we substitute 9~,a"1/2/and add the four identities to get

4 J (-v-K)f-fdv

x/X^O \/^(w')J
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<0 since ft(u') y.(v') = jLt(u) fj.(v) .

This integral vanishes if and only if f(v) has the form

f(v) = {a+b-v+c VT+v*} \fi&) - (1-13)

Because of (1.1 la), this integral is strictly negative.

Spaces

Now we define the spaces to which /will belong. In the x variable we use the
spaces Ck of periodic functions whose fc-th derivatives are continuous, or the
Sobolev spaces Hk of periodic functions whose fc-th derivatives belong to L2.
Let X denote either Ck for &>0 or Hk for k>2. Let P^HCl+
Define G^(X) as the space of continuous functions /: .K3-> X for which

||/||= sup /,„(») | /Co) | x<oo. (1.14)
aefg3

Furthermore define G*(X) as the closed subspace of GJ^X) for which

furnished with the same norm. Let

Y = either G*(H*) or G°a(C
k) (LI 5)

where a>0, &>0 and />2.

Hypothesis on *F8

We now state the hypothesis on the collision cross-section a(g, 0). It should

satisfy

and
i a- i

+£- s )s in v 0 (1.17)

where cl5 c2 and c3 are positive constants, 0<S< — , 0</9<2— 25,

j^'>0, r'> -2, and either r >0 or

(1.18)
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Now we can state the main theorem, which is more general than Theorem
0.

Theorem 1.1. Assume that °(g,6) satisfies (1.16) and (1. 17). Let Y be

either of the spaces (1.15), where a>— (3+£). Iff°<=Y satisfies (1.1 la) and

||/°||F is sufficiently small, then there exists /z>0 and a unique global solution
f(t,x,v) of (RB) which is periodic in x and satisfies /(O, x, v)=f\x, v),

. (1.19)

§ 2. Estimates on the Collision Operator

We have seen in (1.9) that the nonlinear collision operator has the form

Q(f,f) = \\ VM o(g, 6) e-^(f(u')f(v')-f(u)f(v)) du dQ
JJ 1/31=1

= (Lain-Gloss (2-1)

where the "gain" term contains the primes; the loss term does not. The ma-
jor result of this section is the following.

Theorem 2.1. Assume o satisfies (1.16)-(1.18) and consider any of the
spaces

or G°a(C
k)

for «>/?/2, l>2, k>0. Let ||-||rt be the norm in any one of these spaces. If

f^Gl then Q(f,f)eG°a-?f2 and

iiea/)iu-P/2<c 11/11°. (2.2)
The map Q is continuous from (7° into G#-p/2'> in fact,

\\Q(f,f)-Q(g, g)IL-6/2<^ll/IU+llglU) ll/-glL - (2-3)

Here are two lemmas to be frequently used below.

Lemma 2.1. There is a constant c, depending only on the parameters in
(1.16)-(1.18), such that

{ ( e~ <1/2>Ko o(g, 6) dQ du < cvl'2 (2.4)
JJ 1/21=1

Proof. Using (1.16) we have
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( a(g, 6)d®<c P (g-8+g?) sin1-* 0 dO
J 101=1 Jo

From Its definition, g2<cuQ VQ and from Lemma 3.1, g>—\-^ — r^-* Thus

L-,
MO'

so that

) 1/21=1 J \U—V\S

The remaining integral certainly converges; the only question Is its growth

in | v | . On the sets {u: \u\>2\v\} and {u: \u\ <} we have | u— v \ >-?

and thus the contribution of these sets to the second expression Is bounded.

On the set {^J-< | u \ <2 \ v \ } we write

u—v

This expression is bounded as we see from breaking it up at \u— v\ =1.

Lemma 2e2e

for some ^>0. (2.5)

Also, for \v\ large, say |^|>4, e//Aer |M ' | ^ |^ | /4 or |^'|^|^|/4. Here

depends only on a, and u' , v' are defined in (0.3), (0.4).

Proof. Energy conservation Implies

and hence

/ |2+l+l*>' |2]= 4+2(| w'|

Taking the a/2 power, we get the conclusion, where pa is denned in (1.13).

For the second statement, consider the invariant energy

e = Vl+\u\2+Vl + \v\2 = Vl+lH'IMVl + b ' l 2 - (2.6)

Thus e> x/l+ |w|2> I v 1. Let | v \ ̂ 4. If the assertion were false, then
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16

a contradiction.

Proof of Theorem 2.1. We consider the gain and loss terms separately.
From Lemma 3.1 below, we know that VM is bounded. Thus in the represent-
ative case k=2,

H _

1-01=1

+ I /(«)/»I + | f,x(u)f(v)I 4-1/,(«)/,(«>) | + | f(u)fxx(v)\}dQdu
(2.7)

The gain term satisfies the same bound with u, v replaced by u', v' in each
argument of/. Thus we write

i; (2.8)

where e.g.

as-* | /(«') | | /(» ') ( < & < / £ , (2.9)
l!2l=l

etc.
We begin with/e F=G°(C*). Consider the loss terms. For instance,

| = c | /„(«) | a(g, ^) e-** | /(n) | rffi Ai

<CP«\V) [pM I /W 1 c2] ' sup [PM | f(u) \ dQ du .

By Lemma 2.1, the last integral is O(\ v \ p/2) so that

Hence Prf-o/2)(^) |£6I ^^H/IU'PajWI/C^lc 2- Clearly, each of the loss terms
satisfies the same bound, so that we get directly

(2-10)

for/e Y=G°a(C
2). It follows that eloss(/,/) e G°-o/2)(C

2) and
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Now consider the gain terms, still with Y as above. A representative
term is GB, for which we have the estimate

| G6 1 < J J oe-o* | /(«')/«(»') | du dQ

<P»\v) \\ «e-^\fiW\fW\}\P.(*')\f,&')\]duda (2.12)

where we have used Lemma 2.2. By Lemma 2.1, we get

/>.(») I <?• I <^»-[supp>')|/(M')lc2]-[supP>')l/(^')lc
2] . (2-13)

u,Q «,Q

Each of the gain terms is so estimable. Thus we get

^W*)legain(/,/)lc2<d SUp pJtu') | /(«') | C*] [ SUP P> ') | /(» ') | rf . (2.14)
u, \Q\ = l u, |0|=1

