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Purely Inseparable Extensions
of Complete Intersections
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§ 0. Introduction

Let R be a graded unique factorization domain and h^R a product of q
distinct homogeneous factors in R. Let S=R\_z~]/(zm — ti). If S is a Krull domain,
then what is the divisor class group of S? In several cases the answer is that
the divisor class group is a direct sum of q—1 copies of Z/mZ. For example,
this is true if .ft is a polynomial ring over a field and h is a product of two
variables ([7], page 58); also, if .ft is a polynomial ring in two or more variables
of characteristic p^Q, the factors of h are homogeneous in R and m is a p-th
power ([6], Proposition 3.11, page 627). In this paper the same phenomenon is
verified in the following case.

Let k be an algebraically closed field of characteristic p^Q, Fc.4J a com-
plete intersection of dimension greater than one, and assume that the ideal that
defines Y is homogeneous. The above question is considered when R is the
coordinate ring of Y and h^R is the image of a homogeneous element of &C7l ]

of degree not divisible by p. We prove that if m is a p-th power, then C/(S)
is a direct sum of q—1 copies of Z/mZ. This substantially improves a theorem
obtained in a previous article ([5], page 569, Theorem 5.7).

§ 1. Preliminaries

This paper assumes familiarity with the subject of divisor class group of a
Krull domain. Two excellent references are P. Samuel's 1964 Tata notes [7]
and R. Possum's, "The Divisor Class Group of a Krull Domain" [2]. If A is a
Krull domain, we denote the divisor class group of A by Cl(A). If F=Spec^4,
we will refer to "the divisor class group of Y", denoted Cl(Y); by this we mean
Cl(A). In this section we recall results from [2], [4] and [7].
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Theorem 1. Let SciT be Krull domains with T integral over S. Then there
is a well defined group homomorphism </)'. C/(S)— >C7(T). ([7], theorem (6.2),
page 20).

Theorem 2. Let T be a Krull domain of characteristic p^Q and £ a finite
group of derivation of T. Let SaT be the fixed subring of £ and let L denote
the quotient field of T. Let Aly ••• , Am be a basis of £ over Z/pZ. Then S is a
Krull domain, T is integral over S, and the kernel of the homomorphism <p : Cl(S)
— >C7(T) described in (1) is isomorphic to a subgroup of VQ/VQ where VQ and V0

are the following additive subgroups of Lm : V0={(t~1A1tt -• , t~lAmt) : t^L and
t~1Alt^T for l^i<m\ and 7J={(M-1AiM, • • - , u~lAmu): u is a unit in T} . ([2],
Corollary 17.3, page 92).

Remark 3. If / is a divisorial ideal of S whose class group is in the kernel
of C/(S)-*C/(T), then T : (T : IT) is a principal ideal, say tT, for some t<=T.
The injection ker^->F0/^o maps / to (r'A^, • • - , t~l&mt).

Theorem 4. Let T[£] denote the S-subalgebra of Ends(T) generated by T
and G. If T[£]=Ends(T), then ker<p->VQ/V'Q is an isomorphism, ([2], theorem
17.4, page 93).

Proposition 5. Let L' be the quotient field of S. If [L : L'~]^p and D(T)
is contained in no height one prime ideal of T, then ker^->F0/FJ is an isomor-
phism. ([7], Theorem 2.1, page 62).

Proposition 6. Let A be a graded Krull domain. Let DivA(.4) denote the
subgroup of Div(.4) generated by the homogeneous divisorial (prime) ideals and set
Prin/l(/l)— Prin(,4)nDiv/l(,4). Then the inclusion DiVft(.4)->Div(;4) induces a bijec-
tion

Divfc A/Prmh(A) — > C/(/l) .

([2], proposition 10.2, page 42).

Proposition 7. In (2) assume T = T00T1®T2©--- is a graded ring and At,
I fgzf jm, are graded derivations of degree el (i. e. At(Tj)ciTj+ei for each /). For
each ;=0, 1, ••• , let S^TyXHA-'CO)). Assume S0=T0. Then V'Q=Q and S is the

Q

graded subring of T, S^SoffiSiS"1 - //, in addition, T is a unique factorization
domain, then C/(5)=ker^ and the image of the mapping ker^->F0 is spanned by
m-tuples (t^Aj, • • - , t~lAmt)^Tm, where t is homogeneous irreducible in T.

