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Root Systems and Periods on Hirzebruch Surfaces

By

Jun-ichi MATSUZAWA*

§I. Introduction

Cayley classified all nonsingular cubic surfaces in three-dimensional complex
projective space by using the configuration of the 27 lines on the surface [3].
The symmetry of these 27 lines can be described by the Weyl group and root
system of type E¢ ([4]). Furthermore these objects, namely the 27 lines, the
Weyl group of type E:, and root system of type E, have natural realization
in the Picard group of cubic surface ([8]).

In [10] a fine moduli space M of marked cubic surfaces was constructed
explicitly in such a manner that the relation between the geometrical structure
of M and the structure of root system became clear. On the other hand the
fine moduli spaces for certain classes of rational surfaces were constructed in
terms of root system and periods, which are integrals of a meromorphic 2-form
over 2-cycles on the surface corresponding to roots ([7]). The moduli space
M was reconstructed in terms of the root system and the periods in the same
way (Appendix in [10]).

In this paper, we discuss the moduli problem for certain class of rational
surfaces in terms of the root system of type A. Let X be the rational surface
obtained from the n-th Hirzebruch surface or rational ruled surface with in-
variant n by blowing up n points. The relation between the Hirzebruch sur-
faces with n points blown up and the root system of type A,_, is similar to
the relation between the cubic surface and the root system of type E;. We
prove a Torelli theorem for the pairs of X and a certain anticanonical divisor
on X by using the structure of the root system of type A,.; in the Picard
group of X.

We shall construct a family p: ¥—S of the Hirzebruch surfaces with n
points blown up and study a period mapping for the fibration p: X¥—S, where
the base space S is the quotient space of a maximal torus of the simple Lie
group of type A,-, by its Weyl group. The fiber ¥, of p can be regarded as
a compactification of the fiber of semi-universal deformation of the simple sur-
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face singularity of type .l,_,. This relation between the Hirzebruch surfaces
with n points blown up and simple surface singularities of type A,., is similar
to the relation between Del Pezzo surfaces and simple surface singularities of
type E (see Remark 5.4). In order to define a period mapping, we fix a mero-
morphic 2-form @ on ¥. Denote by AcS the discriminant variety of p and by
D, (t=S\A) the anticanonical divisor on the fiber ¥, such that the restriction
of w to the fiber ¥; has poles only along ®,. The fundamental group z,(S\A)
of the space S\A is isomorphic to the Artin group associated to the extended
Dynkin diagram of type A,_, ([11]). The monodromy group or the image of
the monodromy representation of m;(S\NA) on the second homology group of
X\®, is isomorphic to the affine Weyl group W of the root system of type
An-y. The group m,(S\NA) acts on the period domain as an affine transforma-
tion group which is isomorphic to W.

It is a pleasure to acknowledge many helpful discussions with Ikuo Satake
about the work in this paper. [ would also like to thank K. Irie for calculat-
ing the ranks of the homology groups of X,\®, and for helpful conversation
about questions in topology. I finally express my gratitude to I. Naruki and
K. Saito for giving me many valuable suggestions.

§ 2. Hirzebruch Surfaces with Several Points Blown up

We denote by Y,, n=0, the n-th Hirzebruch surface or the rational ruled
surface with invariant n. The surface Y, is a P!-bundle over P!. For n=1,
2, are obtained by desingularising the projective cone ¥ in P**! over a non-
singular rational curve of degree n which lies in a hyperplane of P"*!,
Especially 2, is P'x P'. The Hirzebruch surfaces have only one ruling except
for 2, (see e.g. [1, Chap. V. 4], [6, Chap. V]). For n=1, let n:3,—P* be
the ruling and S the unique section with S:S=—mn.

For later use, we shall give another realization of %,. 2, is isomorphic
to the variety in P*x P!

2.1) 22={: & L) HEPX P s"C=1"C4} .
The second projection gives the ruling and

2.2) S={G: & G)(s: ) =201 L=0=0}.
Put

F={{: L : G)(s: )= ,1s=0},
2.3) F'={{:8:l)s: 1) 22, [t=0},
Co={: & : G)(s: e X, 1L=0}.

Then F and F’ are two fibers and C, is a section with C,-Cy=n. 2, is
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covered by 4 copies U,, 1<:<4, of C* with coordinates (z{®, z{*), which are
defined by

U=3NFUS), (@, #2)=(s/t, L/Cy),
U=3.NFUS), (2@, 28)=(/s, L/G),
l Us=3NFUCY), (&, 28)=(t/s, L/,

U=ZF'UCY, (28, 28)=(s/t, /Cs).

24

The transition functions among these coordinates are given by

zPzP=2zPz" =1, zP=2z{®
2.5) ,
20 =(2{") "z, V=1, zPz¥=1.
Definition 2.1. We say that » points P, -, P, of X, are ‘in general

position’ if no two of them lie on a fiber and no one lies on the section S.

Remark 2.2. For n=1, let @:23,—~Y be the morphism obtained by de-
singularising the projective cone Y}  in P**'. If n points P, ---, P, of 2, are
in general position, the n points Q,=®(P,), 1<i<n, are contained in a unique
hyperplane H such that H does not pass the verlex of ¥ and the intersection
HNY is an irreducible nonsingular curve. By Bertini’s theorem, the set of
hypersurfaces H such that HNY is an irreducible nonsingular curve is an open
dense subset of the complete linear system |H|, considered as a projective
space. Therefore the set of the points (P, ---, P,) in general position is an
open dense subset of the variety 2,X -+ XX, (n times).

From now on, we assume that n>1. Let P, ---, P, be n points of X, in
general position and

an—‘)Zn

the morphism obtained by blowing up these n points.

Let f and s be the linear equivalence classes of the total transforms of a
fiber of = and the section S respectively. Let E,, -, E(E;==x"'(P,)) be the
exceptional curves and ey, ---, e, the linear equivalence classes of them. Then
we have (see e.g. [6, Chap. V])

Proposition 2.3.

(1) The Picard group Pic(X,) is generated by f, s, ey, -, ey.

(2) The intersection pairing on X, is given by f?=0, s’=—n, e?=-—1
(1£ign), f-s=1, f-e,=0, s-e,=0, e;-¢;=0 (i#7).

(3) The canonical class is k=—(n+2)f—2s+e,+ - +e,.

