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Further Generalization of Generalized
Verma Modules

By

Akihiko Gyoja*

§0. Introduction

0.1. Let G be a complex semisimple Lie group, B a Borel subgroup, P a
parabolic subgroup containing B, g=Lie(G), 6=Lie(B), p=Lie(P), and L a finite
dimensional irreducible U(p)-module, where U(—) denotes the cnveloping algebra.
A U(g)-module of the form U(g)QuwE is called a generalized Verma module
[24] and, in the special case where p=5, it is called a Verma module (cf. [9]
and its references).

In the course of proving the Kazhdan-Lusztig conjecture [21], it was shown
(17, [8] that the Verma modules correspond to the local cohomologies at the
B-orbits on G/B via the localization functor. Thus it is natural to ask what
are the U(g)-modules corresponding to the local cohomologies at the B-orbits
on G/P.

In this paper, we shall give an answer to this problem. It turns out that
here appears a further generalization of the generalized Verma modules. We
shall construct these U(g)-modules in a purely algebraic way as follows. Let
P~ be the set of linear characters of the Lie algebra p, A the ring of polynomial
functions on p”, and c¢: p— 4 the canonical homomorphism, which we shall
consider as an A-valued character of a Cartan subalgebra, say i, contained in
b=Lie(B). Let 4 be the lowest weight of a finite dimensional irreducible p-
module, W the Weyl group, W; the Weyl subgroup of W corresponding to P,
and w an element of W which is longest in the coset wW ;. Let Uy(—)=U(—)
Q¢ and define the ‘universal’ Verma module M4(w(c+A—p)—p) by Ms(w(c+
2—0)—0)=U48) Qu 5, weer1-p1-pA, Where p is the half of the sum of the
positive roots. Note that w(c+A—p)—p is not fully universal as a character
of t but it is universal among the characters lying on a certain facet with
respect to the reflection group W (translated by w(A—p)—p). Hence M (w(c+
A—p)—p) resembles to reducible Verma modules and we can construct its quo-
tient V 4(w, ¢+4, p) in the same way as the construction of the simple quotient
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of the usual Verma module. The U(g)-module investigated in this paper is the
specialization of V 4w, ¢+4, )

V(w, 2, )=V a(w, c+2, RC,

where C is considered as a trivial A-module. (In other words, V(w, 4, p) is
obtained from V 4(w, ¢+4, p) by the specialization ¢—0.)

In contrast with the case of the usual generalized Verma modules, the most
difficult point in the study of our g-modules is the character formula, which
will be proved in (6.3). Once we get the character formula, we can deduce
several consequences from it. For instance, we show in (6.8) that our g-modules
are a generalization of the generalized Verma modules, and, we construct in
§7 a resolution of our g-module by Verma modules which is a generalization
of the resolution of a finite dimensional representation constructed by Bernstein-
Gelfand-Gelfand [2].

0.2. Using the character formula, we can also show that our U(g)-module
V(w, 4, p) actually corresponds to the local cohomology at a B-orbit of G/P.
See (6.6). This fact enables us a 9-module theoretic study of our U(g)-modules,
by which we get an irreducibility criterion (9.13) for generalized Verma modules
in terms of the b-functions of the semi-invariants. (See (9.2) for the semi-
invariants.) Our irreducibility criterion is far different from, and unfortunately,
less complete than the Jantzen’s one [16], for we need to assume the anti-
dominancy in order to use the generalities concerning the localization functor
[1]. In this regard, see (9.14).

0.3. Let us explain our motivation. Assume that g is simple, the nilpotent
radical u of p is commutative, and a Levi subalgebra [ of p is normalized by
the longest element of the Weyl group. Let L be the Levi subgroup of P
corresponding to Y. Then it is known that (L, adjoint action, u) is an irredu-
cible regular prehomogeneous vector space, that there is an irreducible poly-
nomial f on u which is relatively L-invariant, and that there is a unique
fundamental weight @ which can be extended to a character of the Lie algebra
p. (See [30], [12] for prehomogeneous vector spaces, and [25], [27] for there
special kind of prehomogeneous vector spaces.) Let b(s) be the Bernstein-Sato
polynomial (=b-function) of f. In [31], S. Suga observed a relation between
the simplicity of the generalized Verma module M(2)=U(g)Qvw». 15C and the
zeros of b(s). (More precisely, M(2) is simple if and only if b(A—;)+#0 for j=
1, 2, ---.) The original motivation of the present work was to explain and
generalize this observation.

Roughly speaking

(0.3.1) (L, adjoint action, u)=(L, left action, G/P).
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At one hand, we have the 9-module 9f%, which is related to the left hand
side of (0.3.1). We can show that 9f* is simple if and only if b(2—7)=0 for
any j=Z. On the other hand, we can expect that we get a 9-module, say
HM(2), on G/P by “localizing” the generalized Verma module M(1) as in [1].
Then H(2), which is related to the right hand side of (0.3.1), would be simple
if and only if M(R) is simple. Hence, by showing that H(A)=9f*, we would
be able to explain the observation of Suga to some extent.

In this paper, we have tried to realize this idea and get (9.13), which is
our first result in this direction, although it is still unsatisfactory.

0.4. A deeply related problem is studied by M. Kashiwara [20]. The
relation between the present work and [20] will become clear in [13].

0.5. This paper consists of 9 sections. In Section 1, we define a new
generalization V(w, 4, p) of Verma modules in (1.3) (cf. (4.1.1)) and give the
basic lemma (1.12), which is used to prove the character formula. In Sections
2 and 3, we review some known facts about the twisted 9-modules and the
localization functor, respectively. In Section 4, we construct a certain g-module,
which is used to deduce the character formula from (1.12). In Section 5, we
prove Proposition 5.2, which is used in (9.4). In Section 6, we prove the
character formula in (6.3). Using it, we prove in (6.6) that the dual g-module
of V(w, 4, p) corresponds to the local cohomology at BwP/P. In (6.7)-(6.9), we
study the relation between our g-modules V(w, 4, p) and the usual generalized
Verma modules. In Section 7, we construct a resolution of V(w, 4, p) by the
Verma modules, which is a generalization of the resolution of a finite dimen-
sional representation constructed by Bernstein-Gelfand-Gelfand. In Section 8§,
we give a simplicity criterion (8.4) for a certain type of 9-modules, which is
used in Section 9 to obtain an irreducibility criterion (9.13) for the generalized
Verma modules.

0.6. The author would like to express his thanks to M. Kashiwara, Hisa-
yosi Matsumoto and K. Nishiyama for their comments.

Convention. We denote the complex (resp. rational) number field by C
(resp. @), the rational integer ring by Z, and we put N={0, 1, 2, ---}. If two
objects, say X and Y, are naturally isomorphic, we often write X=Y.

§1. A Generalization of Verma Modules

1.0. In this section, we define a new generalization of Verma modules,
and prove a basic lemma, which will be used to prove the character formula
(6.3). First we review basic facts concerning Lie algebras in order to fix
notations. We define our generalization of Verma modules in (1.3). After
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studying elementary properties of our modules, we give a basic lemma in (1.12).
The remainder of the section is devoted to the proof of this lemma.

1.1. Let G be a connected reductive group over the complex number field
C, B a Borel subgroup of G, T a maximal torus contained in B, W=NgT)/T,
and g, b and t the Lie algebras of G, B and T, respectively. Let t"=Hom(t, C),
R(ct”) be the root system of (g, t), g(a) the root subspace of g corresponding
to =R, R, the set of a=R such that gla)ch, R-=—R,, and n.=Xscr,8(a).
Let II={ay, -+, a;} be the simple roots, [ "={a7, ---, a;} the simple coroots,
{wy, -, w:} the fundamental weights, and {w7], -+, w;} the fundamental
coweights. For a=R, let a”=t be the corresponding coroot. Let Q=3}\_,Za,
and Q,=>%_,Na;. Define p<a(y, 2=t”) if 2—p=Q,.. Let r, be the reflection
with respect to a, and S={r.|a=II}. For w<W, denote its length by [(w).
Let < be the Bruhat order in W, where the identity element is minimal.

Let I be a subset of S, W; the subgroup of W generated by I, w,; the
longest element of W, Il ;={a=Il|r,=1}, R, the root subsystem of R gene-
rated by /1;, I=UI)=t+Zacr,8(a), u.=u.({)=2ser,\r,8(a), p=p(I)=1+u,, and
p_=p_([)=1+u_. We denote the connected subgroups of G corresponding to
{,n.,p and p_ by L=L{), U.=U.(I), P=P(I) and P_=P(I), respectively.
For J, KcS, let W,\W/W g)s (resp. (W, \W/Wg),) be the shortest (resp. longest)
representatives of the double cosets in W,\W/Wg. For a subset K of S, let
K =wsKws(cS). Then WA\W/Wg) = {wwslw = WA\W/Wg)sh. We write
(W/W ), etc. for W \W/W ), etc.

Take a @Q-subspace 3o of the center 3 such that jo®@C=j. Let gq be the
Q@-linear span of a Chevalley basis of [g, g] and 3. Put tg=3¢+>ecr@a” and
t7. e=te/Zacm,Qa”. Let tg and t; o be their dual spaces. For a @-algebra 4,
put g4=go®A etc. If A=C, we omit the suffix A(=C). We identify {; 4
with the W;-invariant elements in Homg(te, A) = Hom,(t4, A). We say that
A=t" is anti-dominant (resp. regular) if <A, a”>&N\{0} (resp. #0) for any a<
R,. Let tzq(resp. t7.4) be the set of A=t" such that 1—p is anti-dominant
(resp. regular and anti-dominant). Put {; sa=1t;y NMae and {] ,oa=t; Nt744.

Let % be a field of characteristic zero. For a Lie algebra a over £k, let
U(a)=U,(a) be the enveloping algebra, and Z(a) the center of U(a). Express
z=Z(g) as z=¢(2)+z' with ¢(z)=U(t) and z'=U(g)n,. Consider 1<t as a
character of U(t). Let X;=2-¢ and U(4, §)=U(g)/U(g) kerX;. Let p=01/2)Zscr,a
and 7: UH—U(t) be the isomorphism defined by y(H)=H—p(H) for H=t. Then
7e¢ gives an isomporphism Z(g)— UMY (cf. [9, 7.4.5]), which is called the
Harish-Chandra homomorphism. Here U()” denotes the totality of the W-
invariant elements of U(t). Note that Aeye¢p=1¥;_,. Hence Xwi-o=¥1_, and
U(wi—p, 8)=U(1—p, g) for any wsW.

For a U.(t)-module V and p<ty, let V, be the set of v=V such that for
any H&t,, there exists an integer n such that (H—p(H)"v=0. We call V,
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the weight space of weight g. If dimV,<oo for any ue<ty, we define the
character ch(V) of V as the formal sum ch(V)=3,e;(dimV ,)e".

Let = be an automorphism of g which normalizes t and induces —1 on t.
Then z(g(a))=g(—a). For any U(g)-module M, define a g-module structure in
Hom¢(M, C) by <Af, ud=—<f, t(A)u) for A<=g, feHomc(M, C) and u <M.
If M is a direct sum of weight spaces, and each weight space is of finite
dimension, then put M*={f=Hom¢(A{, C)| f(A{,)=0 except for finitely many

=t"} =@pe~-Hom(M,, €). Then (M*)*=M, and ch(M*)=ch(M).

1.2. Verma module. Extend A=ty =Hom,(t,, 2) to a linear character of
the Lie algebra 0, by putting 1|u,=0. Let k(1) be the corresponding U(b,)-
module, 1; its basis element, and

M@Q)=M (A)=M (4, 0)=U@1r)Quw, k(4),

which is called a Verma module [33], [3] (cf. [9]). Denote its simple quotient
by V(A)=V ().

1.3. A generalization of Verma modules. For a k-algebra A, put U(a)=
Ur(@@:rA. For a=ty, let A(a)=U400.)/(Usbi)n., s +Zne:,Ualbp)H—a(H))),
1, be the element of A(e) corresponding to 1&U,(b,), and M(a) = U(g:)
Qv 4,041(a), which we consider as a family of Verma modules. We can show
that AMy(a) is a free Uy, ;)-module generated by u(a)=u,(a):=1Q1,. Let
My(a).=U(u_, un_, rua(a), J4(a) be the (unique) maximal U,(g,)-submodule of
M 4(a) contained in My(a),, Vi(a)=Ms(a)/]s(a), and v(a)=v(a):=(u,(a) mod
J 4(@)).

Let L be an affine subspace of t;, A=A(L)=A,(L) the algebra k[L] of
polynomial functions on L, ¢=c; the natural homomorphism t,—A, M(L)=
MA(L)ZZA[A(L)(CL)=UA(L)(Qk)@UA(L)(bk)A(CL); M(L).=M4L), :=Mauwx(cr)s, J(L)
=J4(L): =] aa>(cr), and V(L)=V (L) :=V 4a,(cr). Let p be a prime ideal of
A(L), k(p) the residue field at p, and M(L, p)=M(L)Qiw k(p), V(L, p)=V (L)
Ruacrk(p) ete. If p(A) is the maximal ideal of A(L) consisting of polynomial
functions vanishing at A=L, then A(L)— k(p(A)=Fk is the evaluation at 2,
which we shall denote by the same letter 2. Put

VL, D=V (L, 2):=V (L, p(A)=V(L)Qaw>. 2k .

Let p(n):={0}, K=K(L):=k(p(n)), Mg(L):=M(L, p(n)) = M(L)Q4w,K, V(L)
=V(L, p()=V(L)Qaw K, etc. (specializations at the generic point » of L).
Note that K(L) is the quotient field of 4(L). Thus we can consider the com-

position y=7.(=tx) of t,—>4(L)—K(L), the Verma module Mx(y;), and its
simple quotient V x(n.).

Lemma 1.4. (1) Mg(n)=Vg(L). @) Vi(p)=Vx(L).
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Proof. (1) is trivial. Consider M4(L) as a submodule of AMg(L). Since
Vem=Mx(0)/J x(n) and V x(L)=KQ(Ma(L)/ ] s(L)=Mx(n)/ K] «(L), it remains
to prove that

(1.4.1) fK(ﬂ):‘KfA(L)-

Since [Jx(n)NM4(L) is a U 4(gr)-submodule of M4(L) contained in ML), we
have KJ.(L)D K(Jx(p)NM4(L)) = Jx(n). On the other hand, KJ4(L) is a
Uxk(gr)-submodule of Mx(y) contained in Mg(n).. Hence KJi(L)=] k().

Lemma 1.5. (1) Let A=L. If V,(L, ) is simple as a U(g,)-module, then
it 7s absolutely simple. (2) V(L) is absolutely simple.

Proof. These assertions follow from (1.4, (2)), and [9, 2.6.5 and 7.1.8, (iv)].

1.6. Field extension. Let 2’ be a field containing k2, L'=LQ.k’, A'=
Ap(L"), and K’ the quotient field of A’. We can naturally consider t, (resp.
t;) as a subspace of t,. (resp. tz). Then t;={A=Hom,(t;., #")|A(,)ck} and
L={A=L’|A(,)ck}.

Lemma 1.7. (1) VA(L)Q.A =V 4(L'). (2) VK(77L)®KK' =Vx(L)QrK'=
Vi (L)=Vg(qe). ) Vi(L, HQrk’'=V (L', ) for A= L(<L’).

Proof. (1) Since M (L)R4A’=M4 (L"), it suffices to show that A’J(L)=
Ja(L"). Since M4 (L)=UM_, us(c)=Uy(u_, ), we can take a free A’-basis
{uy, us, -} of My (L) in Up(n_, »)uy(c). An element u of My (L’) belongs to
Ja(L?) if and only if U(gy)ucM4(L"),. For n=N and u=Xalu, <3< A'u,,
this condition can be written as a system of homogeneous A-linear equations
in (af),sn=A'". Since A’ is flat over .4, every solution (aj) in A’™ can be
expressed as an A’-linear combination of solutions in A" [7, Chap. 1, §2,
Corollary 2 of Proposition 13]. Hence (3, A" u ) \J 4 (L)=A" (X sn AN J 4(L)).
Letting n—oo, we get J4(L)=A'J4(L). (2) By (1.4, (2)), it suffices to prove
the equality Vx(L)YQRK =V k.(L’), which can be proved in the same way as
above. (3) By (1), we have V. (L', )=V 4 (L")Qu, 1k’ =V s(L)YR4A)Ra, 1k'=
VALY, 1=V a(L)R4, 1£)Re k' =V (L, B)R:rk’.

