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Purely Inseparable Extensions
of Complete Intersections

By

Jeffrey LANG*

§0. Introduction

Let R be a graded unique factorization domain and h€R a product of ¢
distinct homogeneous factors in R. Let S=R[z]/(z™—h). If S is a Krull domain,
then what is the divisor class group of S? In several cases the answer is that
the divisor class group is a direct sum of ¢—1 copies of Z/mZ. For example,
this is true if R is a polynomial ring over a field and & is a product of two
variables ([7], page 58); also, if R is a polynomial ring in two or more variables
of characteristic p=0, the factors of & are homogeneous in R and m is a p-th
power ([6], Proposition 3.11, page 627). In this paper the same phenomenon is
verified in the following case.

Let & be an algebraically closed field of characteristic p+#0, Y <A} a com-
plete intersection of dimension greater than one, and assume that the ideal that
defines Y is homogeneous. The above question is considered when R is the
coordinate ring of ¥ and AR is the image of a homogeneous element of kt*?
of degree not divisible by p. We prove that if m is a p-th power, then CI(S)
is a direct sum of g—1 copies of Z/mZ. This substantially improves a theorem
obtained in a previous article ([5], page 569, Theorem 5.7).

§1. Preliminaries

This papsr assumes familiarity with the subject of divisor class group of a
Krull domain. Two excellent references are P. Samuel’s 1964 Tata notes [7]
and R. Fossum’s, “The Divisor Class Group of a Krull Domain” [2]. If Aisa
Krull domain, we denote the divisor class group of A by Ci(A). If Y =Spec A,
we will refer to “the divisor class group of Y, denoted C/(Y'); by this we mean
Ci(4). In this section we recall results from [2], [4] and [7].
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Theorem 1. Let ScT be Krull domains with T integral over S. Then there
is a well defined group homomorphism ¢: CI(S)—-CIT). ([7], theorem (6.2),
page 20).

Theorem 2. Let T be a Krull domain of characteristic p+0 and @ a finite
group of derivation of T. Let SCT be the fixed subring of G and let L denote
the quotient field of T. Let A,, ---, An be a basis of @ over Z/pZ. Then S is a
Krull domain, T is integral over S, and the kernel of the homomorphism ¢ : CI(S)
—CI(T) described in (1) is isomorphic to a subgroup of V,/V§ where Vo and Vg
are the following additive subgroups of L™:V,={{'At, -, t7'Axt): tL and
tTARET for 1<:i<m} and Vi={(uw'Awu, -, u'Ayu): u is a unit in T}. ([2],
Corollary 17.3, page 92).

Remark 3. If I is a divisorial ideal of S whose class group is in the kernel
of CI(S)—»CUT), then T :(T:IT) is a principal ideal, say (T, for some t<T.
The injection ker ¢y—V,/V§ maps I to (t7'Ay, -, t7'Apt).

Theorem 4. Let T[G] denote the S-subalgebra of Endy(T) generated by T
and 6. If T[G]=End«(T), then ker y—V/V§ is an isomorphism. ([2], theorem
17.4, page 93).

Proposition 5. Let L’ be the quotient field of S. If [L:L']1=p and D(T)
is contained in no height one prime ideal of T, then ker¢p—V,/Vy is an isomor-
phism. ([7], Theorem 2.1, page 62).

Proposition 6. Let .1 be a graded Krull domain. Let Div,(4) denote the
subgroup of Div(A) generated by the homogeneous divisorial (prime) ideals and set
Prin, (A)=Prin (A)N\Div,(A). Then the inclusion Div,(A)—Div (A) induces a bijec-
tion

Div, A/Prin,(A) — CI(A).

([2], proposition 10.2, page 42).
Proposition 7. In (2) assume T=T BT, DT.D - is a graded ring and A,

1<i<m, are graded derivations of degree e, (i.e. A(THCT jie, for each 7). For
each 7=0, 1, ---, let S,:T,-f\(QA“(O)). Assume So=T,. ThenVi=0and S is the

graded subring of T, S=SPS,\PD . If, in addition, T is a unique factorization
domain, then CI(S)=Ker ¢ and the image of the mapping ker ¢p—V, is spanned by
m-tuples (t7'At, -+, tT*AR)ET™, where t is homogeneous irreducible in T.