Proof. If u is a unit in T, u^T0. Since S0=T0, Fo=0. Given ;=0, 1, ••• , T,
/ m \

n(nA-1(0))dTJ-n( OAyKO)). The reverse inclusion holds since the A< span Q.L< \t=i /

( m \
nA;1^)). Since the Al are homogeneous, an element

1=1 /
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m m
£e HAi^O) if and only if its homogeneous parts belong to HAv^O). Thus1=1 1=1

If T is a unique factorization domain, then C/(T)=0 and obviously C/(S)=
ker^. By (2), (3) and (6), the image of ker^> in F0 will be generated by m-
tuples (t~l&it, • • - , t~lAmt)^Tm where Ms a homogeneous element of T. t can be
factored as a product t=w™1 ••• w"s, where the wl are irreducible homogeneous
elements in T and the nt are positive integers. If one of the n t=0 (mod/?),
then t can be replaced by w~init; so we may assume no nl=Q (mod/)).

If for some /, r^-^O, then t~lAjt=^nlw^lAJ(ivl). r'A^eT implies
i

Wi'" Ws m ~. . .
2]Wi A/iyjew;i ••• wsT. Since the wl are pairwise coprime, wx must
i Wi

divide Aj(wl) in T. Thus i^A/uOeT for each i and /and (r1^, • • - , t~lAmt)

Definition 8. Let K be a field of characteristic p=£Q. A set £) of deriva-
tions of K is called a restricted K-Lie algebra of derivations of K if: (1) 3) is
closed under addition: (2) 3) is closed under bracket product (3) 3) is closed
under p-th powers; (4) 3) is closed under multiplication by elements of K.

Theorem 9 (Jacobson). Let K be a field of characteristic £=£0. Let 3) be a
restricted K-Lie algebra of derivations of K such that \_3) : K~]=m<oo. Then : (1)
// K' is the sub field of 3) constants, then K is purely inseparable of exponent <J1
over K' and [_K: K^ = pm; (2) if 3) is any derivation of K over K', then
(3) if (Dlt • • • , Dm) is any basis for 3) over K, then the set of monomials

is a basis for the ring End/H^O considered as a vector space over K. ([4],
theorem 19, page 186).

Lemma 10. Let K be a perfect field of characteristic p3=Q. Let B be a
finitely generated K-integral domain of dimension d. Let C=BP, the ring of p-th
powers of elements of B. Then the degree of B over C is pd.

Proof. B = Klwlt • • - , wt~] for some w^B. Then C=K[wp
l9 • • - , wf]. By

Noether's normalization theorem, there exists ylt • • • , yd^B such that B is sepa-
rable algebraic over K\_ylt • • • , yd~] and ylt • • - , yd are algebraically independent
over K. Let LB, Lc be the fields of quotients of B, C, respectively. Clearly,
ILB: K(ylt ••-, yd)l = [Lc: K(yp

1} • • - , yp
d)~] and the result follows. D

§2. Purely Inseparable Extensions of Complete Intersections

1. Let k be an algebraically closed field of characteristic p^=Q and let &C713

denote the polynomial ring in n variables over k. Assume hlf •••, hr (r^n—2)
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are homogeneous polynomials in & [ n ] such that the ideal P they generate is a
height r prime ideal in kLnl. Let R=kLnl/P and for f^klnl denote its image
in R by /. For each integer m^O, let 7?TO=£[;t?m, • • - , %£m]ci/?. Rm is a sub-
ring of R and is ring isomorphic (not &-isomorphic) to R since k is perfect.

Throughout assume R is a unique factorization domain. Also assume hr^
e£C7*] is homogeneous such that deg(/ir+1)^0 (mod/)) and hr+1 factors as a prod-
uct hr + 1=u1u2--- uq of q distinct irreducible elements in R. Note that this last
assumption implies hr+\£R\-

For each integer m^Q, let Sm=Rm[hr+1'] and XmaA%+l be the variety defined
by the equations hl= ••• =hr = x%™1 — hr+l=Q.

Lemma 28 For each m, the coordinate ring of Xm is isomorphic Sm.

