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Abstract

We study self-avoiding paths on the three-dimensional pre-Sierpinski gasket. We
prove the existence of the limit distribution of the scaled path length, the exponent for
the mean square displacement, and the continuum limit. We also prove that the con-
tinuum-limit process is a self-avoiding process on the three-dimensional Sierpinski gasket,
and that a path almost surely has infinitely fine creases.

§ 1. Introduction

The three-dimensional pre-Sierpinski gasket is a pre-fractal which we in-
troduce as a three-dimensional analog of the pre-Sierpinski gasket. Let O=
(0, 0, 0), a0=(1/2, v/3/6, V6/3), b0=(l/2, v/3/2, 0), c0=(l, 0, 0), and let F0 be the
set of vertices and edges of the tetrahedron OaQbQc0. We define a sequence of
graphs F0, FI, F2, ••• , inductively by

Fn+i=Fn\J(Fn+2naQyj(Fn+2nb0MFn+2nc0), n=0, 1, 2, • • - ,

where, A + a={x + a x<^A\, and kA={kx\x^A}. We call F = Un=0 Fn the
three-dimensional pre-Sierpinski gasket. We denote the set of vertices in F by
G, and put an=2naQ, bn=2nbQ, cn=2nc0.

Let Z+= {0, 1, 2, • • • } and define the set of self-avoiding paths WQ on G to
be the set of mappings w: Z+-*G such that there exists L(w)^Z^.\J{oo} for
which
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-l, and

We call L(w} the length of the path w.
In previous papers [2, 3, 4], we studied the self -a voiding paths on the

(two-dimensional) Sierpinski gasket. Here, we study the self-avoiding paths
on the three-dimensional Sierpinski gasket. In the case of the two-dimensional
Sierpinski gasket, a self -avoiding path is allowed to pass through a unit triangle
at most once, while in the case of the three-dimensional Sierpinski gasket, it
is allowed to pass through a unit tetrahedron more than once. One might
suspect that this fact affects properties that enabled the detailed analyses in
the two-dimensional case. We will show in this paper that despite such com-
plexties, we can carry on our analyses in the three-dimensional case.

Define W*™aW» by

=0, w(L(w)}=an,

and let

In Section 3 we prove the following.

Theorem 1.1. There exists a constant fic such that

This theorem suggests that in terms of statistical mechanics, /3>/3c is the
low temperature regime, fi<fic is the high temperature regime, and f}c is the
critical point.

The asymptotic behavior of the partition function Z* is related to the
asymptotic distribution of the path length L. In fact, in Section 4 we prove
the following. Let ^ be a probability measure on PF*cn) defined by

Theorem 1.2. There exists a constant 2 satisfying 2<^<3 such that the
distribution of 'scaled path length' A~nL under p* converges to a probability
measure p* on R as ft— >QO. The measure p* has a C°° density p, which satisfies
p(x)=Q, x^Q, and p(x)>Q, x>0.
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Numerically, /l=2.7965---, to be compared with the corresponding constant
XSGS for the (two-dimensional) Sierpinski gasket, ZSGz=(l- \/5)/2=2.381966-».

In Section 5, we study the continuum limit construction of self-avoiding
process.

Let Fn—2~nFn, ?2=0, 1, 2, ••• , and define the finite three-dimensional Sier-

pinski gasket F by F={Jn=t>Fn. F is a graph obtained by giving a substruc-
ture to a unit tetrahedron Oa^b^c^. Let

)=O, \imw(t)=a0}.

C is a complete separable metric space with the metric

d(u,v)= sup \u(t)—v(t)\, u,v^C.
«eco, oo)

Define r: UJ^*W->C as follows: For us=W *cn), Tu(j') = 2~nu(j} for j<=Z+,

and for t£Z+, u(f) is defined by linear interpolation. Also define time-scale trans-
formation Un(X): C^C, n<=N, by (Un(X)w}(t}=w(Xnf), w^C.

Denote by Pn the image measure of [ft induced by Un(Z)°Y.

Theorem 1.3. Pn converges to a probability measure P on C weakly as n-*
oo. The stochastic process defined by P is almost surely self -avoiding, and the
Hausdorff dimension of the trajectory, {u>(OIO^?<°°}, is almost surely greater
than one.

See Theorem 5.5, Theorem 5.15, and Theorem 5.16 in Section 5 for the proof.
Since Pn is supported on piecewise linear curves, the Hausdorff dimension

of a curve is almost surely 1 with respect to Pn. The statement on the Haus-
dorff dimension in Theorem 1.3 implies that the continuum limit n— >oo, is a
nontrivial limit, and that with P-probability one, we have self-avoiding paths
with infinitely fine creases.

The two ingredients for the proof of the results are the convergence of
the distribution of crossing times of tetrahedrons, obtained from the results in
Section 4, and the considerations about the distribution of the shape of the
paths. See Proposition 5.2 for more properties on the crossing time distribu-
tions, and Theorem 5.11 and Proposition 5.14 for more on the distribution of
the shape of the paths.

In Section 6 we consider a set of paths on the pre-Sierpinski gasket with
a fixed length, instead of paths with fixed end points. Let W^={
— 0}, and for each kr=Z+, let N(k) be the number of elements in
L(w)=k}. Let Pk, k^Z+, be probability measures on PF(0) defined by,

For wtEW^, let ||u;|| = max{|M;(£)l ; 6 = 1,2, ••• , L(w)\ , where |-| is the (Eucli-
dean) length in R5. Put £=log^/log2, where 1 is as in Theorem 1.2.
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Theorem 1.4. (1) lim^1 logN(k)=pc.

(2) There exists a positive constant a such that

klllt or ||

(3) lim(log£)-Mog£^[!w;(&)|s*]=s, s>0.