It follows immediately that

llesain(/,/)IU-W2)<c|]/l£. (2.15)

It remains to show that

^-^)iegain(/9/)Wlc2-0 as |*|-* oo. (2.16)

Returning to (2.12), we assume \v\ is large and partition the integral for

4) (2.17)

In the first integral, the expression pa(u ')!/("') I c2->0 uniformly in (w, ̂ ) as
| -a \ -*• co by Lemma 2.2. The second factor

^>') !/("') I c2

is bounded above by ||/||r, and the remaining integral is O(\v\^/2) by Lemma
2.1. Thus we have

^-(fl«W|G6| = o(l)-||/||r->0 as H-oo. (2.18)

As noted above, each of the gain terms is estimable exactly as is G6 in (2.17)

and (2.18). This observation together with the estimate (2.11) for
prove the theorem in the case Y= G£(C2)? «
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Now we turn to the more complicated case/e 7= (?£(#'), a>fl/2. We
begin with the typical term G4:

2

dxI e-«(/2 afxx(t, x, u')f(t, x, v') du

'•(v) j j e-"^ op.(u')f,Jt, x, «') ̂ (o')/C, ^> »') rf« ̂ ^

^>')/LO,^"')«

f, #. «;') dudQ } dx

2
dx

j J e-ofl ff/oi(ii')/J«('» *» «

cp;2(f) J e-* ap2
a(v') \\f(;V)\\y du

\ /c x1/2

o-«0/
2 adudQ } { I e~Mo'2 op*(vf) II /"(•, ^')ll^2 ^w c/^2

/ \J

Thus we have by Lemma 2.1,

•(j e-"^ op^u1) ||/(., M')ll^ dH dfl)1" • (2.19)

Similarly the term G6 admits the same estimate, since its integrand in-
volves f(u')fxx(v')\ thus the sup over x is taken on the /(w')-term. Moreover,
terms Gl9 G2 and G3 also satisfy the same estimate as that for G4, since they in-
volve only one derivative.

Hence we need only bound G5, for which we have

: J S dudO dx

= \J dx

2

rfx
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<P~2(v) I (\ e~u°/2 o dud@} (\ oe-K°/2 P*(u')fl(u') dui"

<c\v\W p-\v) [J J a e-^2 P^(u')fKuf) dx du

•[J J a *rV2 p*a(v')f*(v') dx du dQ

<c\v\U2p-\v}\^oe-^2pttu')
l/2

Therefore for G5 we have the estimate

G ae-^2p^

• (j a e-«°'2 pi(»') ]!/(•, c')lli« ̂ /"^)1/4 (2-20)

which is the same as the estimate (2.19) already obtained for G4. Since all
of the gain terms are so estimable, we have now shown that

•(j ff e-V»^(B') ||/(., W')ll^^^)1/4. (2.21)

The first of the integrals appearing here can be bounded as follows:

\l/4

G \l/4

/

<c\\f\\Y«\v\W<cp^(v)»\\f\\Y9

as can the second. (2.21) then yields

i.e.

112 ain(/j/)ll - / ^C I I/I|2 s (2.23)

which is one of the two estimates desired.
It remains to show that.
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as -*oo.

This is achieved by partitioning each of the integrals as was done previously,
and by using Lemma 2.2. Explicitly, consider again the term G4, and let \v\
be large. By Lemma 2.2, we can write

2 ~u/2dx\ • (2-24)

Each of these integrals is bounded in exactly the same way which led to (2.18).
In this manner, we obtain the following estimate, analogous to (2.20) :

<C\V\™ [\V\M-\\f \\y\V\™ SUp
{l»'l^l«l/4}

+ |t.|W. sup />.(«') l l /(-,»')ll^- |
{N'l>bl/4}

<c\v\W\\f\\Y-o(l). (2.25)

Therefore

^-0/2(^)l|G4|L2-*0 as l ^ l - ^ o o .

Now we recall that all other gain terms can be estimated as G4 and G5 can.
We partition G5 as we partitioned G4 above, and proceed similarly with each
integral.

For the continuity of Q, we write Q(f,f)— Q(g,g) in terms of/+g and
f—g. By repeating all the preceding estimates, we obtain (2.6). The cases
/ =1=2 and &=N2 follow in the same manner. This proves the main theorem
completely.

§ 3. Estimates on the Integral Operator

Recall that the equation for the perturbation / (using F=#+/i1/2/) can
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be written as

ft+*>-r,f = ~»(v)f-Kf+Q(fJ) (LRB)
where

v(v) = \ \ 6V *-t-g "vs*^ ^(w) du d® (3.1)
JJ UQVQ

and

'l+^2Kg? 0) VVpO

(3.2)

Here w0 = \/ 1 + | M 1 2> vo = \/l + |w | 2 - We define

/ = !&+".) and ^ . (3.3)
2 2g

Then from [7], [9] we know that Kf=K2f—Klf, where K12 are integral operators

KJ(t, x, v) = J^3 kfa v)f(t, x, u) du (i - 1, 2) (3.4)

with the symmetric kernels

*I(K, ») ̂  ^ gVl+g2*"1 T afe fl) sin OdO ; (3.5)

where

s m = - - 1 / 2 (3J)

and /0 is the Bessel function of imaginary argument of order zero.
We begin by collecting several elementary inequalities.

Lemma 3.1.

(ii)

(iii)
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(iv) /2 —/ > max {g2+1, — | u—v \2}
4

(v)
V2

(vi) cos 1

Proof, (i) The bound g<—\u—v\ is equivalent to 4g2< \u—v\2, i.e. to

2uQvQ—2u'V —2<\u—v\2, i.e. to

J L i 1 0 1 | J - / I i ? i i i ? \

Squaring both sides, we obtain the upper bound in (i). For the lower bound
in (i), we write

(ii) We have

> \u\2+\v\2+\u\2\v\2-2u-v-(u-v)2

~ 2uQvQ

= \u-v\2+\uAv\2 ̂
2uQ v0

- 2 - u, v,-- u-v+-

(iii) From their definitions (3.3) we have

V
Thus

where

A = g2 [2+ | u 1 2+ |o 1

Using the definition of g2, we can write A as
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-yKM'+M1)

-2(u«v) (vTTjiTpv/Tqri^p+i)]

-M2M2-(w-*02+— [\u\2+\v\2-2u-v]
4

4

Hence

as claimed in (iii).

