Purely Inseparable Extensions of Complete Intersections

Ву

Jeffrey LANG*

§ 0. Introduction

Let R be a graded unique factorization domain and $h \in R$ a product of q distinct homogeneous factors in R. Let $S = R[z]/(z^m - h)$. If S is a Krull domain, then what is the divisor class group of S? In several cases the answer is that the divisor class group is a direct sum of q-1 copies of Z/mZ. For example, this is true if R is a polynomial ring over a field and h is a product of two variables ([7], page 58); also, if R is a polynomial ring in two or more variables of characteristic $p \neq 0$, the factors of h are homogeneous in R and h is a h-th power ([6], Proposition 3.11, page 627). In this paper the same phenomenon is verified in the following case.

Let k be an algebraically closed field of characteristic $p \neq 0$, $Y \subset A_k^n$ a complete intersection of dimension greater than one, and assume that the ideal that defines Y is homogeneous. The above question is considered when R is the coordinate ring of Y and $h \in R$ is the image of a homogeneous element of $k^{[n]}$ of degree not divisible by p. We prove that if m is a p-th power, then Cl(S) is a direct sum of q-1 copies of Z/mZ. This substantially improves a theorem obtained in a previous article ([5], page 569, Theorem 5.7).

§ 1. Preliminaries

This paper assumes familiarity with the subject of divisor class group of a Krull domain. Two excellent references are P. Samuel's 1964 Tata notes [7] and R. Fossum's, "The Divisor Class Group of a Krull Domain" [2]. If A is a Krull domain, we denote the divisor class group of A by Cl(A). If $Y = \operatorname{Spec} A$, we will refer to "the divisor class group of Y", denoted Cl(Y); by this we mean Cl(A). In this section we recall results from [2], [4] and [7].

Communicated by K. Saito, May 7, 1992.

¹⁹⁹¹ Mathematics Subject Classifications: 13B

Dept. of Mathematics, KFUPM, Dhahran, Saudi Arabia.

On leave from the Mathematics Department, University of Kansas, Lawrence, Kansas, 66045, U.S.A.

Theorem 1. Let $S \subset T$ be Krull domains with T integral over S. Then there is a well defined group homomorphism $\phi: Cl(S) \rightarrow Cl(T)$. ([7], theorem (6.2), page 20).

Theorem 2. Let T be a Krull domain of characteristic $p \neq 0$ and \mathcal{Q} a finite group of derivation of T. Let $S \subset T$ be the fixed subring of \mathcal{Q} and let L denote the quotient field of T. Let $\Delta_1, \dots, \Delta_m$ be a basis of \mathcal{Q} over $\mathbb{Z}/p\mathbb{Z}$. Then S is a Krull domain, T is integral over S, and the kernel of the homomorphism $\psi: Cl(S) \to Cl(T)$ described in (1) is isomorphic to a subgroup of V_0/V_0' where V_0 and V_0' are the following additive subgroups of $L^m: V_0 = \{(t^{-1}\Delta_1t, \dots, t^{-1}\Delta_mt): t \in L \text{ and } t^{-1}\Delta_tt \in T \text{ for } 1 \leq i \leq m\}$ and $V_0' = \{(u^{-1}\Delta_1u, \dots, u^{-1}\Delta_mu): u \text{ is a unit in } T\}$. ([2], Corollary 17.3, page 92).

Remark 3. If I is a divisorial ideal of S whose class group is in the kernel of $Cl(S) \rightarrow Cl(T)$, then T: (T:IT) is a principal ideal, say tT, for some $t \in T$. The injection $\ker \psi \rightarrow V_0/V_0'$ maps I to $(t^{-1}\Delta_1 t, \dots, t^{-1}\Delta_m t)$.

Theorem 4. Let $T[\mathcal{G}]$ denote the S-subalgebra of $\operatorname{End}_s(T)$ generated by T and \mathcal{G} . If $T[\mathcal{G}] = \operatorname{End}_s(T)$, then $\ker \phi \to V_0/V_0'$ is an isomorphism. ([2], theorem 17.4, page 93).

Proposition 5. Let L' be the quotient field of S. If [L:L']=p and D(T) is contained in no height one prime ideal of T, then $\ker \phi \to V_0/V_0'$ is an isomorphism. ([7], Theorem 2.1, page 62).

Proposition 6. Let A be a graded Krull domain. Let $Div_h(A)$ denote the subgroup of Div(A) generated by the homogeneous divisorial (prime) ideals and set $Prin_h(A) = Prin(A) \cap Div_h(A)$. Then the inclusion $Div_h(A) \to Div(A)$ induces a bijection

$$\operatorname{Div}_h A/\operatorname{Prin}_h(A) \longrightarrow Cl(A)$$
.

([2], proposition 10.2, page 42).