1.8. Let r=dimL. If 0=L, we can find a k’-linear basis 4, ---, A, of
L’ contained in L. In this case, put 2,=0. If 0&L, we can find linearly
independent elements Ao, 45, -+, A, L such that L'={X7_,a.4,|a;=k’, 2iea,
=1}. This equality also holds in the case where 0=L. Take an element A=
ST_ead; of L’. Let (2> be the subfield of K’ generated by % and A(t.).
Then k{>=k(a,, -+, a,). Hence the transcendental degree tr.deg,k{1> of
k<{A) over k is at most r=dimL.
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1.9. If 2’=C and tr.degek<oo, then {A=L’|tr.deg,k{A)=dimL}+¢ is
stable with respect to the translations by elements of L and hence everywhere
dense in L'(ctg=t").

Lemma 1.10. [f tr.deg,k<{A>=dim,L, then V.(L’, R) is simple.

Proof. By (1.5, (1)) and (1.7, (3)), we may assume that k’=£k<{4). Let I,=
{o=k[t:]; ¢l L=0}, H), ---, H. be elements of t, such that 4,(H;)=d,; 0<i<r,
1<7<r), and H, the corresponding elements of k[1;]/I,. Then A is the sym-
metric algebra k[H,, ---, H,] and K is its quotient field 2(H,, ---, H.). Since
a,=A(H,)) (1<i<r) are algebraically independent over %, the homomorphism 2:
A=Fk[H, -, H]—k[A(H,), -, A(H,)] can be extended to an isomorphism A:
K=k(H, -, H:) = kQAH,), -+, (H,)=k'. Since Vx(L)Rx,1k'=V s(L)R4, 1k’
=V AL)RaANRa4  1k'=V (L', 1), we get the assertion by (1.5, (2)).

1.11. From now on, the base field is always C. Later in (4.2), (4.6) and
(4.7), for a special C-subspace L of t” defined over @, we shall construct using
a family of twisted 9-modules, a certain U4(g)-module A 4 (w)* (A=A(L)) and
a U 4(g)-homomorphism ¢: M 4(L)—M4(w)* satisfying the following conditions:
(1.11.1) Let j: Msw)*->M4(w)*®4K be the canonical morphism and M ,(w)*(x)
=7 (Ma(wy*QaK)y-p) for p=Q,. Then each My (w)*(p) is a free .4-module
of finite type and M, (w)*=@pecq. Ma(w)*(p).

(1.11.2) Let ¢, : MA)=MA(L)R4, 1C—Ms(w)*Q4, 2C(A= L) be the homomorphism
induced by ¢. Then ¢;=0 for any A< L.

(1.11.3) There exists an open dense subset L° of L with respect to the clas-
sical topology such that M (w)*@, € is a simple U(g)-module for A=L°.

The remainder of this section is devoted to the proof of the following
lemma.

Lemma 1.12. Assume that L(ct”) is defined over Q. If a U 4(g)-module
Myw)* and a U «(g)-homomorphism ¢ : M(L)—M(w)* satisfy (1.11.1)-(1.11.3),
then chV (L, 2)=ch(M4(w)*Q4,:C) (A=L).

1.13. Let us fix 2<=L, and an affine line L, of L containing 4. Let A,=
A(L,), and K,=K(L,) be the quotient field of .4,. Then there are natural

morphisms .4—>Ali>C. whose composition is 1: A—C. Let My (w)y*=Ms(w)*
Qads, Ma (W) = Ma(w)*(()Q@aA1, o1 = ¢QaA;, etc. As a first step of the
proof of (1.12), let us show that the natural homomorphism M4 (L1)—V 4,(L1)
induces

(1.13.1) @1(M 4,(L))=M4,(L1)/kergps —> V 4 (L,),

i.e., that kerg;cMy,(L,),. Assume that kere,¢ M4 (L,).. Take an element
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us=kerp, such that u=u,+u, with u, &M, (L)), and 0#u,= Aju(c). Then
(1.13.2) i) =—¢@ (1)< MAI(w)*(O)f\goMAl(w)*(#):0

by (1.11.1). Since u,#0, there exists A’ =L, such that the image &, of u, by
the natural homomorphism A74,(L.)—M4(L)®a, 2 C=M(A’) is non-zero. Let
¢ =0:®u4,,2C=0¢0R4 1 C. By (1.13.2), ¢'(@t,)=0. Since @, is a generator of
M(A"), this contradicts (1.11.2). Thus we get (1.13.1). Similarly, letting ¢x,=
v K, we get a surjective Uk, (g)-homomorphism

(1.13.3) Mg (Li)/kerog, —> Vi (Ly).

Lemma 1.14. [f L°"L,+ ¢, then My (w)* = M4 (w)*Qa, K1 is a simple
Uk, (8)-module. (See (1.11.3) for L°.)

Proof. Let N be a Uk (g)-submodule of Mg, (w)*. By (1.11.1), we can
regard M, (w)* as a submodule of My (w)*. Let Ny=MWa(w)* NN and N4, (1)
=M4,(wy*()NN. For any p=Q,, there is a finite subset L,(g) of L, such
that the quasi-coherent sheaf on L, obtained by localizing the A,;-module
M4, (w)*(ee)/ Na,(p) is locally free on L,\L,(#). (Note that a finitely generated
module over the principal ideal domain 4, is a direct sum of a free module
and a torsion module.) For peQ,, take a(p)=A, so that L\L,(p) =
SpecA;[a(p)™]. Take A’ =(L°N\L)\\Upeq. Li()+¢. Then 2’ gives an algebra
homomorphism 4’: A,[a(y)*]—C for any p=Q,, and

0="Tor {1t (M, (w)*(e)/ Na, ()L a(p) ], C@")
—> Nuay()Qay, 2 C —> Ma,(wI () R4y, 2:C

(1.14.1)

is exact for any u=Q,. Any ucN, can be uniquely expressed as u=
Duequ(y) with u(p)=NNMg, (w)*(n). On the other hand, by (1.11.1), u& Ny,
CM4,(w)* can be uniquely expressed as Sju(y) with u(p)= M4 (w)*(p). Hence
()= NNM a,(w)*(p)=N4,(¢1) and

(1.14.2) Nu= @ Nap).
By (1.14.1) and (1.14.2),
0 —> Nyy®ay, 20 C —> M4y (WiQu,. 22 C —> (Mg, (W)*/Na)Qay, 1€ —> 0

is exact. Since ’=L° M4, (w)*Qa,, 2 C=M(w)*Q4,2-C is a simple U(g)-module.
Hence Ng,&a4,, 2:C=0 or (M 4,(w)*/N4)Qa4,, -C=0. Assume that N, &4, 1 C=0.
Then N4, (#)&a,.1C=0 for any pe @, by (1.14.2). Since the submodule N, (z)
of the free module M,,(w)*(p) is also A;-free, N4 (¢)&Q4,, 2-C=0 implies N4, (@)
=0, Ny,=0and hence N=0. Next assume that (M,,(w)*/N4)&4, 1-C=0. Then
(M4,(w*()/Na()R4,, 20C =0 by (1.11.1) and (1.14.2). Since (M4, (w)*(p)/
Na(@)la(w™] is a free A[a(p)']-module, it implies (M4,(w)*(£)/Na, ()
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La(w]1=0, ie, My (@wla(@w)*]=N4(wla(w)?]. Considering the K-
subspaces of Mg, (w)*(¢) generated by the both members, we get Mg, (w)*(p)=
Mg (w)*(u)NN, and hence .N=Mx (w)*. Therefore, Mg (w)* is a simple Uk (g)-
module.

Lemma 1.15. If L°NL,+ ¢, then ¢r,=¢, Q@ Ki: Mg, (L,)— Mg (w)* is
surjective.

Proof. By (1.11.1) and (1.11.2), ¢x,#0. Since Mg, (w)* is a simple Ux,(g)-
module by (1.14), we get the assertion.

Lemma 1.16. If L°"\L,#g, then My (L.)/Kergr, Vi (Ly).

Proof. By (1.14) and (1.15), My, (L))/kergy, is a simple Uk (g)-module.
Hence (1.13.3) is an isomorphism. (Note that V4 (L\)=(Ma4,(L1):/J 4,(L))BAw(c)
and hence Vg (L,)#0.)

1.17. Let Mx(L)p)=Mg(L)y-p, and M (L) p)=M(LINMg(L)(p) for p=
Q.. Let u=/J,(L) and decompose it as u=3,cq u(y) with u(p)e M4 (L)(p).
Since J4(L) is a Uy(t)-stable and u(p)’s belong to different weight spaces,
u()=KJ4(L). Hence

1.17.1) JalL)= E% KJ ALYNMAL) ()
HER

The right side is contained in M4(L). and stable under the actions of .1, t and
g(a) (@=R). Thus the right side of (1.17.1) is also a U 4(g)-submodule contained
in M4(L), and hence (1.17.1) is an equality. Put Ji(L)(g)=KJ s(L)YNMa(L)(p),
Va(LY(p) = Ma(L)Y()/ ] a(LY(r), and V(L, A)(p) =V (L, A);-, for A= L. Define
Ja,(L)(g) and V4 (L,)(p) in the same way. Then

(1.17.2) JA(L>=#§2+J ALY,

(1.17.3) VA(L)=#§%+VA(L)(;:),

(1.17.4) V(L, R):VA(L)®A.zC=#§2+VA(L)(u)®A,zC, and
(1.17.5) V(L, X)=V ALY )@ 4, :C=V 4,(L:)(1)&4,,:C .

We can also see that (1.13.1) induces a surjective U4, (g)-homomorphism
1M a,(Ly)(p)=1image(M4,(L1)(g) —> M4 (L1)/kerep,)
—> image(M4,(L () —> V 4, (L))=V 4,(L1) (1) -

(1.17.6)

Since V4(L)() is an .1-module of finite type, we can prove by the “Nakayama’s
lemma” that for any #<=Q, and A2=L, there is a Zariski open neighbourhood
U(p) of 2 in L such that
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(1.17.7) dimV (L, 2 Y(@)=<dimV (L, 2)(p)
for any A’«=U(y). By (1.7, (3)), we may assume that U(y) are defined over Q<2.

1.18. Proof of (1.12). Let L be a C-subspace of t” defined over @, 4 an
element of L, and U(p) as above. Take A’=L° so that tr. dege,@<AKA )=
dimL (cf. (1.9)). Since U(y) are defined over Q<Ay, A’<U(y) for any p. Let
L, be an affine line containing 2 and A’. By (1.11.2), the image of ¢, is a
non-zero U(g)-submodule of M4(w)*®4, ;-C. Since A" < L° M4 w)* @4, 1 C 1is
simple by (1.11.3). Hence ¢;- is surjective, and M (w)*®y, ,-C is a simple
quotient of the Verma module M(1). By (1.10), V(L, 2’) is also a simple
quotient of the same Verma module. Hence

(1.18.1) M w)*Qa4 1 C=V(L, 1).

By (1.15), ¢x,=¢:Q4,K: Mg, (L1)—Mg (w)* is surjective. Since the homomor-
phisms induced by ¢:®4 K, between the weight spaces are also surjective,
(M4, (L:)(p)) is an A;-lattice of the free .4,-module M, (w)*(p). Since A4, is
a principal ideal domain,

(1.18.2) (M (L)) =M 4, (w)*(pe)

as A;-modules. By (1.17.5), the surjection (1.17.6) induces a surjection
O1(M a4 (L) ()R, 2C — V(L, () for any p=@.. Thus by (1.18.2), we get
the inequality

dim(M 4, (w)* ()@, :C)=dimV (L, )(p) .
On the other hand,
dimV(L, ()
>dimV (L, 2')(w) by (1.17.7)
=dim(M A w)* (R4, 1-C) by (1.18.1)
=dim{M (W) (1)R4,C) by (1.11.1)
=dim(M 4,(w*(1)Q4,, :C) .
Thus we get the desired equality.

Remark 1.19. (1) If L= {2}, then V(L,A)=V,A). @) If L=1t", then
V(L, 2)=M,(2) for any A. Thus our module is a generalization of Verma
modules and also of their simple quotients.

Let us prove (2). By [9, 7.6.24], Mg(n) is simple in this case. Hence

Jx(n)=0. By (1.4.1), it follows that J4(L)=0, V. (L)=MuL), and V(L, )=
M ().
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§2. Twisted 9-Modules on Homogeneous Spaces

2.0. The purpose of this section is to review the concept of twisted ring
of differential operators Dy(2) due to Beilinson-Bernstein [1] (cf. (2.2)), and to
define the Dy(A)-modules O(V,, 2) (cf. (2.5)) and HHX, 0x(A) (cf. (2.9)). We
also consider their ‘relative versions’ (cf. (2.10)-(2.13)).

2.1. First we fix some notations used in this section. For a smooth
algebraic variety X over the complex number field C, denote the underlying
complex manifold by X%*. A morphism f: X—Y of smooth algebraic varieties
is denoted by f*™ if it is considered as a morphism between the underlying
complex manifolds. For a complex manifold )?, we denote the sheaf of holo-
morphic functions by 0**=0%". We write 0%" for O%i.. Let ¢=cx: (X", O°")
—(X, @) be the morphism of ringed spaces induced by the identity mapping,
where ©=0y is the sheaf of regular functions. Let G be a complex algebraic
group and g its Lie algebra. For an algebraic action o: GXX—JX, let a(g)x
=0a(g, x), and (a(A)f)x)=(d/dt)f(a(e **)x)| .= for A=g and a smooth function
f on X. Define G-actions R and L on G itself by R(g)x=xg™* and L(g)x=
gx for any g, x=G.

2.2. Twisted ring of differential operators 9;(1). Let H be a connected
algebraic subgroup of G, h)=Lie(H) and 1: H—C a character of the Lie algebra
h. Let F=FQ)=F(, H) be the sheaf on G*" of local holomorphic functions
f such that R(A)f=—A(A)f for any A=). Let X=G/H and p=)py: G>X=
G/H be the natural projection. Since F has a (p**)'0%"-module structure, it
also has an ¢g'p~'@y-module structure. Since L(A) ((1=g) preserves F, F has
a structure of g-module. Let 9Dx(2) be the subring of ¢y p¢" Endc(F) generated
by the endomorphisms induced by 0y and g. Here End is the sheaf of local
endomorphisms. Then 9Dx(4) is a twisted ring of (algebraic) differential
operators (cf. [19, 2.3.3]). Since Dx(2) is locally isomorphic to Dy [19, 4.16],
we can naturally generalize definitions concerning 9 y-modules to general D x(4)-
modules. We shall use the concept of characteristic variety SS(H) of a Dx(2)-
module . holonomicity. etc. without further explanation.

2.3. Dx(A)-module 0°*(V,, 1). Assume that there eXists an algebraic sub-
variety V, of G such that p|V,: V,—X(=G/H) is an open immersion, and let
V be an open neighbourhood of V, in G with respect to the classical topology
such that p(V,)=p(V) and each fibre of p|V is connected and simply connected.
Then the restriction f—f|V, defines an isomorphism

r=ry,: (P IV)(FIV) —> (p*" |V )x085(Z 05T y) -

Since Dx(A)| p(V,) acts on ¢x(p*™ | V)(FIV), exO5%,, has a Dx(2)-module structure.
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(Here and below, we say that ¢xO3%,, etc. is a Dx(2)-module instead of a
(Dx(A)] p(V,))-module etc., if there is no fear of confusion.) This 9 x(4)-module
structure of ¢4xO%%,, does not depend on the choice of a neighbourhood V' of a
given V,, but as we shall see later in (2.7), it depends on the choice of V,.
If we need to specify this dependence, we write O**(V,, 1) for ¢xO5% .

2.4. Let H, be a connected, simply connected, open neighbourhood of the
identity element ¢ of H, and 4 the set of such open neighbourhoods H,. For
any H,=J4(, a linear character A2 of the Lie algebra §) determines a unique
holomorphic function A’: H,— C* such that A’(e¢)=1 and A'(xy)=2"(x)A"(y)
whenever x, y and xy are contained in H,. In the sequel, until the end of
(2.9), we fix a character 1 of §, and write 2 for A’. Let ¢: Vo xH—V,H be
the natural isomorphism. Then for H,c 4, V=V, H, satisfies the condition of
(2.3) and

24.1) @ VX Ho)'(FQ, H)|V)=0;QcCA™.

