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Phantom Maps and Monoids of
Endomorphisms of K(Z,

By

Yoshimi SHITANDA*

Abstract

The compositions hf, hg of phantom pair /, g and a phantom map h are homotopic.
The compositions hf, kf of phantom pair h, k and a phantom map / are homotopic.
We determine the homotopy set [K(Z, m) xSn, K(Z, m) xS71] and its monoid structure
given by the composition of maps for all m, n^l.

Introduction

Two continuous maps /, g : X—*Y are called a phantom pair, if the restric-
tion maps f\ Xn, g\Xn on the n -skeleton Xn are homotopic for all n^Q or
equivalently qnf and qng are homotopic for all n^Q where qn : Y-*Yn is the
Postnikov n -stage of Y. A characterization of a phantom pair is given by
Theorem 3.6 of [5] which is a generalization of [11]. When g is the constant
map, / is called a phantom map. When g is an identity map, / is called a
weak identity map. Many topologists studied properties of phantom maps [3,
11]. We also studied properties of phantom pairs [5]. J. Roitberg [6] studied
the set WI(X) of weak identities of X. In this paper, we shall work in the
category of nilpotent CW-complexes with base point and base point preserving
continuous maps except for some special cases. We use the notations and ter-
minologies of [5, 11].

C. A. McGibbon and B. Gray [3] proved that the composition of phantom
maps is homotopic to the constant map. In this paper, we shall generalize this
result for more general cases.

Theorem 0.1. Let X, Y and Z be nilpotent CW-complexes of finite type with

7Ti(Y), 7Ti(Z) finite groups. Let f, g : X-+Y be a phantom pair and h : Y-^Z a

phantom map. Then hf and hg are homotopic. Let f : X— >Y be a phantom map

and h, k : Y—+Z a phantom pair. Then hf and kf are homotopic.
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J. Roitberg [7] calculated the group Aut(K(Z, 2)xS3) of the self-homotopy
equivalences of K(Z, 2)xS3. That is, there is an exact sequence:

0 —> Z~/Z —> Aut (K(Z, 2)xS3) —> Z/2ZXZ/2Z —> 0

C. A. McGibbon and J. M. M011er [4] determined also Aut(K(Z, m)xSm"1).
In this paper, we shall calculate the homotopy set End(/C(Z, m)xSn)=

[K(Z, m)xSn, K(Z, m)xSn'] for all m, n^l. We determine also the monoid
structure of End(K(Z, m)xSn) given by the composition of maps, Aut(K(Z,m)
xSn) and the group WI(K(Z, m}xSn) of weak identities. We get the next
result.

Theorem 0.2. // m>l, the elements of End (K(Z, m)xSn) are in one to one
correspondence with 2x2 matrices of the form

where as=[K(Z, m), K(Z, m)], b^[Sn, K(Z, m)], d(E\_Sn, SB], and c is the class
of a map K(Z, m)-»Sn if hm^n—2 for even m} n, any h>Q or m or n is odd,
and a phantom map c: K(Z, m)-*Map (Sn, Sn) otherwise.

For m—l, End(K(Z, m)xSn) is given in section 4 with a little different
form. We can determine the multiplication of matrices corresponding to the
composition of maps which is described in Theorem 3.2, 3.3 and 4.3. From
these results, we can easily determine Aut(K(Z, m)xSn) and WI(K(Z, m)xSn).

The author would like to thank professor J. M. M011er for useful advice,
Matematisk Institut of K0benhavns Universitet for the invitation and the assis-
tance and also the referee for his kind advice and suggestion.

§ 1. Phantom Maps and Weak Identities

In this section, we generalize the results of J. Roitberg [6] and B. Gray
and C. A. McGibbon [3]. They proved that the composition of phantom maps
is homotopic to the constant map. This statement is generalized to Theorem
1.1 and 1.4. J. Roitberg proved also that weak identities of X are described
by phantom maps of X for homotopy associative //-spaces X, and the group
WI(X) is a divisible abelian group which does not depend on the multiplication
of X. We generalize the results for rational //-spaces (Theorem 1.7).