(4) Let C be an irreducible curve on X,, other than E,, ---, E,. and c=xf
+ys—%, b,e; the linear equivalence class of C. Then we have either (i) x=1,
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y=0, b;=20 (1=i<n), (ii) x=0, y=1, b;=0 (1<i<n), or (iii) x=ny, y>0, b;=0
(1=<i<n).

Notation 2.4. Let D be an anticanonical divisor on X, whose irreducible
components are the proper transforms F, F/ of two distinct fibers F, F’ of the
projection z: Y,—P*! not containing P,, ---, P,, the proper transform S of the
section S, and the proper transform C of the section C of x= with C?=n which
passes through Py, ---, P,. We shall give an order F, F; to these two com-
ponents F, F’ and call it an orientation of the divisor

D=F+F+S+C.
By d(X,) we denote the set of such anticanonical divisors. Since the linear
equivalence classes of Fy, Fy, S, C are f, f, s, and nf+s—e,— -~ —e, respec-

tively, the linear equivalence class of D is (n+2)f+2s—e,— --- —e,. Thus D
is an anticanonical divisor on X,.

Definition 2.5. Let X, and X, be surfaces obtained by blowing up =
points in general position of X,. For D=F+F+S+C=dX,) and D'=
Fi+F34+5'4+C’ed(X}), if there exists an isomorphism ¢: X,— X7 such that

#(F)=F; (=1,2), &&)=5, ¢C)=C",
then we say that the pairs (X,, D) and (X7, D’) are isomorphic.

We next consider the isomorphic classes of the pairs (X,, D).

Lemma 2.6. Let Fo,=n'0) and F.=rn"'(c0) be fibers of X,, S the (—n)-
section, and C an n-section of m:2%,—P'. Let p': X3,—2, be a blowing-up
at n points in general position and D' =F|+Fs+S'+C’'ed(X%). Then there exists
n points Py, -+, P, of X, in general position which have the following properties:

1) Py, -, P,=C\(F,UF,),

(2) Let X, be the surface obtained by blowing up P,, ---, P,. Then there
exists an isomorphism @ : X,— X, such that

O(F)=Fi, OF.)=F; ®S)=5’, oC)=C,
where F,, F.., S, C are the proper transforms of F,, F., S, C respectively.

Proof. The Hirzebruch surface X, can be obtained by blowing up the
vertex @ of a projective cone Y in P™*! over a nonsingular rational curve of
degree n lying in a hyperplane of P**!. The n-sections of Y, are the strict
transforms of the hyperplane sections of Y not containing the vertex Q. Let
H and H’ be the hyperplanes in P™*' corresponding to C and C’=p'(C’).
There exists a projective automorphism ¢ of P**' which sends H to H’ and
preserves the cone Y. Let ¢, be the automorphism of %, induced by ¢, which
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sends C to C’ and preserves the fibers. Let ¢, be the automorphism of X,
induced by the automorphism of #(X,)=P' which sends F, to Fi=p'(F}) and
F. to Fi=p'(F}). Put ¢=g¢,°¢,. Then we have

P(F)=Fi, @(F)=F; @S)=S", ¢(C)=C".

Let @, ---, Q. be the centers of the blowing-up p’: X7,—2X,. Put P,=¢ %(Q,),
1<i<mn, then P, -+, P,=C\(F,\UF,). Let X, be the surface obtained by blow-
ing up P, -+, P, and @: X,—X, the induced isomorphism by ¢. Then @
satisfies the second condition.

Proposition 2.7. Let p: X,—23, (resp. p’: Xn—2,) be the morphism obtained
by blowing up n points Py, -+, P, (resp. Pi, ---, P3) in general position and D=
F+F+5+CedX,) (resp. D'=F;+F3+5'+C'=0(X4)). Let

tre=n(p(R)), te=a(p(F), t=a(P)=P', 1<i<n,
ti=n(p(FY), th=n(p'(Fp), ti=m(PH=P!, 1<i<n.

Then the pairs (X,, D) and (X, D’) are isomorphic if and only if there exists
an automorphism g of P* such that

gl)=ty,  gll-)=tw,

{g(tl), ty g(tn)} = {t;) T t;L} .

Proof. This follows from Lemma 2.6.

§3. Homology and Root System

Throughout this section, we assume that n=2. We shall study the homo-
logy groups of the surfaces X, and X,\D (D=F+F,+S+C<=d(X,)) with
integral coefficients. The root systems of type A,-; can be realized in the
homology groups of X,. The realization is similar to that of the root systems
in the homology groups of Del Pezzo surfaces and certain rational surfaces
(f81, L7D.

We consider the homology exact sequence :
—_—> Hs(Xn ; Z) —> HS(Xn: ~Xn\D; Z)
I
0
3* i* j*
e Hg(Xn\D; Z) —_—> Hz(Xn 5 Z) —> H2(Xn: Xn\D; Z)
—
We extend the intersection form in Hy(X,; Z) to Hy(X,; Z)RzR. Let
Q=ker jxsCHy(Xn; Z)
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and
R={a=Q|a-a=—2}.

Proposition 3.1. Let Q and R be as above. Then Q is given by

3.1 Q={asHy(X,; Z)|a-f=a-s=a-(nf+s—e;— - —e,)=0}

and R is a root system of type A,_, in QRzR and Q is generated by R. The
set II={e;—e;,,|1=Zi<n} is a basis of R, where e; is the class of the exceptional
curve Ei=p_l(Pi).

Proof. We have the following duality :
Hy(X,, X,\D; Z)=H¥D; Z)

Thus ker j, is the lattice whose elements are orthogonal to the classes of the
components of D. Since the classes of the components of D are f, s, and
nf+s—e,— -+ —e, (see Notation 2.4), we have (3.1).

Let a=xf+ys+3>%, b;e; be an element of Q. It follows from

a-f=a-s=a-(nf+s—e,— - —en)=0
that
x=y=05 ébzzo
i=1
Thus
3.2) Q={ 3 b H(Xy; 2] 3 bi=0}.

Let a=>11,b,e;=R. Since a-a=—2, we have 3%, bi=2. Thus b,==1, b;=
+1 for some 7, j (/#) and the rest are 0. By (3.2), @ must be +(e;—e;) and
we have R={e;—e;|i#j}. Therefore Q is generated by R. Furthermore R
is a root system of type A,., in QRzR and Il is a basis of R. ®

We next consider the second homology group H,(X,\D; Z). By Proposi-
tion 3.1, we have the short exact sequence

0 i
(3.3) 0 —> Hy(Xn, X,\D; Z) —> H(X,\D; Z) —> Q —> 0.
Let E,=p '(P;) and E;=p"'(P,) be the exceptional curves and B;=E;N\C. Let
T be a closed tubular neighborhood of C in X, such that TNE; and TNE;
are fibers. Let 7 be an injective path in C from B, to B; and let
(3.4) Iy j=(ENENTHUIT |/ J(ENE;NT)).