Lemma 2.5. The twisted ring of (algebraic) differential operators Dx(R)
preserves the subsheaf Opwryy 0f txO8% . We denote this Dx(A)-module Oy by
OV, R) if we need to specify the dependence on V,.

We omit the proof, since it is essentially contained in the proof of (2.12).

2.6. Dependence of O(V,, 2) on V,. If V,and V| are algebraic subvarieties
of G such that p(Vo)=p(V§) and, p: V—X (=G/H) and p: V{—X are both
open immersions. Then there exists a unique morphism s: V,— H such that
Vi={gs(g)lgV,}.

Lemma 2.7. Let V,, Vi and s be as above. The Dx(A)-module siructure of
OV, A) (resp. O°™(Vy, ) and OV, A) (resp. 0°™(V, ) are the same if and only
if Aes is locally constant on s *(H)NV, for any Hy,=J(. (Note that O(V,, A=
OV, D=0pwy and 0*™(Vy, )=0""(Vi, D)=tx05%, as sheaves on p(V,).)

Proof. 1t is enough to consider the g-module structures on ©**(V,, 1) and
o*"(Vq, 2). Although we have assumed V, and V§ to be algebraic subvarieties,
we may assume them to be analytic subvarieties as far as we are dealing with
the analytic case. Since the problem is local with respect to the classical
topology, we may shrink V, arbitrarily. For a given v,=V,, we can find H,=
4 which contains s(v,) and s(v,)"!. Since in a small neighbourhood of v,, the
value of s is always contained in H,, we may assume from the beginning that
s(Vy)cH, Then V:=V,H, is an open neighbourhood of V,and V§. Let A<g,
FE05wp=0%Uy rv{fPIVe)=f, and (S DIVe)=fs. (See (2.3) for ry,and rv;.)
Then f,|V,=fp|V,and fovh)=f,w)A(h)! for any v=V, and h< H,. Analogous
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equalities hold for f; and V. For any v,cV, and t=C, e"*v, can be uniquely
expressed as e ‘Yy,=vh with v=v(t)eV, and h=h()=H,, if |t| is sufficiently
small. Then fole *v)=(fp)@)A(R)™ and file “voswo))=Fovs®)s@)  hso))=
(fD)W)A(s() *hs(vy))™. Note that, if |7| is sufficiently small, v(t)=v,, h(t)=e
and s((@)) " h()s(vy)=e. Hence s@@®)) *h{t)s(v,)=H, and A(s(v)'hs(v,)) is defined.
Moreover s((t)**=s,)** =H, and h(t)s@,)=s(,)=H, etc. Thus A(s@)'hs(v,))
=A(s@) DA hs@we)= A(s@))AM)A(s(w0)) = A(s()s(ve) ) *A(h) and fole *4v,s(vo)) =
(f DYW)ACREB) A(sw®))s(ve)™"). Hence

@7.1) A e )] smr=-T £ PO

and

2 e 0yswe) ] o

(2.7.2)
= %(fﬁ)(v(l‘))l(h(t))“ l z=o-|-(fzb)(vo)%Z(S(v(t))S(vo)“)i t=0-

Thus (2.7.1) coincides with (2.7.2) if and only if
(2.7.3) X)) 1ms=0.

Since A(s@(@®)s@q) H=A(s@WB))A(sw,)~!) if |¢| is sufficiently small, the condition
(2.7.3) holds for any v,=V, and A<=g if and only if A-s is locally constant on V.

2.8. Let S be a smooth algebraic variety, T a closed subvariety of S, and
I={f=0s|f=0 on T}. For an Os-module M, let I'x(M)=limHomo (Os/I™, M).

Here Hom denotes the sheaf of local homomorphisms. Let S be another smooth
algebraic variety containing S as an open dense subset, and j: S—S the in-
clusion mapping. For an Og-module M, put I't(M):=j'r(M|S), I'+(S, M):=
IS, I'r(M)), HiM):= H{(RI'x(M)), and HE(S, M):= H{(RI'+S, M)). Note
that I'7(M) etc. depend only on ;j'M, and hence they can be defined also for
©s-modules.

2.9. Let V, etc. be as before. Let j: p(V,)—.X be the inclusion mapping
of the open subvariety p(V,) of X, and T a closed subvariety of p(V,). Then
the 9x(2)-module structure of Qv ,=0O(V,, 1) induces Dx(4)-module structures
in H}(Opw,) and jx«H#(Opw ). We shall (abusively) denote the latter sheaf by
Hi(©x(2), if there is no fear of confusion. Similarly, we sometimes denote
the I'(X, Dx(A)-module HE(X, OV, 1)) by Hi(X, ().

2.10. In the remainder of this section, we shall consider ‘a relative version’
of what we have considered. Let E be a subvariety of § " =Homy q1ze5ra(h, C).
We define G-actions R=Rr and L=Lr on GXE by R(g)g’, )=(g’g™", ) and
L(g)g’, H)=(gg’, 2) for g, g’<G and A=E. Let F(c)=F(c, H) be the sheaf
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on (G x E)*™ of local holomorphic functions f such that (R(A)f)(g, )=
—A(A)f(g, 2) for A=hand (g, )=GXE. Let pr: GXE—-XXE(=(G/H)XE) be
the natural projection. Since F(c) has a (pE")'0%z-module structure, it also
has an ¢zigpz'Ox,r-module structure. Since L(A) (A=g) preserves F(c), F(c)
has a structure of g-module. Let 9Dy r be the subring of ¢y pilEndc(F(c))
generated by the endomorphisms induced by ©x.z and g. We want to consider
Dyx.r as a family of twisted rings of differential operators 9x(1) parametrized
by A=E.

2.11. Let V, and V be as in (2.3). Then the restriction f—f|V,XE
defines an isomorphism

r=rvy: (PE"|VXEWF(O)IVXE) —> (5" Vo X E)Op gxe(= 03y p-E) -

Using this isomorphism, we can define a 9y, g-module stucture of ¢xO5% > xx in
a similar way as in (2.3). Let Hy=4 (cf. (2.4) for %) and ¢ be the function
on HyXE such that c(e, A)=1 for any A=FE, where ¢ is the identity element
of H, and (d/dt)c(et4h, A)|i—o=A(A)c(h, 2) for Ach, hcHy, and A<=LE. (In the
notation of (2.4), c¢(h, A)=A4(h).)

Lemma 2.12. The family of twisted rings of differential operators Dy g
preserves the subsheaf Opwypyxe Of tx05trpxe.- We denote this Dx, p-module
Opwypre by OV, ¢) if we need to specify the dependence on V..

Proof. Let f(v,, 2) be a regular function on V,XE, and g: C*—G be an
algebraic homomorphism. If ¢=1, g(t)v, can be expressed as g{)v,=v(t)h(t)
with rational morphisms v: C*—V, and h: C‘—H which are regular at =1
and satisfy v(l)=v, and A(l)=-e. Since (d/dt)f(gt)ve, A)|=1=(d/dt)f((t), A)
AR i1 = (d/dDf @), Dli=r + f(vo, 4) - (d/d1)A(A(E) '] 1=1, it is enough to
show that (d/dt)A(h())™*|.-, is a rational function of (v,, ). More generally,
let us show that (d/dt)A(h(t, vy))|.=y is a rational function of (v,, 4) if A, v,)
is regular in a neighbourhood of {(1, vo)lv,sV,} and A(l, vy)=e. Take an
(algebraic) local coordinate system {x,, -, x,} in a neighbourhood of e=H.
Let (d/dt)(x:h)(E, vo)|=1=: h.(v,) and (04/0x.)(e)=": A,. Then (d/d)A(h(t, vy))] (=1
=3>1"_,2,h,(vy) is a rational function of (vy, )=, (A1, -+, 2u))EV X L.

2.13. Take a closed subvariety T of p(V,) as in (2.9), and let jz: p(V,)X
E—XXE be the inclusion mapping. The 9y g-module structure of Opupxe=
OV, ¢) induces Dy, g-module structures in H3.z(Opvpxr) aNd jeeHE (0w x5)-
It also induces a ['(XX E, D, g)-module structure in H, z(XXE, OV, ¢)). The
evaluation of f=I'(E, Or) at A=F gives a C-algebra homomorphism I'(E, Og)
—C, which we shall denote by 1. Then, as I'(X, 9x(4))-modules.

(2.13.1) Hixe(XXE, OV, O)Qra.op, :C=HHX, 0x(2)).
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§3. Localization of g-modules

3.0. In this section, we recollect results of Beilinson and Bernstein [1]
concerning the localization of g-modules, which give a correspondence between
a category of U(g)-modules and a category of ‘twisted 9-modules’ on the flag
manifold X=G/B. (Here and below, G denotes again a complex reductive group
as in §1.) Here we follow the exposition of Kashiwara [19], but we keep the
notations of the previous sections. Thus our notations here become slightly
different from those given in [19]. The twisted ring of differential operators
Ax()=D;_, in the notation of [19] is denoted by Dx(2) (cf. (2.2)) here. Also
Ui.p(8) in [197 is denoted by U(4, g) (cf. (1.1)). See also [14]. Henceforth, a
9-module means a 9-module which is quasi-coherent over ©.

Lemma. 3.1. (Cf. [19, 6.2.3].) For any A<t", the natural ring homomorphism
U(g) — I'(X, Dx(A) induces an isomorphism UA—2p, g) — ['(X, Dx()). Hence
Ulw@A—p)—p, 8)=UQA—2p, §)=I'(X, Dx(A)) for any w=W.

3.2. Let Mod,(4) be the category of 9Dx(4)-modules H which are quasi-
coherent over Oy, and Mody, (2) the subcategory of Mod,(2) consisting of
satisfying the following conditions: (a) . is generated by global sections.
(b) If a 9¢(A)-submodule 71 of H is quasi-coherent over Oy and I'(X, 9)=0,
then 71=0.

Let Mod(4, g) be the category of U(4, g)-modules. Note that Mod(w(2—p)—
0, 8)=Mod(A—2p, g) for any w=W. Define the functors I": Modg(2)—Mod(A—
20, ¢) and ®: Mod(A—2p, 8) — Mod,(2) by I'(M)=I"(X, ) and RQ(M)=Dx(1)
®U(1—2p,g)*‘/['

Lemma 3.3. ([19, 1.5 and 6.4.2]) If A—p s anti-dominant, i.e., {a”, A—p)
+1,2, - for any a=R., then I' is an exact functor and I -Q=id. By the
functors I' and @, Modg «(2) is equivalent to Mod(A—2p, g).

Lemma 3.4. ([1]. Cf. [19, 6.4.1].) If A—p is regular and anti-dominant,
ive., {a”, 2—p>#0, 1, 2, -+ for any a =R, then Mod,(2) is equivalent to Mod(A
—2p,¢) by I' and Q.

Lemma 3.5. If 2—p is anti-dominant and MU=Mody(2) is holonomic, then
supp(QRI'(H))csupp(H) and SS(QI'(HM))SS(HM). Here supp (resp. SS) denotes
the support (resp. the characteristic variety).

Proof. Assume first that #=+0 does not have a proper 9 x(4)-submodule.
If < is not generated by the global sections, then I'(X, #)=0 and we get the
desired inclusion. If % is generated by the global sections, then I'(X, .#)=0.
Hence if a 9Dyx-submodule 9 of # does not have a non-zero global section,
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then < % and, consequently, 1=0. Hence M=Mody,(2) and QI (H)=H
by (3.3). Thus we get the inclusion also in this case. In general, we prove
the assertion by the induction on the length of M in Mod,(1). Let 1< Mod,(2)
be a proper submodule of . Since [ is exact by (3.3), RI(9)— QI'(H) —
RI'(M/91)—0 is exact. Hence supp(RI(H))=supp(RI(91)Isupp(RI(H/ 1))
csupp(J7)Usupp(H/T)=supp(H#). The assertion concerning the characteristic
varieties can be proved in the same way.

Lemma 3.6. Assume that 2<t™ is anti-dominant. (1) We have J HM (wi— p))
c{[V(w'2—p)]lw’ <w}, where ] H(—) denotes the set of composition factors, and
[—1 the isomorphism class. (See (1.2) for V(=).) (2) Let Z be a subset of
JHM(w2—p)) which does not contain [V(wl—p)]. Then ZC\Jw sw JHM(w'Z
— o).

Proof. (2) follows from (1). Let us prove (1). By [3] (cf. [9, 7.6.23]),
JH(M(wi—p)) consists of [V(xA—p)] with the following property: There
exist 71, -+, Yo =R, such that wAZr, wAZ - Zry 1y wA=xA. Put w,=ry; 1y W
Since 7y WA= wWii dA—<Winid, TOTiSwinid, <4, witiriye{l, 2, --}. Since 1 is
anti-dominant, wilr, is a negative root. Hence w,.,>7;w;..(=w,) by [4, 2.3].
Thus w=w,>w,>>w, and V(xi—p)=V(w.A—p).

3.7. Let B and n. be as in (1.1), and N, the connected subgroup of G
corresponding to the Lie subalgebra n. of g. Let w be an element of W. Let
p=px: G— G/B=X be the natural projection, x,=px(e), and X(w)=Bwx,.
(Here and below, we denote a representative element of wC Ng(T)/T by the
same letter.) Then plwN_: wN_—X=G/B is an open immersion, and X(w)
is a closed subvariety of p(wN.) which is of pure codimension cd(w):=l(ws)—
[(w). Hence, as in (2.9), for any character 2 of 5, we can consider the 9Dy(4)-
module

X(w)=X(w, 2):=7+HEE OwWN-, D)=HEL (©xQ)),

which is holonomic. Here j: p(wN_)—X is the inclusion mapping. By (2.7),
the Dy(1)-module structure of 2X(w)= HELX (©x(A) does not depend on the
choice of the representative element of w. We can also consider the (X,
Dx(A))-module I'(X, X(w, ))=HEX (X, 0x(2). Recall that I'(X, Dx(A)=U(A—
20, 9)=U(w(A—p)—p, 9).

Lemma 3.8. If 1—p is anti-dominant, I'(X, X(w, 2))=Mw@A—p)—p, b)*.

Proof. As in [22], we can calculate the character of I'(X, *(w, 4)), and
we get (without the assumption of anti-dominancy)

(3.8.1) chl"(X, 2(w, 2))=chM(w(A—p)—p, b)=chMwA—p)—p, b)*.
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(Cf. (3.9).) Since w(A—p)—p is the highest among the weights of I'(X, ¥(w,
A))*, we get a non-zero U(g)-homomorphism ¢: M(w(A—p)—p, b) — I'(X, X(w,
A)* and its dual o*: I'(X, X(w, 2)—M(w(A—p)—p, b)*. Let K=kerg*. From
the diagram

QK > QI'(X, X(w, ) ——s @Mw(A—p)—p, B*

|

X(w, A)

we get the following diagram.

ra a*

K-35 I(X, 2w, ) —> M(w(i—p)—p, 6)*
1d=1"Ce) l
I'(X, 2(w, 2)).

By (3.6, (2)) and (3.8.1), we can show that
JHE)S \) JHMw G—p)—p, )= \J JHIX, Xw', D).
By (3.5),
supp(@K)< U supp(RI'(X, X(w’, 1))

w'sw

(3.8.2)

< supp(2(w’, 2))=wgw X(w").

Since X(w, )=H%% (0Ox(4)) does not have non-zero ©x-submodules whose sup-
ports are contained in X(w)\X(w), (3.8.2) implies that ¢6=0. Hence '(§)=

I'(e0)=0 and ¢* is injective. Comparing the characters (3.8.1), we can show
that ¢* is an isomorphism.

Remark 3.9. In (3.8), we have assumed that 1—p is anti-dominant. Here,
we shall show that the assertion becomes false without this assumption.
Let G=SL,, B(resp. T) be the subgroup of G consisting of the upper-

triangular matrices (resp. the diagonal matrices), and w=<(1) _Ol> The map-
ping Ga(? 3)——>(aoo+b)/(coo+d)EP‘ induces an isomorphism X=G/B— P!, by

which we shall identify G/B with P'. Then G acts on P! by (? 3)-x:

(ax+b)/(cx+d), and x,=px(e) is identified with . Note that N-:{(tl (1)>]
EC}.