(iv) In (iii) we use g<— | u—v \ from (i) to get I2—J2>g2+l. Combining this

with (iii), we get (iv).

(v) From definition (3.7) we have

g

Now

This gives the upper bound in (v). For the lower bound we write simply

(vi) The last inequality in (v) above can be restated as

so that
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c o s - l - s i ncos -l sm

and this completes the proof.

Lemma 3.2. Assume (1.16)-(1.18). Then there is a positive constant c,

depending only on r, ft such that

for all v e R*, where vQ=\/l-\- \v\2-

Proof. The lower bound from (1.16) gives us

v(v)>Cl ( g^Vl+g* e-"il^ ("sin1** 0 dd .
J (l+g)uQv0 Jo

The angular integral converges and has a positive value since r> —2 in (1.16)-

(1.18). Hence

-du.

By Lemma 3.1 (i), we have g> , ; hence

=c^-2 r r *m1v ig+2 sinPt2 ? • •f.;^ ^2 sin ̂  ̂  *
o o

for some constant c>0. For \v\ bounded away from the origin we have

M >CVQ. This gives the lower bound of the lemma in that set. When v=Q9

we have

and z;=l. Thus from the above formula we have

and this establishes the lower bound.

For the upper bound we write, using (1.16),
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inm 0 dO du ,
UQVQ o

The angular integral converges since |r| <2 if r<0= Recall that
By definition, g2 < CUQ vQa Hence

Thus the contribution from the g"8 term is bounded. As for the g^ terms we
estimate

f (t/0^
+2)/2

8g-.0 du =

1 UQVQ

as desired.

In Section 49 we will need the following addition information about the
function v(v)*

Lemma 3,3* yg v(v) is locally bounded.

Proof. By explicit computations for j=ly 29 or 3?

UQVQ dg
o

Since - (s'o"1)^^2), the first term is O(v^~l) by the previous lemma,
dvj

For the second term3 we note that by definition

The function xi-» \/ 1+|^|2 (from /J3-*^1) has Lipschitz constant bounded
by 1, hence

We use Lemma 3.1(i) to bound |«-o| ^2i*Jfloi"g. Thus \^-\ <c(l+|M|2)3/4

bl2)-174- 9"y

Next we compute the middle term in the second integral
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We need only check that this produces a locally integrable expression. Firstly,
if r and/or r' is negative, both |r| and |r'| are less than 2 from (1.18);
therefore the angular integrals converge. Those terms involving g with positive

exponents are easily bounded using g<— | u—v \ from Lemma 3.1 (i). The two
terms which may be singular in g are

g~8 and g1"8'.

If fl'< 1, the above reasoning applies to the second expression. We use Lemma
3.1 (i) again to write

s^.c\u-v\ ^

Since d<—, the first term g~s is clearly locally integrable. The second g1'8'

is as well since d'<4 by (1.17). This completes the proof.

Next we estimate the "easy" kernel k^u, v) given by (3.5).

Lemma 3.4. Assume (1.16)-(1.18). Then there is a positive constant c

such that

5

\u-v\8

Proof. From its definition we have

kfa v) = c g v £ e~l a(g, 0) sin 6 dQ .
UQVQ JO

Applying (1.16) and noting that the angular integral is again bounded since
r> —2, we have

where we have used Lemma 3.1 (ii) to bound VM. Again we use g^<
<c(u0+v0)P<cP. From Lemma 3.1 (i) we also have

g ~C \u-v\8 ~ \u-v\8 ~\u-v\8 '

This proves Lemma 3.4.
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Below we require estimates on special integrals involving the Bessel func-
tion IQ(x) of imaginary argument. Here we collect several such results.

Lemma 3.§e Let R> r >0 and consider

Then

Proof, With u=\/\ -f^2, J2 becomes

t/2(J?Y, r) =

which is a known integral (cf. [16], p. 722, No. 2). The /rresult follows by

noting that9 at least formally, —2-=—J l,

Corollary 1. For I, j defined in (3.3) and 0<C<2, /£tf

Jo

Proof. After the identification jR=/, r=j we apply the Lemma. Since
2>1 and P—jz> — \u— v\2

9
4

mediately. For /^ itself we write

12—J2>1 and P—jz> — \u— v\2
9 we obtain the stated results for J0 and /- im-

4

exp (-

W exp{-/[l -

and use the Holder inequality with indices p=2/£,p'=2/(2—£) to get

7^</i/2-/^2~D/2<[ce~(1/2)|M"tf|]?/2[c/^"(1/2)|M"y|^

as claimed,

Corollary 2. For I, j defined in (3 . 3) and Q<£<2, let

K&j) = (" exP (-'Vl+^) xIJJx) (l+x2)^ dxJo

Then
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Proof. Since KQ=IQ, the bound is clearly true for C=0. For K2, notice
that

P K2(RJ) dR = [° exp (-VT+72) xIQ(j'x) dx
J/ Jo

by Lemma 3.5. Differentiating with respect to / and setting RQ=\/ l2—j2,
we get

,j) = R^ e-
R°[(Rl+3RQ+3) l2-R2

Q-Rl]

Again we use RQ>1 and RQ> — | u— v | from Lemma 3.1 (iv) to obtain

For KS, 0<C<2 we write

1-^2] dx
o

and apply Holder as before with indices p=2/£,p'=2/(2—£) to obtain

Ks<KU2.Kl-y2<ce-^-*U\^

as desired.

Lemma 3.6. Let \ r \ <2 and let l,j be as in (3.3). Then there is a constant
c>Q such that

Proof. Since |r|<2 the integral converges near x=Q. Using the in-
tegral representation of the Bessel function IQ(x) we write

- i V l — t2Uo

By elementary calculus, the maximum of the function
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_ x
occurs at -x=^0, 1 or when g'(x)= +j=Q9Le. when X=XQ= J

0
Vl + x2 VI ~j

If xQ<I, g(x)<g(-- = ~VT^2 for any xeE[0, 1]. If xQ>l, g is In-

creasing on [0, 1] and hence for *e[0, 1]

as desired

Finally we estimate the complicated kernel k2.