Proposition 7. In (2) assume $T = T_0 \oplus T_1 \oplus T_2 \oplus \cdots$ is a graded ring and Δ_i , $1 \le i \le m$, are graded derivations of degree e_i (i. e. $\Delta_i(T_j) \subset T_{j+e_i}$ for each j). For each $j = 0, 1, \cdots$, let $S_j = T_j \cap (\bigcap_{G} \Delta^{-1}(0))$. Assume $S_0 = T_0$. Then $V'_0 = 0$ and S is the graded subring of T, $S = S_0 \oplus S_1 \oplus \cdots$. If, in addition, T is a unique factorization domain, then $Cl(S) = \ker \phi$ and the image of the mapping $\ker \phi \to V_0$ is spanned by m-tuples $(t^{-1}\Delta_1 t, \cdots, t^{-1}\Delta_m t) \in T^m$, where t is homogeneous irreducible in T.

Proof. If u is a unit in T, $u \in T_0$. Since $S_0 = T_0$, $V_0' = 0$. Given $j = 0, 1, \dots, T_J \cap (\bigcap_{i=1}^m \Delta_i^{-1}(0)) \subset T_J \cap (\bigcap_{i=1}^m \Delta_i^{-1}(0))$. The reverse inclusion holds since the Δ_i span \mathcal{G} . Therefore $S_j = T_J \cap (\bigcap_{i=1}^m \Delta_i^{-1}(0))$. Since the Δ_i are homogeneous, an element

 $t \in \bigcap_{i=1}^m \Delta_i^{-1}(0)$ if and only if its homogeneous parts belong to $\bigcap_{i=1}^m \Delta_i^{-1}(0)$. Thus $S = S_0 \oplus S_1 \oplus \cdots$.

If T is a unique factorization domain, then Cl(T)=0 and obviously $Cl(S)=\ker \phi$. By (2), (3) and (6), the image of $\ker \phi$ in V_0 will be generated by m-tuples $(t^{-1}\Delta_1 t, \cdots, t^{-1}\Delta_m t) \in T^m$ where t is a homogeneous element of T. t can be factored as a product $t=w_1^{n_1}\cdots w_s^{n_s}$, where the w_i are irreducible homogeneous elements in T and the n_i are positive integers. If one of the $n_i=0 \pmod p$, then t can be replaced by $w_i^{-n_i}t$; so we may assume no $n_i=0 \pmod p$.

If for some j, $t^{-1}\Delta_j t \neq 0$, then $t^{-1}\Delta_j t = \sum_i n_i w_i^{-1}\Delta_j (w_i)$. $t^{-1}\Delta_j t \in T$ implies $\sum_i n_i \frac{w_1 \cdots w_s}{w_i} \Delta_j (w_i) \in w_1 \cdots w_s T$. Since the w_i are pairwise coprime, w_i must divide $\Delta_j (w_i)$ in T. Thus $w_i^{-1}\Delta_j (w_i) \in T$ for each i and j and $(t^{-1}\Delta_1 t, \cdots, t^{-1}\Delta_m t) = \sum_i n_i (w_i^{-1}\Delta_1 w_i, \cdots, w_i^{-1}\Delta_m w_i)$. \square

Definition 8. Let K be a field of characteristic $p \neq 0$. A set \mathcal{D} of derivations of K is called a restricted K-Lie algebra of derivations of K if: (1) \mathcal{D} is closed under addition: (2) \mathcal{D} is closed under bracket product (3) \mathcal{D} is closed under p-th powers; (4) \mathcal{D} is closed under multiplication by elements of K.

Theorem 9 (Jacobson). Let K be a field of characteristic $p \neq 0$. Let \mathcal{D} be a restricted K-Lie algebra of derivations of K such that $[\mathcal{D}: K] = m < \infty$. Then: (1) If K' is the subfield of \mathcal{D} constants, then K is purely inseparable of exponent ≤ 1 over K' and $[K: K'] = p^m$; (2) if \mathcal{D} is any derivation of K over K', then $D \in \mathcal{D}$; (3) if (D_1, \dots, D_m) is any basis for \mathcal{D} over K, then the set of monomials

$$D_1^{k_1} \cdots D_m^{k_m}$$
; $0 \le k_i < p$, $(D_i^0 = 1)$

is a basis for the ring $\operatorname{End}_{K'}(K)$ considered as a vector space over K. ([4], theorem 19, page 186).

Lemma 10. Let K be a perfect field of characteristic $p \neq 0$. Let B be a finitely generated K-integral domain of dimension d. Let $C = B^p$, the ring of p-th powers of elements of B. Then the degree of B over C is p^d .