First, let us consider H %»,(X, Ox(4)). Denote the function w(tl ?)xu—»t
by t. Then as vector spaces, H yw)(X, Ox(D))=H%w) (X, 0x)=C[t]. For i=C,
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(8 ao_l)—wzl gives a ‘multi-valued character’ of T and induces an element of

t”, which we shall denote by the same letter 2. Then A=1 corresponds to p.

The function pxlw 10 —t™ on X(w)=C, which we shall denote by ", is
t 1

identified via r=r,y_ (cf. (2.3)) with the following function f, in F(4, B)
(cf. (2.2));

a b 0 —1 1 0O\/c d
SLZB( )=( )( )( )——> (—ac™H)m-c*
¢ d d 0 /\—ac? 1/J\0 ¢!

ence(§ D12)(u(} ) =arawrfa(y Yl Dwome, ani § )

=nt*"'. In the same way, we get (0 _l)t"z(—l—Zn)t", and ((1) 8)1‘":
(—A—n)t"*', Let v(x)=—"x, C[{1* be the dual sl,-module (cf. (1.1)), and {e,} rs0
the dual basis of "} uso. Then (§ D)ea=(—2—n+Deas, (§ 2 Jea=(—2-2n)es,
and (1 O)e,,_(n+1)en+1. (Here we put e_,;=0.) Thus H%w)(X, Ox(A))* is iso-

morphic to the Verma module for any 4, whose highest weight vector is ¢,
and the highest weight is —2=—2p.
Let us consider H (X, ©x(4)). Denote the function (tl (f)xo—ﬁ by t. Then

HY .. (X, 0x)=C[t] and Hi. (X, Ox)=P;..C8,(t), where 8;=(t'modC[t])e
Clt, t']/C[t]. The rational function px((} ?))—»t" (n=Z) on N_-x,, which

we shall denote by {7, is identified via r=7ry_ with the following function f,

in F(4, B);
a b
SL{:‘( ):( )( ) —> (ac™H)a"*.
c d a'c 1
1
t

ence (§ DG D=@rers(Q T ) emtion ana (§ .

=(A—n)d,_;. In the same way, we get (1) ) 2=(A—2n)d,, and ((1) 8)5”:
n0,.1. Let {ey}.>, be the dual basis of {6,}.-:;. Then (8 (l))en-——(n——l)e,,_l,
6 2y)ea=G—2mes, and (§ §)en=(2—n—1lea... (Here we put ¢=0) Thus
Hy (X, Ox(A))* is isomorphic to the Verma module if and only if A—;+0 for
7=2,3,4, - ,i.e., A—p is anti-dominant. (For any 2, H (X, Ox() is the
Verma module.)

§4. The U 4(g)-module M ,(w)*

4.0. Let A, be a W;-invariant character of 1, 4, the lowest weight of a
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finite dimensional irreducible P-module, A=A.+21;, and we(W/W;),. In this
section, we construct a certain U 4(g)-module M 4(w)* and a U 4(g)-homomorphism
@1 M(L)—My(w)*, which satisfy the conditions (1.11.1) and (1.11.2). Later,
in §6, we shall show that M4(w)* also satisfies the condition (1.11.3), and shall
calculate the character of V(w, 4, p) using (1.12). In this section, we fix a
subset [ of S. In order to make the account easier to read, first we consider
the case where 1,=0, and at the end of this section, indicate how to generalize it.

4.1. Naturally identify t; with the set p~ of characters of the Lie algebra
p. Let Ac=t;=p"=: E, A4 be as in (4.0) and A=2,+4,. Put L=L(w, 44, p)=
{wi+2s—p)—plA:EE}, A=A(L), A’=A(E), and K’ the quotient field of A’.
Since for our argument here, it is more convenient to consider E instead of
L, we construct a Ug4(g)-module M, (w)* and a U,(g)-homomorphism ¢:
May(w(c’'+2a—p)—p) — Mo (w)* such that My (w)* Qu A and ¢’Qu A satisfy
the conditions (1.11.1)-(1.11.3). Here ¢’ <= Hom¢(t, A’) = Homy/ (14, A’) is the
natural character and A is considered as an A’-algebra by the isomorphism
induced by E=A—w(Ai+is—p)—p<L. Let us write out the conditions cor-
responding to (1.11.1)-(1.11.3), which M4 (w)* and ¢’ should satisfy.
(1.11.1") Let j: Ma(w)* - Ma(w)* ® +K be the canonical morphism and
My (p)=7 " (Ma(W)*Qa K )wys24-p-p-p) for p=Q . Then each M4 (w)*(p)
is a free A’-module of finite type and M, (w)*=@ucq, Ma(w)*(n). Here y'=
c'Ra K.
(1.11.2") Let @i : M(w(A:+2a—p)—p, B)—>Ma(W)*®4, 2, C (:=1]) be the homo-
morhism induced by ¢’. Then ¢} =£0 for any 2;=t;.
(1.11.3") There exists an open dense subset t; of t; with respect to the classical
topology such that M4 (w)*®a, 2, C is a simple U(g)-module for 2.Gt;.

Henceforth, we shall exclusively consider £ as the parameter space, and
we write 4, K, ¢, ¢, 5, etc. for A, K’, ¢’, ¢/, 3/, etc. for the simplicity of
notation. For L=L(w, 44, p)=w® " +2.—p)—p, we put My(w(c+is—p)—p):=
ML), Jslw, c+24, p):=J(L), Vaw, c+24, p):=V(L),

(4.1.1) V(w, 4, p):=V(L, w(A—p)—p)
7:=cQK, Vg(w, 0424, p):=V (L), etc. (Cf. (1.3).)

4.2. The U,(g)-module M (w). Let X=G/B and Y=G/P. Let py: G—
X, pr: G—Y and ¢g: X— Y be the natural projections, x,= px(e), ¥o= pr(e),
where ¢ is the identity element of G, X(w)=Bwx,and Y(w)=Bwy, for w=W.
Let we=(W/Wi),. Then Y(w) is a closed subvariety of py(wU_)=wU_-y, of
pure codimension cd(w)=I(ws)—I(w). (Note that X(w) is an open subset of
¢ 'Y (w), and is of pure codimension cd(w) in X.) Let 9y z be as in (2.10).
Then as in (2.13), we can consider the I'(Y X E, Dy, g)-module

4.2.1) Ma(w) :=H¥ S x(Y X E, O(wU -, c)=H#H Y, 0p)RcA.
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Since 9y r is generated by the operators induced by g and Op.z (cf. (2.10)), we
have natural morphisms U(g)—I'(Y X E, Dy.z) and A=I(E, Og)—I'(Y X E, Oyxr)
—I'(Y XE, Dy.g), by which M4(w) becomes a U 4(g)-module.

4.3. A free A-basis of M,(w). The natural G-action on Y induces actions
of the maximal torus T on Y (w)=Bwy,and wU_-y,. Letu,=@rer, nwwr\rpsla)
and w(u_)=@aewwr_\zp8(a). By the isomorphism x—(expx)wy,, the pair (w(u.),
1) is isomorphic to (wU_-v,, Bwy,) including the natural T-actions. Hence

4.3.1) HER Y, or)=( & )F(g(a), ONKA X (gla), 0)).

a€ER Nw(R_\R] agw(R_\RD\R4

We can get a C-basis of the left hand side of (4.3.1) by using the expression
of the right hand side as follows. The exact sequence

0=I"1n(C, ©) — I'(C, ©) —> I'(C— {0}, ©) —> Hi,;,(C, ©) — 0
can be identified with the exact sequence
0— C[x] — C[x, x7'] — H}(C, 0)— 0.
Let ((d/dx)*x™* mod C[x])=: 0“(x). Then
(4.3.2) r, O)z@oCx" and Hl,(C, 0)=n€§006<">.
Let u, be a linear coordinate function on g(a) and 0" =0"(u,). As is seen
from (4.3.1) and (4.3.2), the set of the elements of the form

(4.3.3) ( 11 ug ) X( 11 oL

aER NW(R_\R]) —acw(R_\RD\R,
with n(a)=0 gives a C-basis of H{A® (Y, Op). It also gives a free A-basis of
Lemma 4.4. Let v be the element (4.3.3). Then
Hy=<w(c—p)—p— RE n(a)a, H> for H=t,
acR

\wR
Proof. The element (4.3.3) is a weight vector of the weight

we— by )n(a)a+ > I)(n(a)+1)(—a)

acER NwW(R_\Rj aER NW(RL\R
(4.4.1)
=wc— = a— 3> nl@a.
aER NwW(R_\R]) aER \WR|

Since weW /W), we have w(R.,NR;)cR_, and hence
4.4.2) > a= > a=p+twp.

aER NW(RL\R]) aER NWR,

By (4.4.1) and (4.4.2), we get the assertion.

Corollary 4.5. For A=ty and w=s(W /W),
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ch(M (w)®4,2C)=e* 470 I (1—e ).

aeR\wWR
4.6. For we(W/W;), and p=Q,, let M (w)w={pvcMu(w)| Hh=<w(c—p)
—p—p, H for H=t"}. By (4.3) and (4.4), MAw)=Ppeq, Ms(w)(y) and each
My(w)(p) is a free A-module of finite type. Let M (w)*(g)=Hom (M (w)(g), A),
and M, (w)*=@uce. Ms(w)*(pr). Then M, (w)* has a natural U ,(g)-module struc-
ture and
ch(M4(w)*@a4,2C)=ch(M s(w)R@4,2C)=e** ¢ I (l—e )"

aER\WR [

for A=t;. Obviously A 4(w)* satisfies the condition (1.11.1") of (4.1).

4.7. We have a U 4(b)-homomorphism A(w(c—p)— p)—M 4w)* whose image
is the weight space M (wW)*(0)=Msw)§ec-p>-p(=A). This homomorphism in-
duces a U 4(g)-homomorphism ¢: M (w(c— p)—p, b) — M(w)*. Obviously, ¢
satisfies the condition (1.11.2’) of (4.1). The condition (1.11.3) will be proved
in §6.

4.8. Let us explain how to generalize the argument of this section to the
case where A, is not necessarily zero. We keep the notations of (4.2). Let
As be the lowest weight of a finite dimensional irreducible P-module, and
O©x(4,) the line bundle on X consisting of (local) regular functions f such that
flgb)y=f(g)A«b)" for g=G and bB. Let A.=t; and A1=21.+1;. (Note that
the lowest weight 2 of a finite dimensional irreducible p-module can be always
expressed in this way.) Then ¢*O(wU_, 1.)Q0,0x(2s) has a natural Dx(4)-
module structure, which induces a (X, 9¢(4))-module structure on

H2 (g7 (wU - p0), ¢*O(wU -, 2:)Q0 4O x(A4))

(4.8.1) HE WU+ y,, OwU -, 2:)Qoyqx0x(2a))

HE®(Y, g0x(42)),  (as a vector space).

(Note that Rg«O(A4)=¢+O(44) by the Borel-Weil theory [5].) “Varying A.<t; in
(4.8.1)", we get a ['(XXE, 9, g)-module

M4w):=H{¥H Y, ¢:0x(2a))Rc 4,

which has also a U4(g)-module structure as in (4.2). Let {f,} be a basis of
the P-module I'(P/B, Ox(2.)) consisting of weight vectors, and p; the weight
of f,. Then the functions wU_-P>wup—f.(p), which we shall denote by f,,
give a I'(wU_-y,, Oy)-basis of I'(wU_-y,, g:0x(24)). Let V;(2’) be the irredu-
cible p-module with the lowest weight 2’. Since I'(P/B, Ox(A)=V ;(14) (cf.
(9.2) below), we have

(4.8.2) ch(M A (w)Q4, 2,C)=e""??-w(chV ;(1)) RH " (I—e )1,
acR \WR
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where w(e*’)=e¢**" etc. (As is indicated by the calculation
(uaf ) xa(Ww p, A)=uzf)(xaola@®) Ww - w 't wp, Ac)
=(a@®) " u" A(w"tw)- ()™ (W "tw) £ . P))
=(wu)O)- (Wi —na)t)(uzf N x(Wwp, Ae),

the character (4.8.2) is the same as the case 1,=0 except for the contribution
from the factor (wp;)(¢), which amounts to w(chV;(4)).) Since w=W /W),
the highest weight of M (w)®4,2,C is w(A—p)—p. As in (4.6) and (4.7), we
can construct a U 4(g)-module M4 (w)* and a U 4(g)-homomorphism ¢: M (w(c+
Ae—p)—p, b)—M(w)* which satisfy (i.11.1’) and (1.11.2").

§5. Stability of the Submodule Lattice by a Smooth Pull-back

5.1. Let X be a smooth algebraic variety over the complex number field
C, and ©=0y the sheaf of regular functions on X. Let Y be another smooth
algebraic variety and f: X—Y a smooth morphism. Let 9y be the sheaf of
algebraic differential operators on X and 9, the subring of 9y generated by
Ox and the tangent vector fields which are tangent to the fibres of f. Let M’
be an Op-module and M=f*M'=0xR®,-10,f"M’. Then M has a natural 9,-
module structure. The purpose of this section is to prove the following pro-
position.

Proposition 5.2. (1) Let N be a 9;-submodule of M= f*M’ which is quasi-
coherent as an Ox-module. For any p= X, there exists an open neighbourhood U
of p and a uniquely determined O;gy-submodule N'(U) of M’|f(U) such that
NI\U=(f|U)*N'(U). (Note that [ is an open mapping.)

(2) Assume that f is surjective and the fibres of f are connected. Then
there is a uniquely determined Oy-submodule N’ of M’ such that N=f*N’.

Remark 5.3. Since f is smooth, Oy , is faithfully flat over (f'Oy),=
Oy, ;. Hence for any Oyp-submodule N’ of M’, f*N’ is an Ox-submodule of
f*M’, and, by [7. Chap. 1, §3, Prop. 9], f'N’ is a subsheaf of f*N’.

Corollary 5.4. Assume that f: X-Y is a smooth surjective morphism whose
fibres are connected. Let M’ be a quasi-coherent Oy-module, M=f*M', S(M) the
set of 9,-submodules of M which are quasi-coherent as Ox-modules, and S(M’)
the set of quasi-coherent Oyp-submodules of M’. Then N'— f*N’ defines a bijec-
tion S(IM")—S(M).

5.5. Let y=(y1, -, ¥,) be a local coordinate system of Y at g=f(p). If
there is no fear of confusion, we regard Oy, as a subring of Ox,, by f*.
Especially, we identify y,E0y,, with f*y,=y,of =0y ,. Choose z;, -, zs.

11
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Ox.p S0 that x=(y,, =+, ¥, 21, -, Z5) gives a local coordianate system of X
at p. Por v=(@,, -, vy)=Z®, we write v=0 if v,=20 for any 7, and v>0 if
v=0 and v+#0. If veZ® and v=0, we set zw)=TI}-, 2%/v,! and °=0?=(0/0z,)™*
<+(0/0z5)%. If v=0, we set z(v)=0. Then 0°z(w)=z(w—v).

5.6. Assume that we are given an n-tuple .4(x)=(ai(x), -+, an(X))=0%, p.
Consider its power series expansion with respect to z; A(X)=>}y204,(¥)2()
with A, (¥)=0%,¢ Set J=20200r,¢A(¥) (SOF,o), and let {Bi(y), -, Bg(y)} be
a minimal generating system of the Oy ,module /. Then /1, (y)’s can be ex-
pressed as

(5.6.1) A9)= 2 e i(9)B3)
with some ¢y, (y)=0y,q Set
(5.6.2) ¢, (%)= g;o C0,.(¥)2() -

Then ¢,(x)=0x,, where O, , is the completion of the local ring Ox,, with
respect to its maximal ideal my,,. Moreover c,=c,(x) (1<{<g) satisfy the
system of linear equations with coefficients in Oy, ,;

(5.6.3) A(x)zéciBi(y)-

Since (5.6.3) has a solution in Oy ,, and since Oy,, is faithfully flat over Oy, ,,
(5.6.3) has a solution in Oy , [7, Chap. 1, §3, Prop. 13]. Hence we may take
c(x) in Oy, ,. (Note that, if we define ¢, (y)’s as the coefficients of the power
series expansion (5.6.2) of ¢,(x), the equality (5.6.1) holds.) Since {A,(y)|v=0}
and {B,(y)|1<i<g} are both generators of J, B,(y)’s can be expressed as
B(y)=2020d:,(¥)A(y) (a finite sum) with some d; (y)=0r., Set K=0yx »/
and P,=P,(y, 0.)=20s:0d..,(y)07 (1=i<g). Then

P, A(x)=( UZO d., ()05 EOA’”(”Z(“’»
(.64) = gjo dooMAY)=B.(y) (mod Kmy p).