Theorem 1.1. Let X, Y and Z be nilpotent CW-complexes of finite type and
7Ti(T) finite group. Let /, g: X-+Y be a phantom pair and h : F-»Z a phantom
map. Then hf and hg are homotopic.
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Proof. If f,g: X-*Y are a phantom pair, rYf and rYg are homotopic
where rY : Y— >YQ is the rationalization. Since qnf and #„# are homotopic by
the definition, rYqnf and rYqng are homotopic where r$:Yn-*(Yn)Q is the
rationalization. By using the equality of the dual form of Theorem 3.3 of [9],

we see that rYf and rYg are homotopic.
By Theorem B of [11], h can be decomposed as h — krY where k : YQ-*Z.

By using the above result, we obtain the result by the following,

By using this result, we obtain the next corollary (cf. [3, 6])

Corollary 1.2. Let X, Y and Z be nilpotent CW-complexes of finite type
and ni(Y) finite group. Let f : X-+Y and h : Y-»Z be phantom maps. Then hf
is homotopic to the constant map.

Let p : XP->X be a homotopy fiber of Sullivan completion e~ : X-»X". The
homotopy group of Xp is a finite direct sum of Z~/Z. A map /: X-*Y is uni-
quely lifted to (/),: XP-^YP because of [Xp, Q1Y^~\=^. By the method similar
to Theorem 1.1, we can obtain the next result by using Theorem 2.1 of [9].

Proposition 1.3. Let X, Y be finite type CW-complexes with finite funda-
mental groups. If f, g: X-^Y are a phantom pair, (f)p and (g)p are homotopic.

Proof. By the assumption and the universality of the completion, /" and
g" are homotopic and also qnf^Qng- Hence we have (qnf)P^(qng)p by the
above remark. Since the homotopy groups of Xp and Y p are finitely generated
over Z~/Z, (/), and (g)p are homotopic by Theorem 2.1 of [9].

The dual version of Theorem 1.1 is obtained by the similar method.

Theorem 1.4. Let X, Y and Z be nilpotent CW-complexes of finite type and
ni(Y), 7Ti(Z) finite groups. Let f : X-+Y be a phantom map and g, h : Y-+Z a
phantom pair. Then gf and hf are homotopic.

A map / : X-+X is called a weak identity, if / and identity map idx are a
phantom pair. Let WI(X) be the set of weak identities of X. We prepare
some elementary results. Let X be a rational //-space. We consider the arith-
metic square (cf . [2, 5]) :
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(1.5)

where p : XP-»X is the homotopy fiber of e" : X-*X~ and BXP is the classifying
space of Xp. Note that Xp, XQ, XQ and B Xp are products of Eilenberg-MacLane
spaces and the upper sequence of (1.5) does not depend on the structure of a
rational //-space.

Let /Jt: XpxX->X be the action of the principal fibration e~ : X-*X~ which
satisfies e~fjt^e~xx> Hence the homotopy set [Z, Xp~\ acts on [Z, X~\ by the
formula

where 0 : Z-*XP, f : Z-*X. This action satisfies the next formulas where 0 is
the constant map, /: Z-*X and 0, 0: Z-+XP.

(1.6) (0+0)*/~0*(0*/)

Two maps 0*/ and / are a phantom pair for c^ : Z-+X9 and / : Z-+X.
Conversely if / and g are a phantom pair, $*g and / are homotopic for some
^ : Z-»XP. Now, there is a map,

defined by @(0)=0*Idx. [X, A"p] has an abelian group structure induced by
the //-space structure of Xp and WI(X) has a group structure defined by the
composition.

Theorem 1.7. Let X be a rational H-space of finite type with a finite funda-
mental group. There is a group isomorphism induced by the above 0

0 : [A', xpyse —> wi(X)
where SO is a stationary subgroup.

Proof. It sufficies to show that 0(0+0)= 0(0)0(0). Here the right-hand
side means the composition of maps.