Proof. If w isaunitin T, uT,. Since S,=T,, V;=0. Given ;=0,1,---,T,
f\([{\A“l(O))CT;f\(Z\lA?(O)). The reverse inclusion holds since the A; span g.

Therefore S;:Tjﬂ(C"L\lA;I(O)). Since the A, are homiogeneous, an element
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tef\lA;‘(O) if and only if its homogencous parts belong to _TéAy‘(O). Thus
S:So@sl@'“-

If T is a unique factorization domain, then CI(T)=0 and obviously Ci(S)=
ker¢. By (2), (3) and (6), the image of ker¢) in V, will be generated by m-
tuples (¢7'At, -, 17'AR)ET™ where t is a homogeneous element of 7. ¢ can be
factored as a product t=w?t--- w?s, where the w, are irreducible homogeneous
elements in T and the n; are positive integers. If one of the n,=0 (mod p),
then ¢ can be replaced by w7™i; so we may assume no 7n,=0 (mod p).

If for some j, ¢7'Aj+0, then t‘lA,-t:Zi‘, n,wiA;(w,). t'AjfeT implies
ZZnL—w‘;}'.wsAj(wL)Ewl...wsT. Since the w, are pairwise coprime, w, must
divide Aj(w,) in T. Thus w37'Aj(w,)T for each 7 and jand (¢~ 'Ayt, -, t7'Ant)
:; n (WA w;, -, wilARw,). O

Definition 8. Let K be a field of characteristic p+0. A set 9 of deriva-
tions of K is called a restricted K-Lie algebra of derivations of K if: (1) 9 is
closed under addition: (2) 9 is closed under bracket product (3) @ is closed
under p-th powers; (4) 9 is closed under multiplication by elements of K.

Theorem 9 (Jacobson). Let K be a field of characteristic p+0. Let 9 bea
restricted K-Lie algebra of derivations of K such that [D: K]=m<oc. Then: (1)
If K’ is the subfield of 9 constants, then K is purely inseparable of exponent<1
over K and [K: K'1=p™; (2) if 9 is any derivation of K over K’, then De9;
B) if (Dy, -+, Dn) is any basis for D over K, then the set of monomials

Dy Dip; 0<k,<p,  (DI=1)

is a basis for the ring Endg (K) considered as a vector space over K. ([4],
theorem 19, page 186).

Lemma 10. Let K be a perfect field of characteristic p+0. Let B be a
finitely generated K-integral domain of dimension d. Let C=B?, the ring of p-th
powers of elements of B. Then the degree of B over C is p°.

Proof. B=K[w,, -+, w.] for some w;=B. Then C=K[w?, ---, wP]. By
Noether’s normalization theorem, there exists v,, ---, ¥4 B such that B is sepa-
rable algebraic over K[v,, ---, y4] and y,, ---, y, are algebraically independent
over K. Let Lg, L¢ be the fields of quotients of B, C, respectively. Clearly,
[Lg: K(yy, -, ya)l=[Lc: K(y%, ---, y5)] and the result follows. [

§2. Purely Inseparable Extensions of Complete Intersections

1. Let %k be an algebraically closed field of characteristic p+0 and let k"]
denote the polynomial ring in n variables over k2. Assume h,, ---, h, r<n—2)
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are homogeneous polynomials in £f®1 such that the ideal P they generate is a
height » prime ideal in k. Let R=*k"1/P and for f<k!™? denote its image
in R by f. For each integer m=0, let R,=~k[%2™, -, FZ™]CR. Ry is a sub-
ring of R and is ring isomorphic (not k-isomorphic) to R since k is perfect.

Throughout assume R is a unique factorization domain. Also assume /..,
k™ is homogeneous such that deg(h,.,)#0 (mod p) and A,., factors as a prod-
uct fyo =, - #, of ¢ distinct irreducible elements in R. Note that this last
assumption implies /i,,,¢& R;.

For each integer m=(, let Sp,=Rn[A.,] and X, cA}*! be the variety defined
by the equations h,= -+ =h,=x8}V,—h,,.,=0.