This theorem says that the exponent for the mean square displacement
of self-avoiding random walk on the three-dimensional Sierpinski gasket is

The starting point for the analyses in this paper is the study of re-
normalization group, which is a dynamical system in a certain parameter space
which specifies the path ensemble. Such dynamical system is derived as the
response in the parameter space to the change in n. In Section 2, we study
the behaviors of this dynamical system. A certain graphical property of the
three-dimensional Sierpinski gasket implies that the renormalization group is a
finite dimensional dynamical system. (We prefer to call this property the finite
ramification of the fractal.)

We would like to mention some previous works in the physics literature.
The two-dimensional mapping defined by eq. (2.3) and eq. (2.4) in Proposition
2.1 is given in [1, 7]. In [1], a set of self -a voiding paths on a slightly different
fractal is considered, where this mapping is an exact renormalization group
recursion relation. In [7], self-avoiding paths on the three-dimensional Sierpinski
gasket is studied, where the authors state (without explicit discussion or proof,)
that the same mapping becomes 'relevant7 (i. e. determines the asymptotic be-
havior) of the present problem. Numerical estimates of the fixed point ((xc, yc)
in Proposition 3.1) and the derivative (p, q, and r in Proposition 3.7) of this
mapping together with the exponent for mean square displacement are also
given in these references. However, their results are based on the assumption
(based on numerical studies) of the existence of these quantities and the good
limiting behaviors. We believe that this is the first time to give mathemati-
cally rigorous proofs. A well-defined statement on the exponent (Theorem 1.4)
seems also to have been lacking. We also believe that the limit theorems for
path length distribution (Theorem 1.2) and the continuum limit (Theorem 1.3)
are new.

We would also like to take this opportunity to note that the reference [1]
should also have been included in the reference of [3].

We would like to thank Professor N. Asano and Professor H. Nakajima for
bringing our attention to the references on dynamical systems.
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§ 2. Recursion Relations for the Generating Functions

Let T denote the set of subgraphs in F which are the translations of FQ.
T is a set of the unit tetrahedrons that compose F. For each w<^WQ, let we:
F be the curve defined by joining each pair of points w(i) and w(i+l) with an
edge of F, for all z=0, 1, 2, • • - , L(w)—l. For each tetrahedron AeT, the in-
tersection wr\A is either empty or one of the following four possibilities:
case 1) one edge, case 2) two disjoint edges, case 3) two edges connected at a
vertex, and case 4) three edges that constitute a chain. Correspondingly, define
St(w), i=l, 2, 3, 4, w^W0, as: St(w)={&^T $nA is of case i ) . } . For each
/=!, 2, 3, 4, let st(w) be the number of the elements of Si(w). Note that Si+

For n^Z+ and pt=G, q^G, define W<n'p-vc:WQ by

^cn,P,«== |M;eWro w(Q)=pt w(L(w))=q,

and let T/F|n), *=1, 2, 3, 4, n<=ZT , be as follows:

W[n> = {W <=W<n* °'a^ 1 W(Z+}C\ [bn, Cn] = 0} ,

{w^W^n'0'an')\ there exist two positive integers i and /
such that *'</, w(i)=bn, and

For a subset FF of W0, let X(W) be the generating function for W defined
by

(2.1) *0*OU)= S n^cw), f=(x l f *„ ^'3,
we»r t=i

To extend the definition of st to W^n\ note that if w = (w', w")^W$n> and Ae
T, (uj'Ut&'OnA is either empty or one of the four possibilities mentioned above.
Therefore, the definition of St(w) given above has a natural extension to w^
W^-Si(w\ wEiW^n\ is again defined to be the number of the elements of St(w).

Let Xi,n(x}=X(W^}(oc\ i=l, 2, 3, 4.

Proposition 2.1. The following recursion relation holds :

(2.2) Xn+l(x)=®(Xn(x}}, n^Z+,

where Xn(x)=(Xlin(x), Xz,n(x\ .X,,n(x), ^4. »(*)), and XQ(x)=x. $=(0lf <PB, (Ps,
04) satisfies the following :

(1) Eac/z function 0i} i=l, 2, 3, 4, z's G polynomial of degree 4 m 4 variables
with positive coefficients. Each term in 0if i=l, 2, 3, 4, is at least of degree 2,
4, 3, 4, respectively.
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(2) Let S0={x^R/i\xl^} i=l, 2, 3, 4, xl^x2\ and 5={x^
2, 3, 4, xl^xs}. Then 0(3Q)c:SG and $(E}aS.

(3)

(2.3) 0,(x, y, 0, 0)^x2+2;c3+2;c4+4;e;y+6;c2/,

(2.4) @2(x, y, 0, 0)=*4+4x33;+22;y4 .

(4) There exist polynomials $4,i, $4,2, awd #3.0, w#/z positive coefficients,
satisfying the following :

(2.5) 04(*)= 04, i(*)*

(2.6) *.(*)=2(0

Moreover, <P3 ,o(#) ^as terms
(5) 77z0r0 £ja's£ polynomials 03,i, $3,2, awrf 0 l i0, z^^/z positive coefficients,

satisfying the following :

(2.7) ^s

(2.8) *i(je)=«

Moreover, $i,Q(x) has terms x\, x\, and x\.
(6) $i(£) /ifls ^erms ^^3 anrf x^x*, 02(x) has terms x\x^ and x\x±, and 0*(x)

has a term x\x\. Furthermore, all the terms in 04(x) are at least of degree 2
272 #3 and *4.