Now we consider the next commutative diagram.
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^, IdA->
> (XPXX) - >XPX(XPXX)

By the above diagram, the next claim and the definition of the action, we have
the result.

Claim.

Now we shall prove the claim. Since .Y is a rational //-space, ^ can be decom-
posed by the composition

where K=n.jK(7i:j(X), /). Since A0 is a rational space, a map

(p<$, Idx»*: [A, !Q —> IXPXX, K~\ —> [A', K~]

is the identity map modulo torsion group. Hence we obtain the result.

§2. Endomorphisms of K(Z, m)xSn for m, n>l

In this section, we determine the homotopy set \K(Z, m)xSn, K(Z, m}xSn~\
for all m, n>l. For m=l, Aut(S1xSn) was calculated by N. Sawashita [8]
and P.I. Booth and P. R. Heath [1]. We shall also calculate EndCS'xS71) and
its monoid structure in section 4. It is elementary for End(/f(Z, m)xS1).

We use the notations for mapping spaces as follows:

Map (A, Y); a space of continuous maps from X to Y.
Map*(A', Y}; a space of based continuous maps form X to Y.
Map (A, Y; /); a connected component of Map (A, Y) which contains /.
Map* (A, Y; /); a connected component of Map* (A, 7) which contains /.

Lemma 2.1. Let k : Sn-+Sn be a map of degree k. The free parts of homo-

topy groups of Map (Sn, Sn; k) are as follows:

( f—n for odd n,

/—2n — 1 for even n and &=£0,

y=w —1, n, 2n — l for even n and k=Q.
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=0 otherwise

Proof. Consider the fibration
ev

(2.2) Map* (Sn, Sn ; k) — > Map (Sn, Sn ; k) —> Sn

where ev is the evaluation map /•->/(*). The free part of ^-(Map^CS71, Sn ; fe))
vanishes unless w is even, j=n — l. Thus we have the result for odd n. The
result for the case n even and k=Q follows from the fact that (2.2) has a cross
section. Finally since the Whitehead products [&, h] are not 0-homotopic for
all &^0, /z^O and even w, a map /z : Sn->Sn can not be lifted to Map(Sn, Sn ; k).
Hence nn(ev) is a 0-map and we get the result. We can prove also this lemma
by [10].

Lemma 2.3. The homotopy set [K(Z, m), Map(Sra, Sn ; &)~] is 0 for ro>l.

Proof. We remark that Map(Sra, 5re ; &) is a nilpotent space by using the
fibration (2.2). Since \K(Z, m\ Map(Sre, Sn ; fcr] = [/r(Q/Z, ra-1), Map(Sn, 5" ; &)]
by Theorem 2.3 of [5], the latter set is equal to 0 by Theorem C of [11].

Now we calculate the homotopy set \K(Z, m)xSn, Sn] for m, n>l. Since
Sn is simply connected, it is sufficient to calculate the free homotopy set
\_K(Z, m)xSn, S^ee. The free homotopy set \K(Z, m), Map(Sre, Sn ; fe)]frcc

is equal to the based homotopy set \K(Z, m), Map(Sn, Sn ; fe)], because the
fundamental group of Map(Sra, Sn ; k) acts trivially on the free part of the
homotopy group at least modulo torsion group by using the fibration (2.2). We
can also prove it by the naturality of the forgetful functor from the based
homotopy set to the free homotopy set. Hence we get the next result by
Lemma 2.3 and Theorem D of [11].