Set L=314,0y, (P, A(x)). By (5.6.4), B\(y)=L+Kmy, ,. Since {Bi(y), ---, B¢(y)}
generates the Oy, ,-module K,

(5.6.5) KcL+Kmy,,.

On the other hand, by (5.6.3), P, A(x)=P,(y, 0,)33¢-1B.(y)c,(x)=28_,B.(3)- P,c,(x)
=K. Hence

(5.6.6) LcK.

By (5.6.5), (5.6.6) and the “Nakayama’s lemma”, we get K=L. Hence there
exist e, (x)=0x,, (1<i, 7<g) such that B,(y)=3%_.e,,(x)-P,(y, 3,)A(x). By
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setting Q.(x, 0.)=>14-1e,,(x)P;(y, 0,), we get the following lemma.

Lemma 5.7. Given A(x)=(ai(x), -, a.(x))=0% p, there exist n-tuples B,(y)
=0u(y), , ba(INEOR s ipy, Ri=Dys,p and ¢ (X)EOx , 1=Zi< g) such that B.(y)
=Q.A(x) (1=i<g), and A(x)=3¢-.c.(x)B.(y).

5.8. Proof of (5.2). Let u be a section of M =/*M'=0y&,-10,M’ on an
open neighbourhood U of p. By shrinking U, if necessary, we may assume
that u can be expressed as u=3".,a;(x)Qu; with a;=I'(U, 0,) and uj=
[(f(U), M’). (Note that f is an open mapping.) Let 4(x)=(a,(x), -, a,(x))
0% p, and take B.(y)=0b.(y), -+, b.a(¥), @, and c¢,(x) as in (5.7). Set v;=
25=1by,()uj. Then Q.u= 37.1Q.a;(x)Qu;= 27-1b.;(3)Quj=27-11Qb.;(y)uj=
I1®v; and 2foic(0)(1 Q) =21 DF=16(0)biy(y) @ uj=o1a,(x) @ uj=u. If
we set 31{-10y, s Vi =T(u, p), then D, pu=2314_.0x, (1&Qv1)=0x, sQoy. ;T (%, D).
Since Oy, , is faithfully flat over Oy, s, the Oy, ;p-submodule T'(u, p) of My
is uniquely determined by u (cf. [7, Chap. 1, §3, Prop. 10]). By shrinking U,
if necessary, we may assume that ¢,’s and all the coefficients of Q,’s are
regular on U. By the same argument as above, we get @f,pruzax,pr@)@y,ﬂp,)
(Z4-10y. rpyvi) for any p’<U. In other words, if we define a subsheaf T'(u,U)
of M'| f(U) by T(u, U)=34.,0;w»vi, then (D |U)u=(f|U)*T(u, U). By shrink-
ing U, we may assume that U is an affine open subset of X. Since we are
assuming N to be a quasi-coherent ©y-module, there exist sections u, =1 (U, N)
(a= A) such that N|U=3,c40pu,. Define an O y,-submodule N’(U) of M’| f(U)
by N'(U)=3lacaT (1o, U). Then NIU=30ea(Dsi Dttg = Daca(f1UY*T (s, U)=
(FIU*N’(U). Moreover, if an O;q,-submodule N’(U) of M’|f(U) satisfies
NiU=(fIU)*N’(U), then Np=0x,pQoy, 15y (U)sp> for any p'clU. Since
Ox.p is faithfully flat over Oy, ;ry, N'(U);p+> is uniquely determined by N,.
Hence N’(U) is unique. Thus we get the first assertion.

Let p and p’ be two points of X. Take an open neighbourhood U (resp.
U’) of p(resp. p’), and an O;w»>-module N(U) (resp. an O;gr,-module N(U’))
as in the first part. If p’=UNU’, Np”=0x_pu®oy_f(p,, NWypn =0x, pr
®0Y,f(p" JN'(U")spny. Hence N'(U)=N'(U’) on f(UNU’). In order to get the
second assertion, it is enough to prove that N’(U)=N'(U’) on f(U)Nf(U"),
assuming the connectedness of the fibres of f. Hence it is enough to prove
that f{UNU")= fNFU’). Let gz fUNSFWU’). Then fgNU=¢ and
fH@NU'+#¢. Since f~'(g) is connected, we can find an element p”< f ()N
UNU’. Then g=f(p")=f(UNU’). Thus we have completed the proof.

§6. Character of V(w, 4, p)

6.0. In this section, first we determine the character of V(w, 4, p). Once
the character formula is obtained, we can deduce several consequences from it.
See (6.6) and (6.8).
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6.1. Let 4, be the lowest weight of a finite dimensional irreducible P-module,
and

t7, raa(Qa)={A =t |[{Ac+2a—p, @”>+0, 1, 2, --- for any aCR.,}.

An easy calculation using fundamental weights shows that {7 ,,4(4) is an open
dense subset of t;. Let A.<=t], A==24.+1,;, and assume that A.=t] r4a(ds). Let
us consider the simplicity of the U(g)-module

M) ®a.2,C=H P, (X, Ox(2)

for w=(W /W), where cd(w)=I(ws)—I(w)=codim y X(w)=codimyY (w) and © x(4)
denotes (abusively) the Dx(A)-module g¢*O(wU_, 2.)R0Ox(A4). (Cf. (2.9).) Note

that the inclusion ¢ 'Y (w)—X is an affine morphism and hence, “"f?’(w)(o x(A)

=R -1ycw>(©x(A)[cd(w)] and H R (X, 0x(D) = R -1y cwx(X, 0x(A))[cd(w)].
(To see this, it suffices to show that the inclusion morphism Y (w)—Y is affine,

whose proof we do not give here since a similar argument appears later in
(7.2).) Since

H Py (X, 0x()=L(X, H:2P  (0x(A))R0Ox(44)),

the simplicity of the U(g)-module M,(w)*®.,:,C is equivalent to the simplicity
of the 9;(2)-module

H Dy (O x(2e)Q0 x(Ae)=q* HY (Or(Ae)) QO x(Aa) ,

which is equivalent to the simplicity of the 9Dx(4.)-module H¢4 (Ox(Ao))=

q- 1Y (w)
g H%E (Ov(Ae). (Note that A—p is regular anti-dominant, and use (3.4).)
Furthermore, by (5.4), the simplicity of ¢*H{t% (0y(4.)) is equivalent to that
of the 9Dy(A.)-module HEEE (Op(AL)).

6.2. Let A.Et] r0a(Aa) MM raa(0), and assume that H“““) (X, 0x(4)) is not

1y w)

simple. By (6.1), N.—H;E{?(w)(X, OX(ZC))-[’(H;ff?ﬁ’(w)(ay(lc))) is not simple.
(See (3.2) for I'.) Let L be a simple submodule of N. Put M, :=Mw.—p)
—p,0). Since NCHE® (X, 0x(A))=M3} by (3.8), L* (=L) is the simple quo-

tient of M,. (The injectivity of N=H:2{ —H follows from the vanish-
ing of HEE v an(X, 0x(2)), which can be proved by the usual ‘dévissage’.)
Let [QleJH(N/L)cJHM%/L)y=]JHM,)\{LL]}. By (3.6), Q=V(w'(A:—p)—p)
with some w’<w. By (3.4), ®Q is a composition factor of QN=H¢® (Ox(2.)).

g~ 1Y (w)
Hence
6.2.1) supp(@Q)—— Y, X(w”) for some W,c{w’"=W /W), |w”<w}.

(Consider the characterlstlc variety.) On the other hand QV(w'(4.—p)—p)* is
the simple submodule of @M#¥ =H¥E®)(Ox(4,)). Since HEY (Ox(A:)) does not
have a non-zero submodule supported by X(w’")\X(w’),

6.2.2) supp(QQ)=supp(QRQ*)=supp(QV (w’'(d.— p)— p)*)=X(w") .
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By (6.2.1) and (6.2.2), w'=(W/W,),. Since the highest weight w'(4.—p)—p of
Q is also a weight of M,=Mw@.—p)—p, b),

6.2.3) W@e—p)—p)—W'@A—p)—p)EQ,, w, wW/Wi), and w>uw’.

Theorem 6.3. Let A, be the lowest weight of a finite dimensional irreducible
P-module, 2.=t], A=2.+2q4, and w=W/W;),. Then

chV(w, 2, p)y=e "° w(chV,A) TITI (d—e ).
acR \wR|
(V1(4) is the simple p-module with the lowest weight 1.)

Proof. We calculate the character of V(w, 4, p) using (1.12). Since we
have already proved that (M(w)*, ¢) defined in § 4 satisfies (1.11.1") and (1.11.2"),
it remains only to prove (1.11.3%). (Cf. (4.1).) Let

to:(fl,rad(xd)(\tl.rad(o))—wl,wze\gylwln{z =ty |l wd —w A’ =p}.
W1FWe
#€Q
Then (6.2.3) does not hold for any A;<=t;. Hence MA(w)*(X)A,pCC=H;ff$)(w)(X,
Ox(At+24)) is simple for A;=t;. Moreover {; is an open dense subset of t; with
respect to the classical topology. Thus M,(w)* satisfies (1.11.3’). Hence

chV(w, 4, p)=chM(w)*Qa,1,C by (1.12)
=chMs(w)R4,1,C by (1.1)
=e‘”“’“’'w(chVI(2))aeRI\IwRI(l——e‘”‘)‘l by (4.8.2).

Corollary 6.4. Let w=(W /W), 44 be as in (6.3), and p=Q,.

(1) Vaw, c+2q, 9)() is a free A-module of finite type.

() chVg(w, n+2iq, p)=chM (w)* Q@ K=e ¢ w(e’chV ;(Au)[lacr\wr,(1—
e *)"'. (See (4.1) for V 4(w, c+4q4, p) etc.)

Proof. Since V 4 (w, c+44, p)(¢) is a quotient of the finitely generated -
module M (w(c+2s—p)—p)w), (cf. (1.17) and (4.1)) it is enough to prove that
Va(w, c+4q4, p)(p) is a projective A-module [26], [32]. The projectivity follows
from the following lemma together with (6.3).

Lemma 6.5. Let C be a polynomial ring over a field and M a C-module
of finite type. Assume that the dimension of the (C/m)-vector space M/mM does
not depend on the maximal ideal m of C. Then M is a projective C-module.

Proof. It is enough to prove that the quasi-coherent sheaf M on SpecC
corresponding to M is C-free ina neighbourhood of any closed point m& SpecC,

~

where C is the structure sheaf. Let C. be the local ring at m, and let
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Uy, , U, be elements of M which give a basis of A{/mM. Let e, -+, e, be the
natural basis of C* and define a C-homomorphism ¢: C*— M by ¢(e,)=u,.
Let {v;} be a generator system of M. Since ¢@cCn is surjective by the
“Nakayama’s lemma”, v,=3},u,c,, with some ¢,;=C,. Take an element f=C
such that all the ¢,,’s come from C;=C[f~']. Then ¢®C; is surjective. Let
My=11QcC,; and K=kero®C,. From the exact sequence 0—K—CF—M;—0,
we get the exact sequence (C/m")YRK— (C/m’)*—M/m’AM—0 for any maximal
ideal m’ contained in SpecC,. Since the dimension of the (C/m’)-vector space
M/m’M is equal to n, the image of (C/m")QK in (C/m’)" equals 0, i.e., K
m’C%}. Since the intersection of m’C?% for maximal ideals m’ of C, is 0, we
get K=0 and M,=C}.

Theorem 6.6. Let A, A4, A and w be as in (6.3). If 2A—p is anti-dominant,
then

I'X, ¢*HE S (0v(A)Q0x(Aa)=H 2 {P,(X, 0x()=V (w, 4, p)*

)

as U(g)-modules. (See (6.1) for Ox(4).)

Proof. Using the notation of (4.1), put M,= Msw(c+ 2a —p)—p), Ja
=Jaw, ¢+, ), Va=Mu/J 4, Mx = MaQuK, Jx= JaQ 4K, Vk=V 1Q 4K, and
Mew)*=M4(w)*®,K. First, let us show that the kernel of the homomorphism
¢ Maw(c+2s—p)—p)—M4(w)* defined in (4.7) and (4.8) is J4. Consider the
diagram

0—J4—>My —V,,—0
|
Lol
0—Jg—>Mg—>Vig—0
consisting of the natural morphisms. Since V4 isa free A-module by (6.4, (1)),
the first horizontal sequence is a split exact sequence, and hence the second
one is also exact. Since M, and V', are -free, the second and the third
vertical arrows are injections, and hence the remaining one is also an injection.
(In fact. we can show that J, is a free A-module together with its ‘weight
spaces’ using [26], [32] and (1.17.2).) By (1.4, (2)), V¢ is the simple quotient
of the Verma module My and [ the maximal submodule of M. Since chV =
chMg(w)* by (6.4, 2), Vi = Mgw)*. Since M (w)* is A-free, the natural
morphism M 4(w)* — Mg(w)* is injective, ¢x:=¢e®K: Mg — Mg(w)* is not
identically zero, and hence surjective. Thus we can identify ¢gx: Mx—Mg(w)*
with the projection of the Verma module to its simple quotient. Especially its
kernel is Jx. Hence JscMiNJx=MsNkerpx=Kkerp. Since kere is contained
in M w(c+4s—p)—p)., kero=],. Thus ¢ induces homomorphisms V ,(w, c+
Aa, D) — Ms(w)*, V(w, 2, p)—»MA(w)*Q'QAJCC:H;‘_‘l‘;‘,”(w)(){, Ox(A)* and o*:
H;?f;’)(w)(X, OxA)—V(w, 2, p)*. Note that the image of ¢* contains the weight
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space of the highest weight. Let K=kerg*. By (3.8), M(w(A—p)—p, 0)¥*=
HE® (X, OX(Z))DH(;%?(W)(X, Ox(A))> K, and K* is a quotient of M(w(2—p)—p,
b). If K+0, then K contains the weight space of weight w(i—p)—p. This
contradicts the fact that the image of ¢* contains the weight space of weight

w(A—p)—p. Hence K=0 and ¢* is injective. Since

chH 2 (X, 0x(A)=chM (w)®a,2,C (cf. (4.8))
=e v~ f.w(chV,;A) II (1—e )™ by (4.8.2)
acR\wR;

+

=chV(w, 4, p)* by (6.3),

¢* is an isomorphism.

Remark 6.6.1. In the above theorem, we can not omit the assumption that
A—p is anti-dominant. See (3.9) and (1.19).

6.7. Generalized Verma modules. Let Vj(A’) be the finite dimensional
irreducible p(/)-module with the highest weight 2’, and

M@, p)=U@)RQuwVi(4).
Such a U(g)-module is called a generalized Verma module. Obviously

6.7.1) chM(2, p)=chVi(&’) II (1—e ).
aER\R|

Theorem 6.8. Let [ S, w e W/W;), and A be a character of t such that
{4, "y (@<I1;) are non-positive integers. If

(6.8.1) Ji=wlw?cS,

then w(A—p)—p is the highest weight of a finite dimensional irreducible p(J)-
module, and

M(w(—p)—p, Y(IN=V(w, 4, p(I)).

Proof. Since we(W /W), wll;)=—11,. Let a=Il; and w(a)=—pB. Then
=1, and <w@—p)—p, B7>=<1, w'B">—<p, w'B">—<p, B> =<4, a”>+<p,
a”>—<p, B7>=—<4, @”». (Note that {p, r">=1 for ycIl.) Thus <w(A—p)—p,
B> (B=I1l;) are non-negative integers, and we can consider the generalized
Verma module M(w(A—p)—p, p(J)). Consider the U,(b)-module A(w(c—p)—p)
as in (1.3). Extend this Ugu(b)-module to a U,(p(/))-module by putting
g@)lwec-py-p=0 for a=R_NR,;. (See (1.3) for lyc-p-,. Note that the W,-
invariance of ¢ implies the W -invariance of w(c—p)—p.) Let wV (1) be the
irreducible P(J)-module with the highest weight wl,. Then A(w(c—p)—p)
RcwV 1(A4) has a U4(p(J))-module structure. Let

MA(w(C“l'lrz—P)““P, (/) ::UA(Q)®UA(U(J>)(44(W(C_P)"P)@wvl(xd)) .
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It is enough to prove that
(6.8.2) M s(w(c+2a—p)—p, p(I)=V s(w, c+2A4, p(I)).