Proof. The methods of obtaining the recursion relations eq. (2.2) are quite
similar to the case of the (two-dimensional) Sierpinski gasket [3], so that the
explanations will be brief. Note that Fn+l is composed of 4 tetrahedrons /*,
k = l, 2, 3, 4, say, each congruent to Fn. These 4 tetrahedrons assemble to
form Fn+l, in the same way as 4 unit tetrahedrons, congruent to F0, assemble
to form Fj. This similarity of the composition leads to a natural mapping TT :
j /f(n-D_> W(i)< For each ^^1,2,3,4, and for each w<=W<n+1\ consider the

def
intersection wk — fkc\w(Z+}. Under the identification of /* and Fn, wk^^Jj=i
Wjn:>. If one classifies the summation of w in eq. (2.1) for Xitn+i(x) by n(w),
one finds that eq. (2.2) holds with $=Xi. Since there are 4 unit tetrahedrons
in FI, 0l(x)=Xl,i(x), i—\, 2, 3, 4, are polynomials of degree 4. Since w^Wp
passes 0 and ait each term in ®i(x)=Xi,i(x) is at least of degree 2. Similar
arguments hold for @l(x), i=2, 3, 4, by which the assertion (1) is proved.

Let xr=5(x<=EQ, respectively). From the assertion (1) it is clear that @l(x)
)>Q, respectively). Let #'=
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n xs
i
i<iw':>+si<iw":>

i=l

TT £*i(M>')

where the last inequality comes from *J^*2. Therefore the assertion (2) holds.
The two formulas eq. (2.3) and eq. (2.4) are obtained through the explicit

calculations of $(x, y, 0, G)=^(xr y, 0, 0). An example of the paths w~W^
which contribute to the xzyz term in (^(jt, y, 0, 0)=A'lli(A:, y, 0, 0) is given in
Figure l(a) (the slim lines in the figure represent F1=Oa1b1ci projected onto
the Ociibi plane, and w is represented by the bold lines), and a path
for the y4 term in $z(x, y, 0, Q)=XZtl(x, y, 0, 0) is given in Figure l(b).

Fig. la.

Fig. Ib.
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Denote by Ac, the tetrahedron F0-fc0, which is the unit tetrahedron in FI
that has GI as one of its vertices. To obtain eq. (2.5), classify the summation
over w in eq. (2.1) for 0±(x)=X(Wil:>)(x) by the shape of the intersection w(Z+)
nAc. Only case 3) or case 4) is possible for the intersection, which gives the
contribution of factor xs or x4 to each term in 04(#), respectively, which in
turn gives contribution of the first and the second term in the right hand side
of eq. (2.5), respectively.

Consider now the relation between $4 and @3. Denote the four vertices
of Ac by p, q, r, d. Note that the paths contributing to 04(x)=X4,1(x) must
pass the vertex d. One can obtain a path contributing to $3 from such a path,
by short cutting d such as ( • • • , / > , # , • • • ) instead of (•-- , p, d, q> • • • ) • Denote
the mapping induced by such operation by p : W^-^W^\ For the paths con-
tibuting to $4>2(£)*4 in 0*(x), p is a two-to-one mapping, since p ( ( - - , p, c1} r,
q, •••)) = ('"i P, r, q, • • • ) and p((-~, p, r, d, q, •••)) = ( • • • , P, r, q, • • • ) . Therefore
such paths, mapped by p, give contribution of (1/2)(P4, 2(^)^3 to 0s(x). Similarly,
the paths contributing to 04,i(x)xs are mapped one-to-one onto the paths con-
tributing to the term 04,i(x)x1 in 03(#). Let

W^n:>= {w^W^n'0'an:>\there exist two positive integers i and j

such that i<j, w(i)=cn, and w(j)=bn\ •

Then it is easy to see that Wll>=>p(JV'Sl>) and p(W^}r\p(W'^}=0. The
paths in pQVi™) give the same contribution to 03(x) as the paths in
Hence the factor 2 in the right hand side of eq. (2.6). There are paths
W^ which are not in the image of p, namely, those paths that do not pass
through Ac. Such contribution are denoted by <DB,Q(x). In particular, there is
a path in Wil:> which starts at O, moves in a straight line to blf and then
moves in a straight line to aif which gives a contribution x\xz to 0s.o(x).
This proves eq. (2.6). The formulas eq. (2.7) and eq. (2.8) are derived by
similar arguments. The assertion (6) is straightforward. This completes the
proof. D

Remark. By aid of computers, it is not difficult to obtain the full forms
of the recursion relations 0. The full explicit forms of 0 are given in Ap-
pendix A. They are, howerver, unnecessary for the analyses of the limit w->
oo in this paper.

Let SQ be as defined in Proposition 2.1 (2). For Ad3Q, let A be the closure
of A in 30, A*=30\A, dA=Ar\Ac, and A°=A\dA. Let

—x^Q max
i e ( i ,2 , 3 , 4 } n<=Z+
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D={x(=30 lim max Xt.n(x)=Q}.
7l-»oo ie{l, 2, 3, 4}

Proposition 2.2. (1) D=D'. In particular, D is a closed set in SQ.
(2) Let x<=D and x'&E*. // *{<** for all i with xt>Q, and x'i=Q for all

i with xt=Q, then
(3) D=D°.

(4)

(2.9) l(D°)cD°, 0@JD)c3I>, and ®(Dc)c:Dc .

Proof. Note that by Proposition 2.1(5) and eq. (2.2), -Yll7l

*i.n+i(*)^*,, »(*)', and Xl,n^l(x}^X,,n(xY hold. Also by eq. (2.4), X2,n+1(x)^
X*,n(xY follows. Therefore, if x^Dfc

} then limn_00A'i,n(jc)=oo or llmn^00X2in(x)
= 00 hold, which proves that DfcaDc. By definition, D'dD, hence D'—D.
Since by definition Df is a closed set in 30, D is a closed set in 30.

Let jtcE/}, x'^30, and ^ ;i<jj for all 2 with xt>Q, and z^O for all i with

jt^O. If f' = 6, then x'^D. Assume x'=£Q. Put r = max<;:Ci!Jto(*J/*i). By
assumption, 0<r<l, and O^xJ^rx*, f=l, 2, 3, 4. By Proposition 2.1 (1), 0i(x')
^r2$l(x), i=l, 2, 3, 4, hence by induction Xitn(x

/)^rznXi,n(x)> and (Klimsupre_oo

maxieti, 2, 8.4)^. B(*0^(limB^oorzn)supnez+maxie{li 2i 8.4)^. »(^)=0, which proves the
assertion (2).