Proposition 2.4. The homotopy sets E(m, n, k}=[K(Z, m), Map(5n, Sn ; &)]
are given as follows for m, n>l :

(1) m, n ; odd,
E(m, n, fe)=0

(2) m ; even and n ; odd,
(a) E(m, n, k)=Z~/Z if im=n — l for some i>0
(b) E(m, n, *)=0 // im^n-1 for any i>Q

(3) m ; odd and n ; even,
(a) E(m, n, k)=Z~/Z if m=n-l and k=Q
(b) E(m, n, k)=Q otherwise

(4) m, n ; even,
(a) E(m, n, k)—Z~/Z if im=2n—2 for some i>Q and k^=Q or

im—n—2 for some />0 and
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for any />0 and k=Q, or
im^n—2 for any z>0 and jm=2n—2
for some />0 and k=Q

(b) E(m, n, W=Z~/ZxZ~/Z
if im=n—2 for some z>0 and jm=2n—2
for some />0 (i.e. m=2)

(c) E(m, n, k)=Q otherwise

Remark. If im=n—2 for some 2>0 and jm=2n—2 for some y>0, we get
m(j—2i)=2 and hence m—2.

The above result is summarized as follows. For odd m or odd n or
or im^n—2 for any z>0, a map x: K(Z, m)xSn—>Sn is evaluated by the re-
striction map xf : K(Z, m)\/Sn—>Sn. For even m, n, im=n—2 for some i and
k=Q, a map x : /C(Z, w)xSn— »STO is a phantom map and is evaluated by elements
of H*(K(Z, m}xSn;Z~/Z).

We associate a 2x2 matrix X(x) with a self-map x : /if (Z, m)xSn-^K(Z, m)
XS71. J^(%) has (/z, ̂ )-components as follows. Suppose that m or n is odd or
im^n—2 for any z">0 and even m. The next maps a, b, c and d are defined
by the restrictions and projections of x.

fa b\ a^[K(Z, m), K(Z, m^Z, b^lSn, K(Z, m)]=0 or Z
*(*)= \c rf/ c=HK(Zt m), Sw]-0 or ZA/2T, rfe[5n, Sn]=Z.

In the case im=n—2 for some z>0 and even m, we associate a 2x2 matrix
X(x) where maps a, b and d are defined as above. An element c is a phantom
map c: K(Z, m)xSn-*Sn for d=Q, and a phantom map K(Z, m)x{*\->Sn for
d^Q. A map c corresponds U1V for the case (4) (a) in Theorem 2.5 where U
and V are the generators of Hm(K(Z, m); Z~/Z\ Hn(Sn; Z"/Z) respectively.
For the case (4) (e), c: K(Z, 2)xSn-*Sn is represented by the elements c1} cz^
H2n-2(K(Z,2)xSn;Z~/Z). Elements clt cz correspond Un~\ Un'2-lV respec-
tively. The (2, l)-component in the case (4) (e) of Theorem 2.5 is represented
as vector (c1} c2)^Z~/ZxZ~/Z for d=0 and cl—(cl, ®)<=Z~/Z for d=£Q. See
also the section 3. From these results, we get the following theorem.

Theorem 2.5. The set End(K(Z, m)xSB) consists of 2x2 matrices

C b]\c d]
where
(1) m, n ; odd (a) a, b, d^Z and c=Q for m=n

(b) a, d^Z and b—c—^ for mi^n
(2) m ; even, n ; odd (a) a, d'^Z, ce^Z~/Z and b=Q for im—n — l for some i
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(b) a, d^Z and b=c=Q for im^n — 1 for any z>0
(3) m; odd, n ; even (a) a, d=Z, b=Q and c^Z^/Z with cd=Q for m—n

(b) a, d^Z and b=c=Q for m^n — 1
(4) m, n; even (a) a, d*=Z, b=Q and c<=Z~/Z with cd=Q

for im=n—2 for some z>0 and jm^2n—2
for any />0

(b) a} d^Z, b=Q and c^Z^/Z
for im^n—2 for any 2>0 and jm=2n—2
for some />0, m^n

(c) a, d*=Z and b=c=0
for im=£n—2 for any i>0 and
for any />0, m=£n

(d) a, b, dr~Z and c—Q for m—n>2
(e) a, d'^Z, b=Q and c=(clt c2)£

with c2d=Q for m=2, n>2
(f) a} b, d^Z, c=Z~/Z for m=n=2

§3. Monoid Structure of End(K(Z, m)xSn) for iw, w>l

In this section, we determine the monoid structure of End(K(Z, ?;z)xSB)
for m, w>l .