Lemma 3070 For the kernel k2 we have the estimate

k(u g)J

provided \r \+P<2, \r\<2ifr<®.

Corollary0 The kernel k^ satisfies the same bound as k2.
The Corollary follows from Lemma 3.4.

Proof. From (3.6) we have

Since s=4(g2+l) and g< — \u— v\ by Lemma 3.1 (i)3 we have

Then by (1.16) we get |u7i'r ,^t ; | 2 +|M— t;n1/2 Jo

Now sin i/r=2 sin (^/2) cos (^/2). If r>0 we simply use |sin^|<l. If
r<0 we use (v) and (vi) of Lemma 3.1 to write

g x = cgx

Thus whatever the sign of r may bes we have
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where we have used Lemma 3.1 (v) again. We rewrite this as

where

E2 = f" ^-
g-|Y| Jo

Both of these integrals are broken at x=l. By Lemma 3.6, the integral over
[0, 1] is O(e~clu~vl) for some c>0. In the integral over [1, °o) we can replace

500 /»00

(•••)dxby\ (-")dx. In this man-
i Jo

ner we get

2 2 ~ - W d x ] ;

Since |r |+^<2 and \r\ <2, the first integral here is bounded by a multiple
of the second, for which we have the upper bound

c/l+(l/2)(m+£) e-\u-v\/2

by Corollary 2 to Lemma 3.5. Hence

g
In the last factor here we use g<— | u—v \; the positive powers of | u—v \ which

result are absorbed into the exponential. As for the denominator, we use Lem-
ma 3.1 (i) again to get

g*+w\>-

It follows that

|£il + |£2|<
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Now /=— (\/l+|w|2+ Vl + M2). We write \u\<\u—v\ + \v\ and replace

\u\ by / in this estimate. Then we have (with a smaller constant c>0)

I jCsi I |~ I C>n

Using this in (3.9), we get

k2(u,v)<

The first factor

fs / =J_ (y /l+|M|2+
2

can be dropped for the following reason. £ is clearly bounded in the set

— \u\<t\v\^2\u\. In the set |0|>2|w|, £<c(l+ \v\2)11* and \v-u\>

— \v\. Thus

A similar argument works in the set | v \ <— \u\. Thus we have finally proven
Lemma 3.7.

Lastly we deduce several integral properties of k(u,v)=k2(u,v)—k1(u,v)

which will be used later.

Lemma 3«8e Assume (1 . 1 6)-(l . 1 8). Then k(u, v) is a symmetric kernel which

satisfies

(i) sup, / 1 k(u, v)

(ii) supv / k\

(iii) / 1 k(u, v)\(l+\u\ 2)-«/2 du<c(l+\v\

for any «>0, where

Proof. The fact that ?>0 follows from (1.18). We omit the proof of

(i). We do (ii) explicitly because the singularity is much stronger in that case.

Thus we have by Lemma 3.7

( k\u, v) du<c(l+ H)3m+e+2S f
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We write u/\v=v/\(v— u) and set p=\u— v\, \v/\(v— u)\ =\v\p sin 0. Then

k2(ii *A //if •< r (\ -4- I ?jI ^3lYl+£+28 I 1 P e Sin u do dpk(u,v)au<c(l^-\v\) JQ )ork|2p2sin^+p2]p2(m+S)

" ^6de dp
o H2sin20+l

By explicit computation, the angular integral is O(\v\~2 ln|^|) for large |t;|.

The remaining p-integral converges since | r I +^<— by (1.18). Thus we have

\ k\u, v) du<c(\n\v\) (1+ \v\

Since the exponent is negative by (1.18), (ii) follows.

Turning to (iii) we note that k(u, v) decays exponentially in \v\ on the set

| u | < — \v\. On the complement, using Lemma 3.7 we have

\k(u,v)\du

f°° f * P* sin fo»"cp

Jo Jo \v\psin6-
dO dp

as claimed.

§ 4. Smoothing

In this section we prove that the linearized operator JHs smoothing relative

to the rest of the equation. The precise definition of smoothing is as follows.

Definition ([20]). Let A generate a strongly continuous semigroup e~tA on

a Banach space Y. Let K be a bounded linear operator : Y— > Y and define

e-"K, Un(t) = tf^CO Utf-s) ds (4.1)
Jo

for n= 2, 3, • • - . We say that K is A-smoothfng if there exists an integer / such

that

(i) Ui(t) is a compact operator for each t>0

(ii) /h-» £//(?) is continuous from (0, oo) into -C(Y, Y) in operator norm.

Lemma 4.1. ([24]) Let A and K be as above and let
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W(tl9 — , tt) = e-W Ke'W K-~e-fiAK.

If there exists a positive integer I such that
(a) W(tlf •••, tt) is compact for each positive tlf t2, • • • , tlf and
(b) (tlt *°°, tt)\-* W(tlf • • - , fj) w 0 continuous function from (0, oo)1 /«&> -£"(7, 7),
£/zew JT w A-smoo thing.

Proof. By definition.

#ir(0 = 1 I /"1°'° 1 2 ^fe' S2~sl9 — , ̂ -i-^i-2; /-J/-i) *i— AI-I , (4.2)Jo Jo Jo

from which the lemma easily follows.

Theorem 48L Let K be the integral operator (1.11) and let A=v*Vx+v(v),

Then K is A-smoothing in each of the six spaces

L\H*)9 L\Ck\ Gl(H*\ Gl(Ck\ Ga(H
k), G«(Ck) (4.3)

for any integer k>Q and a>3/2.

These spaces are defined in § 1 . We shall prove this theorem via a series
of lemmas.

Lemma 4*2. IfA=v • P+y(0), then e~tA is a bounded linear operator on each

of the six spaces (4.3) with norm at most Ce~vof, where vQ=minv v(v\

Proof. The operator generates the group

(*-"/°) (x, v) =f(t, x, v) = e-Wf(x-tt>, v) .

Let Z=either Hk or Ck. Then

l /a-^)lz = c-vw'|/°(.,v)|z. (4.4)

Therefore

(4.5)

and

(4.6)

The conclusions follow easily.