We can take the orientation such that I';; is homologous to E,—FE; in X,.
Hence we have
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Wl D)=e.—e; .

/
1
1
[l
1
!
]
1
i
]
1
1
1
[}

We shall write
D:D1+D2+D3+D4 ;

where D,=F,, D,=C, D,=F,, and D,=S.

By Lemma 2.6 and (2.4), we can take a local coordinate (z{¥, z{¥) (1</<4)
around the intersection D.,ND,,, on X, (D;=D,). For r{®, r{">0, let N,
(1<7<4) be the 2-cycle on X,\D defined by

(3.5) No={(z®, 20| 120 =r®, 1201 =rf")

with orientation (arg z{®, arg z{»).
If M, is the chain

(3.6) M={(z(, 7)) 1200 | =r(®, 22| SrPh, 70, 12>0

with orientation (arg z{®, Rz, Jz5) (Rz and Iz denote the real part and the
imaginary part of z respectively), then the boundary of M, is N,.

3.7 oM,=N,
We have

Lemma 3.2.
(1) Let v, be the homology class of N, in H(X,\ND; Z) and p, the homology
class of M, in Hy(X,, X,\D; Z). Then we have
(1) vi=04(p),
(i) vi=—viey, ph=—ph (Si<4, vi=yy, ge=p).
(2) HyXn, X.\D; Z)=Z, generated by ..
Proof. By (2.5), (3.6), and (3.7), we have (1). It follows from the duality
theorem that

(3.8) H{(X,, X,~\D; Z)=H'(D; Z)
=H\(D; Z)*
Z.

IR

Let 7, be an injective path in D, from D,.,N\D, to D;N\D,,, (Dy=D,) and 7=
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71+ - +7:.. Then H(D; Z) is generated by the homology class of 7. Since
the intersection number M;-7y=(—1)%, p, is a generator of Hy(X,, X,\D; Z) by
Poincaré duality. ®

The Poincaré duality yields a canonical isomorphism
HYX:\D; Z)=H(X.\D; Z),
where H%X,\D; Z) is the second cohomology group of X,\D with compact

supports. This duality induces the intersection product on Hy(X,\D; Z)

Proposition 3.3. Let v=0.(y) be the image of a generator p of Hy(Xn, Xu\
D; Z)and a,, 1<i<n—1, theclass of I',,,.1 in Hy(X,\D; Z). Then H(X.,\D; Z)
is generated by v, @, -, @,_, and the intersection pairing is given by

=0, voa,=0 (1Zi<n—1)

_2: Zf i:]-:
A ;= 1, Zf |Z—]:=l,
0, otherwise.

Proof. Since
= {ixa)=e,—e,,,|1=i<n—1}
is a basis of the lattice @ (Proposition 3.1), we have, by (3.3),
Hy (X \D; Z)=2ZvPZo,P - PZan-: .

The intersection numbers of these generators are given as follows: since ix(v)
=0, we have
vov=ix)-ix(v)=0,

vea;=1x(v) ix(a;)=0,
@, a;=ix(a:) ix(a,)
=(ei—eus1)-(e;—ej41)
—2,  ifi=j,

, if ji—jl=1,

1
0, otherwise.

§4. Torelli Theorem for the Pairs (X,, D)

We now prove a Torelli theorem for the pairs (X,, D), where X, (n=2) is
the blowing up of X, at n points P, ---, P, in general position and Ded(X,)
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is a marked anticanonical divisor on X,. The formulation is similar to that
of [7].
Let ¢ be a generator of Hy(X,, X,\D; Z) and

v=0x(y).

There exists a unique meromorphic 2-form w, on X, such that w, has poles
only along D and w,(v)=1. By Lemma 3.2, v is the homology class of N, or
N (see (3.5)). If v is the homology class of V,, then

. 1 dz® Ndzs»
CZ VA VP T
in a neighbourhood of D,ND,,,, where D,=F,, D,=C, and D,=F,. The residue
map gives the 1-form

“4.1) , for =1, 2

1 dz{®

(42) Res@a),: (2—7[7_—352— *-Zvitb)—

on C.
Lemma 4.1. Let I',; be the 2-cycle defined by (3.4). Let y=04(p)<
H,(X.\D; Z) is the homology class of N, (r=1 or 2), then
- [E.NC, nC; E;NC, E.NC], if r=1,
exp(Zn«/—lS wy>={ _1 _ _2 _ ! B _
s [F.NC, ENC; E;NC, ENC], if r=2,
where [Q,, Q.; Qs;, Q.] denotes the cross ratio of the points Q,, Q: Qs and Q.
on P'.

Proof. Since E, and E, are the inverse image of the points P, and P,
respectively, we have

0,=0.

5 wy S
E\(E,NT) EN\(E,NT)

@,= @, .
SFLJ v SBT|7. v

By the residue formula, we have

Therefore

S 0,=27+/ :IS Rescw,
OT 1y T

. 1 S dz{"
T 2rA/—1)r 2D
. 1 __S‘j dz{"
T 2ma/—1

ty 21(1')

log 2 (mod Z),

_
T 2rv/—177°1,
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where ¢, and {; are the affine coordinates of the points £,N\C and E,NC re-
spectively (F,nC=0). Then we have

exp (27: Vv :ISQ- jw,,)z ;—]

1

=[1:0), (0:1); L:tp, (L:2].
Thus lemma follows.

We shall define a character X,: Q--C* by

4.3) LG D=exp (271' V= ISF“’") . [EH(X\D; Z).
HiXD; Z)— @
exp 2z \/:I—JE.JUJV‘L llu

- 2k

Cc*

Notation 4.2. Let v be the homology class of N, (r=1,2). We shall
introduce the marking of F,, F; in the following way :

{ Fo=F, F.=F, in case v=[N.],
F‘,:F‘z, Fm:i:—‘], if case )J’—_—[L/VZ:I .

Then Lemma 4.1 says that

4.4) exp (2r \/’—TSF w.)=[FNC, FnC; E,NC, ENCI.

(2%

We now have the Torelli theorem for the pairs (X,, D).