Denote the left (resp. right) hand side of (6.8.2) by M, (resp. V). As is
easily seen, A, is isomorphic to U, u_(J))Q®cwV ;(1;) as an A-module, and the
kernel of the natural homomorphism M (w(c+2s—p)—p, 0)— M (w(c+ia—p)—
0, 9(J)) is contained in M (w(c+2¢s—p)—p, b).. Hence we get a surjective
U 4(g)-homomorphism ¢: M,—V,4. For p=Q., let My (¢) and V4(¢) be the
images of M4(w(c+2:.—p)—p, 0)(p) (i.e., ‘the weight space’ of weight w(c+2q4
—p)—p—p) by the natural projections. As is easily seen, M, is a direct sum
of M4(p)’s. On the other hand, V, is also a direct sum of V 4(p)’s, by (1.17.3).
Since ¢ induces a surjective A-homomorphism ¢(g): Ma(p)—V () for each g,
it is enough to show that ¢(p) is bijective. As is easily seen, Mu(p) is a
free A-module of finite type. On the other hand, V 4(y) is also a free A-module
of finite type by (6.4, (1)). Since ¢(y) is a surjection between free A-modules
of finite type, it is enough to show that dim M,(¢)®4. 1,C=dimV 4()&Q4.2,C
for 2.4y, i.e.,

(6.8.3) chM(w(@—p)—p, p(J)=chV(w, 4, p(I)),

where A=1.+4;. By (6.7.1) and the Weyl’s character formula, the left hand
side of (6.8.3) is equal to
(6.8.4) N s(w//)ew"(wtl—p)—fh‘p(u‘))—p(J) I Q—e ),

wr'eEW g aER
where e(w”)=(—1)**" and o(/)=(1/2)Zacr.~r,&. Let B=TI; and a=—w"'(B)
(=II:). Then <wp+p, 87>=—<p, a”>+<p, B7>=0, and hence wp+p is W,-
invariant. Since wW,w'=W, and wp(l)=—p(J), (6.8.4) is equal to
(6.8.5) e7vP e 3 g(w')eww medNtwod TT (1—e~) L,

w'ew ; aER,

On the other hand, by (6.3) and the Weyl’s character formula again, the right
hand side of (6.8.3) is equal to

(6.8.6) e wrmry( D e(w')ew wiiten-och T (1—e=%)Y)
w'eWw y @R NRp
. (1—e ).
aER\WR;

(Note that the highest weight of V;(4) is w;4.) Since
w II (—e ) '=wlew)e* > I 1A—e*)™)

aER NR] aER NR]

=e(wper* > II (1—e ™7,
aER . NRy

replacing w’ with w’w; in (6.8.6), we can see that (6.8.5) is equal to (6.8.6).
Thus we get (6.8.3) and complete the proof.
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Remark 6.9. Let us show that the set
6.9.1) {V(w, 2, pUNIIcS, weW/W i), {4, a”>=Z<, for a=ll;}/=
is strictly larger than the set
(6.9.2) {MQ@’, p(UNIJ<S, X, BreZ,, for B=il,;}/=.

Let M2, p(J)) be a module which belongs to (6.9.2). Then by (6.8), M(1’, p(J))
=V(ws, wsd’, p(wsJws)) belongs to (6.9.1). Next let us find a module which
belongs to (6.9.1) but not to (6.9.2). For this purpose, it suffices to show that
V(w, 4, p(I)) in (6.9.1) with A=t; belongs to (6.9.2) if and only if w(ll;)c—II.
Assume that V(w, 4, p(I)) is isomorphic to some module M(4’, p(J)) in the set
(6.9.2). By the Weyl’s character formula and by (6.7.1),
(6.9.3) chM@, p(J)= X e(w’)e? ' eWN=p) IT (1—e~2)1,

w'ew g aER,
Note that the numerator of the right hand side of (6.9.3) can be expressed as
e’ -f, where f is a Laurent polynomial in {ef|B<II;}. Hence among the
factors of the denominator, (1—e~%) for a=R,\R; can not be canceled. (Note
that the group ring of the root lattice is a unique factorization domain.) On
the other hand, for 1=t;,
(6.9.4) chV(w, 4, p(I))=e¥@--r II (l—e %!,

aeR\wR;
by (6.3). Hence

(6.9.5) RAR;cR\wR;.

By (6.9.3) and (6.9.4), we also get

(6.9.6) eui=m-pteth T (l—e )= 3} e(w’)e¥ A *rn,

acR _nwRj w'eW 5

Since the right hand side is W,-antisymmetric, the left hand side is divisible
by Ileer.nr;(1—e *)[6, Chap. 6, no. 3.3, Prop. 2]. Thus (6.9.5) becomes an
equality. Since we(W /W), w(R;N\R.) should be equal to —(R,;NR,), and

(6.9.7) w(II=—1I1,.
(Moreover, comparing the highest terms of (6.9.6), we get
(6.9.8) wA—p)—p=2").

Conversely, assume V(w, 2, p(I)) in (6.9.1) is given and w(II;)=—TI. Then,
by (6.8), V(w, 4, 9(I))=Mw(A—p)—p, p(wlw")) belongs to (6.9.2). Hence, if
A is W-invariant, V(w, 2, p(I)) in (6.9.1) belongs to (6.9.2) if and only if
w{II;)c—TII. Thus (6.9.1) is strictly larger than (6.9.2). In other words, our
U(g)-module V(w, 4, p) is a further generalization of generalized Verma modules.
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§7. Resolutions of V(w, 4, p)

7.0. Resolutions of a finite dimensional U(g)-modules by the Verma modules
were constructed in [2] and [22] in several ways. In this section, we shall
construct resolutions of V(w, 4, p) by the Verma modules. First we construct
a resolution of V(w, 4, p) using the Grothendieck-Cousin complex [22]. Then
using this resolution instead of [2, 9.9], and following the argument of [2],
we construct a second resolution, which is a generalization of the resolution
of a finite dimensional representation constructed by Bernstein-Gelfand-Gelfand
[2,10.1 and 10.1’]. In order to reduce our task, we consider only the case
where 4 is W;-invariant.

7.1. Grothendieck-Cousin complex. We fix an element w-=(W /W), until
the end of (7.6). Let W ={x=W|l(x)=1:}, W(w, )={w =W|w=w’, (w)=
lw)y—1}, Z,=\Ujz\Jzeww, pX(x) for 120, Z;=Z, for i>0 and Z;=X for ;<0.
(See (3.7) and (4.2) for X(w) etc. Note that W(w, )NwW ;=wW® and (Z,—
ZidNgY (w)=Uazew X(wx).) For any sheaf 9’ on X, X=Z\nZiDDZ;iD
Z, .1=¢ gives the global Cousin complex of F’ with respect to the filtration {Z:7}

(7.1.1) 0—I'(X, ') —> H%;, 124 X, g) —> H%a/z'2 (X, ') —> -
See [22, 7.8]. We have also the local Cousin complex [22, 8.6]
(7.1.2) 0—> 9" —> HYy 2 (F') —> Hpy 2, (F') —> -

7.2. Let C be the full subcategory of the category of quasi-coherent ©-
modules consisting of sheaves whose supports are contained in ¢-'Y (w). Then
¢ is closed under kernels, cokernels and extensions. Since H}/Z%(ET")EC for
any 9’=C and ¢, j=Z, all the basic assumptions of [22, 9.4 and several lines
preceding it] are satisfied with our category C and the filtration {Z;}. Let us
show that the following conditions are satisfied for 7=>0.

(L.V.), Rl %1z (F)=I"xz. (F’) if §’=C and suppg’'cZ;.

i+1 i+1

Let ¢j: Z;—Z,.,—X be the inclusion mappings. If >0, then the connected
components of Z;—7;,, are affine spaces X(x) (x&W(w, 7)), and hence for any
w W, i (w’ X(ws)) is a disjoint union of X(x)Nw’X(ws) (x=W(w, 7)). Each
X(x)Nw’X(ws) is empty or a complement of a hypersurface in the affine space
X(x), and hence ¢;~'(w’ X(ws)) (>0) are affine varieties. Since {w’X(ws)|w’ W}
is an affine open covering of X, ¢; (/>0) are affine morphisms. Hence by the
argument of the proof of [22,9.6], we can prove (L.V.), for i>0. Since
RI %12, (F)=RI'22,(3") and I'y;7,(F")=1"zyz,(F") for F'=C, we get (L.V.),
by the same argument. Thus the condition (L.V.) of [22, p 362] is satisfied.
In a similar way, using the fact that Z,—Z,,, are affine varieties, we can show
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that the condition (G.V.) of [22, p 362] is also satisfied.

7.3. First construction of a resolution. Let m:=cd(w) = codimyY (w) =
codimyq™ 'Y (w) = l(ws)—L{(w), and F:=H™1yu(Ox)=RI ¢-1vw (Ox)[m]. (Recall
that w=(W/W;),.) Then $=C. Note that, for =0,

RFZ' 12

i+1

qu—lycw)zRr(zg—zg“)nq—lnw)— @D Rl xwn

weW ; (0

in ¢, and codimyX(wx)=m-+{(x) for x=W;. Hence, for =0,

(7.3.1) Hb 2, (F)=HY, 2, (Hi1vw)(Ox)= EB HY 0 (©x)
:L'EWI

and

(7.3.2) Hiy )z, (F)=0, if j#i.

By [22, 10.5], & is locally Cohen-Macaulay with respect to {Z;}. In other
words, the complex (7.1.2) is exact for '=9%. By [22, 9.5.(e)], H%, 1z, ,(F)
are ['(X, —)-acyclic. Hence HU(X, F) are the cohomologies of the complex

(7.3.3) F(X, H%b 174 (ﬂ")) e F(IYy Hé'l /Z'Z(g)) —_>

Again by [22, 9.5.(¢)], the complex (7.3.3) can be naturally identified with the
complex

(7.3.4) Hyy 1z (X, F) —> H}y12,(X, F) —>
By the same calculation as (7.3.1), we get

(7.3.9) Hby iz

i+1

(X) ﬂ:)_— @ H??—u}x)(xy OX)-

.rEW
Since
RI'X, F)=RI'(X, R[4~y O@x))[m]=RI'(Y, RqxRI ¢-17w>©Ox))[m]
=RI(Y, Ry Res(©x)[m1=RI'Y, R ycw;@p)m]=RIycw;Y, Oy)[m],
we have
. H’i’n(’w)(yy 0); if i:0
(7.3.6) HYX, @)= {
0, if 7+#0.

Since the cohomologies of the complex (7.3.4) can be identified with (7.3.6),
and each term of this complex are given by (7.3.5), we get the exact sequence

(7.3.7) 0—> HF (Y, Op) — A" —> A' —> .. —> AV — 0,

where
Al= ED X(m)(X OX)

IEW
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Lemma 7.4. For A€t] 44, we have an exact sequence
(74.1)  0<~— H¥u»(Y, 0y(A))*<— By<— B;<— -+ <— B;, <—0,
where I'=I(w;) and

B,= @(i)M(w x(A—p)—p).

zEWI
Proof. As a dual of (7.3.7), we get the exact sequence
0 <— HP (Y, 0¥ <— (A <— o «— (AV)¥ «<—0.

Thus the assertion follows from (3.8).
Using (6.6), the above assertion can be also stated as follows.

Lemma 7.5. If 1=t] .4, we have an exact sequence of U(g)-modules
(7.5.1) 0<—V(w, 4, p<—By<—B,<— - «<—B;.<—0

where I’ and B; are as in (7.4).

Lemma 7.6. For A=t 44, dim Torj-(C, V(w, 2, p))=card W, where C is
considered as a trivial right n_-module.

Proof. Since (7.5.1) gives a free U(n_)-resolution of V(w, 4, p), the torsion
groups are the homology groups of the complex

0 <— By/n_By <t B,/n_B, <2 . <~ By/u_By <—0.

For xcW{» and yeW{ ", we have (wy(A—p)—p)—wx(2—p)—p)=w((p—2yp)
—(p—xp)), which can not be equal to zero by [2, 9.8]. Hence d,=0. (Note
that B;/n-B;=@zew» Cu(wx(A—p)—p), where u(—) is the highest weight
vector of the Verma module M(—).) Since dimB,/n_B,=card W{®, we get the
assertion.

Lemma 7.7. ([3]. Cf. [9].) For any field k of characteristic zero, and
A, p<ti, the following conditions are equivalent: (1) M(A—p, b:)DM,(n—p, b2).
(2) There is a sequence Ty, -+, Tn 0f roots suchthat 2=r; (A)Zrpry (A=--=r; -
1t (A)=pt.

7.8. For x, yeW and 7y=R, we write xi»y if xry,=y and I(x)+1=I((y).
Sometimes we shall omit the symbol 7 on the arrow. For x, yeW, the follow-

ing conditions are known to be equivalent (cf. [4]): (1) There exists a sequence
T2

71, ***, Tn in R such that x:x02x1—> r—n>xn:y. 2) x£y. (3) BxBcByB.

Lemma 7.9. Let YR, weW and w'=wry. Then wLw’ if and only if
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w(—p)Sw'(—p).

Proof. Let n=<r", p>. Then 0#n=Z and wp—w’p=nw(r). Hence wp>
w’p if and only if nw(y)>0. Let 7'=w(). We may assume that 7'>0 by
replacing 7 with —7 if necessary. Since w’=rpw and wp—r,wp=ny’, the

condition ny’>0, i.e., n>0 is equivalent to rpw>w, i.e., whw’ by [2, 8.10].

Lemma 7.10. For w, w’ =W, the following conditions are equivalent:
(1) Mx(w(n—p)—p, 0)2 Mx(w’(p—p)—p, b). (Recall that n=c@4K.) 2) M(—wp—
0, D M(—w'p—p, 8) and wW,=w'W;. 3 w=zw’ and wW,=w'W;. (4) There

. . T T2 n ,
is a sequence Yi, -+, ¥n in R; such that w=w, <~ w, «— - — w,=w’.

Proof. Assume that Mx(w(p—p)—p, b) D Mg(w’(n—p)—p, 6). By (7.7),
there exists a sequence 71, -, 15 in R such that w(n—p)Zrpw(n—p)= - =
rp oty w(n—p)=w’(n—p). For any x, y=W, x(n—p)=y(n—p) implies that
W r=yW,; and x(—p)=y(—p). Hence wW,=w'W; and

(7.10.1) —WPZ TR WP Z— Ty, T T Wp=—w'p.

Let w'(rd)=r: Since wW;=ry rpwW,=wry - r;W,, the reflections r,,
belong to W;. Hence y;€R; and —wpz=—wr; 0= - Z—wry, - tr,rr,0=—w'p.
By (7.9), this relation is equivalent to the assertion (4). Thus we have proved
the implication (1) = (4). The implications (4) = (1) and (2) © (4) can be proved
in a similar way. Let us prove (3)= (1). Take x=(W/W;), so that xW,=
wWi=w'W;. If w=w’, then x, w and w’ can be expressed as x=t; --- t,,
where e=I(x) and {;&S, w=t, - tqr, - 75, Where a+b=[(w) and r;=I, and
w! =ty by, i Ty, Where 154, < <dp Za, 157, < <jy<b and a’+b'=I(w’).
Since x=(W/W)sand t;,---t;,, Wi=w'W ;=xW =t,---t,JV;, the expression of w’
should be w’'=tto7; +7j,. Let yo=r,---r,. Since r,---r,=r; -+ r;,, We can
find a sequence 7., -+, ¥»=R; such that

1 ] n
i Vp=Ygc— Y € ++ <— yn:rjl rjb' .

(Apply (7.8) to the Weyl group W; with the set of simple reflections I.) Then

T T T
(7.102) w:xyo <L.. xyl (___2_ <_L xyn:wl,

and y,=W,;. Since y is W-invariant,
(7.10.3) xYia(—0p)—xy(n—p)=xy:1(—p)—xy.(—p).