Proof. $B=K[w_1, \cdots, w_t]$ for some $w_i \in B$. Then $C=K[w_1^p, \cdots, w_t^p]$. By Noether's normalization theorem, there exists $y_1, \cdots, y_d \in B$ such that B is separable algebraic over $K[y_1, \cdots, y_d]$ and y_1, \cdots, y_d are algebraically independent over K. Let L_B , L_C be the fields of quotients of B, C, respectively. Clearly, $[L_B: K(y_1, \cdots, y_d)] = [L_C: K(y_1^p, \cdots, y_d^p)]$ and the result follows. \square

§ 2. Purely Inseparable Extensions of Complete Intersections

1. Let k be an algebraically closed field of characteristic $p \neq 0$ and let $k^{\lfloor n \rfloor}$ denote the polynomial ring in n variables over k. Assume h_1, \dots, h_r $(r \leq n-2)$

are homogeneous polynomials in $k^{[n]}$ such that the ideal P they generate is a height r prime ideal in $k^{[n]}$. Let $R = k^{[n]}/P$ and for $f \in k^{[n]}$ denote its image in R by \bar{f} . For each integer $m \ge 0$, let $R_m = k[\bar{x}_1^{p^m}, \dots, \bar{x}_n^{p^m}] \subset R$. R_m is a subring of R and is ring isomorphic (not k-isomorphic) to R since k is perfect.

Throughout assume R is a unique factorization domain. Also assume $h_{r+1} \in k^{\lceil n \rceil}$ is homogeneous such that $\deg(h_{r+1}) \neq 0 \pmod{p}$ and h_{r+1} factors as a product $\bar{h}_{r+1} = \bar{u}_1 \bar{u}_2 \cdots \bar{u}_q$ of q distinct irreducible elements in R. Note that this last assumption implies $\bar{h}_{r+1} \not \in R_1$.

For each integer $m \ge 0$, let $S_m = R_m[\bar{h}_{r+1}]$ and $X_m \subset A_k^{n+1}$ be the variety defined by the equations $h_1 = \cdots = h_r = x_{n+1}^{p_m} - h_{r+1} = 0$.

Lemma 2. For each m, the coordinate ring of X_m is isomorphic S_m .

Proof. Let $\phi: k[x_1, \cdots, x_{n+1}] \to S_m$ be the surjection that sends x_i to $\bar{x}_i^{p^m}$ for $1 \le i \le n$, α to α^{p^m} for $\alpha \in k$ and x_{n+1} to \bar{h}_{r+1} . Let $Q \subset k^{\lceil n+1 \rceil}$ be the ideal generated by $h_1, \cdots, h_r, x_{n+1}^{p^m} - h_{r+1}$. Since $\bar{h}_{r+1} \notin R_1$, Q is a prime ideal of height r+1 contained in $\ker \phi$. We have $\dim(R_m[\bar{h}_{r+1}]) = \dim(R) = n-r$. Thus $\ker \phi$ is a height r+1 prime ideal and $\ker \phi = Q$. Therefore $k^{\lceil n+1 \rceil}/Q$ is isomorphic to S_m . \square

3. For each integer $m \ge 0$, let S'_m be the ring of p-th powers of elements of S_m . S'_m and S_m are isomorphic and $S'_m \subset S_{m+1} \subset S_m$. Denote by E_m , F_m and F'_m the quotient fields of R_m , S_m and S'_m , respectively.

Lemma 4. For each $m \ge 0$: (i) $[E_m : E_{m+1}] = [F_m : F_m'] = p^{n-r}$; (ii) $[F_{m+1} : F_m'] = p$; (iii) $[F_m : F_{m+1}] = p^{n-r-1}$; (iv) $[F_m : E_m] = p^{m+1}$.

Proof. (i) is an immediate consequence of Lemma (1.10). (ii) is obvious. (iii) follows from (i) and (ii). To prove (iv), note that $F_m = E_m(\bar{h}_{r+1})$. Then $[F_m : E_m] = \prod_{i=0}^{m-1} [E_m(\bar{h}_{r+1}^{p_i})] : E_m(\bar{h}_{r+1}^{p_{i+1}})] . E_m(\bar{h}_{r+1}^{p_i}) \cong E_{m-i}(\bar{h}_{r+1}) = F_{m-i}$, and $E_m(\bar{h}_{r+1}^{p_{i+1}}) \cong E_{m-i}(\bar{h}_{r+1}^{p_i}) = F'_{m-i-1}$, where the two isomorphisms are nothing other than the operation of taking p^i -th roots. Thus $[F_m : E_m] = \prod_{i=0}^{m-1} [F_{m-i} : F'_{m-i-1}] = p^m$ by (ii).

5. From here on assume that X_1 is regular in codimension one. Then X_m is regular in codimension one for each m and S_m is noetherian integrally closed; hence S_m is a Krull domain. By (1.1) and (1.3) we obtain well defined group homomorphisms $\phi_m': Cl(S_m) \to Cl(S_{m+1})$ and $\phi_m: Cl(S_{m+1}) \to Cl(S_m)$, which we'll study via (1.3).