Let (S27% be the homotopy fiber of Sullivan completion e~ : S2n-^SZn~. Since
(S27l)Q is the homotopy fiber of the cup square map K(Q, 2ri)-*K(Q, 4w), we get
the following diagram in which every horizontal and vertical sequences are
fiber sequences:

K(Z~/Z, 2n-l) - » K(Q, 2n) - > K(Z*®Q, 2n)

Z, 4n-l) - > K(Q, 4n) - > K(Z~®Q, 4n)

Then, (S271)^ is a homotopy fiber of K(Z"/Z, 2n-l)-»K(Z~/Z, 4n-l). If
a map S2n-^S2n has degree cf, the induced homomorphism ffX52n)-»^X^Zn) nas

degrees d for j=2n, d2 for j—^n—\, and the induced homomorphism Xj((SZn)p)
—»n:j((Szn)p') has degree d for j=2n — l, d 2 f o r / = 4 n — 2. Hence a phantom map
f:K(Z, m)xSn-*Sn is represented by an element of H*(K(Z, m)xSn ; Z~/Z)
and the set 0[K(Z, m)xSn, S71'] of phantom maps is equal to \K(Z, m)xSH,
K(Z~/Z, 2n—2)~] for im=n—2 for some i>Q and even m.

Since a map g: K(Z, m)xSn-»Sn is evaluated by the restriction gr : K(Z, m)
\/Sn-^Sn except for the cases (4) (a, e) in Theorem 2.5, we can calculate the
multiplication of matrices corresponding to the composition of maps. Let
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y: K(Z, m)-*K(Z, m)xS* and x: K(Z, m}xSn-*Sn be maps represented as
£|>, g-] and [_c, d~] respectively. By using the result \_K(Z, m)x(Sn)p, (Sn)~] =
[(S?%, Map(K(Z, in), (ST)] = [(SB),, (ST]=0, we get \K(Z, m)X(S")p, S»] =
\_K(Z, m)x(Sn)p, (Sn)p]. Hence we get the next commutative diagram where
c=pc', g=pg' and d~: (S^-CS11),.

c', d--]

Hence we can get the next lemma, which is the case except for (4) (a, e).

Lemma 3.1. Suppose that m or n is odd, or im^n — 2 for even in, n, any
z>0. Let y\K(Z,m)->K(Z,ni)xSn and x : K(Z, m)xS71—Sn be maps repre-
sented as I\_Q, g\ and \_c, d~] respectively. Then, the composition xy = [_c, d~\l\_e, g"]
is equal to cell-\-dk g where h is i or j according as im=n — l or jm~2n—2
respectively and k is 2 or I according as the cases (4) (b, /) or otherwise.

Proof. Maps c and g are represented as c — pc' and g—pgf respectively by
Theorem 2.3 of [5]. A map d induces a map d^ : (Sn\0-^(Sn)p and the maps c, g
are determined by c'', gf^Hzn~\K(Z, in); Z ~ / Z ) or c', gf^Hn -\K(Z, m); Z"/Z).
Hence we get the following equalities by using the cohomology expression for
phantom maps.

= ceh + d*g for the case (4) (b, f)

= ce]l-\-dg otherwise.

We describe the multiplication of matrices by using Lemma 3.1 and pro-
perties of maps K(Z, m)->K(Z, m)xSn->K(Z, m). Sn->K(Z, m}xSn-»K(Z, rti)
and Sn-^K(Z, m}xSn-+Sn. Note that K(Z, m)-+Sn-*K(Z, m) and Sn->K(Z, m)
-^Sn are 0-homotopic for m, n>l.