For £>0, define Ds by Ds={x^3Q\maxiG{ltZ,z,^Xi<s} . By Proposition 2.1
(1) there exists a positive constant M such that if 0<s<l and x eZ)s, then

0iOO^Me(*1 + *a+*3+*0/4, ^ U, 2, 3, 4}. Put e = min{l/2M, 1/2}. Then
for all x ̂ Ds and for all i, 0i(x)^£/2 holds, which further implies
and 01(x) + 0z(x)+0s(x) + 04(x)^(x1 + xl+x9+x4)/2. By induction,
X2,n(x)JrXs,n(x)-{-X4,n(x)^2-n(x1 + x2-i-xB+x4). Hence, there exists a positive
constant e such that

(2.10) DsdD.

Fix such an e and let x^D. By definition, there exists a positive integer
n such that Xn(x)^D£ holds. Since -S^OO is continuous with respect to x,
there exists an open set U in S^ such that for all x'^U, Jtn(x')^D9 holds.
Then by eq. (2.10), limB_.oomax i eu,2.s.4) Xti n(x') = 0. Therefore, UcD. This
proves that D is an open set in 30. By definition, DdD and also D° is the
largest open set that is included in D. Therefore, Z)cD°.

Now let x'^D0. Since D° is an open set in SQ, there exists a x^D° such
that *{<**, i'=l, 2, 3, 4. From the assertion (2), x'^D. Hence, D°c:D, and
the assertion (3) is proved.

By definition, $(D)cD, $(Dc)c:Dc, and 0(D)dD. From the assertion (3),
the assertion (4) follows. This completes the proof. D
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Monotonicity properties similar to but slightly different from the Proposi-
tion 2.2 (2) hold, which shall be listed here.

Proposition 2.3. (1) // x<=D, x'^SQ and x't^xlf r=l, 2, 3, 4, then x^D.
(2) // x^dD, x'e30, and *;>*„ i=l, 2, 3, 4, then x'^Dc.
(3) Let S be as defined in Proposition 2.1 (2). // x^dDr^S, x'^3Q, x'^x,

and x'i^Xi, i=l, 2, 3, 4, then x'<=D°.
(4) // x'=dDr\S, x'^3Q, x'^x, and x^xif /=!, 2, 3, 4,

Proof. Assume x<^D, x'^5Q, and ^{^^, i=l, 2, 3, 4. Since $t, *'=!, 2,
3, 4 are polynomials with positive coefficients, Xi.^iO^S^.Ti^); n<=Z+, i=l, 2,
3, 4. Therefore, x'^D follows.

Next assume x e9D, x'<^3Q, and ^J>^£ , i=l, 2, 3, 4. If x'^D then by
Proposition 2.2(2) and Proposition 2.2(3) x^D—D°, which is a contradiction.

Next assume x^dDr^S, £' e£"0, f x ^ f , and Xt^xit i=l, 2, 3, 4. Since x'l=
x, %i<% t holds for at least one i. If xi<x4, then by eq. (2.7), 0s(x')<05(x).
If ^s<^3, then by eq. (2.8), 0l(x

/)<01(x). If *£<** or xK^'i, then by eq.
(2.3), 01(x

f)<01(x). Therefore, for every case, Xl,n(x'}<Xl,n(x}) n^2, which,
with eq. (2.3), eq. (2.4), eq. (2.6), eq. (2.5), implies that Xl,n(x

/)<Xi.n(x)9 i=
1,2 ,3 ,4 ,72^4 . x^dD and eq. (2.9) imply that Xn(x)^dDc:D) n^4. From
Proposition 2.2(2) and Proposition 2.2(3), Xn(x'}^D°, hence x'^D°.

Finally assume x^dD^S, x'^3Q, x'^x, and xi^xlt i=l, 2, 3, 4. By the
same argument as above, it follows that Xitn(x')>Xiin(x), t=l, 2, 3, 4, n^4.
By the assertion (2), x'^Dc follows. This completes the proof. D

Define a function R : B-*R by

and let
Rn(x}=R(Xn(x}}, x^

Here, 3 is defined in Proposition 2.1(2). Proposition 2.1(2) implies that Rn is
well-defined.

Proposition 2.4. (1) For each x ^ S, Rn(x) is non-increasing in n. In
particular,

def
/?«,(£) = \\rnR n(x )

7Z.->oo

Tzrf /s non-negative.
(2) // x>=D(^B, then #TC(*)=0.
(3) T/zgr^ ^25^5 fl constant f satisfying 0<^<1 si/c/z that for every x^
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(2.11) l i m s u p 7 .
?i-*oo L\n\X)

(4) // x^D°(^E, then lim supn^2~n logXj,n(x)<Q, ; = 1, 2.

Proof. From Proposition 2.1(4) and Proposition 2.1(5) it follows that
0,(x)<R(x)(01(x)-01,Q(x))} *e J, and 204(*)^tf(*)(0sU)-0s,o(*)), *^H, from
which follows

f2ia * f^(2.12) y?n+I(,) ) ___ _

i.o(te)) 03.. (
-

In particular, Rn(x) is non-increasing in n.