Theorem 4.3. Let p: X,—2, (resp. p': Xn—2,) be the morphism obtained
by blowing up n points Py, -+, P, (vesp. Pi, -, Py) in general position and D<=
o(X,) (resp. D'=0(X45) with the marking D=F,+F+S+C (resp. D'=F}+Fl+
.§’+C’) associated with the homology class v & Hy(X,\D;Z) (vesp. v <
H,(Xi\D’"; Z)) (see Notation 4.2). Let X, (resp. X,:) be the character of the root
lattice defined by (4.3). If ¢: H(Xy; Z)—>Hy(X%; Z) is an isometry such that

1) (R)=[F], ¢([FD)=[F., o([CH=[C"], e([S))=[5"],

@ @*t=1, .
then there exists an isomorphism @ : X,—X, which induces ¢ and maps F, to
F) F.to FL, CtoC, and S to S’.

Proof. Let Q (resp. Q') and R (resp. R’) be the root lattice and the root
system defined in Section 3. It follows from the condition (1) and the Proposi-
tion 3.1 that

o(@Q)=Q’, o(R)=R".
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Let E,=p'(P.) and e, its class in Hy(X,; Z). By (1), e;=¢(e,) is the class of
the exceptional curve on X; and let Ej be the exceptional curve for p’ corre-
sponding to the class ¢;. We change the suffixes of Pj, ---, P, in such a way
that E;=(p")"'(P;). It follows from the condition (2) and (4.4) that

[E,NC, FonC; PNC, PNCI=[FiNC’, FoNC’; PINC?, PiNC'].

Thus the theorem follows from the Proposition 2.6.

§5. A Family of the Hirzebruch Surfaces with n Points Blown up

Let T be a maximal torus of SL(n, C) (n=2) and W the Weyl group of
SL(n, C), which is isomorphic to the symmetric group S, of degree n. The
quotient space S=T/W is isomorphic to C*~!. In this section, we construct a
family of Hirzebruch surfaces with n points blown up over S. For t=
(ay, ++, @p-1)=S=C""", put

flx)y=x"+a,x" "'+ - +a, 1 x+1
Uy={(x1, y)A: )@y, =, @) TCPXP*XS12y,+pf o(x1)=0}
J Up={(X2, ¥2)(@1, =+, Qnoy)=C*XS| 2% fi(x3")7#0}
lCUs:{(Xa, ya)ay, -+, @no)=C*X S}
Us={(xs, ya)ay, -, an-)=C*XS}.

(6.1)

The manifold X is obtained by glueing @,, 1=<i<4, as follows:
X1Xe=Xpx;=1, X=Xy,
(5.2)
Ve=X1"Y1, yiy.=l1, Veys=1.

Let ¢ : X—S be the projection to S.

Remark 5.1. The open sets ‘U, are glued in the same way as the open
sets U, of Hirzebruch surface Y, (see (2.4), (2.5)).

Proposition 5.2. Let X and S be as above, then X is nonsingular. Pul
A= {t=S!|the equation f,(x)=0 has a multiple root}.

Then we have
(1) If t&S\A, the fiber X,=¢7'(t) is a nonsingular surface. In this case,
if b, -+, ta be the voots of the equation f,(x)=0, then X, is isomorphic to the
surface obtained by blowing up
2 ={Go: G L)t )= PPX P s™G=1t"Cy}

at the points (L:t7:0)1,: 1), 1<i<n, on the n-section C, (see (2.3)).
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(2) If t=A, the fiber X, has singularities. Put
fux)=(x—t)*r - (x—t)fr,  t,#t, (#)).
Then X, has simple singularities of type A1, 1SiZr.

Proof. For i#1, U, has no singular point. Let %, (resp. ¥,) be the open
set defined by 4+#0 (resp. p¢#0) in ;.

LU;———‘WIU"WZ .
Then
5.3) { W= {(%, ¥, 21, 5 Bn-r)=COXS| y+2f(%)=0}
' Woz {(x, 9, 2@, -+, Gn)=C*X S| yz4 fo(x)=0} .
Put

&i(x, 9, 2, @y, -+, @)=y +2 (%),
gz(X, Y, 2, Qyy ", (ln—x):yz+f;(x) »
then the rank of the Jacobian matrix of g, is not 0. Thus ¥ is nonsingular.
(1) Let t=(ay, -, an-1))=S™A and U,=,N¥,, then the first projection U,—V,
=C? is nothing but the blowing up of C? at the points P,=(#;, 0), 1=i<n,
where #, -+, t, are the roots of f,(x)=0. If we identify V, with the open set
U, of ¥, (see (2.4)), the point P,=(t;, 0)<=V, corresponds to the point (1:%}:0)
(t,: )eX,. Thus we have (1) by Remark 5.1. (2) Let ¢=A and put
61=CU1f\xc s
Wi=w.NX.,
W2='“Wgﬂ3€t .

Then U,=W,UW,. The open set W, has no singularity. Since

yrHx—t)" - (x—t,) =0

is the defining equation of W, and t,+t; for i+ j, we can take a neighbourhood
around x=t; such that

jl_z{(x—tj)kjio.

7=t

Thus we can choose a local coordinate
T ki 1/ kg
x’=(x—ti)< II(x—1) J) .

j=1

Jet

Then we have
yz—x'*i=0.

This has the simple singularity of type A, , at the origin. =
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We next consider a meromorphic 2-form w on ¥ defined by

o= (=1 dxNdy,
@Vl xys

Let ® be the pole divisor of w and ®,=DN¥, for t.=S.

on U, 1§2§4

Proposition 5.3. For t=S\A, we have ®,=F+F +5+C,, where F, F', S,
and C, are the strict transforms of the divisors F, F’, S, and C, on X, defined
in (2.2) and (2.3).

Proof. Let t=(a;, -, @n-)€S A and U,=U,N¥,. LetV, (=1, 2) be the
open subspace of U, defined by

Vi={(xy, y)A: peEC* X P2y, +pf(x)=0, p+0},
Ve=A(x1, y0A: )= C*X P* |2y, +pf1(x1)=0, 20},
where f,(x)=x"4+a,x" '+ - +a,_,x+1. Then
U,=V,UV,.
Put x=x,, y=y, and z=4/p, then
Viz{(x, y, = C*|yz+f(x)=0}.