Theorem 3.2. Except for the cases (4) (a) and (4) (e), the multiplication of
matrices which corresponds the composition of maps is given as follows :

b\/e A / ae af+bh

d/\g h}\ceh-rdkg dli

where h is i or j according as im=n — l or jm=2n—2 respectively and k £• 2 or
1 according as (4) (b, f) or otherwise.
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Example. In the cases (2, a), (4, f), we get the next formulas respectively.

la 0\/e 0\ / ae 0 \

\c d)\g h/W+dg ah)

(a b\/e f\ / ae af+bh\la b\/e f\ / ae af+bh\

\c d/\g hj\ce+dzg dh )'

A map x : K(Z, 2)xSn-»Sn was classified by [c, d] = [(d, c2\ d~] with czd=Q
for even n where d = x\ {*} xSn, and c1} c2 are elements of the cohomology
group. For im=n—2, even m>2, * is represented by c=[0, c]. Hence we
get the next theorem by the same method of Theorem 3.2.

Theorem 3.3. For the cases (4) (a, e), the composition of endomorphisms of
K(Z, m)xSn is given by the following formula of matrices,

a Q\/e 0\ / ae 0

c d)\g h/\c*(e, h)+dzg dh

where c*(e, h)+d2g is defined by (Ciej+d2gi, c2e
ih+dzg2) for c=(ct, c2), g=

(gi> gz)> im=n—2. Here the first factor is 0 in the case (4) (a), / is given by
jm=2n—2 in the case (4) (e).

Proof. We shall prove only the case (4, e). The case (4, a) is similar. It
is sufficient to determine the (2, l)-component. If d=Q, we factor c=p'cf:
K(Z, 2)xSn-*K(Z~/Z, 2n-2)^Sn. Hence we can get the result for d=Q by
using the cohomology expression of phantom maps. If h=Q, d^Q, we also
factor h=p'h' as above. By lifting a map c to (c{, d2) : K(Z, 2)xK(Z~/Z, 2n-2}
-*K(Z~/Z, 2n—2) with p'(c{, rf8)=c(IdX/o/)> we can get the result as the proof
of Lemma 3.1. For hd^Q, it is proved by the same way as Theorem 3.2.
Note that c2=0, g^O in this case.

Remark. By using Theorem 3.2 and 3.3, we can easily determine the group
of self -equivalences and the group of weak identities for K(Z, m)xSn. For
example, we get Aut(K(Z, m)xSn)=Z/2ZxZ/2Z, WI(K(Z, m)xSn)=Q in the
case (4) (a), and the next exact sequence (*) and WI(K(Z, m)xSn)=Z~/Z in
the case (2) (a) which contains the result of J. Roitberg [7]. The group exten-
sion of the next exact sequence is seen by the multiplication of matrices and
the action of Z/2ZXZ/2Z on Z~/Z is given by the multiplication (i, ;>=
(-l)i+jc where (i, j)^Z/2ZxZ/2Z, i, /e {0, 1}=Z/2Z and c<=Z"/Z.

(*) 0 — > WI(K(Z, m)xSn) — > Aut (K(Z, m)xSn) — > Z/2ZxZ/2Z — > 0
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§4. Monoid Structure of Endomorphisms of S^xS"

In this section, we determine End^xS71) for n>l. For n=l, it is equal
to the set of 2x2 matrices of integer components which has the usual multi-
plication. Now by using the fibration (2.2) and the section 3 of [10], we have
the boundary operator d: xn(S

n)— nn^Map^S71, Sn ; fe^^-iCS"), 3(A)=[A, £].

Lemma 4.1. The fundamental group of MapCS71, Sn ; k) is Z/2Z for n>2
and Z/2kZ for n=2.

Proof. For n>2, Wl(Map(SB, Sn ; fe))=^1(Map*(S", Sn ; fc))=*n+i(Sn)=Z/2Z.
For ?2=2, d(id)— [id, k~]=2kf] where f] is the Hopf map, we get the result.

A map z\SlxSn-*Sn is classified by z\ {*} xSn : Sn-^Sn and adjoint map
z~ \ S1->Map(S7i, Sn ; &) where & is the degree of the restriction map. By the
above lemma, z is represented by (k, q) where k^Z, q^Z/2Z for rc>2 or q<~
Z/2kZ for n=2. To each map x : S1xSn-^S1xSn

} we attach a 2x2 matrix
X(x).