Definition 6. If A is a ring and $f_1, \dots, f_s \in A[x_1, \dots, x_s]$, the polynomial ring in s variables over A, let $\partial(f_1, \dots, f_s)/\partial(x_1, \dots, x_s)$ denote the determinant

of the Jacobian matrix $[\partial f_i/\partial x_i]$.

§ 3. The Calculation of $\ker \phi'_m$

1. For each (r+1)-tuple $I=(i_1,\cdots,i_{r+1})$ of integers with $1\leq i_j\leq n$, let D_I be the derivation on $k(x_1,\cdots,x_n)$ defined by $D_I=\partial(\ ,\ h_1,\cdots,\ h_r)/\partial(x_{i_1},\cdots,\ x_{i_{r+1}})$. Since $D_I(h_i)=0$ for each $i=1,\cdots,r$; D_I induces a derivation on $E_0=k(\bar{x}_1,\cdots,\bar{x}_m)$. We will also denote this derivation by D_I ; it should be clear from the context which one is meant.

Lemma 2. $R \cap (\bigcap_I D_I^{-1}(0)) = R_1$.

Proof. Since R is factorial, R is regular in codimension one. Thus the maximal minors of the Jacobian matrix $[\partial h_i/\partial x_j]_{1\leq i\leq \tau}$ have greatest common divisor 1 in R. In particular, at least one maximal minor (actually at least two) has nonzero image in R. Without loss of generality we may assume $\partial(h_1, \dots, h_{\tau})/\partial(x_1, \dots, x_{\tau})$ has nonzero image in R.

For each $s=r+1, \cdots, n$, let $D_s=D_{(1,\cdots,r,s)}$. Then $E_0\supset E_0\cap D_{r+1}^{-1}(0)\supset E_0\cap (\bigcap_{s=r+1}^{r+2}D_s^{-1}(0))\supset \cdots\supset E_0\cap (\bigcap_{s=r+1}^nD_s^{-1}(0))$. Each containment is proper since $x_t\in \bigcap_{s< t}D_s^{-1}(0)$ and $D_t(\bar{x}_t)\neq 0$. Also, $E_1\subset E_0\cap (\bigcap_ID_I^{-1}(0))\subset E_0\cap (\bigcap_{s=r+1}^nD_s^{-1}(0))$. By (2.4), $[E_0:E_1]=p^{n-r}$, which forces $E_1=E_0\cap (\bigcap_ID_I^{-1}(0))$. Thus R_1 and $R\cap (\bigcap_ID_I^{-1}(0))$ have the same quotient field. Since R_1 is integrally closed, $R_1=R\cap (\bigcap_ID_I^{-1}(0))$.

Remark 3. By (1.1), $\bar{h}_{\tau+1} \notin R_1$. By (3.2), there exists an (r+1)-tuple I_0 such that $D_{I_0}(\bar{h}_{\tau+1}) \neq 0$. Let $\beta = D_{I_0}(\bar{h}_{\tau+1})$. For each integer $m \geq 0$, let Δ_m be the restriction of the derivation $\beta^{-1}D_{I_0}$ on E_0 to S_m .

Lemma 4. Δ_m maps S_m into S_m and has kernel S'_{m-1} .

Proof. Let $\alpha \in S_m$. By (2.4), $\alpha = \sum_{i=0}^{p-1} \alpha_i \bar{h}_{r+1}^i$ for unique $\alpha_i \in S'_{m-1}$. Then $\Delta_m(\alpha) = \sum_{i=0}^{p-1} i \alpha_i \bar{h}_{r+1}^{i-1}$. Thus $\Delta_m(\alpha) \in S_m$ and $\Delta_m(\alpha) = 0$ if and only if $\alpha_i = 0$ for $1 \le i \le p-1$; that is, if and only if $\alpha \in S'_{m-1}$. \square

Proposition 5. The mapping $\phi'_m : Cl(S'_m) \rightarrow Cl(S_{m+1})$ described in (2.5) is an injection.

Proof. $\Delta_m(\bar{h}_{r+1})=1$ and $[F_{m+1}:F_m']=p$. By (2.5), (1.7), and (3.4), $\ker \phi_m'$ is isomorphic to V_0 , where V_0 is spanned by the logarithmic derivatives $t^{-1}\Delta_m t \in S_{m+1}$, where $t \in S_{m+1}$ is homogeneous with respect to the grading S_{m+1} inherits from R. t homogeneous and $\deg(\bar{h}_{r+1})\neq 0 \pmod{p}$ implies $t=\alpha \bar{h}_{r+1}^j$ for some

 $\alpha \in S'_m$ and integer j, $0 \le j \le p-1$. If $t^{-1}\Delta_m t \in S_{m+1}$, then either j=0 or $\bar{h}_{r+1}^{-1} \in S_{m+1}$. Thus $t^{-1}\Delta_m t = 0$ and $V_0 = 0$. \square

Proposition 6. Let \mathcal{G} denote the vector space over E_0 generated by the D_I defined in (3.1). Then if D is a derivation on E_0 , $D \in \mathcal{G}$.