Lemma 2. For each m, the coordinate ring of X, is isomorphic Sn.

Proof. Let ¢p: k[x,, -+, X3.1]>Sn be the surjection that sends x, to xem
for 1<i<n, a to a®™ for ack and x,., to h,... Let Qck™*') be the ideal
generated by h,, -+, Ay, x2%i—h.,,. Since A, &R, Q is a prime ideal of height

r+1 contained in kerg. We have dim(RnlAr+:1])=dim(R)=n—r. Thus kerg
is a height -1 prime ideal and ker¢=@. Therefore k**'1/Q is isomorphic
to Sp. O ’

3. For each integer m=0, let S;, be the ring of p-th powers of elements
of Su. Sn and S, are isomorphic and S;,=S,.;=S.. Denote by E,, F, and
F, the quotient fields of R,, S, and S;, respectively.

Lemma 4. For eachm=0: (i) [En:Enail=[Fn:Fal=p"""; (i) [Fns.1: Fnl
=p; (i) [Fnt Fpal=p""""; (v) [Fa: En]=pm™*.

Proof. (i) is an immediate consequence of Lemma (1.10). (ii) is obvious.

(iii) follows from (i) and (ii). To prove (iv), note that F,=F(h,..). Then
m-1 =i i i ~ =it

[Frn:Ernl= zl;Io [ER(hP)]: Em(hﬂfl)]- Enh?)=E (hri))=Fun_i,and E (AP 1)

=F,_(h?.)=F;_,_,, where the two isomorphisms are nothing other than the

operation of taking pi-th roots. Thus [Fn: E,]= ﬁl[Fm_l :Fpoooil=p™ by (ii).
O

5. From here on assume that X, is regular in codimension one. Then X,

is regular in codimension one for each m and S,, is noetherian integrally closed ;

hence S, is a Krull domain. By (1.1) and (1.3) we obtain well defined group

homomorphisms @z, : CI(Sp)—=Cl(Sn,,) and @n: Cl(Sn,)—CI(Sr), which we’ll
study via (1.3).

Definition 6. If A is a ring and f,, -+, fs=A[x,, -+, xs], the polynomial
ring in s variables over A, let o(fy, -+, fs)/0(x,, -, xs) denote the determinant
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of the Jacobian matrix [df;/dx,].

§3. The Calculation of ker¢n

1. For each (r+1)-tuple I=(7,, ‘-, ,,,) of integers with 1<7;<n, let D; be
the derivation on k(x,, ---, x,) defined by D;=0( , hy, ==+, hr)/0(%,), =+, X0, i)
Since D;(h;)=0 for each =1, ---, »; D; induces a derivation on £,=k(%X;, -+, Xm).

We will also denote this derivation by D;; it should be clear from the context
which one is meant.

Lemma 2. Rﬂ(fl\ D7 (0)=R,.

Proof. Since R is factorial, R is regular in codimension one. Thus the
maximal minors of the Jacobian matrix [04,/0x;]<:<» have greatest common
divisor 1 in R. In particular, at least one maximal minor (actually at least two)
has nonzero image in R. Without loss of generality we may assume d(h,, -+, h;)/
d(x,, ---, x,) has nonzero image in R.

For each s=r+1, -, n, let Dy=D¢, . r. Then E,DEND;HO0)DEN
( ?\ZIDS‘I(O))D DEOf\<s F\lD;‘(O)) Each containment is proper since x;&
S=r+ —r+
Q:D‘_I(O) and D,(%.)+0. Also, chEof\(QD,“(O))chf\< _ﬂlD;‘(O)). By (2.4),
[Ee: EJ=p""", which forces E;=E,\(ND7'(0)). Thus Ry and RN(ND7'(0)

have the same quotient field. Since R, is integrally closed, R,=RH(C\D;‘(O)).
O

Remark 3. By (1.1), h...&R,. By (3.2), there exists an (r+1)-tuple I, such
that Dy (A,.)#0. Let B=D;(h,,)). For each integer m=0, let A, be the
restriction of the derivation 8~'D;, on E, to S,.