Proof. Let ^: k [ x l t • • - , *n+i]->Sm be the surjection that sends x t to f?m

for 1<J^72, a to #pm for ae& and #n+1 to A r + 1 . Let Qci&Cn+l: ! be the ideal
generated by hlt • • • , hr, x^f1~hr+l. Since hr+i£Ri, Q is a prime ideal of height

r+1 contained in ker^. We have dim(Rm[_hr + i])=dim(R) = n — r. Thus ker0
is a height r+1 prime ideal and ker$—Q. Therefore &C7l+1]/Q is isomorphic
to sm. n

3. For each integer m^O, let 5^ be the ring of />-th powers of elements
of Sm. S'm and Sm are isomorphic and Sm^Sm+i^Sm. Denote by Em, Fm and
F^ the quotient fields of Rm, Sm and Sm, respectively.

Lemma 40 For each ?n^0 : (i) [Em : Fm+1] = [Fm : F^\ — pn~r; (ii) [Fm + 1: F^]

Proof, (i) is an immediate consequence of Lemma (1.10). (ii) is obvious.
(iii) follows from (i) and (ii). To prove (iv), note that Fm=Em(hr+i). Then

7/1-1 _ . - ' 1 ~ ' - - •

= En-l(h?^i)=Fm-l-1J where the two isomorphisms are nothing other than the

operation of taking />*-th roots. Thus [Fm : Fm]= Jl [F^_,: Fm-l-i~] = pm by (ii).

D

5. From here on assume that Xi is regular in codimension one. Then Xm

is regular in codimension one for each m and Sm is noetherian integrally closed;
hence Sm is a Krull domain. By (1.1) and (1.3) we obtain well defined group
homomorphisms fi'm: Cl(Sm)-+Cl(Sm+1) and $m : C/(Sm+1)->C/(STO), which we'll
study via (1.3).

Definition 6. If A is a ring and /i, • • • , /s^AC^!, • • - , ^s], the polynomial
ring in s variables over A, let 3(/i, • • - , fg)/d(xlt •••, xg) denote the determinant
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of the Jacobian matrix [d

§ 3. The Calculation of

1. For each (r+l)-tuple I=(ii, • • - , z r + i ) of integers with l<Lij<±n, let Dr be
the derivation on k(xlf • • • , #n) defined by Df=d( , h l f • • • , h r ) / d ( x l l , • • • , *lr+1).
Since -D/(/Zj)=0 for each 2=1, • • • , r; D/ induces a derivation on EQ=k(xlt •••, xm).
We will also denote this derivation by DI ; it should be clear from the context

which one is meant.

Lemma 2. Rr\(r\Djl(fy)=Ri.

Proof. Since R is factorial, R is regular in codimension one. Thus the
maximal minors of the Jacobian matrix [dhl/Sxj~]l^i^r have greatest common
divisor 1 in R. In particular, at least one maximal minor (actually at least two)

has nonzero image in R. Without loss of generality we may assume 9(/ii, • • • , hr)/
d(xlt ••-, xr) has nonzero image in R.

For each s = r + l f - - - , n , let D,=/?cli...iri0. Then E0=>E0r}Drti(G)=>E0r\
r+2 \ / n \
n Dj1®))^) ••• =>£0n( n D~l(Q)j. Each containment is proper since xt^

= r+l / \s = r+i /

(0) and A(jc t)=£0. Also, F1dE0n(n^71(0))c=F0nf H DrXO)). By (2.4),
/ \*=r-rl /

i;1] = />n- r , which forces F1=£0n(Pi£)71(0)). Thus /?! and Rr\(r\Djl(fy)

have the same quotient field. Since Ri is integrally closed, Ri~
n

Remark 3. By (1.1), hr+i£Ri. By (3.2), there exists an (r+l)-tuple J0 such
that DlQ(hr+1)^Q. Let j8=-D/0(A r + i) . For each integer ra^O, let Am be the
restriction of the derivation JS~1D/0 on £0 to S,n.

Lemma 4. Am maps Sm into Sm and has kernel 5m-1.

Proo/. Let aeSm. By (2.4), «= S «t^+i for unique a^S^-!. Then Am(a)
i=o

= sSaiAJ;}. Thus Am(a)eSm and ATO(a)=0 if and only if az=0 for l^i^p—l]
i=o

that is, if and only if ae5^-i. n

Proposition 5. T/ze mapping <j)'m: Cl(S'm}—>Cl(Sm^l) described in (2.5) zs an

injection.