Let @, be the restriction of w to the fiber ¥,. On V,,

o 1 dx/.dy
wr_(Zﬂ:\/:l—)2 xy
It follows from yz+ f,(x)=0 that
ijﬁ(x)dx—l—zdy—|—ydz=0 .
dx
Thus we have
5.4) dxANdy :_dxlz\dz:%yfﬂ\dz.
g dx ™
In V,, the poles of this form lie on the set
d
W={x, 5, D= C1y2+ fu0)=0, y=2= 2L (m=0].

If (x,y,zW, then f,(x)=0 by y=z=0. Since t&=S\4, f,(x)=0 has no
multiple root. Thus there is no common root of f,(x)=0 and (df./dx)(x)=0
and we have W=¢. Hence the 2-form (dxAdy)/y is holomorphic on V, and o,
has poles only along the divisor defined by x=0 on V,, which is FA\V,.

We next put z=g/4, then

Vez{(x, 3, =C*ly+2f(x)=0}
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and

1 dxndy
O= /=1 xy

on V,. We have

z(i—j;(x)dx—l—dy + fu(x)dz=0.
Thus
dxNdy dxANdz__  dyANdz
- - d
xy Xz xzz—a{%(x)

Since z=0 implies y=0 and F, C, are defined by x=0, z=y=0 respectively,
this form has poles along the divisors F\V, and C,\V, on V,.

By (5.1)

Us= {(x5, 2)=C?1 x5 [o(x7")#0}
and
0= — 1_ dxsNdy,
QCr/—1? X33,

on U,. Since »,=0 and y,=0 define the divisors F’ and C, respectively, o,
has poles along F’"\U, and CoN\U, on Us,.

Similarly w, has poles along (F"\US)N\U; on U, and (FUS)NU, on U,. B

Remark 5.4. (1) For a semi-universal deformation ¥)—S of simple surface
singularity of type E, (I=6, 7, 8), there is a family Y—S whose general fibers
are Del Pezzo surfaces and regarded as the compactifications of general fibers
of 9—-S ([12]).

N — Y

| l

S =———3§

The fiber ¥; is [/ points blowing up of P? and C=9,\¥; is an anticanonical
divisor of ¥; which is a rational curve with a cusp. It is well known ([5][8])
that

R={a=H,Ys; Z)|a-[C]=0, a-a=—2}

is a root system of type E; in Hy(¥;; Z)*®zR, where [C] is the class of the
curve C and H,(Ys; Z)* is the orthogonal complement of C in H,(Y;; Z).

On the other hand, for a semi-universal deformation 3—S of simple surface
singularity of type 4,.;, we can construct a similar family §—S as follows:
Put S=C™*! and for t=(a,, -+, a,-,)ES, put

g(x)=x"+ax" 4 - 4a,,.
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Let
(Vi={(x1, YAz p)ay, -, G )ECTXPYXS|Ay:14pgi(x:)=0}
} Wo={(%s, y2)(@1, **, An-)EC*XS| 23 g (x3")#0}
1[:(/3:{(153, Y@y, -, @n-))=EC*XS}
Vi={(x4, yaXay, =+, @) =C*XS}.

Let 3 be the manifold obtained by glueing <V;, 1<i<4, in the same way as
U, (see (5.2)). Let

S’={s=S!the fiber 3, is nonsingular}.

The fiber 3;, s=S’, is isomorphic to the n points blowing up of the Hirzebruch
surface. Let B be the open subspace of <V, defined by p+0, then 3—S can be
regarded as a semi-universal deformation of simple surface singularity of type
.1n-1. The fiber 3; is a compactification of 3;. If s=S’, the complement 3,\3;
has three components F’, S and C,, which are the divisors in Proposition 5.3.
The classes of F/, S and C,are f, sand nf+s—e,— -+ —e, (see Notation 2.4).
For s=57, let

R={a=H,8;s; Z)la f=a-s=a-[C,]=0, a-a=—2}.

then R is a root system of type ,., in Hy(3:; Z)*®,R by Proposition 3.1,
where Hy(3s, Z)* is the orthogonal complement of f, s, and [C,] in Hy(8s, Z)
with respect to the intersection pairing.

2) For s=(ay, -+, a,_1)=S" with a,_,#0, let
_ 1 dx;Ndy,
T@rV/=I oy

be a 2-form on 3,\¢V,, which has poles along F/'uS. Extending w{® to 3, by
the transition functions (5.2), we obtain the 2-form w; on 3;. This is the same
2-form as in the proof of Proposition 5.3.

o

§6. Monodromy Representation of 7,(S\A) on H,(X,\D,; Z)

Let ¢: X—S, © and A be as in Section 5. Let
S'=5\A
¥ =%\DUp Q).
Then ¢: ¥'—S’ is a locally trivial fiber bundle whose fibers are open surfaces
X\D,;, t=S’. The fundamental group =,(S’, ) acts on Hy(X,\D,; Z) as the
monodromy of ¢: ¥'—S".
Let
T={, -, ta)S(C)" |1, - t,=1}
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A: {(tly Tty tn)ETi H (tt—t]):()} .

1sigjsn

The symmetric group &, of degree n acts on T by permutations of coordinates
and its quotient space is isomorphic to S':

S=T/&,.
By the definition of A, we have
6.1) S'=(T\A)/6, .

Let t be the Lie algebra of T and i, its complexification

i={(x1, o, X)) =R

& 7=

tc‘=f®}ec.
Let
Q:{(xly tty xn)G”ng_Z}.

Then the kernel of exponential mapping exp: tc—T is 2xr+/—1Q, where

exp ((xy, -+, x5))=(e", -+, e%n).
o exp
(6.2) 0—274/—1Q —>tc—>T —> 1.
Therefore we have
S=T/S,=tc/(QXE,),

where &, acts on t by permutations of coordinates and @ acts on t, by trans-
lations:

a-x=x+2rv—1la, (a=Q, x=t¢).

We denote by W the group Q xS,. It is isomorphic to the affine Weyl
group of the root system of type A,_, (see [2]). Let

Hi-jz{(xly ty xn)et!x-,,:xj},
ngxf: {(xly tty xn)eﬂxl—x_,-:k}_
where 1<i<j<n, k=Z. A fundamental region of W in t. is given by

t+2r+/—1A4,
where
6.3) A={(xy, -, xp)=t|x;=x; for i<y, x,—x,<1}.