Proof. Let \mathcal{D} denote the vector space of derivations on $E_{\mathbf{0}}$. The map $D \to (D\bar{x}_1, \, \cdots, \, D\bar{x}_n)$ is a $E_{\mathbf{0}}$ -vector space monomorphism from \mathcal{D} to $E_{\mathbf{0}}^n$. If $D \in \mathcal{D}$, $0 = D(\bar{h}_i) = \sum_i \frac{\overline{\partial h_i}}{\partial x_j} D\bar{x}_j$. Thus $D \in \mathcal{D}$ implies $\left[\frac{\overline{\partial h_i}}{\partial x_j}\right] D(\bar{x}) = 0$. Since R is factorial, R is regular in codimension 1, which implies the rank of $\left[\frac{\overline{\partial h_i}}{\partial x_j}\right]$ is r. Therefore \mathcal{D} is of dimension at most n-r over $E_{\mathbf{0}}$.

Assuming again that $\partial(h_1, \dots, h_r)/\partial(x_1, \dots, x_r)$ has nonzero image in R, we get that the column matrix $[D_s]_{r+1 \le s \le n}$ (where D_s is defined in the proof of (3.2)) is mapped to an $(n-r) \times n$ matrix under $\mathcal{D} \to E_0^n$ that contains an $(n-r) \times (n-r)$ nonzero scalar submatrix $\overline{\partial(h_1, \dots, h_r)}/\overline{\partial(x_1, \dots, x_r)} \cdot I_{n-r}$. Thus \mathcal{G} has dimension at least n-r over E_0 , which shows that $\mathcal{D} = \mathcal{G}$. \square

Corollary 7. Let \mathcal{G} denote the vector space over E_0 generated by the D_I . Then \mathcal{G} is a restricted Lie algebra of derivations over E_0 . Furthermore, $R[\mathcal{G}] = \operatorname{End}_{R_1}(R)$.

Proof. \mathcal{D} , the space of derivations on E_0 , is a restricted Lie algebra of derivations over E_0 . By (3.6), $\mathcal{D}=\mathcal{G}$. Both $R[\mathcal{G}]$ and $\operatorname{End}_{R_1}(R)$ are locally free R_1 modules ([1], page 86, exercise 16 and page 99, exercise 5). By (1.9) and a rank argument $R[\mathcal{G}] = \operatorname{End}_{R_1}(R)$. \square

Corollary 8. Let $t \in E_0$. If $t^{-1}D_I t \in R$ for all I, then $D_I(t) = 0$ for all I.

Proof. Let $W = \{(t^{-1}D_It) : t \in E_0 \text{ and } t^{-1}D_It \in R \text{ for all } I\}$. Since the units of R are the nonzero elements of k, by (1.2), (1.4), (3.2) and (3.7), W = 0. \square

§ 4. The Calculation of $Cl(S_1)$

1. For each (r+2)-tuple $J=(i_1,\cdots,i_{r+2})$ of integers with $1\leq i_j\leq n$, let D_J be the derivation on $k(x_1,\cdots,x_n)$ defined by $D_J=\partial(\ ,\ h_1,\cdots,h_{r+1})/\partial(x_{i_1},\cdots,x_{i_{r+2}})$. Since $D_J(h_i)=0$ for $1\leq i\leq r$, D_J induces a derivation on E_0 , which we will also denote by D_J .

Lemma 2. $R \cap (\bigcap_{J} D_J^{-1}(0)) = S_1$.

Proof. Similar to (3.2).

Proposition 3. Let W_0 be the additive group generated by $\{(t^{-1}D_Jt): t \in R \text{ is } \}$

irreducible and homogeneous and $t^{-1}D_Jt \in R$ for each J}. Then $Cl(S_1)$ is isomorphic to a subgroup of W_0 .

Proof. Follows from (1.7) and (4.2).

4. Recall that $\bar{h}_{r+1} = \bar{u}_1 \cdots \bar{u}_q$ is a product of q distinct irreducible elements in R and $\deg(h_{r+1}) \neq 0 \pmod{p}$.

Lemma 5. For each $i=1, \dots, q-1$, let Q_i be the height one prime ideal in S_1 generated by x_{n+1} and u_i . Then the classes of the Q_i generate a subgroup of $Cl(S_1)$ of order p^{q-1} .

Proof. By (4.3), $Cl(S_1) \rightarrow W_0$ is an injection. By (1.3), Q_i maps to $(\bar{u}_i^{-1}D_J(\bar{u}_i))$ in W_0 .

Claim. The elements $(\bar{u}_i^{-1}D_J(\bar{u}_i))$, $1 \le i \le q-1$, are F_p -independent; F_p the prime subfield of k.