Lemma 4. A, maps S, into S, and has kernel Sp_,.

Proof. Let a=Sn. By (2.4), a:i‘_‘;:atﬁiﬂ for unique a, =S}, Then An(a)
=SV it Thus An(@ &S, and An(a)=0 if and only if a,=0 for 1<i<p—1;
=0
that is, if and only if a=S,_.. O

Proposition 5. The mapping ¢n: Cl(Sn)—CIl(Sw.1) described in (2.5) is an
injection.

Proof. An(hr.)=1 and [Fy., : Fil=p. By (2.5), (1.7), and (3.4), ker ¢, is
isomorphic to V,, where V, is spanned by the logarithmic derivatives (At
S+, Where t=S,,, is homogeneous with respect to the grading S,.,, inherits
from R. t homogeneous and deg(h,,;)#0 (modp) implies t=ah’,; for some
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acS, and integer j, 0<j<p—1. If t"'AptESn.,, then either j=0 or A7,
Sms1. Thus (7!A,t=0and V,=0. O

Proposition 6. Let ¢ denote the vector space over E, generated by the D
defined in (3.1). Then if D is a derivation on E,, DEg.

Proof. Let 9@ denote the vector space of derivations on E,. The map D—

(DZ%,, ---, DX,) is a E,-vector space monomorgt_l_ism from 9 to E%. If Deg,
o:p(ﬁl)zz%@—pxﬁ Thus D9 implies [gi‘i]D(f)zo. Since R is factorial,
3 j j JE—

R is regular in codimension 1, which implies the rank of [ axi] is ». Therefore
j

9 is of dimension at most n—r over E,.

Assuming again that o(h,, ---, h,)/0(xy, ---, x,) has nonzero image in R, we
get that the column matrix [D;],.1sssn (Where Ds is defined in the proof of (3.2))
is mapped to an (n—r)Xn matrix under 9—E? that contains an (n—7»)X(n—r)
nonzero scalar submatrix a(h,, -, h,)/d(xy, -+, x7)*In_,. Thus ¢ has dimension
at least n—# over E,, which shows that 9=¢. O

Corollary 7. Let G denote the vector space over E, generated by the D;.
Then ¢ is a restricted Lie algebra of derivations over E,. Furthermore, R[G]=
Endg,(R).

Proof. @, the space of derivations on E,, is a restricted Lie algebra of
derivations over E,. By (3.6), 9=¢. Both R[¢] and Endg,(R) are locally free
R, modules ([1], page 86, exercise 16 and page 99, exercise 5). By (1.9) and a
rank argument R[G]1=Endg,(R). O

Corollary 8. Let t<E,. If t7'D;teR for all I, then D, (t)=0 for all I.
Proof. Let W={(t"'D;t): t€E, and t*D;t=R for all I}. Since the units

of R are the nonzero elements of k, by (1.2), (1.4), (3.2) and (3.7), W=0. O

§4. The Calculation of CI(S))

1. For each (r42)-tuple J=(7,, ---, i,,5) of integers with 1<i;<n, let D,
be the derivation on k(x,, ---, x,) defined by D,=o( , hy,---, hea)/0(xiy, -, X0 4y
Since D,;(h,)=0 for 1<i<r, D, induces a derivation on [£,, which we will also
denote by D,.

Lemma 2. Rﬂ(o D7 (0)=S,.

Proof. Similar to (3.2). O

Proposition 3. Let W, be the additive group generated by {(t-*D;t):tER is
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irreducible and homogeneous and t*D ;1R for each J}. Then CI(S,) is isomorphic
to a subgroup of W,.

Proof. Follows from (1.7) and (4.2). O

4. Recall that h,,,=,-- i, is a product of ¢ distinct irreducible elements
in R and deg(h,.,)#0 (mod p).

Lemma 5. For each i=1, ---, g—1, let Q; be the height one prime ideal in

S, generated by x,.. and u;. Then the classes of the Q; generate a subgroup of
CI(S,) of order p?'.

Proof. By (4.3), CI(S,)>W, is an injection. By (1.3), Q; maps to (#;'D (i)
in W,.