Assume that x e £7. From Proposition 2.1 (5) and Proposition 2.1 (4),
01,0(Xn(x))^X1,n(xY and 0,,Q(Xn(x)r^ X1,n(x)zX3>n(x). Therefore eq. (2.12)
implies

(9 ITl /? f r N ) < / ? f r W l min I ^i.nW2 Xitn(xYXt.n(x)\\(2.13) 7 ? . + l W ^ J ? B U ) | l - m m | ^ - - - , }}•

On the other hand, if x'-^S, 0i(x)^0i(x1} xl, xs, x4), so that with Proposition
2.1 (1) it follows that there exists a polynomial P^ of 5 variables and with
constant positive coefficients, such that *72$i(i)^ Pi(xlf x3, x4, x 3 / x l f xjxj,
and similarly, there exists a polynomial P2 of 5 variables and with constant
positive coefficients, such that (x2

1x3)~
103(x)<P2(x1, x3, ;e4, x 3 / x l f xjx^). Note

that if x^Dr\S, then by Proposition 2.1(2) and Proposition 2.2(4) it follows
that Xn(x}^Dr\S, n<E.Z+. Also, by Proposition 2.2(1) it follows that if x^D,
then x^l, i=l, 2, 3, 4. Therefore, from eq. (2.13) it follows that there exists
a polynomial P of 1 variable and with constant positive coefficients, such that

(2.14) Rn+i(*)£Rn(m-P(RnWrl), x<=DnE .

From the assertion (1), P(Rn(x))^P(R0(x))=P(R(x))t so that l-P(Rn(x))~1 is
bounded from above by a constant 1— P(R(x))~l less than 1. The assertion (2)
is thus proved.

From the assertion (2) it follows that there exists a positive constant M>1
independent of x such that

lim supP(Rn(x))<M, x^Dr\S .
n-»oo

The assertion (3) therefore follows from eq. (2.14).
Next let x^D°r\S. From Proposition 2.1(1) and Proposition 2.1(3), there

exists a polynomoial P3 of three variables with positive coefficients and without
constant terms (i. e. P3(0, 0, 0)=0), satisfying
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This with eq. (2.2) implies

(2.15) logXl,n+l(x)^2logXl,n(x)+log(l+Pz(X1,n(x), *,.„(*), *„(*)))•

This and Proposition 2.2 (3) and assertion (2) imply

l+iw 2

which, with Proposition 2.2(3) implies

This and eq. (2.15) with Proposition 2.2(3) and assertion (2) imply

Therefore for sufficiently large N,

1 / 2

This with Proposition 2.2(3) implies assertion (4) for j=l. The case j=2
follows because Xz,n(x)<^Xlin(xy. This completes the proof. D

§ 3. Fixed Points of the Renormalization Group Flows

Let c: R2-+R* be a natural embedding of the x^—x^ plane: c(xlf x2) = (xl}

xz, 0, 0). From eq. (2.5) and eq. (2.7), xl — x2 plane is an invariant submanifold
of the mapping 0 ; 0(*(/Z*))c:fOR8). Therefore, the restriction of 0 onto the
Xi — x2 plane,

^d=r^0^i Rz — >R2,

is well-defined. Let ^=(^1, 08)» From eq. (2.3) and eq. (2.4),

(3.1) 0i(x, 3;)=

(3.2) fa(x,

Proposition 3.1. The fixed points of the mapping $ in the first quadrant
def

Rl= {(X) y)ziR*\x^Q, 3^0} are (0, 0), (0, 22-1/3), (1/3, 1/3), and (xc, yc), where
xc and yc are positive constants. They satisfy 3/7<xc<l/2 and 0<;yc<9/49, in
particular, x2

c>yc.

Proof. Assume that (x, y) is a fixed point: ^(x, y)=x and fa(x, y)=y.



SELF-AVOIDING PATHS ON 3-DiM GASKET 467

If x=Q then y=Q or y=22~1/3, and if y—Q then x=Q. Assume in the follow-
ing that x>Q and ;y>0. Then,

(3.3) l

(3.4)

From eq. (3.3) follows l>2x*+2xz+x. The right hand side of this inequality
is increasing in *. and 2(l/2)3+2(l/2)2+l/2=5/4>l. Therefore, x<l/2. From
eq. (3.4) follows y>22y\ from which follows ;y<,22-1/3<2/5. Then from eq.
(3.3), K(49/25)x+(18/5)x2+2%3. The right hand side of this inequality is
increasing in x, and its value at ;c=l/4 is 597/800<l. Therefore, ;c>l/4. Let
7=(l/4, 1/2). If (*, y) is a fixed point, then x^I.

Let

and

Then the set of fixed point conditions eq. (3.3) and eq. (3.4) is, for x^>Q and
3;^0, equivalent to a set of conditions g^x, y)=gz(x, 3^)=0. Note that gi(x, y)
= g*(x, y)X{yz-(2/3)xy+W$)xz-(6xr\2x*+2x*+x-l)}+h(x, y), where,

h(x, 3;)-594-1/i1

AI(X) is increasing in x and A1(l/2)=— 5/2, so that /ii(;c)^0for jre/=(l/4, 1/2).
Therefore, the set of conditions g^x, y)=gz(x, y)=Q is equivalent to a set of
conditions, gz(x, y)—0 and

(3.5) 3;=-2-1x-z/i1W-1/i2U).

Substituting eq. (3.5) into gz(x, y)=Q and noting that %>0 and h^x)^ for
the fixed points, one sees that the condition gz(x, y)=Q is equivalent to

where

/(jc)=19239-35211^-112167%2-41179%3+518440%4+725492^5

+2124.T6-2096944z7-3168164^8-1048100x9+3320820^10

+5564268^11+4315264^12+1787888^134-353584xu.

A computer calculation was used here (and also in the following) to handle
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large coefficients. If *=l/3, then it follows from eq. (3.5) that y— 1/3. The-
refore (1/3, 1/3) is a fixed point.