Lemma 4.3. Let K be any integral operator with a kernel which satisfies

the conditions of Lemma 3.8. Then for any Banach space X
(a) K: G.(X) - G
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(b) K:

Proof. For (a) we have

I (Kf) (v) \ < J | k(u, v) | (l+M
2)-"/2(l+"2r/2 I /(«) I du

Multiplying by (l+w
2)((*+">/2)J we deduce that

The continuity of Kf(v) follows similarly.
(b) For/eL2(Jn,

\Kf(V)-Kf(»)\ < { \k(u, v)-k(u,

It follows that X/X'y) is a continuous function of v. Also ||A/'||Go=sup

"(^) | <c H/H/.2. In order to prove that Kf^L2, we use Schwarz' inequality:

\k(u,v)\ \f(u)\2du} .

Integrating over v and taking the supremum of the first factor, we get

{sup J \k\du} JJ \k(u,v)\dv \f(u)\2du

{supj |fc|£fa}{supj \k\dv} \\f\\\* .

Lemma 4 A Let X be either Hk=Hk(ti) or Ck=Ck(Q). Letp,

Let Q be the operator of multiplication by q(v); that is, (Qh)(x,v)=q{v)h(x).
Let P be the integral operator

= 1 3 p(v) h(x, v) dv .

Then t\-*Pe~tA Q is a continuous function oft with values in -C(Hk, Hk+l) and
also with values in -C(Ck, Ck+1),for each integer k>0.

Proof. For any h^X9 we have

(Pe~tA Qh)(x) = \p(v) e~tA q(v) hdv

= ( p(v) e~W q(v) h(x-tv) dv . (4.7)

Let
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-

= p(v) q(v) e-vW(d.K) (x~tv) dv .

Let v =v(l + \v\ 2)-1/2 or v =v(\ — \v\ 2)'1/2. Changing variables in the integral,
we have

, pqe-*'(&M (x-tv) (l-\v\ 2)-5/2 dv
\v\<l J

— L -jr [/*?e-v'(l -1*1 2)"5/2] h(x-t&) dv
t J ioKi av •

- — J h(x-tv) S —

In this integrand appear the factors

By Lemmas 3.2 and 3.3, ^(v}>c\v\?/2 for large \v\ and dv/dVj is bounded on
bounded sets. Hence

\\hj\\z^C(t)\\h\\x for /=M> (4.8)

where X=H* or Ck and

because both p and # have compact supports. Inequality (4.8) leads to the
conclusion.

Lemma 4.5. By a degenerate operator, we mean one of the form

K = jlQjPj (4.9)

where Q. and P. are defined as in Lemma 4.4 with functions q^v) and pj(v) in
), for 7=1, •••, N. Then, for any positive integer I,

J = Ke-W Ke-W K—Ke~*iA K (4.10)

is a compact mapping of L\Hk) into L2(Hk+l~*) for all d>Q. Also J is a conti-

nuous function of(tlf • • • , / / ) with values in that space.

Proof. We write / as the finite sum

J = 2 Q^P,, e-V QjJ-lPj, e-V fiy;+1] Pyl+1 . (4.11)
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The operators in each square bracket map Hk into Hk+1, according to Lemma
4.4. Furthermore the extra factor Pjt maps L\Hk) into Hk, and the extra
factor Qjl is simply multiplication by a test function. Therefore, /: L\Hk)->

Hl
c(H

k+l), which is compactly embedded in L2(Hk+*-8).

Lemma 4.6. Let K be any integral operator with a kernel which satisfies the
conditions of Lemma 3.8. Then there exists a sequence of degenerate operators
Km (in the sense of the preceding lemma) such that \\Km— K\\-^>Q as m-^°o where
|| || denotes the operator norm in -C(Y, Y) and Y=L\X), X being any Banach

space.

Proof. Let Xm(v) be the characteristic function of {\v\ <m} and let Mm

be the operator of multiplication by xm. Then

K = Mm KMm+Mm K(I-Mm)+(I-Mm)K. (4.12)

The last factor is estimated as at the end of the proof of Lemma 4.3:

IK/-MJ *||2<£ {sup J (\-xm(v))\k(u9v)\du}^{^ j (\-Z

<c(l+m2Y*12 -> 0 as m -> oo .

Similarly,

/-AfJ||->0 as m-

Secondly, we approximate the square integrable kernel Xm(v) k(u, v) Xm(u) by a
degenerate kernel ^J2\qjtm(v)pitm(v) where p.m and qjm belong to L2(J?3).
Finally we approximate each p.m and q.m by test functions in C~(R3). The
conclusion follows easily.

Lemma 4.7. If K is any operator satisfying the conditions of Lemma 3.8,
then K is A-smoothing in L2(Hk) and in L\Ck).

Proof. By Lemma 4.6 there are degenerate operators Km which approxi-
mate K in operator norm. For fixed m we apply Lemma 4.5 with 1=1 to de-
duce that Km e~*iA Km is compact from L\Hk) into L2(Hk) and is a continuous
function of t. Therefore, by Lemma 4.2, e~*QA Km e'^A Km is also compact from
L\Hk) into L\Hk) and is a continuous function of (tQ, ̂ ) with values in
£(L\H*)9 L\Hk)). Now let m->oo. It follows from H^-^H-^0 and Lemma

4.2 that

\\e~**A Km e-W Km-e~^A Ke~^A K\\ -> 0 (4.13)

uniformly for (tQ, tj belonging to any compact subset of (0, oo)2. Hence
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e~*oA Ke~*iA K is also compact and is a continuous function of (r0, /J with values
in X(L\Hk\ L\Hk)). By Lemma 4.1, K is ^-smoothing in L\Hk).

For the case of L2(C*), the proof is similar. Let Km-^K in X(L\Ck),

L2(Ck)}. We apply Lemma 4.5 to get

Kme-^Km*~Kme-^Km

compact from L\Hk) into L2(jEP+l"s)? as well as continuous in the f 's. Hence

<r'o* Km e-**A Km~°Km e-*iA Km (4.14)

is compact and continuous from L\Hk) into L2(Hk+l~B). Now L2(Ck)dL2(Hk)
and L2(Hk+l-8)c:L2(Ck) since the domain of the * variable is bounded and we
can use the Sobolev embedding with />3/2. Therefore (4.14) is also compact
and continuous from L\Ck) into L2(Ck) by choosing 1=2. Letting m->oo as

above, it follows that

e-*a* Ke-W Ke-'** K (4.15)

is compact from L2(Ck) into L\Ck) and a continuous function of (tQ9 tl9 t2).
This proves that K is .4-smoothing in L\Ck).