Suppose $e_i \in F_p$, $1 \le i \le q-1$, such that $\sum_i e_i (\bar{u}_i^{-1}D_J\bar{u}_i) = 0$. Let $H = \prod_i u_i^{e_i}$. Then $D_J(\overline{H}) = 0$ for each J, which implies by (4.2) that $E_1 \subset E_1(\overline{H}) \subset F_1 = E_1(\overline{h}_{r+1})$. If $\overline{H} \notin E_1$, then $E_1(\overline{H}) = E_1(\overline{h}_{r+1})$, which implies there exists $\alpha_j \in k^{[n]}$ such that $\overline{\alpha}_p^p \overline{H} = \sum_{j=0}^{p-1} \overline{\alpha}_j^p \overline{h}_{r+1}^j$. Since H and h_{r+1} are homogeneous elements and P a homogeneous ideal in $k^{[n]}$, we may assume that the α_j are homogeneous polynomials as well. Since $\deg(\alpha_j^p h_{r+1}^j) = j(\deg(h_{r+1})) \pmod{p}$ and $\deg(h_{r+1}) \ne 0 \pmod{p}$, it follows $\overline{\alpha}_0^p \overline{H} = \overline{\alpha}_{j_0}^p \overline{h}_{r+1}^{j_0}$ for some $j_0 = 0, 1, \cdots, p-1$. If $j_0 \ne 0$, then this implies $\overline{u}_q \in E_1$, which contradicts the irreducibility of \overline{u}_q in R. If $j_0 = 0$, then \overline{H} must in fact belong to E_1 . But if $\overline{H} \in E_1$, then each $e_i = 0 \pmod{p}$. This proves the claim and hence the lemma. \square

Theorem 6. $Cl(S_1)$ is a direct sum of q-1 copies of Z/pZ.

Proof. By (4.3) and (4.5) it is enough to show that W_0 has order at most p^{q-1} . Let $\bar{u} \in R$ be irreducible homogeneous such that $\bar{w}_J = \bar{u}^{-1} D_J(\bar{u}) \in R$ for each J. Then \bar{u} divides the images in R of all of the maximal minors of the matrix

$$M = \begin{bmatrix} \frac{\partial u}{\partial x_1} & \frac{\partial u}{\partial x_2} & \cdots & \frac{\partial u}{\partial x_n} \\ \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial h_{r+1}}{\partial x_1} & \frac{\partial h_{r+1}}{\partial x_2} & \cdots & \frac{\partial h_{r+1}}{\partial x_n} \end{bmatrix}.$$

By Euler's formula, \bar{u} divides in R the images of the maximal minors of the

matrix obtained from M by replacing the j-th column by the $(r+2)\times 1$ vector

$$\begin{bmatrix} d \cdot u \\ 0 \\ \vdots \\ 0 \\ d' \cdot h_{\tau+1} \end{bmatrix}$$

where $d = \deg(u)$ and $d' = \deg(h_{r+1})$. Therefore \bar{u} is a factor of \bar{h}_{r+1} or \bar{u} is a common factor of the images in R of each of the maximal minors of the matrix

$$\begin{bmatrix} \frac{\partial u}{\partial x_1} & \frac{\partial u}{\partial x_2} & \cdots & \frac{\partial u}{\partial x_n} \\ \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial h_r}{\partial x_1} & \frac{\partial h_r}{\partial x_2} & \cdots & \frac{\partial h_r}{\partial x_n} \end{bmatrix}.$$

The latter implies $\bar{u}^{-1}D_I\bar{u}\in R$ for each of the derivations D_I described in (3.1), which by (3.2) and (3.8) implies $\bar{u}\in R_1$. Since \bar{u} is irreducible in R, it must be that \bar{u} is a k^* multiple of one of the \bar{u}_i . By (4.3) we get W_0 is generated by $(\bar{u}_i^{-1}D_J\bar{u}_i)$, $1\leq i\leq q$. We have for each J, $\sum\limits_{i=1}^q \bar{u}_i^{-1}D_J\bar{u}_i=\bar{h}_{r+1}^{-1}D_J(\bar{h}_{r+1})=0$. Therefore W_0 is generated by $(\bar{u}_i^{-1}D_J\bar{u}_i)$, $1\leq i\leq q-1$. Since W_0 is a p-group, the order of W_0 is at most p^{q-1} . \square

Corollary 7. $Cl(X_1)$ is generated by the codimension one cycles on X_1 defined by $u_i=0$, $1 \le i \le q-1$.

Proof. By the proof of (4.5) and by theorem (4.6). \square

§ 5. The Calculation of $Cl(S_m)$

1. Given $\alpha \in F_m$, by (2.4) there exist unique $\alpha_i \in E_0$, such that $\alpha = \sum_{i=0}^{p^m-1} \alpha_i^{p^m} \bar{h}_{r+1}^i$. For each derivation D_J defined in (4.1) and each integer $m \ge 0$, define a mapping $D_J^{(m)}$ on F_m by the formula

$$D_J^{(m)}(\alpha) = \sum_{i=0}^{p^{m-1}} (D_J(\alpha_i))^{p^m} \bar{h}_{r+1}^i$$
.