From the preceding arguments, a necessary and sufficient condition for
(x, y) to be a fixed point satisfying x>Q, y>Q, and x=£l/3, is /(jt)=0 and eq.
(3.5). It has also been proved that if (x, y) is a fixed point satisfying x>Q,
y>0, then ^-=7= (1/4, 1/2), and that h^x^O. Assume that x<=Im the follow-
ing. Denote by /(n), the n-th derivative of /. Since

/<9>(x)= -262025+8302050% + 76508685 *2+ 237339520 x3

+319584980%4+ 176968792 x5 ,

/C9)(%) is increasing for x^L This with /(9) (1/4) =1500788509/1 28 >0 implies
/C9)(%)>0, *hE/, hence /C8)(^) is increasing for x=L

Similarly, since /C8) (1/4)= 51984265459/128 >0, and /C7> (1/4)- 6064495535/512
>0, /C6)(*) is increasing for JCCE/. /C6)(l/4)=- 17104786191/16384 <0 and /(6)(l/2)
=2781099317/64>0. Therefore there exists an x1^I such that /C5)(x) is de-
creasing for x<xl and increasing for *>*!. /(5) (1/4)=- 148288007935/32768 <
0 and /(5)(1/2)=2507283275/32>0. Therefore there exists an x*<=I such that
/C4)(*) is decreasing for x< x2 and increasing for x>x2. /

C4)(l/4)=-25860012481/
262144<0 and /(4) (1/2)^742821129/256 >0. Therefore there exists an jcse/ such
that /(3)(,t) is decreasing for x< xz and increasing for x">xs. /C3)(l/4)—
96806613501/32768 >0, /C3)(l/2)=81366081/32>0, and /c3)(3/8)=-124154731777731/
67108864<0. Therefore there exist x^I and x^~I such that ^4<3/8<.t5 and
that /(2)(%) is increasing for x<x^, decreasing for Xt<x<? x6. and increasing
for x>x5. /C2)(l/4) = 106573809241/524288>0 and /<a>(l/2)= -2264445/1 28 <0.
Therefore there exists an XG<E! such that /cl)(^) is increasing for ^'<,T6 and
decreasing for x>x9. /(1) (1/4) =- 120599934157/2097152 <0 and /cl)(l/2) =
14625/256>0. Therefore there exists an x^I such that /(^) is decreasing for
x<x7 and increasing for x>x,. Finally, /(l/4)=89607188671/16777216>0and /(1/2)
= — 125/1024<0. Therefore there exists one and only one xc^I such that /(%)=0.

def
From eq. (3.5), yc = — 2"lx^2h1(xc')~

1h2(xc) is uniquely determined. Since
/(3/7)=216853862622/96889010407>0, the above arguments imply 3/7<.x-c<l/2.
From 3/7<%c and eq. (3.3), it follows that

2 8

which imply ;yc<(VT7-3)/21<(3/7)2<*!. This completes the proof. D

Remark.
(1) By the same arguments as the proof of 3/7 <xc and ;yc<(Vl7— 3)/21,

it is not difficult to obtain (xc, yc) to an arbitrary precision. For example,
one can prove 0. 4294449 <xc< 0.42944491 and 0.0499839<:yc<0.049984.
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(2) xc is not a rational number. This can be proved by standard arguments
using the explicit form of

Define ( x n ( x , y\ yn(x, 3;)), n=0, 1, 2, 3, ••• , inductively by (XQ(X, y), yQ(x, y))
= (x, y) and (xn+1(x, y\ yn+1(x, y))=$(xn(x, y), yn(x, y)). From eq. (2.2), it
follows that ( x n ( x , y), yn(x, y)) is Xn(x) with x restricted to the x^—x^ plane:

( x n ( x , y), yn(x, y))=(rl<>%n<>c)(x, 3^)-
Let D™ = {(x, y)^Rl\supneZ4.(Xn(x, y)+yn(x,y»<<*>}. Define also £(2)c,

D(2)0, and 3DC2), to be the exterior, interior, and boundary, of DC2) in Rl,
respectively. Notice the slight difference in the previous definition of D, The
condition xz^y is dropped here and the whole first quadrant is considered.
Let 2p={(x, y}^Rl\xz^y}. Then from the definition of D, D™C\3p is the
restriction of D to the x^ — x^ plane: D^r\S^=r\D). Note also that Pro-
position 2.1 (2) implies $(3p)c:3!?\ Define also £'(2) = {(x, y)^R2+\supn&z+

max\xn(x, y), yn(x, ;y)}^l}, and 5C2) = {(x, y)'^R$\\\mn^maz{xn(x, y\ yn(x,

Proposition 3.2. (1) Z)(2) is a closed set in R\ satisfying D™ = D'™.
The interior of D^ satisfies D^°—D^. They are invariant sets of ij) :

, and ^(Dc8)c)c/)^c.

(2) There exist a positive constant c and a continuous strictly decreasing
function p: [0, c~]-*R such that dD™={(x, p ( x ) ) \ x ^ [ Q , c~]} . For (x, y)^Rl it
holds that (x, y)<=D™ if and only if y^p(x).

Proof. The assertion (1) may be proved in exactly the same way as Pro-
position 2.2, if one notes the explicit formula eq. (3.1) and eq. (3.2). Let (x, y)
^Rl in the following. From eq. (3.1) and eq. (3.2) it follows that (0, 30^
3D™ if and only if ;y = 22-1/3.

Assume that %>0 and (x, y)<=dDw. If y'^y, then eq. (3.1) and eq. (3.2)
imply fa(x, y')>$i(x, y) and fa(x, y'}>(bz(x, y). Let

Then from eq. (3.1) and eq. (3.2), it follows by induction that

xn(x, y'}^r*n-lxn(x, y), n=l, 2, 3, • • - ,
and

which imply (x, y')<=D™c. If y'<y, then just in the same way as in the above
argument, it follows that (x, y')^D™°. Therefore for each ,r^0, there exists
at most one ;y^>0 such that (x, y)
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Let J={x^Q\ there exists 3^0 such that (x, y)=dD™}, and define a func-
tion p: J-^R by (x, p(x))^3D™. The above arguments prove that p is well-
defined, and that if y<p(x) then (x, y)^D™°, while if y>p(x) then (x, y)^D™c.