Proof. ATO(A r+1)=l and [Fm+1: F^]-^. By (2.5), (1.7), and (3.4), ker0TO is
isomorphic to F0, where F0 is spanned by the logarithmic derivatives t~l&mt^
5TO+i, where ^eSm+1 is homogeneous with respect to the grading 5TO+i inherits
from R. t homogeneous and deg(/i r +i)=£0 (modj&) implies t=ahj

r+1 for some
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'm and integer /, Q^j^p—1. If r1Am^eSmTl, then either /=0 or hr+i^
Sm+1. Thus r'A^O and VQ=0. D

Proposition 6. Let Q denote the. vector space over E0 generated by the Dr

defined in (3.1). Then if D is a derivation on E0, D^G.

Proof. Let 3) denote the vector space of derivations on EQ. The map D-*
(Dxi, •••, Dxn} is a £0-vector space monomorphism from 3) to El. If D^3),

Q=D(hl)=^^LDxj. Thus D^3) implies \^-}n(x)=Q. Since R is factorial,
i dXj LdxjJ \-dhi~]

R is regular in codimension 1, which implies the rank of -^— - is r. Therefore

3) is of dimension at most n— r over EQ.
Assuming again that d(hlt • • • , hr)/d(xlf ••• , xr) has nonzero image in R, we

get that the column matrix [-D*]r+is*sn (where Ds is defined in the proof of (3.2))
is mapped to an (n—r)Xn matrix under 3)-»E™ that contains an (n—r)x(n—r)
nonzero scalar submatrix d(hlt ••• , hr)/d(xlt ••• , xr)'In-r. Thus Q has dimension
at least n— r over EQ, which shows that S)—Q. n

Corollary 7. Let Q denote the vector space over EQ generated by the Dj.
Then Q is a restricted Lie algebra of derivations over EQ. Furthermore, /?[£] =

Proof. <D, the space of derivations on EQ, is a restricted Lie algebra of
derivations over EQ. By (3.6), 3)=Q. Both R^G] and EndRl(R) are locally free
RI modules ([1], page 86, exercise 16 and page 99, exercise 5). By (1.9) and a
rank argument fl[5]=Endfll(/?). n

Corollary 8. Let t^EQ. If t~lDit^R for all /, then Dr(t)=Q for all I.

Proof. Let W={(t~lDit): t^EQ and r1/)/*^/? for all /}. Since the units
of R are the nonzero elements of k, by (1.2), (1.4), (3.2) and (3.7), W=Q. D

§ 4. The Calculation of C/(Si)

1. For each (r+2)-tuple J=(ilf • • - , *'r+g) of integers with l<±ij<n, let D,7

be the derivation on k(xlt ••• , XB) defined by Dj=8( , hl9 — 9 hr^)/d(xilf ••• , * t r+B).
Since DJ(hl)=Q for 1^/^r, Dj induces a derivation on E0, which we will also
denote by Dj.

Lemma 2.

Similar to (3.2). D

Proposition 3. Let W0 be the additive group generated by {(t~lDjt): t<=R is
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irreducible and homogeneous and t~lDjt^R for each J} . Then Cl(Si) is isomorphic
to a subgroup of W0.

Proof. Follows from (1.7) and (4.2). D

4. Recall that hr+i=Ui~-iiq is a product of q distinct irreducible elements
in R and deg(/& r-ri)=£0 (mod/)).

Lemma 5. For each z=l, • • - , q—l, let Qt be the height one prime ideal in
Si generated by xn+1 and ut. Then the classes of the Qi generate a subgroup of
Cl(S1) of order pq~\

Proof. By (4.3), C^S^W, is an injection. By (1.3), Qi maps to (u?Dj(ud)
in W0.

Claim. The elements (ullDj(Ui)}, l^i^q—1, are Fp-independent ; Fp the
prime subfield of k.