Lemma 2. $D_J^{(m)}$ is a derivation on F_m .

Proof. $D_J^{(m)}$ is clearly additive. Given $\alpha = \sum_{i=0}^{p^{m-1}} \alpha_i^{p^m} \bar{h}_{r+1}^i$ and $\beta = \sum_{i=0}^{p^{m-1}} \beta_i^{p^m} \bar{h}_{r+1}^i$

in F_m , we must show that $D_{\mathcal{J}}^{(m)}(\alpha\beta) = \alpha D_{\mathcal{J}}^{(m)}\beta + \beta D_{\mathcal{J}}^{(m)}\alpha$. We argue by induction on the number of nonzero coefficients appearing in α plus the number of nonzero coefficients appearing in β .

Suppose this sum is 2. Then $\alpha = \alpha_i^{p^m} \bar{h}_{r+1}^i$ and $\beta = \beta_j^{p^m} \bar{h}_{r+1}^j$ for some α_i , $\beta_j \in E_0$ and nonnegative integers i and j. Then $D_j^{(m)}(\alpha_j) = D_j^{(m)}(\alpha_i \beta_j)^{p^m} h_{r+1}^{i+j} = (D_j(\alpha_i \beta_j))^{p^m} \bar{h}_{r+1}^{i+j} = (\alpha_i D_j \beta_j + \beta_j D_j \alpha_i)^{p^m} \bar{h}_{r+1}^{i+j} = \alpha_i^{p^m} \bar{h}_{r+1}^i D_j^{(m)}(\beta_j^{p^m} \bar{h}_{r+1}^j) + \beta_i^{p^m} \bar{h}_{r+1}^j D_j^{(m)}(\alpha_i^{p^m} \bar{h}_{r+1}^i) = \alpha_i^{p^m} \bar{h}_{r+1}^i D_j^{(m)}(\alpha_i^{p^m} \bar{h}_{r+1}^i) = \alpha_i^{p^m} \bar{h}_{r+1}^$

Now assume that the total number of nonzero coefficients appearing in α and β is greater than 2. Let j_0 be the highest power of \bar{h}_{r+1} with nonzero coefficient in β . Then $D_J^{(m)}(\alpha\beta) = D_J^{(m)}(\alpha(\beta - \beta_j^{n_m} \bar{h}_{r+1}^{j_0})) + D_J^{(m)}(\alpha\beta_j^{n_m} \bar{h}_{r+1}^{j_0})$, which by the induction hypothesis and the additivity of $D_J^{(m)}$, equals to $\alpha D_J^{(m)}\beta + \beta D_J^{(m)}\alpha$. \square

Lemma 3. S_{m+1} is the fixed subring of the derivations $D_{J}^{(m)}$ acting on S_{m} .

Proof. Given $\alpha \in S_m$, $\alpha = \sum \alpha_i^{p^m} \bar{h}_{r+1}^i$, $\alpha_i \in R$. $D_J^{(m)}(\alpha) = 0$ for each J if and only if $D_J(\alpha_i) = 0$ for each J and $0 \le i \le p^m - 1$. By (4.2) we get $D_J^{(m)}(\alpha) = 0$ for each J implies each $\alpha_i \in S_1$ and hence $\alpha \in S_{m+1}$. \square

Definition 4. For each integer $m \ge 1$, let W_m be the additive group generated by $\{(t^{-1}D_J^{(m)}t): t \text{ is a homogeneous element in } S_m \text{ and } t^{-1}D_J^{(m)}t \in S_m \text{ for each } J\}$.

Lemma 5. If $(u_J) \in W_0$ then $(u_J^{p^m}) \equiv W_m$ and the mapping $(u_J) \rightarrow (u_J^{p^m})$ from W_0 to W_m is an isomorphism.

Proof. If $t \in E_0$ and $t^{-1}D_Jt = u_J \in R$, then $t^{p^m} \in F_m$ and $t^{-p^m}D_J^{(m)}(t^{p^m}) = (t^{-1}D_Jt)^{p^m} = u_J^{p^m} \in R_m \subset S_m$. This also shows that $(u_J) \to (u_J^{p^m})$ defines an injection from W_0 to W_m .

Suppose $t' \in S_m$ is homogeneous. Since $\deg(h_{r+1}) \neq 0 \pmod{p}$, $t' = \bar{\alpha}^{p^m} \bar{h}_{i+1}^r$, where $\alpha \in k^{[n]}$ is homogeneous and i is a nonnegative integer. If $(t')^{-1}D_J^{(m)}(t')$ is a nonzero element of S_m , then $(t')^{-1}D_J^{(m)}(t') = (\alpha^{-1}D_J\alpha)^{p^m} \in S_m \cap E_m = R_m$. Thus $\alpha^{-1}D_J\alpha \subseteq R$. Therefore $W_0 \to W_m$ is also a surjection. \square

Theorem 6. $Cl(S_m)$ is a direct sum of q-1 copies of Z/p^mZ , generated by the height one primes $Q_i^{(m)} = \bar{h}_{r+1}S_m + \bar{u}_i^{p^m}S_m$ in S_m , $1 \le i \le q-1$.