Proof of Theorem 4.1. The first two spaces in (4.3) have already been taken
care of. Let X be either Hk or C*. By Lemmas 4.2 and 4.3(b), the operator
e"M AT maps L2(X)-*-GQ(X)-*-GQ(X) continuously. So by Lemmas 4.2 and
4.3(a), the operator

D = e~riA Ke~r2A K-*°e-rxA Ke~rA K (4.16)

maps L2(X) continuously into GNll(X). Hence D also maps L\X) into
for N>a/7}. On the other hand, by Lemma 4.79 there exists an integer M such
that

E = e~siA Ke-s*A K—e-'xA K (4.17)

is compact and continuous from L2(X) into L\X). So the composition DE is
compact from L\X) into G#(X) and is a continuous function of (rl9 "°°,rN,r,

sl9 -, sM) into X(L\X\ Gl(X)\ Since G°(X)cGcg(X)cL2(X) for a>3/25 it
follows that DE has the same properties from Ga(X) into G°(X). Therefore K
is ^-smoothing in G#(X) and also in G%(X). This completes the proof.

§ 50 Proof of the Main Theorem

First we quote the abstract perturbation theorem of Vidav-Shizuta ([20],

[24]).
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Theorem 5.1. Let Y be a Banach space; A, K as above. Assume that
(i) \\e-tA\\ <Me~^ (all t >0, some VQ real)
(ii) K is A-smoothing on Y. Then

(a) A+K generates a strongly continuous semigroup e~t(A+K) such that

consists of isolated eigenvalues of finite multiplicity.
(b) o(— A— K) consists of a finite number of eigenvalues of finite multiplicity in
each half-plane {A: Re /l> — v0+£} for every d>0. These can be labelled by

Re ̂ >Re ^2> ••• >Re ^> -»Q+d .

Let {0;}f=i denote the corresponding eigenf unctions. Assume for simplicity
that these eigenvalues are simple. Then there exists a constant es>0 such

that

||e-*i-HT)_ 2 e*j (Proj. on ^y)liX(y j7)<C8 ^(-vo+s^ .

Sketch of the Proof. A sequence of operators {En(t}} is defined recursively
by

E,(t) = e~tA K

En(t) = T E^s) E&-S) ds (n = 2, 3, -) .
Jo

By induction we get

Once — A— K has been shown to be a generator, two additional sequences are
defined by

Hn(t) = En(s) e-«-s^A+v ds .
Jo

The map tt-*Hn(t) is easily seen to be continuous in norm for t >0. The ope-
rator Rn(t) is shown to be a uniform limit of

as e->0+. Since En(s) is compact by assumption, so is Rn(t). Now set
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Then using the identity

one gets by induction

n = 1,2,3,

where

fi.(0 = *~M+ 2? f
i=l JO

Using the above estimate for ||/^(OII» we get

n\

from which it follows that

y=o j!

The key step is to apply Weyl's Theorem to conclude that the essential spectra
of Qn(t) and e~t(A+K) coincide, since Rn(t) is compact. By the bound on Qn(t)9

the spectrum of e~
t(A+K) outside of the circle with radius e~tvo must be discrete.

Then, after appropriate use of the spectral mapping theorem,, the result follows.

Lemma 5.1. Let X be either Ck or Hl, l>2. Let Z= {/eG°(X): f satis-
fies (l.lld)}. Then for every t> 0, a> 3/2,

e-t(A+K) i z~* Z with norm <ca e~ht for some /z>0 .

Proof. Let

e-ht - max {(^| (j = 1, -, N), e-^-^}

i.e. h = min {Re 1. (j = 1, — , N), v0—S} .

By Lemma 1.1 (a), for all functions g which are sufficiently small at infinity,
we have

Hence for /satisfying/, +(A+ K) /=0,
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(5 \/7T (A+K)fdv dx = j J v VV (A+K)fdv dx

= J5 \ / l+M2 V A" (A+K)fdv dx = Q.

Therefore e~
t(A+K) fQ is orthogonal to the five-dimensional null space iffQ is.

Now we convert the L2-statement of Theorem 5.1 into an assertion in
the space Z. It suffices to take X=LZ. We claim that, for a> 3/2, there is no
point spectrum in the region Re ^>0. Indeed, if (^, g) were an eigenpair with

, we would have

for some complex number /I. Now

G°(X)CL2(L2) whenever «>3/2.

Indeed, for any

since p~2^Ll for <*>3/2. Therefore we have

\g\2dvdx<oo

i.e. geCr°CL2(L2). Multiplying (5.1) by g and integrating, we get, since

, g> . (5.2)

Here we have used Lemma 1.3 to get the strict positivity. Thus for each 7,
1 <7 <N, we have Re /L<0. Therefore /z>0 and the proof is complete.

Lemma 5.2. Let X=either Hk or C°° and write \\ • || =|| • \\z. Assume (1.16)
and choose any h such that v(v)>vQ>h>Q. Let /eC([0, oo)^ Gl(X)) with the
property that

M =o*upj'

Let F#thbe the linear space

F«.H = {/^C([0, oo), GQ
a(X)): ||/|LtA<oo} . (5.3)

Then

g(t) = (' ve-V-*>Af(s) ds
Jo
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belongs to F^ and \\g\\*9k<*c ||/|L§*/or some constant c.

Proof, We see that

g(t, x9 v) = [* £?-*«<'-•> v(v)f(s, x-v(t-s)9 v) ds
Jo

and hence

\\g(t, % v)\\ <»(v) [' *-('-•)>« \\f(s, •, *0|| & (5.4)
Jo

for either choice of norm. Thus

\\g(t, %*OII<K*

Since the first factor is bounded by choice of A, we get

P» ||«<f, -, o)ll^«-» sup {fla(v) e>" \\f(s, .,0)||} . (5.5)
*<f

Now we claim that for/eF^,

% ^ - ^ 0 a s ->oo ,

uniformly in ^ for Q<s<t. For if not9 there exists £0>0 and sequences {sn} C
R\ frJC/Z3 such that 0<5,<r? |w.|-*oo and ^(^5^) = p>J^»
^W)||>e0. By compactness we choose a subsequence {snk} for which
[0, r] as fc->oo. Then

k, vnk)-H(s, vnk) | + | H(s, vn

<sup | H(snk, v)-H(s, v)\

As &->oo9 I H(s9 vnk) | can be made arbitrarily small, because /, as a function
of v, belongs to G#. For such a large choice of k, the first term also can be
made arbitrarily small, since H^C([0, oo), C0). This contradiction proves the
claim. Returning to (5.5) then and multiplying by eht, we see that

ge=F-ifc and that \\g\\«ih<c \\f\\«>h .