Suppose el^Fp, l<i^q-l, such that ^el(ft~i
1DJui)=Q. Let H^TLup. Then

Dj(H)=Q for each /, which implies by (4.2) that £1c£1(^)c=F1=£1(5r+1). If
^ then Ei(H)=El(hr+i), which implies there exists a ;-e&Cn] such that

r+i - Since // and /i r+i are homogeneous elements and P a homo-=o
geneous ideal in ^C7l], we may assume that the as are homogeneous polynomials
as well. Since deg(a5/tf+i)=/(deg(/ir+i)) (modp) and deg(/i r+i)^0 (mod/?), it
follows af}H=afQhi°+1 for some /0=0, 1, • • - , p— 1. If /o^O, then this implies
Bq^Ei, which contradicts the irreducibility of uq in R. If /o^O, then H must
in fact belong to &Y But if H^E1} then each ^^=0 (mod/?). This proves the
claim and hence the lemma. D

Theorem 6. C/(SO fs a Jfrec^ sum of q—l copies of Z/pZ.

Proof. By (4.3) and (4.5) it is enough to show that W0 has order at most
pq~l. Let u^R be irreducible homogeneous such that wJ=u~1DJ(u)^R for each
/. Then u divides the images in R of all of the maximal minors of the matrix

du du du ^

M=

dxn

8x2 dxn

dhr+l dhr+1

dxi dxz dxn

By Euler's formula, u divides in R the images of the maximal minors of the
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matrix obtained from M by replacing the /-th column by the (r+2)xl vector

r d'U

0

0

d''hr+1
where d=deg(u) and rf/=deg(/zrTi). Therefore u is a factor of hr+i or w is a
common factor of the images in R of each of the maximal minors of the matrix

du du du
dx2 dxn

dxt dxz dxn

dhr dhr dhr

OXi UXz UXn

The latter implies u^DjU^R for each of the derivations D/ described in (3.1),
which by (3.2) and (3.8) implies u^R^ Since u is irreducible in R, it must be
that u is a k* multiple of one of the ut. By (4.3) we get WQ is generated by

5 _ -(uilDjud, l^i^q. We have for each/, ^u^1DjUi=hr+iDj(hr+1)=Q. Therefore
i = l

WQ is generated by (u~llDjUi\ l<i^q—l. Since W0 is a p-group, the order of
W0 is at most p*-1. n

Corollary 1, Cl(Xi) is generated by the codimension one cycles on Xl defined
by ut=Q, l^i^q-I.

Proof. By the proof of (4.5) and by theorem (4.6). D

§ 5. The Calculation of Cl(Sm)
pm-l

1. Given aeFm, by (2.4) there exist unique aT^EQ, such that a = S af /ir+i-
1 = 0

For each derivation Dj defined in (4.1) and each integer w^O, define a mapping
D^ on Fm by the formula

pm-i
D^(a}= 2

Lemma 2. Z)^m) ^'s a derivation on Fm.

pTM — 1 pTfl — 1

DSm) is clearly additive. Given «= S a? mhi
r+l and fl= I] /3?m/ij+1

t=0 i=0
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in Fm, we must show that D^&p^aD^P+fiD^a. We argue by induction
on the number of nonzero coefficients appearing in a plus the number of nonzero
coefficients appearing in /3.

Suppose this sum is 2. Then a=a?mhi+1 and /3— /3fm/i£+1 for some at, fa
and nonnegative integers i and /. Then D(fl)(a^)=D(

^ti-^Z^

Now assume that the total number of nonzero coefficients appearing in a.
and )8 is greater than 2. Let j0 be the highest power of hr+i with nonzero
coefficient in fa Then I^^)^^ W~/^^ which

by the induction hypothesis and the additivity of Z^m), equals to aD^fi-}-
. D

Lemma 3. Sm+1 is the fixed subring of the derivations D(jm) acting on Sm.

Proof. Given aeSm, a = ̂ apmhi
r+l9 altER. Ztym)(a)=0 for each / if and

only if Dj(at)=Q for each / and Q^i^pm—l. By (4.2) we get D^(a}=§ for
each / implies each al(=S1 and hence «<ESm+1. D

Definition 4. For each integer m^l, let Wm be the additive group generated
by {(t-lDF-}t): t is a homogeneous element in Sm and t-lDy»t^Sn for each /}.

Lemma 5. // (uj)<=W* then (upjm}=Wm and the mapping (uj}^>(upjm) from
WQ to Wm is an isomorphism.

Proof. If fGE£ 0 and r1DJt=uJ'=R, then tpm&Fn and t~pmD^(tpm)=
(t-1DJt)

pm=u^m^RmciSm. This also shows that (uj}-^(upjm} defines an injection
from W0 to Wm.