Claim. The elements (#7'D;(it;)), 1<i<qg—1, are Fp-independent; F, the
prime subfield of k.

Suppose e, = Fy, 1=<i<¢g—1, such that Xe,(#7'D,;)=0. Let H=JTu$. Then

D,(H)=0 for each J, which implies by 4.2) that E,cE,(H)cF,=E(h,,,). If
He¢E,, then E,(H)=E,(h,,,), which implies there exists a;=k® such that

— P-1_ i
asH= Z‘,oc'vfhf.ﬂ. Since H and h.,, are homogeneous elements and P a homo-
=

geneous ideal in k™), we may assume that the a; are homogeneous polynomials
as well. Since deg(aZhl,,)=j(deg(h,,.)) (mod p) and deg(h,,)#0 (mod p), it
follows &f,’ﬁzd}-’oﬁii, for some j,=0, 1, ---, p—1. If j7,#0, then this implies
i,=E,, which contradicts the irreducibility of #, in R. If j,=0, then H must
in fact belong to E,. But if H=E,, then each ¢;=0 (mod p). This proves the
claim and hence the lemma. [

Theorem 6. CI(S,) is a direct sum of g—1 copies of Z/pZ.

Proof. By (4.3) and (4.5) it is enough to show that W, has order at most
p*'. Let #=R be irreducible homogeneous such that w,=#'D,(#)=R for each
J. Then 7 divides the images in R of all of the maximal minors of the matrix

Ou w0
axl axz ax"“
oy ok O |
M=| 3%, 0x, 0x, l
ahr+1 0hry 0hyyy
0x; 0x, 0x,

By Euler’s formula, # divides in R the images of the maximal minors of the
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matrix obtained from M by replacing the j-th column by the (r+2)X1 vector
l‘ d-u )
o
l 0 ‘
Ly )

d 'hr+1

where d=deg(u) and d’=deg(h,.,). Therefore # is a factor of Rr.ior #isa
common factor of the images in R of each of the maximal minors of the matrix

(Ou  Ou = Ou
0x, 0x, 0%,
dhy ok
I 0x, 0x, 0x, |-
oh, 0oh, oh,
0x, 0%, 0%,

The latter implies #'D;#=R for each of the derivations D; described in (3.1),
which by (3.2) and (3.8) implies #<R,. Since # is irreducible in R, it must be
that # is a £* multiple of one of the #;. By (4.3) we get W, is generated by

(@D, i), 1<i<q. We have for each j,i_éla;lDJai:E;ngDJ(ﬁ,+1)=o. Therefore

W, is generated by (#7'D,ii;), 1<i<q—1. Since W, is a p-group, the order of
W, is at most »?°'. O

Corollary 7. CI(X,) is generated by the codimension one cycles on X, defined
by u;=0, 1£i<q—1.

Proof. By the proof of (4.5) and by theorem (4.6). [

§5. The Calculation of CI(S,)

. . . pm-1 -
1. Given acF,, by (24) there exist unique a, & E,, such that a= lgﬂ a?™hi,,.

For each derivation D, defined in (4.1) and each integer m=0, define a mapping
D on F, by the formula

pm-1 -
Dy ()= ED (Ds(@))*™hi.
Lemma 2. D is a derivation on F.

. .\ . pm-1 - pm-1 .
Proof. D™ is clearly additive. Given a= iZ_‘,o a?™hi, and f= iE_JO B2™hi,,
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in Fp, we must show that D™ (af)=aD§™ B+BD§™a. We argue by induction
on the number of nonzero coefficients appearing in a plus the number of nonzero
coefficients appearing in §.

Suppose this sum is 2. Then a=a?™hi,, and f=p2"hi,, for some a,, B;
€L, and nonnegative integers ¢ and ;. Then D§™(af)=D§ (a;B,)?"hiti=
(D))" hit, = (a.DsB;+ BiDsa )P " hit = a?™ht, . D (B2 his)+
B2"hi D™ (a®™hi,)=aD B+BDa.