Lemma 5,3* With the notation of Lemma 5.2 in force, let B=A+Kandfor
, oo), Z): ||/|L§A<oo>. 5^

= e-w* v(v)f(s) ds .
Jo

Then g^F°Uth and ||g|L§Jk<c ||/|LiA/or ^ome constant c, provided a>(3+j3)/2,
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Proof. From the definition of g we have

\\e~W\\ e-*° ds-wx
JO

Now choose A19 with 0</z</z1<^0. By Lemma 5.1, we know that

for a— (ft/2)>3/2 and some constant c, Here the norm is the operator norm
from G°a-p/2(X) into itself. Since

!

t
e-

h#-*
o hl— h

we get from the upper bound in Lemma 3.2

Thus we have gGF^B/2>h and \\g\\a-p/2,h<c \\f\\^h provided a>(3+y9)/2.
Next we derive a simple representation for g. From its definition, g(0)=0

and

gt+Bg = vf.

Since B=A+K, this is the same as

gt+Ag = vf-Kg

so that

g(t) = e-v~*A vfds- e-v-^A Kg ds = I+II . (5.6)
Jo Jo

By Lemma 5.2, H/|L t*<c ||/|Lf*. Term II is rewritten as

//=-(' e-v~s>A v(v~l Kg) ds . (5.7)
Jo

By the first part of the proof, geFrf_p/2^. Using Lemma 3.8 (iii), we get

where y = l — - (3|r| +25+y9)>0 from (1.18). Then with the lower bound
^

from Lemma 3.2 we have

Lemma 5.2 can now be applied to term II. Lastly, from the proof of Lemma
5.1, g is orthogonal to the five-dimensional null space if /is.
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Proof of Theorem 1.1. The perturbation from equilibrium/, defined in
§ 1 by (LRB)S satisfies the equation

so that formally we have

/(O = e-'*f°+\' e-w* Q(f,f) dr 9Jo

where/|j=0=/0. By Lemma 1.2(a), Q preserves the orthogonality conditions
(Llla). Define the operator <2/by

Qf(t) = e-**f°+ f e-^s Q(f9f) dr . (5.8)
Jo

Here we take Z-either Hk(k>2) or Cm(m>0), Y=Gl(X), a>(3+/?)/29/°eZ
and/eF°fA for 0</z<i^0. We will show that Qf has a unique fixed point
provided ||/°|L i§ sufficiently small.

Firstly, from Lemma 5.1, we have

\\e-tsf\\Y<ce-^ \\f\\Y .

Secondly, from Theorem 2.1, we know that for/eF^A we have a constant
c independent of t for which

(5.9)

for each fixed t >0. Applying Lemma 5.3 to

P e-W g(/j/) ds = T e-(t-s)B v[l,-i Q(fj)} ds (5 10)
Jo Jo

we get the bound

lie/IU^Colirilr+qll/lll, (5.11)

for a>(3+0)/2.
Consider the closed ball ^ of F^h given for ̂ >0 by

We take/°eZ with norm

Then
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^ $ i »2

Choosing 5<l/2cj we get

so that Q maps J3 into itself for such d. From Theorem 2.1 (equation (2.3)),

we have

II/I-/.IL -
Taking fi9f2^F^ih we compute Qfi—Qf2 and use (2.6) to estimate the nonlinear

terms in (5.10). It follows that Q is a contraction, so that Q has a unique

fixed point, and the proof is complete.

Appendix I: Determination of the Maxwellian Parameters

We are given a smooth non-negative function F°(x9 v), periodic in x and

decaying in v. We seek 5 parameters c>0, a^R and b^R3 such that the

function

satisfies

0 - J j CF°-/0 rfx <fo = J ( 0GF°-/i) <fc «fo = \/l+|v|«(^-/«) dx dv .

We write ea=a. Then we need to solve

= (2?r)3 a ( e*-*-**^? dv , (1)

= f UF° die flfo = (2n)3 a (Veb''-e*"W* dv , (2)

- (2;r)3 a f Vl+k| 2 c*"-c^ "^ A; (3)

for a:=ec and Z? and c.

Theorem. 77ze nonlinear system (l)-(3) always has a solution a, b, c.

Proof: First we show that the relation

A2+\B\2<C2

among the given parameters must hold. For this purpose, consider the mea-

sure
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dfi = A0 exp (b«v—c \/l+|t;|2) dv

where b e J23, c> 0 and #0 is a constant for which JBs dju = l. Then ,/42+ 1 5 1 2 <
C2 is the same as the inequality

.e.

where 9(5) = \XT-j-? i§ strictly convex. Since \fvdju\ <f \v\dji, it suffices to
show that

This is just Jensen's inequality, and we are done. Now we show that the
condition A2+ \ B \ 2<C2 is sufficient for existence.

Define 7(6, c)=(27cf / e^-^^? dv. Then / depends only on \b\ and
c; we write I(b, c)=I( \ b \ 9 c ) and calculate

I(\b\,c) = (2^)3 2 sin
Jo Jo

o

The 3 equations can be rewritten as

A = al(\b\9c) (I1)

B = a ¥ b I = a L - (2')

.
dc dc

We choose b parallel to B. Then (2') becomes a scalar equation, and we are
reduced to 3 equations in 3 unknowns a, \b\ and c. Then by (2') we have

Now we can evaluate / in terms of Bessel functions. For fixed | b \ and
c> I b I , consider
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!
n

o l

S
oo _3/2 _

o ip* /1/2°'p ' * ' } Kl/z(c VT+^2} dp •

If the argument of the function /i/2("-) here were real, the integral would
be known (cf. [16], p. 706, #7). Under the assumption that c>|6| (to be
verified below at the solution) we can justify an analytic continuation to com-
plex arguments, and get for the right-hand side