Proof. For each $i=1, \cdots, q-1$ and positive integer m, let $P_i^{(m)} = \bar{h}_{r+1}^p S_m' + \bar{u}_i^{p^{m+1}} S_m'$. Then $Q_i^{(m)} \cap S_{m+1} = Q_i^{(m+1)}$ and $Q_i^{(m+1)} \cap S_m' = P_i^{(m)}$. Also, the ramification index of $Q_i^{(m)}$ over $Q_i^{(m+1)}$ is 1 and the ramification index of $Q_i^{(m+1)}$ over $P_i^{(m)}$ is p. Thus $\phi_m : Cl(S_{m+1}) \rightarrow Cl(S_m)$ sends $Q_i^{(m+1)}$ to $Q_i^{(m)}$ and $\phi_m' : Cl(S_m') \rightarrow Cl(S_{m+1})$ sends $P_i^{(m)}$ to $pQ_i^{(m+1)}$.

By (1.2), (1.3) and (1.6) it follows that the ker ϕ_m is isomorphic to a subgroup of W_m . By (5.5) and the proof of (4.6), we have the ker ϕ_m has order at most p^{q-1} .

Proceeding by induction we have that the primes $Q_i^{(m)}$ generate $Cl(S_m)$ and are each of order p^m , hence the same is true of the primes $P_i^{(m)}$ in S_m' . Since $\phi_m': Cl(S_m') \to Cl(S_{m+1})$ is injective by (3.5), we see that the elements $p^m Q_i^{(m+1)}$ are a Z/pZ-basis for $\ker \phi_m$. Since the ramification index of $Q_i^{(m)}$ over $Q_i^{(m+1)}$ is 1, ϕ_m is surjective, and the conclusion of the theorem follows. \square

Corollary 7. $Cl(X_m)$ is generated by the codimension one cycles on X_m defined by $u_i=0$, $1 \le i \le q-1$.

Proof. By (2.2) and (5.6).

8. Let A be a Krull ring of characteristic $p \neq 0$ with quotient field k. Let $h_1, \dots, h_{r+1} \in A[x_1, \dots, x_n]$ satisfy all of the conditions of (2.1) and (2.5) as elements of $k[x_1, \dots, x_n]$. Let $T = A[x_1, \dots, x_{n+1}]/(h_1, \dots, h_r, x_{n+1}^p - h_{r+1})$. Assume T is a Krull ring.

Corollary 9. Let T be as in (5.8), Cl(T) is isomorphic to $Cl(A) \oplus (\bigoplus_{i=1}^{q-1} Z/pZ)$.

Proof. Let U be the multiplicative set of nonzero elements of A. Since A is a Krull ring, so is $S=U^{-1}T$. By a theorem of Nagata ([7], theorem 6.3, page 21), we obtain an exact sequence

$$0 \longrightarrow Cl(A) \longrightarrow Cl(S) \longrightarrow 0$$
.

The surjection $Cl(T) \rightarrow Cl(S)$ is a split surjection. Thus $Cl(T) \cong Cl(A) \oplus Cl(S)$. \square

Corollary 10. Let R be as in (2.1) and assume $g \in k^{\lfloor n \rfloor}$ is homogeneous such that \bar{g} is irreducible in R. Let $Y \subset A_k^m$ be defined by the equations $h_1 = \cdots = h_r = x_{n+1}^{pm} - g = 0$, where m is a positive integer. Then the coordinate ring of Y is factorial if and only if Y is regular in codimension one.

References

- [1] Atiyah, M.F. and Macdonald, I.G., Introduction to Commutative Algebra, Addison-Wesley, 1969.
- [2] Fossum, Robert, The Divisor Class Group of a Krull Domain, Springer-Verlag, 1973.
- [3] Hartshorne, Robin, Algebraic Geometry, Springer-Verlag, 1977.
- [4] Jacobson, Nathan, Lectures in Abstract Algebras III, Springer-Verlag, 1964.
- [5] Lang, Jeffrey, Purely inseparable extensions of unique factorization domains, *Kyoto Journal*, **26** (1990) 453-471.
- [6] ——, The divisor classes of the hypersurface $z^{p^m}=G(x_1,\dots,x_n)$, Tran. Amer. Math. Soc., 278 (1983).
- [7] Samuel, Pierre, Lectures on unique factorization domains, in *Tata Lecture Notes*, Tata Inst. of Fundamental Res. Bombay, 1964.