By (7.9) and (7.10.2), xy;-:(—p)=xy.(—p). By (7.10.3), w(n—p)=xy4(n—p)=
Zxy.(n—p)=w'(p—p). Thus, by (7.7), we get the implication (3)= (1).
The implication (4) = (3) follows from (7.8).
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Lemma 7.11. Let R=R(x) be an nXm-matrix with components in C{x]=
Clxy, -+, x,], where x,, ---, x; are indeterminates. Assume that the rank of
R(A) is m—1 for any A<C'. Then there exists a unique vector u=u(x)=C[x]™
up to a non-zero constant multiple such that R(x)u(x)=0 and u(x) is not divisible
by any element of C[x]\C. Moreover, u(2)+0 for any A=C".

Proof. The assertion concerning the existence and the uniqueness is
obvious. Let R;(x) (1<j<m) be the column vectors of R(x). For any i=C!,
there exists a unique nontrivial linear relation 3)%,c;R;(1)=0 up to a constant
multiple. Let U,={A=C"|¢,+0}. For any A<U,, there exist unique uj(A)=
C(j#k) such that R,(A)=2X,.:uj(A)R;(4). Using the formula of Cramer for a
system of linear equations, we can express uj(x)’s as regular functions in x=
U,. By multiplying the denominators of uj(x)’s, we get a relation of the form
STu(x)R(x)=0 with u/(x)=C[x] such that u/(4)+0 for any AcU,. Dividing
by the greatest common divisor, we may assume that u/(x)’s are relatively
prime. Since u is a non-zero constant multiple of u”, u()#0 for any A=C'=
UkUk'

Lemma 7.12. If the equivalent conditions of (7.10) are satisfied with w and
w’, then there exists a U 4(g)-homomorphism ¢ : M(w’(c—p)—p, B)—Ms(w(c—p)
—p, b) such that ¢Q4,:C+0 for any 2=t;. Such a homomorphism ¢ is unique
up to multiplication of a non-zero complex number.

Proof. 1t suffices to consider the case where w=w’r, with a=R;NR,
and [(w)=I{(w’)+1. Then w'(a)=R,,

(7.12.1) w(c—p)—p=w'(c—p)—p+nwaz=zw'(c—p)—p

with 7n:={p, @™, and MxWw’'(n—p)—p, )T Mg(w(n—p)—p, b). Hence there
is a non-zero element u of Ux(n.) such that

(7.12.2) [H, ul=—<{nw'a, H) for Het, and
(7.12.3) n,.uv=0,

where v denotes the canonical generator of M (w(c—p)—p, b). Multiplying
and/or dividing an element of A if necessary, we may assume that ueU (n_)
and a'u¢lUy m) for any a=A\C. Identify A with a polynomial ring
Clx,, -, xi], let Um.) (—nw’a) be the set of u=U(n_) satisfying (7.12.2), and
fix a C-basis of U(n.) (—nw’a). Then Un.) (—nw’a)@A can be identified with
A™, where m=dimUm_)(—nw’'a). Let u=u(x)="(u,(x), ---, un(x)). As is seen
from the proof of [9, 7.6.12], the condition (7.12.3) on u can be written as a
system of linear equations in u;(x) (1<:/<m) with coefficients in A=C[x,, -
x:], say,

’
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(7.12.4) R(x)u(x)=0.

Since w(A—p)—p=w'(A—p)—p+nw'azw'(l—p)—p for any 1<t;, dimHom
(Mw’'(A—p)—p, b), M(w(A—p)—p, 6))=1 by [9, 7.6.6 and 7.6.23]. Hence the solu-
tion space of (7.12.4) is one-dimensional for any (4, ---, 4;)€C?, i.e., the rank
of R(A) is equal to m—1. Thus applying (7.11) to our situation, we get an
element v'=uv of M,(w(c—p)—p, b) such that v/®, ;10 for any 1=t;. Then
the U 4(g)-homomorphism which sends the canonical generator of M (w’(c—p)
—p, b) to v’ satisfies the condition.

7.13. Fix a reduced expression of each w=W;\{e} and let o(w)<I be the
last factor of the fixed expression. For any arrow w—w’, define the function
s(w, w’) by the induction on [(w) as follows. If we(w’)>w, let s(w, w)=1.
(Especially s(e, w’)=1.) If wew)<w, let s(w, w)=—s(we(w’), w a(w’)).

Lemma 7.14. ([2, 10.3 and 104]) (1) If w,—»ws—w, with w, W, there
exists exactly one w,=W;— {ws} such that w,— w,— w,. (2) For any quadruple
(w1, wa, Wy, wy) as in (1), s(wy, we)s(ws, we)+s(wy, w)s(ws, ws)=0.

7.15. Let weW/Wi),. For any x&W;, Mx(wx(p—p)—p, b) can be em-
bedded in Mx(w(p—p)—p, 8) by (7.10). Let c¢’(e, x) (x=W;) be such embed-
dings. By (7.12), we may assume that c¢’(e, x) induces an embedding cj(e, x)
of Mjwx(c—p)—p, ) into Miw(c—p)—p, b), and that cy(e, x)R4 C*0 for
any A<t;. Fix such an embedding for each x<W,. Then, if x,, x,=W; and
x1—X,, there is a unique embedding ¢’(x, %) : Mx(wx,(n—p)—p, )—>Mg(wx,(n
—p)—p, B), which is compatible with the fixed embeddings ¢’(e, x). Put x,=
e, Mi=M (wx;(c—p)—p, b) =0, 1, 2), and let u; be the canonical generator
of M,. By (7.12), we can take t=K* so that wu;:=tc’(x:, x,)(us)=M, and
UsR4 211£0(EM;Q4,:C) for any A=t;. Then tc'(e, x,) sends u, to ciyle, x,)(usz)
=M,. Hence tc’(e, x,) sends M, into M, and for any A<ty, (tc’(e, x:)Q4 1C)
(u®1) = (ciy(e, x1)Q4,1C)usR1)=~0, since cyle, x,)QC is an embedding of a
Verma module. Then by the uniqueness part of (7.12), t&C*. Hence c¢’(x;, %)
sends M (wx,(c—p)—p, B) into Mu(wx.(c—p)—p, ) and ¢’(x;, £)®4, €0 for
any A<t;. Let

s(xy, x0)¢’(xy, xa),  if x1— %,
c(x, x2)={ .
0, otherwise.
Let W= {x=W,|l(x)=1}, I’=I(x;) as before, and

CA.‘L: GB A’WA(wx(C'"P)_P; f))'

(@)
rEW;

Then di=(c(x, y))zew®,ewfi+p and the natural projection e: C 4 =M (w(c—p)
—p, )=V 4(w, ¢, p) defines a sequence
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(7.151) 0 < VA(Z.U, c, ]J) < CA,o < CA,I < e CA,l' < 0

which is a complex by (7.14). (Note that C4 =] A w(c—p)—p)=M(w(c—p)—
P; b):cA.O')

Theorem 7.16. For w=W /W), the complex
O<—Vi(w, 9, p)<— Cgo<— Cxy<— - <— Cga<—0
obtained as (7.15.1)Q4K is exact.
Theorem 7.17. For we(-W/WI)l and A<t], let
C= & Muwx(A—p)—p, )=C4s&a.:C .

:cEWI
Then the complex

TATL) 0 Vw, 2, 1) < Cod) <2 Cod) «— - <X C@) <—0
obtained as (7.15.1)Q4,1C is exact, if 2=1] 44.

Proof. Since (7.16) and (7.17) can be proved in the same way, we shall
prove only (7.17). The surjectivity of & is obvious. Assume that we have
already proved the exactness at C,(4), ---, C,_;(4), and let us prove the exactness
at C,(4). (If 7=0, we do not assume anything.) Let C;=C;(4) and K;=kerd;.
The desired equality d,,,(C,.;)=K; is obtained by modifying the proof of [2,
10.1’]. Here, we provisionally use notations close to those in [2]. Also in
our case, it is enough to prove the same assertions as Lemmas 10.5, 10.6 and
10.7 of [2]. We do not need any modification concerning Lemma 10.5 of [2].
As in [2], the proof of “Lemma 10.6” is divided into following two steps.

Lemma a. JH(K,)cJH(C,.,).

The proof is the same as in [2] except that we use the exact sequenece
(7.5.1) instead of the one constructed in [2, 9.97.

Lemma b. Let 2ct”, M=0, and L(A—p) be the simple quotient of the
Verma module M(A—p)=U@)QuwC(A—p). (See [2, §8] for O). Assume that
2 is maximal in {p=t"| L{p—p) occurs in JH(M)}. Let v: MA—p)— M be a
homomorphism such that the image t(f:-,) of the canonical generator f;_, of
M(A—p) is not zero. Then the image of ©(f1-,) in M/u_-M is also not zero.

Proof. We shall prove the assertion by the induction on the length of M.
Let f4-,&M be a weight vector whose weight ¢—p is maximal among the
weights of M and N cAf the submodule generated by f,_,. Concerning the
case where 7(f;-,)¢&N, we do not need any modification of the proof given in
[2]. Assume that z(f;-,)eN. Then L(A—p)=JHWN)cJHM(p—p)). Hence
A=<¢. On the other hand, L(¢—p)=JHN)cJH(M). According to the condi-
tion of the lemma. we get A=¢. Since ¢—p is a maximal weight of
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M, ©(fa1-p)é&n_-M.

To complete the proof of “Lemma 10.6”, i.e., the injectivity of the mapping
Co/n_-Cy— K, /u_-K;, it suffices to apply Lemma b to the module M =K,.
Cf. the proof of Lemma 10.6 of [2].

Lastly, we modify the proof of Lemma 10.7 of [2], namely, we replace the
proof of the identity dimyC;,,/n_C,,; =dim¢K,/n_K; < o with the following
argument. Define the modules C and D, and the morphisms %, 9, 7 and 4 in
the same way as in the proof of Lemma 10.7 of [2]. Then we get exact

T 9 (2]
sequences D—7]—>C—+Kl—>0, and C—C;—K,_,—0. (The latter sequence should be
9 £
replaced with C—C,—V(w, 4, 9)—0, if 7=0.) As in [2], using these sequences,
we can show that dimK,/n. K;=dim Tor;5(C, V(w, 4, p)). On the other hand,
by (7.6), we get dimC,,,/n_C,,;=card W§*V=dim Tor;(C, V(w, 4, b)).

Remark 7.18. We assumed that 1—p is anti-dominant in (7.17). The author
does not know whether this condition is necessary or not. A deeply related
result is obtained by O. Gabber and A. Joseph [10].

§8. 9-modules Associated to Complex Powers of Functions

8.0. The purpose of this section is to prove (8.4), which will be used in
the next section.

8.1. Let X be a connected smooth variety over C, ©=0Oy the sheaf of
regular functions, 9y the sheaf of algebraic differential operators, f,---, f,&
I'(X, ©x) which are not identically zero, I=1{1, 2, ---, I}, e,=(0, ---, 0, 1, 0, ---,
0)=C% where 1 appears as the k-th component, s=(s;, ---, s;) the linear coor-
dinate functions of C*, g=II!-.f.,, B an open ball contained in 2=X\g*0),
and ff=f{1.-- fit a single valued branch of BXC'=(x, s) — fi(x)*---fi{x)*. Let
Ds1=DRcCLsy, ++, s1], W=}, 5, =D[s1*, N (@)=T},,.. 7 (Q=T"/Zizr(s.—
a)T, a)=T"(@)Lf1*, -+, f1'], for a=(a, -, a)EC" and u(a) (resp. u'(a))
the section of the 9-module J(a) (resp. J1’(a)) corresponding to J°.

Lemma 8.2. For any k<1, there exist Po=P,()€D[s] and b.(s) = C[s]
such that Pof* k=by(s)f* and by is a product of polynomials of degree at most 1.

Proof. This lemma is essentially due to Sabbah [28]. Since Sabbah works
in the analytic category, we need to deduce from it the corresponding assertion
in the algebraic category. The necessary argument is the same as the last
part of the proof of [12, 2.5.4].

Lemma 8.3. Let g=IIf: as above,
W'={(x, s grad log g(x))T*2|s=C*},



GENERALIZED VERMA MODULES 387

W=the Zariski closure of W’ in T*X, and
Wo={(x, y)e Wig(x)y,==g(x)y.=0}.

For any a=C", the characteristic variety of JUa) is W,. Especially Ji(a) is
holonomic. (Here T*X denotes the cotangent bundle of X.)

Proof. 1If g7'(0) is normal crossing, the assertion can be easily verified.
Moreover, we can show that the characteristic cycle of J1(a) does not depend
on a in this case. In general, by the Hironaka’s desingularization theorem
[15], there exist a smooth algebraic variety X and a projective morphism p:
X—X such that (g°p)"*(0) is normal crossing and p induces an isomorphism
p: G:=X\(g°p)"(0)—X\g(0)=R. Let Ji(a) be the 9 z-module defined in the
same way as Jl(a) using fiep, ---, fiop instead of f,, -, f;. Then Ji(a)=

jeo@ D=ix(] @) 2)=| @ D= 2@, where j: @—X and j: G
p p D
X are the inclusion mappings, and is the integration along fibres. (See [17].)
p
Since Jl(a) is holonomic, the characteristic cycle of 32(@)=S J1(@) depends only
P

on the characteristic cycle of Jl(a)[23]. Hence the characteristic cycle of
I@)=Ty,.... s (a1, =+, a;) coincides with that of 77,(0), whose support is known
to be W, [29] (cf. [12, 2.4.6, (2)]).

The purpose of this section is to prove the following assertion.

Proposition 8.4. Let p be a point of W, and assume that there exist in-
vertible micro-differential operators Q. in a neighbourhood of p such that

8.4.1) Qufre=bi(9)f*,

where b,’s are the polynomials appeared in (8.2). Then Ji(a) is a simple D-
module (i.e., it does not have a non-trivial coherent D-submodule) if and only if
br(a—v)#0 for any k=1 and v Z'.

8.5. Proof of the “if part”. Let M be a coherent non-zero 9-submodule
of J1(a). Since Ji(a) does not have a non-zero submodule supported by g-*(0)
and since 92(a)|(X\g™*(0)) is a simple 9-module, H=J1(a) on .X\g '(0). Let
u”(a) be the element of Ji(a)/ M corresponding to u(a). Then J(@)/ H=\Umecz
D(g™u”(a)). Fix an integer m arbitrarily. Since the support of J(a)/H is
contained in g7'(0), g™*™ u”(a)=0 for a sufficiently large integer m’. Applying
P,’s several times to this relation, we get a relation of the form (Il¢s, vesb:(a
+v))g™u”(a)=0 with some finite subset S of IxXZ!. It follows from our as-
sumption that g™u”(a)=0 and J(a)= M.

Remark 8.5.1. The assumptions on @Q,’s are not used in the “if part”.



388 ArxiHIKO GyojJa
8.6. In order to prove the “only if part”, we need some preliminaries.

8.6.1. Let < be a Dy-module, u a section of M, and f=0Oy. Consider
the left ideal ¥ of 9D[s] consisting of differential operators P(s)=9D[s] such
that (f™*P(s)f*)u=0 holds in C[s]®cH for a sufficiently large integer m.
(Note that f™*P(s)f*<c9[s] if m is sufficiently large.) Let f*u be the section
of £:=9[s]/9 corresponding to the identity element of 9[s]. Then £
= 9[s]/9 = D[s](f*u). For a complex number a, let f¢u be the section of
L/(s—a).L corresponding to f'u. Then .L/(s—a).L=D(f%u).

8.6.2. Define an endomorphism ¢ of the 9-module .L by i: P(s)(f’u)—
P(s+1)(f-f*u). Then ¢t is well-defined and injective.

Proof. Let m be a sufficiently large integer, and f™ %-P(s): f*=21,:,8'P,.
The following conditions are equivalent: P(s)(ffu)=0. X,-,s’Pu=0. 3;:.(s
+1YP;u=0. P(s+1)(f-f'u)=0. Thus we get the assertion.

8.6.3. If 9u is holonomic, then £ is a subholonomic 9-module, and .L/(s
—a).L (@a=C) and .L/t.L are holonomic.

Proof. The first assertion is due to Kashiwara [18, Theorem 2.5]. The
remaining assertions follow from it.