_ 1*1

since K-^=K^. Now call x=^/c
2— \b\2- Differentiating with respect to c,

we get

and hence

We abbreviate this by

with g(y) = I67i? y~2 K2(y). Thus

QJ
X

QJL- ( \-L '( \dX- ( )-L<? '( \
~ &\X)~T~C& \X) r &\X)\ & \X) •

oc ac x

We know that — (x-2^2(x))--x-2^3(x)<0. Hence -^>0 so that
dx d\b\

equations (r)-(37) become

X
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C = -«*(*)+-£'(*). (3')

Dividing the last two equations by the first, we get

1*1 =_ lai.g'fr).
A x g(x) '

__C _ 1 c
^,4 c x

Now solve (5) for g'/g and put the result Into (6) :

_ _ _
A c xl \b\A\'

so that

(7)
A-i-UC

Since ^>0 and C> |B \,

Cc

Thus any sloution c generates a solution | b | = | b(c) \ for which the condition
| b | <c holds.

It remains to solve for c. By recursions for the Bessel functions,

g'(x) = (x-2K2(x))' = x->K3(x) = K&)
g(x) x~2K2(x) x-2K2(x) K2(x)'

Therefore (6) can be rewritten as

x K2(x) = Ac2 ,g.
K,(x) A+Cc '

Since | b | = | b(c) \ is known from (7), (8) is an equation in c alone. In fact,
by definition and (7),

(A+cC)2

so that

x = *(c) = —^— v/^+Cc)2-!^!2^. (9)
yl+Cc

Now consider (8) rewritten as q(c)=Q, where

G\C} = . (10)
^+Cc K3(x(c))
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From (9) we see that

Bm 240=1 , lim^^^Hgl2.
c-M> + c c+°* C C

From the series definitions of the Bessel functions, we have near y=Q,

y „ i 2

(f)'
Thus as

and therefore #(c)>0 for small c>0.
For large arguments, both K2(y) and #3(3;) have the asymptotic repre-

sentations \/nj2y e~y- As c-»oo then,

A
—
C

f \ \A VC2-\B\21c— x(c)^c -- - ' — }- -
1C C J

As was shown at the beginning of the proof, this is negative. Since q is con-
tinuous in {c>0}, we are done.

Appendix II: The Collision Integral

We derive an alternative form of the collision integral which is closer to
the classical form. We shall also prove Lemma 1.1. We begin by carrying
out the first three delta functions in (0.2) to get

Q(F, F) (v) = ±- JjJ W(u+V-U'-V)

W0 UQ VQ

where uQ=\/l+ \u\2, etc. Next, we work out three more delta functions to get

Q(F9 F)(v)=\\\ SG
 f f d(u0+vQ-u'Q-v'0)

2 J J UQ VQ UQ VQ

•[F(u') F(v')-F(u) F(v)] d3v'd3u .

Because of (0.3) we may write

vr = v—ra), u' = u+ro)
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where o)^S2 and re[0, oo) are spherical coordinates. Then

A = -- dM+v'*-u0-vJ d* vf = L^ d((uf
Q+vf

0)
2-(uQ+vQ)2) d* v'

UQ V'Q UQ VQ

using the identity d(Z— a)=2a d(X2—a2) for ^>0, a>Q. Noting that

(u'Q+v'Q)2-(uQ+vQ)2 = 2uQ v/
Q+u/

Q
2+v/

Q
2-(

and using the identity again, we have

A = 2(^+fo) 2IIJ V, d(4u'0
2 ^M(^>

Using the coordinates above, we see that the argument in this delta function
is

P(r) = -(t/o+^)4+2(w0+^0)
2K2+^o2)-W2-^S2)2

5

which is a polynomial of degree <4. Because

u?-v?= \u+ra>\2-\v-ra>\2 = \u\2- \v\2+2r(u+v)°a> 9

it is merely a quadratic. It is also easy to see that r=0 is one of its roots.
The other one is denoted by a=a(u, v, o>). Thus p(r) has the form

p(r) = Dr2-2Nr, a = 2N/D .

It follows that

A = 4(tfQ+vQ)d(Dr(r-d)) r2 dr da>

= 4(w0+*g I Da \ -1 [d (r)+d (r-a)] r2 dr do> .

Here we have used the identity for a^pb

\a-b\

The first delta function drops out because of the factor r 2* Thus, putting
r=a=2N/D,

A = 4(u0+vQ) 2\N\D-2d (r~d) dr da> .

From [13],

' (« —6) , and

Hence
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Thus

fl(F, *)(«) =

= q(u, v, •») [

where

q(u,v,a>)

This kernel has the properties

because Z>>2, and

q(u, v, <y) = g(0, w,

In the classical limit

Proof of Lemma 1.1. We must prove that (1.5) implies (1.6). In view of
the above calculation, we may replace vMad@ by qdo) in both (1.5) and (1.6).
Now the first of the four identities (1.6), with <p(v), is equivalent to the defini-
tion (1.5). Next we switch u and v. Then

u' = u+a(u, v, co) CD -> v+a(v, u, CD) co = v~a(u, v,co)co = v'

and similarly v'-*u'9 because a(u, v, o)) is antisymmetric in u and v. So

2 j fi*(/, g)<pdv = j J J ?(*;, w, o>) f/(t/') ^')+/(^0 *OO

- /(«) g(v)—f(v) g(u)] <P(u) du dv do) ,

which proves the second of the identities in (1.6). Next, we change variables
(u, v)-*(uf, vf) in the last identity:

= J J J q(u, v, (u, v)
du' dv' dco .

On the right side we rename (u, v)<^(ur, v1) to get

d(u'9V') , , r—^ ' ' du dv dco
d(u, v)

f f f= \ \ \ ^W ^5 <*>) u(u) g(v)^ ] 9(w') du dv dco
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where we have used the property

, 9 9
d(u, v)

or

UQ v0 q(u, v, a)) = UQ V'Q q(ur, v', o>) ,

or

\N(u9v9v)\ _
[D(u9v9&)f [D(u',v',a>)}*

(u, v, a>)=D(u'9 v', co) and a(u, vs a)) = —a(u'9 v\ o>), the last equation is

his proves the fourth identity in (1.6). We get the third identity in (1.6)

hin u and v.

Since D(

true. This proves

by switching u and v
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