Thus each element of t. is equivalent under W to just one element of
t+2r+/—1A.
Let
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tclzfc\ U (Hi,j—l—Zrc \/:_lL’:, j) .
iidiin
keZ
It follows from (6.1) and (6.2) that
(6.4) S'=t¢’/W .
A fundamental region of W in t;’ is given by

t+27+/—1A4,

where A is the interior of A. By (6.3), the hyperplanes L} ,, His, -, Hyo1,n
are the walls of A. Let us denote L}, by H, and H; .., by H;. Let w,, wi,
-, Wn_, be the orthogonal reflections fixing these hyperplanes with respect to
the bilinear form on t given by

(xd, =3 %3 -
Let m;; be the order of w,w;. Then
my=1, if i=j,
Jmi,-=3, if |i—j]=1,
l my=3, if (i, )=, n) or (n, 0),
Mmy;=2, otherwise.

The following result has been proved by Nguygn Viét Diing.

Theorem 6.1 ([117). The fundamental group =,(S’) has a presentation with
generators @, @y, -+, G,-, and relations:

G000, ""=0;G;Gj "
—— —
mjj times myj; times

The loop corresponding to the generator ¢, can be given as follows (see
[117). Let

1

1 . . -, . .
wi:g(n—z, n—i, -, n—i, —i, -+, —i)Et.

Then @, -+, w,-, and O are the vertices of the convex polyhedron A. Let us
denote by @ the bary-center of A :

6.5 d)=?ll-(w1+ r F@,)
= L1, 03, —n-3), —(n—1
—271 n , 1 ’ ’ n , —(n ))

Let
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1

a=0, ,0,1, =1,0,-,0, 1=i=<n—1
a(’):(—ly 0) Tty O, 1) y

1 a .
ij, Oglén—l.

~(E) —
w =
n—1 j=1

Jre

Then & is the bary-center of the face ANH,, 0<i<n—1. Let
72 [0, 1] —> 1
be the path from 2z+/—1@ to ai+2rx+/—1&® defined by

T =1—35)27vV—1d)+s@i+2nv/—1aP).
Let
20 [0, 1] —> ¢

be the path from a,+2x+/—1a® to w,27+/—1a) defined by
r®O=1—s)a;+2rv—1a®)+s(w,2n V=1&)).

Let us denote by 7, the product of 7 and 7® beginning at 2z v/—1@& and
ending at w,27+—1a).

(6.6) n=rior®

The path 7, is in 1. The image 7. of 7, under the projection {;/’'—S'=
to! /W gives the generator ¢, of z,(S’). When n=3, the path 7, is given as in
the following figure: te=t+2r+/—1t

t (real part)

2r /=11 (imaginary part)

Let {=eg?=/~112" gand
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Bo=(C", L, e, P ETNE,

Then #,=exp(2r+/—1@). Let 1, be the image of #, under the quotient mapping
T—T/G,. Before describing the monodromy, we shall give 2-cycles of ¥,
whose homology classes are generators of Hy(X,\D; ; Z). It follows from
Proposition 5.2 that the fiber X,, is the surface obtained by blowing up X, at
the points (1:Zr-2*0 . O)({"-%*1: 1), 1<i<n. By the arguement in the proof
of Proposition 5.2,

U;':Cqu\Xto

is the blowing up of C? at the points P,=({" **!, 0), 1<:i<n,
Ulz{(xl, YAz y)ecszlIlyl-l-pg(xrcn‘z""):()}-

For ¢>0, let N be the torus in U, defined by |x,|=|y,|=¢ with orienta-
tion (arg x;, arg y,). Let F, be the exceptional curve defined by x,={" %%},
y,=0 in U,. Let <V be the closed tubular neighborhood of the =x;-axis in U,
such that ?&WNE, is a fiber. Let 7, be the path from ("%, 0)(1:0) to
(gr-2arnet 0)1:0) in U, defined by

T (s)=(e @ “magn-titl ()1:0), s=[0,1].

Then we can construct a 2-cycle ;. as in Section 3 (see (3.4)):
(6.7) I in=(ENENVNUOV | ) J(Ei\(EiaND)),
with orientation (arg x,, arg y,).

Let v and a, are the homology classes of N and I ;,; respectively. It
follows from Proposition 3.3 that Hy(X, \D,,; Z) is generated by v, a;, -+, @p_;.

Theorem 6.2. Let 1,=S’ be the point corresponding to &. Let

o m(S’, 1)) —> Aut (Hy(¥:\D:; £)

be the wmonodromy of the fibration ¢:X'—S’. Let v, ay, -+, a,-; be the genera-
tors of Hy(X,\D.,; Z)) and ay, 1, -+, 0o~y the generators of m(S’, ty,) as above.

Let ay=—v—a,— - —ay_1, then o, acts on Hy(¥, D, ; Z) by
2x-a,
P(O'i)(x)—x“wm.

0(0.0;)(x)=p(g;)p(a:)(x),

where the dot - denote the intersection pairing given in Proposition 3.3. The
monodromy group, the image o(m\(S’, t,)), is isomorphic to the afjiine Weyl group
of the root system of type A,_..

Proof. In order to describe the action of ¢;, we consider the parallel dis-
placement of the cycles N, I'ys, -+, I's_..» along the path 7, in S’=(T\A)/&,.
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First we consider the action of ¢; for 7/=1, ---, n—1. The path 7;, 1<i<n—1,
gives the path in TN\A from ("%, {3, ---, {V) to
(zn—l Cn—s Cn—z(i—z)ﬂ, Cn-z(i+1)+1, Cn—2i+1 Cn~2(i+2)+1, - c—(n—l)).
By the construction of the cycles N and I .., the resulting cycles N’ and

I'; ;.. of parallel displacement of N and [7;,;,, along the path 7; are given by
(up to homology):

([N"]=[N]=v,
(M=l d+H- N cn]=a +as,
(lal=—md=—a,

i ined=L 0]+ i e ]l=aitau.,
[T} )=} :]=a; if j#i—1, 4, i+1.

Thus we have

2x-a;

pl@)(x)=x—

a;a;

[x:]=1

We next describe the action of ¢,. The path 7, gives the path in 7\A
from ("1, C*72, -, L) to (LD, L773, -, {™7Y). On the homology we have

[N']1=[N]=v,
[[11,:,1:+1]:[I1i.i+1]:a1 if l.=2, 3, ey, n—2.

The classes [I'1,.] and [I';_...] can be calculated as follows. Let 7 be the
path from (£, 0)(1:0) to ("%, 0)(1:0) in U, defined by

Ti(s)=(e"= ML 0)(1:0),  s=[0, 1.
Then the cycle 7', is homologous to the cycle
F’:(E,,\(E,,mcv))uaq/i,3,1L/(E2\(E2r\CV)) .