8.6.4. If 9u is holonomic, the composition factors of .£/(s—a)L (including
multiplicities) depend only on (¢ modZ).

Proof. Let C[s,t] be the C-algebra defined by the relation #s=(s+1),
and 9[s, t]=DRC[s, t]. The multiplication by s and the endomorphism
defined in (8.6.2) give a 9D[s, t]-module structure in .£. The assertion follows
from (8.6.2), (8.6.3) and [12, 2.8.5].

8.6.5. Assume that there exist a differential operator P(s) and a polynomial
c(s)=C[s] such that P(s)(f- ffu)=c(s)/*u. If c(@a—j)#0 for j=I1, 2, ---, then
(L/(s—a)L=)D(f u)=D(f*u)[ f*] (cf. [12, 2.3.8]).

8.6.6. Let p be a point of the conormal bundle 7*X, and assume that p
is contained in the characteristic variety of £/(s—a).L for any a=C. Let &,
be the ring of germs of micro-differential operators at p. If there exists a
micro-differential operator @ =&, which is invertible and satisfies Q(f: f*u)=
c(s)f’u with the same c¢(s) as in (8.6.5), then ¢(s) is a minimal polynomial of
s€Endg(.L/t.L).

Proof. Let £,=8,Q9L. Since p lies in the characteristic variety of
L/(s—a).L,0£E,R9L/(s—a)L=Ly/(s—a)L, for any a=C. Hence (s—a).L,
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S L, for any a=C. Since a(s)L,+0 for any a(s)eC[s]—{0}, the above rela-
tion implies the faithful flatness of ., over C[s]. Let ¢(s) be a minimal
polynomial of s=End(.L/t.L). Then c(s)=c,(s)d(s) with some d(s)=C[s]. If
d(s)#C7, then c(s)CLs1< ci(s)CLs] and c(s)Lyp Sei(s)LpStL y=Ep[s1(f** u).
On the other hand, since Q is invertible in &,, c(s)-L, = c(s)Ep[s1(f*u) =Epls]
QU w)y=¢&,s1(f*'u). Thus we get a contradiction. Hence d(s)=C”, i.e.,
¢(s) is a minimal polynomial.

8.7. Proof of the “only if part”. Assume that b,(a—v)=0 for some r=Z*,
and let us prove that 7(a) is not simple. Since J1(a)=7x(91(a)|2) and Ji(a)| L2
depends only on (@ modZ!), we may freely replace a« with other element in
the same residue class modulo Z'. Especially, we may assume from the be-
ginning that b,(a)=0. We have (PP - P))g* 'u(a)=c(s)g*u(a), where c¢(s)=
=i (stay+1, -, s+a,+1, s+ay, -, s+ay). Put £L=9[s](g*u(a)) and let
us show that the conditions of (8.6.6) are satisfied. For any B<C, there exists
an integer m such that

@7.)  L£/(s—B+m)L=D(g" ™u(a)=D(g*u(@)[ g ' ]=1a+B3),

where 0=(1, ---, 1). (Cf. (8.6.5).) By (8.6.4), the characteristic variety of .L/(s
—B)-L coincides with that of £/(s—B+m)L=7(a+p0d), which is W, by (8.3).
Moreover, (Q.Q, Q) g  u(s)=c(s)g’u(s) and Q,Q,--Q, is invertible at p= W,.
Thus the conditions of (8.6.6) are satisfied. Hence ¢(s) is a minimal polynomial
of s=Endg(.L/t.L). Since bi(a)=0, c(0)=0. Let c(s)=c,(s)s. If s is surjective,
then s is an automorphism of .£/t.L, for .£/t.L is holonomic. But, then ¢,(s)
=0 as an endomorphim of _£/i.L, which contradicts the minimality of ¢(s).
Hence s=End(.L/t.L) is not surjective, i.e., s.L+t.LS.L. Then 9 :=(s.L+1t.L)/
sLE.L/sL. Since t.L=. on 2, 9+0. Thus we get a proper submodule of
L/s.L. Since .L£/s.L and L/(s+m)L=3T(a) (cf. (8.7.1)) have the same composi-
tion factors, J1(a) is not simple.

§9. Submodules of V(w, 4, ) and b-functions

9.0. The purpose of this section is to prove (9.4) and its corollary (9.13).
In (9.4), we describe the submodule lattice of V(w, 4, ). In order to state (9.4),
we need some definitions, which are given in (9.1)-(9.3). The proof of (9.4) is
given in (9.5)-(9.11). In (9.13), we give a criterion for the simplicity of
generalized Verma modules, by combining (8.4) and (9.4).

9.1. Let A2 be a W;-invariant character. If we forget the 9y(2)-module
structure, then O(wU_, A)=0y|wU_-y,. (See (2.5) for O(wU_, 2).) Hence we can
regard 1= (wU_-y,, Oy) as a section of @(wU_, 1), which we shall denote by
1. We write 1% for 12 Then 9y|U_-y, is isomorphic to Dy(A)|U_-y, by
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DyoP - 1*@QP®1-*. Thus from any (Dy(A)|U--y,)-module H, we get a
(Dy|U_-y,)-module 1" QM.

9.2. Semi-invariants. From now on, we assume that G is semi-simple
and simply connected. Note that these assumptions are not restrictive for the
study of (generalized) flag manifolds, /(g)-modules, etc. Then each w=Xi-,
n,w; (n;=Z) determines rational characters of T, B and B_:=wgsBws (via the
projection B_ — T'), which we shall denote by the same letter w. If every n,
(1£:<l) is non-negative, then there exists a regular function f® on G such
that f@(e)=1and f@b’xb)=w(b")w()f®(x) for x=G, b’B_ and b=B. We call
such a polynomial a semi-invariant. These functions f? can be constructed as
follows. Let V5 be a finite dimensional irreducible representation of G with
highest weight @, vy its highest weight vector, and v_, the lowest weight
vector of the contragradient representation V5 of V, such that <v_g, va>=1.
Then the regular function f® is given by

9.2.1) f(@=<v-u, Vo> .
Let f;=f". Then fo=IIi-.f7.

9.3. Assume that TI;={a.i, -, a;}. Then t;j ={1=3}_,4,w;|4,=C}. Let
s=(s:)1z:<r be independent complex variables, f(x)=TT%.f%(x), F'=Dels1, -+,
self5, W(A)=T'/3k (s,—A)T’, and u(d) the generator of JI’() corresponding
to f*. For any 9g-module M, let g M :=L%-1M(g =G), where L,-: is the left
translation by g'.

Theorem 9.4. Assume that A=A, +A.Sraa, where A, is W -invariant and A4
is the lowest weight of a finite dimensional irveducible P-module. For w<
W/W ), put

L,={U(g)-submodules of V(w, 4, p)},

L¥={U(g)-submodules of V(w, 2, p)*},

L.={coherent Dx(A)-submodules of HEL (Ox(A)R0Ox(Aa)}

Ly={coherent Dyx(A.)-submodules of HEX (©xA))},

L,={coherent Dy(A;)-submodules of HELE (Oy(Ac))},

L= {coherent (Dy(A;)|U_-y,)-submodules of HPZE O©yA))| U~ yo},
L¢={coherent (Dy|U_-y,)-submodules of 17 *<QHEL O©rA)|U- o)}, and
L.={coherent Dg-submodules of HEL (wI'(—A))}.

Then as lattice-ordered sets,
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LypP =], ==, =L=L,=L,.

(See (1.1) for t7.q, W/W ), U_, and *, (4.8) for Ox(As), and 4.2) for X, Y, X(w),
Y(w), cd(w) and y,. We denote the dual of L by L°PP.))

Proof. Obviously, L¢??=L% L,=L;and L;=L,. By (3.4) and (6.6), L¥=
L,. By (.4), L;,=L,. In order to prove L,=L; and L,=L, we need some
preliminaries. Henceforth until the end of (9.11), we write A for 4., since we
exclusively consider the W ,-invariant characters.

Lemma 9.5. For any w=W,Yw)"\U_-y,#¢

Proof. Since BwsB isa Zariski open subset of G, BwsBgnBwsB+¢ for
any g=G. Hence BgNnwsBwsB+#¢. Especially, Y(w)~U_-y,=Bwy,N\wsBws
*By,#¢ for any w=W.

Lemma 9.6. Let S be a smooth algebraic variety over C, U a Zariski open
subset of S, As a twisted ring of algebraic differential operators on S ([19, 2.3.3]),
Ap=As|U, M a coherent As-module, and N’ a coherent Ay-submodule of MIU.
Then there exisls a coherent As-submodule N of M such that N|U=N".

Proof. Since M and N’ are quasi-coherent over Os and Oy, respectively,
we can find a quasi-coherent Ogs-submodule N; of M such that N,|U=N’, by
[11, (53.9.2)]. Let N be the As-submodule of M generated by N,. Then VN is
a coherent .4s-submodule of M such that N|U=N".

9.7. Let us prove that L,=L;. Define a mapping L, —» L; by the restric-
tion to U_-y,. By (9.6), this morphism is surjective. Assume that two modules
M and V in L, restricts to the same module in L;. Then A/(MNN) is sup-
ported by the complement of U_-y,. Hence every irreducible component of the
characteristic variety of M/(AN\N) is the conormal bundle of some subvariety
of Y\U_-vy,. On the other hand, each irreducible component of the characteristic
variety of H$E (0y(4)) is the conormal bundle of Y (w’) with some w’=W/W,,
which is not a conormal bundle of a subvariety of Y\U_-y, by (9.5). Hence
M/(MNN)=0, i.e., M=N.

Thus it remains to prove that L,=L,.

Lemma 9.8. . defining equation of the hypersurface B_-r.,B of G is given
by f,=0.

Proof. Since 7,,(w,)=®,—0d,,@,, we can show that f.(r,;)#0 (resp.=0) if
i#7 (resp. i=j) by (9.2.1). Since f7'(0) isa union of cosets in B_\G/B, and is
a hypersurface of G, we have f;"(0)=B_:r,;B. For A=g(a,) and A'eg(—a,)
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such that [A4, A’J=a;, we have
Fuexp(tA)ra)=Vou, Tapo) +EV-vy Arape+0()
=ctv_g,;, AAVE>+O0)

with some ¢c=C\{0}. (By the representation theory of s/,, we can show that
A'vy;#0. Considering the weight of 7,,vs, We get ra,va,=cA'vg, (c#0).) But
AAvg,=[A, A Jvs,= aivs,=vs,. Hence fi(exp(tA)r,,)=ct+0() (c¢#0). Thus
f.=0 is a defining equation of B_-7,,B.

Lemma 9.9. G\B_-P=\U,es\/B_-7B.

Proof. The minimal elements of W\W; are S\I. Hence the maximal ele-
ments of W\wsW; are {wsr|#»=S\I}. By the equivalence w=w'©BwB>Bw’B,
we get G\BwsP=\Uwew\wgw , BwB=\U,es\;BwsrB. Multiplying ws from the
left, we get the assertion.

Lemma 9.10. The rational characters w, 1<i<k) of B can be extended to
those of P and P.. Denoting them by the same letter w,, we have f;(p’gp)=
. (pVwUD)f.(g) for g€G, p'=P_ and p=P.

Proof. Let 1<i<k, acsIl;={ar.1, -, ai}, Acg(a) and A’=g(a). Then
we have Avy,=0 and a’ve,=0. Hence by the representation theory of s/,
A'vg,=0 and f,(gexpA)={_qz, geXPA Vs >={V-0;, Vs, = f.(g). Thus we
get the relative invariance with respect to P. The relative invariance with
respect to P_ can be proved in the same way.

9.11. Let us prove that L,=L,. It is enough to prove that
9.11.1) PEHFR (Or(D)=H&,E (wI'(—2))

(cf. (5.4)). Let js: B_.-P—G and jy: B_-y,—Y be inclusion mappings. Then
W HER W' (—2) = (o) HE, (T'(—A)| B_-P). Since w'H{E (Or() =

w-1BwP
UpxHLER W, ©W_, )| B_-y,). it is enough to show that pFOU_, H=7'(—4)
on B_-P. Let Az=%%_4,w;and f~*=IT%.f7*. Then f~* gives a multi-valued
holomorphic function on G\\U%-,f;(0)=B_-P. (Cf. (9.8) and (9.9).) Denote by
©f~* the ®-module on B_-P generated by f~*. Then Of *=9f~*=5'(—2)| B_-P.
By (9.10), f~* gives a section of F(4, P) on U_-P,, where P, is a connected,
simply connected open neighbourhood of the identity element of P. (See (2.2)
for F(4, P).) Thus f~* determines a section of @*™(U_, A)=tx(pE™|U_- P)x(F (A,
P)|U_-P,). Take a single-valued branch of f~* on U_-P, so that f~*(e)=1.
Then f*=1on U_, i.e.. f~* determines 1" (U_-y,, Op)=I(U_-y,, OU_, ),
which we have denoted by 1% in (9.1). For g=G, we have (L(g)f *)(x)=
Mg x)=(p¥e.)(x)f~*(x) with a locally defined analytic function ¢, on Y.
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For Acg, let ¢ =(d/dt)@expiali=. Then ¢4 is a regular function, A-f-*=
(p¥pa)-f* and A-1*=¢@,-1*. Hence 1Q1*=pEDr(Q)Q@pst 9y pr'OU-, 2)=
p¥O(U-_, 2) satisfies AQR1)=(p¥e.)(1®1%). Thus all the linear differential
equations satisfied by f~* are also satisfied by 1®1% Since @y_.pf~* and
p?(OB_.yoli) are integrable connections of rank one, 7/(—2)|B_-P=0p_.pf *=
P¥Op_.y, 1)=p¥0U_, 2). Thus we have completed the proof of (9.4).

9.12. As an application of (9.4), we get a criterion for the simplicity of
V(w, 2, p) in terms of P-modules under certain assumptions. Here we restrict
ourselves to the generalized Verma modules.

Let A=2.+4; be a character of t, where 4. is Wj-invariant and 4, is a
highest weight of a finite dimensional P-module. First, assume that

(9‘12'1) le{ak+1y Tty al} ‘Vith k>0; al’ld
(9.12.2) <A+p, a”>+0, —1, —2, --- for any a=R,.

Let W, be the characteristic variety of /(A [f1%, ', f%']. Consider two
more assumptions that
9.12.3) for any i<k, there exists P,€9s and b,(s)=C[s] such that P,f**i=
b.(s)f%, where f*=fi1.--fi¢ and ¢,=(0, ---, 0, 1,0, ---, 0) (1 appears as the i-th
component), and that
(9.12.4) there exists a point p= W, and for any i<k, there exists an in-
vertible micro-differential operator @, in a neighbourhood of p such that
Q:f**ei=Dby(s)f* with the same b;(s)’s as in (9.12.3).

Let us identify A.=(4,, -+, 4;)=C* with 1,.=3¥_4,®,.

Theorem 9.13. Under the above four assumptions, the following conditions
are equivalent :
(1) The generalized Verma module M(A, p(I)) is simple as a g-module.
(2) The generalized Verma module M(—wsd, p(wslws)) is simple as a g-module.
(3) The coherent De-module H ., p(wsT'(Ae)) is simple, i.e., it does not have
non-trivial coherent Dg-submodules.
4) b;(A.—v)#0 for any 1<i<k and veX¥ . Zw,.

Proof. Since the action of —wg on t extends to an automorphism of g
preserving b, we get (1)© (2). By (6.8) and (9.4), we get (2) @ (3). Since
ws'BwsP=G\U}=,f7(0) by (9.8) and (9.9), ws'H v, sp(wsT'(A))=T" AL ST, -+,

74]. Hence we get (3) & (4) by (8.4).

Remark 9.14. We assumed (9.12.1) only to exclude the trivial case. The
author conjectures that the assumptions (9.12.3) and (9.12.4) are always satisfied.
Thus the assumptions except (9.12.2) would be harmless. But (9.12.2) is es-
sential and, because of this assumption, our irreducibility criterion is less
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complete than the one given by Jantzen [16]. In our forthcoming paper [13],
we shall start to study the simplicity of generalized Verma modules and the
b-functions of the semi-invariants without such assumptions. The relation
between (9.13) and the result of Suga [31] will also become clear in [13].
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