Let x(^J, x'cEj, and x'>x. Put y=p(x) and y'=p(x'). If y'~Z>yt then
from eq. (3.1) and eq. (3.2) 0i(*', 3>')>0i(*, 3>) and <f>z(x', yf)><j>2(x, y\ hence
as in the previous arguments, (x', y')<=D™c follows. Therefore y'<y, which
proves that the function p is strictly decreasing.

Now J9C2) is a closed set in Rl and eq. (3.1) implies that if x^l/2 and
;y^0 then (x, ;y)e/)c2)c, hence 3DC2) intersects the x-axis. Therefore, there
exists a positive constant c such that p(c)=Q. If x>c and ;y^0, then 0i(%, 3;)
>$i(c, 0) and ^2(^, y)>6z(c, 0), so that (A:, y)^D^c. Therefore if x>c then
x£J. If ^'<c then the same argument as before implies (x, 0)eZ?c2)0, while
(x, l)eDc2)c. Therefore there exists a ;y such that (x, y^dD^, hence x^J.
This proves that /=[0, c]. Since by construction 5.DC2)={(%, />(*))I *^[0, c]},
the continuity of p follows from the fact that 3Z>C2> is the boundary of J9C2).
This completes the proof. D

A numerically obtained shape of Z)C2) together with the fixed points of ^
is given in Figure 2 (the black dots in the figure represent the fixed points).

If (x, y} e jD(2)0, then Proposition 3.2 (1) implies limn_oo xn(x, y} = 0 and
lim^^oo yn(x, y) = 0. If (x, y) e D™c, then from Proposition 3.2 (1) and the
explicit recursion formula eq. (3.1) and eq. (3.2) it easily follows that lim^oo
yn(x, y)= °°, and limn^ xn(x, y)=Q if *=0 and lim^^ xn(x, y)=oo if x^Q.
The convergence of the sequence {(xn(x, y), yn(x, y))}, n=l, 2, 3, • • - , for the
case (x, 30e9-D(2), is not obvious from previous arguments alone, because the
sequence may either converge to one of the fixed points, or approach a non-

0-5

D(2)

0-5
Fig. 2.
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trivial attractor. However, the next two propositions show that the latter is
not the case.

Proposition 3.3. Let (*i, J>i)e3£c2) and (x2, JZ)CE 9£C2). // x,<x2, then

Proof. The mapping 0 is a C°° mapping. Its differential £T is, from eq.
(3.1) and eq. (3.2),

i.x(x, y) $i.y(x, y) '
(3.6) 2(x, ;y)=,

2,y(x, y)

4x3+88;y3

Therefore the Jacobian is,

det£T(;c, y)=l

Since (0, 0)'^jDc2)0 and dD^ is a closed set, it follows that there exists a
positive constant £i such that

(3.7) det£T(jr, ^)>e l f (x, y)^dDw.

Denote by cU£(x, y) the £-neighborhood of (x, y) in R$. The mapping ^
is a C°° mapping on JB|, and det£T(A', j)>0 if (jc, y}^dDm. Therefore for
each (x, y}^SD^ there exists a positive number s(x, y) such that ^, when
restricted to 'Ueix.y^x, y), is a diffeomorphism of class C°°. Let P=(xQ, J0) —
5Z)C2) and £ —s(x0 , 3>o). By Proposition 3.2(2), p(xo)=yQ. The line segment of
the line X=XQ inside CU=CUB(XQ, yQ) is mapped onto a smooth curve which cuts
the domain ^(*U) into two pieces. By Proposition 3.2 (1), this curve intersects
3DC2) at one point $(P). Put fUi='Un{x<x0}, which is the left half of <U,
and cU2=

cUf^{x>x0}} the right half of <U. Likewise denote by <U{ the piece
of ^(^7) which contains the points of 3D(2) which satisfy x<^(xQf y^, and the
other piece by Vi. Then CU1 is mapped by ^ onto either ^Jj or CU2, and TJg
is mapped onto the other piece.

Let 0<£'<£ and put Q=(x0 + e'y0\ R=(xQ, y0 + s'). Denote by P', Qf, R',

the images of P, Q, R, by ^, respectively. Put e^PQ, ez=PR, e[=P?Q', and
-^ def

e ' z = P f R f . Define 2 iX£ 2 = e i . jcgg. j , —01,^2,*. Proposition 3.2(1) implies that if
(*o, y0)^dD™, then *0^1 and ^^1. Therefore from eq. (3.1) and eq. (3.2),
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there exists a positive constant M independent of (x, y) and &' such that

-(det3-(*0,

By eq. (3.7) detff(^0» Jo)>£i- Therefore for sufficiently small s2 it follows that
if 0<e'<68 then

which implies that if s'<ez then IJx^ and 0iX0 2 have the same sign. On the
other hand, by Proposition 3.2 (2) R^Dwe, and by Proposition 3.2 (1) R'^D™e,
so that R' is above the curve y=p(x). Therefore Q' is contained in the piece
that contains the points in 9J9C2) with x > q>i(x0, 3/0), that is, the piece IJi.
Therefore, $(cUl)=

cU/
i) i=l, 2. In particular, for (x, y)<^dD™r\tU, if x>x0

then 0i(*, ;y)>0i(*o, 3/0), and if x<x0 then c^^z, ^)<^i(^0, Jo)-
Therefore, for each point (x, y)<^dD^, there exists an e-neighborhood °U(x)

such that if (xf , y/)^dD^(^cU(x)f then the order of x and x' is conserved by
the map ^.