Now assume that the total number of nonzero coefficients appearing in a
and B is greater than 2. Let j, be the highest power of &,,, with nonzero
coefficient in 8. Then Dy (af)=D (a(B— B3, h'%.))+D§ (aB%y k%), which
by the induction hypothesis and the additivity of D{, equals to aD™ B+
BD™Ma. O

Lemma 3. S,., is the fixed subring of the derivations D™ acting on S,.

Proof. Given a€S,, a=3a?™ii,,, a,eR. Dy (a)=0 for each J if and
only if D;j(a;)=0 for each J and 0<:<p™—1. By (4.2) we get D™ (a)=0 for
each J implies each a,=8S, and hence a=S,,;. [

Definition 4. For each integer m=1, let W, be the additive group generated
by {¢*D§¥t):t is a homogeneous element in S, and t*D{™t< S, for each J}.

Lemma 5. If (u;)=W, then (ud™) =W, and the mapping (u;)—us™) from
W, to W, is an isomorphism.

Proof. If t=E, and t*D,i=u;=R, then {?"=F, and t ?"D{™@¢*")=
@t 'Ds)?"=ut"=R,<S,. This also shows that (u,;)—(u2™) defines an injection
from W, to W,.

Suppose t'=S,, is homogeneous. Since deg(h,,;)#0 (mod p), t'=a?™hi,,,
where a=Fk™! is homogeneous and 7 is a nonnegative integer. If (¢")"'D )
is a nonzero element of S, then ) 'D#)=(a *Dsa)*" =S NEn=R,. Thus
a‘D;a=R. Therefore W,—W, is also a surjection. [J

Theorem 6. CIi(S,) is a dirvect sum of q—1 copies of Z/p™Z, generated by
the height one primes Q™ =h,,,S,+@2™Sy in Sy, 1<i<qg—1.

Proof. For each i=1, -, ¢g—1 and positive integer m, let P{™=hP?, S, +
a2™*'Ss. Then Qé""f\SmTl:Qé””” and Q{™*YN\S;,=P{™. Also, the ramifica-
tion index of Q{™ over Q{™*» is 1 and the ramification index of Q{™*" over
P™ is p. Thus @n: Cl(Sni)—Cl(Sr) sends Q™™ to Q{™ and ¢y : Ci(Sn)—
Cl(Sn.y)) sends P{™ to pQ{™*™,

By (1.2), (1.3) and (1.6) it follows that the ker ¢, is isomorphic to a sub-
group of W,. By (56.5) and the proof of (4.6), we have the ker ¢, has order at
most p?1.
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Proceeding by induction we have that the primes Q{™ generate CI(S,) and
are each of order p™, hence the same is true of the primes P{™ in S;. Since
Om: Cl(Sn)—CI(Sn.,) is injective by (3.5), we see that the elements p™Q{™*P
are a Z/pZ-basis for ker¢,. Since the ramification index of Q™ over Q{™*?
is 1, ¢ is surjective, and the conclusion of the theorem follows. [J

Corollary 7. Cl(X,) is generated by the codimension one cycles on X
defined by u;=0, 1<i<q—1.

Proof. By (2.2) and (5.6). [T

8. Let A be a Krull ring of characteristic p#0 with quotient field 4.
Let hy, -+, hps=A[x,y, -+, x,] satisfy all of the conditions of (2.1) and (2.5) as
elements of k[ x,, ---, x,]. Let T=A[xy, -+, Xne1l/(hy, =, hry xBo1—hryy). As-
sume 7 is a Krull ring.

Corollary 9. Let T be as in (5.8), CI(T) is isomorphic to Cl(A)@(:EEZ/pZ )

Proof. Let U be the multiplicative set of nonzero elements of A. Since A
is a Krull ring, so is S=U"'T. By a theorem of Nagata ([7], theorem 6.3,
page 21), we obtain an exact sequence

0 — CI(A) — CT) —> CI(S) — 0.
The surjection CI(T)—CI(S) is a split surjection. Thus CI(T)=CI(A)PDCI(S). O

Corollary 10. Let R be as in (2.1) and assume g= k™1 is homogeneous such
that g is irreducible in R. Let Y C AT be defined by the equations h,= --- =h,
=xB" —g=0, where m is a positive integer. Then the coordinate ring of Y is
factorial if and only if Y is regular in codimension one.
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