GGE[SW , Sn]=Z,

0 d/ ^^[S1, Map(Sw, Sw ; a)]=Z/2Z for w>2, Z/2aZ for n=

Maps a, d are the restriction maps of x and b is the adjoint map of S^S"— *Sn.
To determine the composition of two maps, we prepare the next lemma.

Lemma 4.2. Let h : Sn—*Sn be a map of degree h. Then the homomorphism
7i1(Map(Sn, Sn ; ^-^(MapCS11, Sn ; hk)) induced by the map

re, Sn ; k) — > Map(Sra, Sn ; hk\ x -> hx

is the multiplication xh: Z/2Z->Z/2Z for n>2 or xh2 : Z/2kZ-+ Z/2khZ
according as n>2 or n = 2. Moreover, the map h* : Map(Sra, Sn ; k)—>
Map(Sn, Sn ; kh), x^>xh induces the multiplication by h on fundamental groups.

Proof. At first, we remark the next diagram is commutative where the
vertical maps are defined by k~(x)=x — k, (hk)~(x)=x—hk respectively.

By the above diagram, we can see Wi(A*): ^i(Map*(SB, Sn ;
S", S71 ; /*&)) is equal to the multiplication X /i : Z/2Z-+Z/2Z for
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and X hz : Z-»Z for n=2 respectively. Hence by considering ni(Map*(Sn, Sn ; &)
n, Sn; £)), we get the result. For h*(x)=xht the proof is similar.

Theorem 4.3. Let us identify maps y, x : SnxS1->SnxS1 with 2x2 matrices
of the forms X(y), X(x) respectively. Then the composition yx is given by the
next formula for n^>2 (resp. n=2}.

f\/a b\ lea eb+fad\/resp./ea ezb+fad\\

fl h)\Q d/\0 hd j\ \0 hd /]'

Proof. It is sufficient to determine (1, 2)-component. By taking the adjoint
map of the composition yx : SnxS1-*SnxS1-*SnxS1, we have (yx)~=
Map(y)S

n)x-:S1-^Map(Sn, SnxS1)-*Map(Sn, SnxS1). x- : S^MapCS", S^xS1)
is determined by a : Sn->Sn, b:Sl^Map(Sn, Sn ; a) and d : S1— S1. To deter-
mine Map(Sre, y) : Map(Sn, SnxS1)->Map(Sn, S^xS1), it is sufficient to determine
Map(S71, SnxS1; l)-^Map(SB, Snx51; e] where 1 induces id: Sn— Sn. By cal-
culating y~=Map(Sn, ymr : S^MapCS", S^xS1 : l)-Map(Sre, Sn;e^xS1

> the
induced map of fundamental groups is equal to [/, /i] : Z^Z/2ZxZ for n>2
where /, h mean the multiplications by /, h. Hence, (Map(a, id)xid)(/, h) : S1

->Map(Sre, Sn : e)xS1—Map(Sn, Sn ; ec)xS1 induces [/a, /i] : Z->Z/2ZxZ on
fundamental groups for n>2, by Lemma 4.2. Hence we get the induced map
of fundamental groups for Map(Sn, ;y) : Map(Sre, Sn ; a)xSl^Map(S1l

f Sn ; ea^xS1

which is equal to a map [/', j~\*-*\_ei+faj, hj"]. 7ti(x~) is equal to a map [*']•->
[bi, di~\. By composing Td(x^) and this map, we have the (1, 2)-component
eb-\-afd for n>2. Similarly we get the result for n=2.

By Theorem 4.3, 2-power x2 of any element x of Aut(S1xSn) is the
identity. Hence it is abelian and we have the next result which is the redis-
covery of the result of [1, 8].

Theorem 4.4. AutCS'xS") is the group (Z/2Z}x(Z/2Z)x(Z/2Z) for n>l.
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