The cycle I''+1,5+ -+ +1",_,, » is homologous to —N. Hence we have
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;.22_[1\/]—[[’2,3]— "[Fn—x,n]

=—@+at - tan).
Similarly we have

;z—l,n:“[N]"[[yl‘z:l_ _[Fn—z,n—lj
=—QW+ta+ - Fan).
Thus we have

p(a)(x)=x— Mao,
(402

where ay=—Q@+a;+ -+ +a,_y).

The elements p(g,), 0=<7<n—1, have the same relations as w;, 0<i<n—1I.
Thus p(z,(S’, %)) is isomorphic to the affine Weyl group of the root system of
type A,-;. ®&

The fundamental group =,(S’, #,) acts on HomZ(Hz(xto\@to; Z), C) by
(- )(x)=f(o(a)*(x)) oS, t).
Let
(6.8) Q={feHom(H,(X,\D;,; Z), C)| f(v)=1}.

Since v is fixed by the action of =,(S’, 1), £ is stable under the action of
m(S’, ). Let

p*: (S, 1) —> Aut (2)
be the homomorphism defined by this action.

Let v* and a¥, 1<i<n—1, be the elements of Hom,(H,(X;\D,,; Z), C) de-
fined by

1, if x=y,
vi(x)=

0, otherwise,
a¥(xX)=a,-x .

Let ff. Since f(»)=1, f has the form f=yv*+>"a,a* (a,=C). Let V*
be the vector space 37 Ra¥, then

Q={*Foi+~v/—loflvisVH.
We shall define a non-degenerate bilinear form on V* by
n-1 n-1
* kY — ) )
x*,y >‘<¢§ xlaz) (Elyza),

where x*=(J1 x.af) and y*=07 y.a%). Let us write f=v*4+v¥ p+
\/——111?159 W¥.r v 1SVH).
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Let way, 1Sisn—1, be the reflection in the hyperplane orthogonal to af
and W* the group generated by w s, =+, W, . Let R*=W*({a¥%, -, af_i}).
Then R* forms a root system of type A,_, in V*. For a*=R* and k<=Z, let

(6.9) L% = {reV* [ a*, v¥>=k}.

The group W= generated by the reflections wgs, » in the hyperplanes L% .(a*
=R*, ke Z) is isomorphic to the affine Weyl group of the root system of type
An—-l-
Corollary 6.3. The fundamental group m(S’, t.) acts on Q as affine trans-
formations:
V*+wn:(v’}s.12)+'\/:Iwai“(vﬂf:.I); if lgzén_lr
e*(@)(f)= . o
VW g 1 0F, )+ V1w e o0F, 1), if =0,

where f=yv*+v% g+~ —10% ;=0 ¥ g v V), fr=—(at+ - +ak). The
image of p* is disomorphic to the affine Weyl group of the root system of type
An—l-

Proof. For i=1 and feQ,
(0*(a) ))(x)=f(p*(a:)7(x))
=f(x+(a;-x)a,)  (by Theorem 6.2)
=f(x)+ f(a(a; x)

=f(x)+(v¥, r, @+ V—=10%, 1, aP)ak(x).
Thus we have

p*(0) f=v*+ W} r+ W} r aDaH)+V—=10F, 1+ W%, 1, aDa¥).

This implies that ¢; acts on V* and +/—1V* as the reflection in the hyper-
plane L% orthogonal to af (1<i<n—1). Fori=0, let f=—(a;+ -+ +a,-1) and
B¥=—(a%¥+ - +a%_). Since

fla)=0*+v% p+~/—10¥, )(—v+B)

=—14+@} p B+ V=101, B*
and
ao-x=ﬂ-x=/3*(x),

we have
(p*(00) /)(x)=f(x)+ f(as) (e x)

=f(x)+(—14+W¥ &, >+ —10% 1, ) B*(x).
Thus we have



RooT SysTEMS AND HIRZEBRUCH SURFACES 433

p*(00) f=1¥+0%, e+ 0¥ & B5H—DEH+V—10F 1+, 1, B

This implies that ¢, acts on V* as the reflection in the hyperplane L;I;*,l in
V* and on 4/—1V* as the reflection in the hyperplane orthogonal to S*.

The orbit of the set {a¥, -, a¥_;} under the action of the group generated
by p*(ey), -+, p*(g,-1) forms a root system R* of type A,., in V* and
{a¥, -+, a%_1} is a basis of R*. The element —pB*<R* is the highest root.
Thus the generators p*(g,), -+, p*(e.-1) of the image p*(z(S’, f,)) have the
same relations as w,, 0=</<n—1. Therefore p*(z,(S’, £,)) is isomorphic to the
affine Weyl group of the root system of type A4,.;.

§7. Period Mapping for the Fibration ¢: X' —8'

In this final section, we shall define a period mapping for the family
@:¥—S’". Let § be the covering x:S’—S’ of S’ which is the quotient of the
universal covering of S’ by the kernel of the monodromy representation

o w8, t)—Aut (Hy(X, D5 £)). Thus S’ is the regular covering of S’
with the monodromy group G=p(x.(S’, t,)) as covering transformation group.

Let t,=S’ be the base point defined in Section 6 and write f,=(t,, [e])=S",
where [e] is the unit of =,(S’, t,)/ker p. By the parallel displacement of a 2-
cycle 7 on X, \®,, along paths in S’ from #, to {, we have a horizontal family
of homology classes 7(I)= Hy(X\D;; Z), (=5, t=xn(D).

We associate a point /=S8’ with an element ficHomz(Hy(%: D, ; Z, C)
as follows: let

fi@D=] oo t=xd).

1482

s

Hz(?ézu\ﬁt,, i Z) H,(X\D,; £)

s Lo

where [r] is the homology class of 7 and (), is the mapping induced by the
parallel displacement along the path from {, to ¢ which represents {. Thus we
have a mapping

*:5 — Homz(Hy(X: D, 5 Z), C).

We call # the period mapping for ¢: ¥'—S’.