Suppose f^Sm is homogeneous. Since deg(/*r+1)^0 (mod/)), t'=apmh$+i,
where a^kLnl is homogeneous and i is a nonnegative integer. If (t')~l DT^ (tf)
is a nonzero element of Sm, then (t'rlDF\t')=(a-lDja)pm^SnnEn=Rm. Thus
a~lDja^-R. Therefore W^o-^^m is also a surjection. D

Theorem 6. Cl(Sm) is a direct sum of q—l copies of Z/ pmZ, generated by
the height one primes Q^ = hr+iSrrl + up

i
mSm in Sm, l<i<q—l.

Proof. For each i=l, • • - , q—l and positive integer m, let Pim* = h?+iS'm +
ii3m+1S'n. Then Qim>nSm^=Qin+» and Q|m+1)nS^=P,(m5. Also, the ramifica-
tion index of Q t

(m) over Qz
(m+1) is 1 and the ramification index of Q|m+1) over

P?» is p. Thus $m: Cl(Sm+l)-*Cl(Sm) sends (?{»^ to Q|m> and #i : C/(SiH
C/(SW+1) sends PJW> to ^Q|m+1).

By (1.2), (1.3) and (1.6) it follows that the ker0m is isomorphic to a sub-
group of Wm. By (5.5) and the proof of (4.6), we have the ker0m has order at
most p*~l.
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Proceeding by induction we have that the primes Q|m) generate Cl(Sm) and
are each of order pm, hence the same is true of the primes P|m) in S'm. Since
0m : Cl(S'm)-+Cl(Sm+1) is injective by (3.5), we see that the elements pmQim+1>
are a Z/pZ-basis for ker0m. Since the ramification index of Q[m:> over Q t

(m+1)

is 1, 6m is surjective, and the conclusion of the theorem follows. D

Corollary 7. Cl(Xm) is generated by the codimension one cycles on Xm

defined by ut=Q, l<^i<iq—l.

Proof. By (2.2) and (5.6). G

8. Let A be a Krull ring of characteristic p^Q with quotient field k.
Let hlt • • - , hr+i^A[xi, ••-, xn~] satisfy all of the conditions of (2.1) and (2.5) as
elements of k\_xlt • • • , xn~\. Let T=A[xif • • • , #n+1]/(/Z!, • • • , /zr, xZ+1 — hr+i). As-
sume T is a Krull ring.

Corollary 9. Let T be as in (5.8), C7(T) is isomorphic to Cl(A)®(W Z/pZ\

Proof. Let £7 be the multiplicative set of nonzero elements of A. Since A
is a Krull ring, so is S=£7~1T. By a theorem of Nagata ([7], theorem 6.3,
page 21), we obtain an exact sequence

0 — > Cl(A) — > C/(T) — > C/(S) — > 0 .

The surjection C/(T)-*C/(S) is a split surjection. Thus C7(T)sC/(A)®C/(S). D

Corollary 10. Le^ /? ^?g as m (2.1) and assume g^kw is homogeneous such
that g is irreducible in R. Let YdAf be defined by the equations hi= ••• ~hr

= x%™1—g=Q, where m is a positive integer. Then the coordinate ring of Y is
factorial if and only if Y is regular in codimension one.

References

[1] Atiyah, M.F. and Macdonald, I.G., Introduction to Commutative Algebra, Addison-
Wesley, 1969.

[ 2 ] Possum, Robert, The Divisor Class Group of a Krull Domain, Springer-Verlag,
1973.

[ 3 ] Hartshorne, Robin, Algebraic Geometry, Springer-Verlag, 1977.
[4] Jacobson, Nathan, Lectures in Abstract Algebras HI, Springer-Verlag, 1964.
[ 5 ] Lang, Jeffrey, Purely inseparable extensions of unique factorization domains, Kyoto

Journal, 26 (1990) 453-471.
[g] - 1 The divisor classes of the hypersurface zpm=G(xi,-- , *„), Tran. Amer.

Math. Soc., 278 (1983).
[7] Samuel, Pierre, Lectures on unique factorization domains, in Tata Lecture Notes,

Tata Inst. of Fundamental Res. Bombay, 1964.