Let 2 be the affine subspace of Hom (Hy(%, \D,,; £), C) defined by (6.8).
The fundamental group =,(S’, {,) acts on @ as affine transformations as in
Corollary 6.3. Let L%, . be the hyperplane in V* defined by (6.9) and put

Q=0 g* (W*+ L%+ \/——lLt*, o) -
rez
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Theorem 7.1. The image of the period mapping P is in 2’ and the mapping

?: 8 — 0
is biholomorphic. The monodromy group G, the image of the monodromy repre-
sentation p: wi(S’, t))—Aut (Hy(X:\Dy,; Z)), acts on S" as covering transformation

group and on ' as affine transformations through the representation p*. The
period mapping P is equivariant with these actions. Thus we have an isomorphism

§'=8/6=0'/G .

Proof. As in the discussion of Section 6, an element of S’ can be repre-
sented by an element xet+2z+v/—lAct, and an element w=W as follows.
By Theorem 6.2, the monodromy group G=p(x(S’, %)) is isomorphic to the
affine Weyl group W and t+2r+/—1A4 is a fundamental region of W in t5.
Thus, by (6.4), an element =S’ can be represented by an element x;=t+

~

2r+/—14 and w;=W uniquely.
f=(x;:, wi), x;E1+2n/—1A4, wiclW .
Let xi=(xy, =+, xz)Et+2x+/—14 and exp(x;)=(t, ---, t.), where t,=exp(x,).
By (6.3),
7.1 argt; > --- >argt,, argt,—argt,<2x, ié arg t,=0.
Let U,=U,N¥, (see (5.1)), t=n(f). Then
UIE{(xl, 9@ g=CPx P Zyl—i-/xilz[l(xl—tl):O}.
Let N(t) be the torus in U, defined as in Section 6. Let z,() be the path from
(t, 0)(1:0) to (¢,.1, 0)(1:0) in U, defined by
() =((L=5) 1] Fs| by Je’ TP hrsas b 0)(1:0), 0<s<l.

This path z, gives a 2-cycle I,,,.,(f) as in (6.7). Let »(¢) and a,(f) be the
homology classes of N(f) and I',,;,,(¢) respectively. Then these classes are the
generators of Hy(¥,\D®,; Z) and the horizontal families of homology classes
are given as follows:

v(H=w; (),

a(h=w; (@),
where the action of W=G on Hy(¥\D,; Z) is given by the same formula in
Theorem 6.2.

Let v, a; be the homology classes of 2-cycles N, [, .., on ¥, \D, defined
in Section 6. Then
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@.2) ehw=| o
.
wg (L)
[ o
(i)
=1.
Hence @(f)< Q.
@3 eia)=| o

:S . @; .
wi (@i (1)

If we write wil(a,(®)=cow()+>21"¢ c,a,(t), then

eB@=ct'Sel .

a;(t)

By the same arguement as in Section 4, we have

1 tiay — _
(7.4) Jorio @ g y=ifioE |3+ Terg G ars )]
— L (arg (tee)—arg (1) — Y=L og |12
or i+l ¢ 27 t,
Then we have
R _ n-1 i _ \/jl It_l
(7.5) Q(t)(at)_co-i—%‘lcl{zn (arg (¢,.1)—arg (t.)+ 5 log”m }
. _ 1 —ar V-1 b
(7.6) E(t)a)= _(arg (t.)—arg (L)) + 5~ log Lol

Let
A*¥= p*reV*v¥a,)<0, vi(a+ - +az-1)>—1},

then y*+A*4+/—1V* is a fundamental region of p*(x,(S’, t,)) in 2’. Let

xi=(3’1, E) yn)-|—27r\/-—_l(21, Tty Zn) (yz)l\ity (Z,;)E/‘l .
Then tlzeyi”m’:zl and

V=1
27

/—
:(ZHI—'ZL)'!')#(J’L_J)HI) .

Pl @a)=(2s1—2:) +

log e¥i~Vit1

435
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Therefore it follows from (7.1) and (7.6) that & gives a bijective mapping from

{i=(x1, VeS| xist+2n v—1A}
to the space
{(feQ| feve+ A% +/—1V*}.
By (7.2) and (7.3), the action of =;(S’, #,) on S is compatible with that on £2’.

Therefore the period mapping 2 is bijective.
We next show that & is biholomorphic. Put

ri= g {(arg (1) —arg (1) + VT log

t,
b
Let (a,, -, a,-;) be a coordinate system of S as in (5.1). By (7.5) and (7.6),

it suffice to show that the Jacobian of the mapping (ay, -+, Gn_)—(x1, =+, Xn_1)
does not vanish, where

X" a, x4 —|—a”_1x+l=if:[l(x—tz) .
Since
@.7) gremi=lt(f=1),
we shall calculate the Jacobians of the mappings

(tlx T tn—l) —> (t2/t1, Ty tn/tn—l)

and
(th Ty tn—l) —_> ((11, tty an—l) .
Since
L 1
tn—l _tl tn—ztn-l’
([ — e if isn—2,
a(tn/ln_l) _ bty bpoalny
at; - 2 1
— = =n—1,
tn—l tl tn—ztrzz—x 1f =n
we have
j :a(tz/th tty tn/tn-—l)
! a(th T tn—-l)
—t/t 1/t 0 0
1 0 —t/t8 1/t 0 0
—t o bty : :
S 0 —tus/tie  1/tuss

l/tl 1/tn—2 Z/tn—l
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From the (n—1)-th column to the second column, multiply the z-th column by
l[,/t,_; and add it to the (7—1)-th column, then we have

0 1/t, 0 0
0 0 1/t 0 - 0
—1 :
ey Ut 0
O l/tn,—Z
n/l‘l 3/ln—2 2/tn.—-l

B A

t(t e ba)®
Thus J,#0. We next show that J,=©@(a,, -+, @,_1)/0(ts, -+, l,-1))#0. Let I,
1<i<n, be the i-th elementary symmetric polynomial in variables x,, -+, X,.
It is well known that

Oy ooy ) I (x,—x,).

a(xly ) X,,) —1§7'<j§"

Thus the mapping (x,, -+, Xu-1)—, -+, [,-1) is locally biholomorphic on the
submanifold defined by x,+=x; (if i#7) and x,--- x,=1, which is isomorphic to
S’. Therefore we have J,#0.

It follows from J,#0, J,#0, and (7.7) that the mapping (a,, -, @,_,)—
(xi, -+, xn_y) is locally biholomorphic. It follows from the bijectivity of @
that @ is biholomorphic. The action of the monodromy group G on S’ and £’
are equivariant and G acts on these spaces freelv. Therefore ¢ induces an
isomorphism

S'=Q'/G
and the theorem is proved.
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