Now assume that (xlf y^^dD^, (x2, yz}'=dD^\ and Xi<xz. Since 1^(^)1
^i^^^^2} is an open ball covering of the closed set 9D (2)n{%1^%^ J2} , one
can choose a finite number of cU(%)s', say CU1, ̂ Uz, ••• , 'Un, that covers the set
dD^r\{xl^x^xz}. It is further possible to choose them in such a way that
none of the CU% is included in some other CU7. Arrange the balls in a way
that the * -coordinates xlt xz, xs, ••• , xn of the centers of the balls are in in-
creasing order. For each i=l, 2, ••• , n — 1, take ^JcEcU tn

cU l+1n9^ (Z). Then
the order of the points

is conserved by i>. Since (xlt yi}^cul and (^2, yz^lJn, it follows that the
order of xl and ^2 is conserved by ^, that is, $i(xi, yi)<$i(xz, J2). This
completes the proof. D

Proposition 3,4. // (*, y)~dD^, then (xn(x, y), yn(x, y}} converges to one
of the fixed points of the mapping ij> as n— »oo. In particular, if (x, 3;)^ 9D(2)

r\3F\ then limn_oo(*n(*, y), yn(x> y}} = (xc, yc), where (xc, yc) is as given in
Proposition 3.1.

Proof. Assume that (x, y)^3D™ and that the sequence {(xn(x, y), yn(x,
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y))} t n = l, 2, 3, • • • , has an accumulation point (xlf yj which is not a fixed
point. Put (x2, y2)=<j>(xi, y i ) . Since (xly yj is not a fixed point, Xi^xz.

Assume first that x2>x1. The continuity of 0 implies that for any positive
number d there exists a positive number e such that the s-neighborhood *Ue(^i,
3>i) is mapped into the cUd(xz, y*)- In particular, there exists s>0 such that if
(x, y)<=°u9(xlf 3/0, then 0iOe, ; y ) > X i . But if (x, 3>)e9Dc2) and x > xlf then
Proposition 3.3 implies $i(x, y)>xz,>Xi. By induction, if (x, 3^)ecUe(^i, 3>0,
then 6i(<}>n(x, y}} >x2, n — l, 2, 3, • • • , where 0n is the n-th iteration of 0. By
assumption, the sequence {(xn(x, y), yn(x, y))\, n = l, 2, 3, • • - , accumulates at
(xlf y\), therefore there exists an integer N such that (XN(X, y}, yN(x, y}}^
cUs(xi, 3>i). Therefore if n>N then <]>i(xn(x, y), yn(x, y))>xz>x1, which says
that (xi, y^ cannot be an accumulation point, which is a contradiction. The
case x2<x1 can be handled in the same way. The conclusion is that if (x, y)
e5D(2) then every accumulation point of the sequence {(xn(x, y}, yn(x, y))},
n — l, 2, 3, • • • , is a fixed point.

If (x, y)^dD^r\S¥\ then from 0(SJB))c:5{8> it follows that the sequence
( x n ( x , y\ yn(x, y)) accumulates at a fixed point in 3^. Proposition 3.1 there-
fore implies \\mn^(xn(x, y), yn(x, y))=(xc, yc\ where (xc, yc} is as given in
Proposition 3.1. This completes the proof. D

The original problem of four dimensional parameter space is now considered.

Theorem 3.5.

limZnU)=(0, 0, 0, 0), x^D°nB,
n-»oo

\imXn(x)=(oo, oo, oo, oo), x^Dcr\E,
n->°°

\imJln(x)=(xCf yc, 0, 0), x^3Dr\S .
Tl^oo

Here xc and yc are as given in Proposition 3.1.

Proof. The first two cases are direct consequences of Proposition 2.2 and
Proposition 2.1. Consider the case x^dDr\z. Since 3D is a closed set, the
sequence {Xn(x}} has an accumulation point in 3D. From Proposition 2.4 (2)
and Proposition 2.2(1) follows Iim7l^oo^ll7l(^)=r0, z=3, 4. Therefore every ac-
cumulation point of (Xn(x)} is in c(dD™(~\3^). Denote an accumulation point
of the sequence by c(y], y^dD^r\3^. Let {^lCn)(*)}, n = l, 2, 3, •», be a
subsequence of {Xn(x}} that converges to c(y). By the same reasoning, every
accumulation point of {Xk^^x}} is in ^(3Dc2)n50

(2)). Denote one of the
points by <&), z^dD^r\S^, and let {^* lC*acB))-iU)}, n=l, 2, 3, -, be a
subsequence of {Xk^^^x)} that converges to e(Si). By definition Xk^k^n^(x)

c*2cn))-i(^)), and 0 is a continuous map, therefore it follows that y=
where ^ is defined at the beginning of the section. By induction, one
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obtains a sequence of points {Si}, 1=1, 2, 3, ••• , such that zi^dD™r\B^, 1=1,
2, 3, .» , and y=0(zj, z,=^(z^\ 1=1, 2, 3, - .

Since dD^r\S^ is a closed set, every accumulation point of the sequence
{Si}, 1=1, 2, 3, ••• , is in dD™C\B?\ Let w^dD™r\SP be one of the accumula-

def .»
tion points. Assume that w is not a fixed point of the map $: wf =
Since 0 is a continuous map, w' is an accumulation point of {<f>(zi)} = {Si-i} ,
1=2, 3, ••• . Assume that Wi>w(, where w=(w1} wz). Proposition 3.3 implies
that if there exists an / such that zi,i>w{, then z^l,l=(j)ll(zi}>wl>wr

l, and
consequently, zi+n.i=$~~n(Si), \>Wi>w{, n^Z^. This contradicts the fact that wr

is an accumulation point. Thus zi,i^w{ for all L=Z+. But this contradicts
the fact that w is also an accumulation point. The case Wi<w( may be handled
in a similar manner and a contradiction occurs. Therefore wl=w(, hence w=w'.

Therefore every accumulation point w of the sequence {Si}, 1=1, 2, 3, ••• ,
is a fixed point of the map 0 in 9Dc2)n5"o2). By Proposition 3.1 the only fixed
point in dD™r\B^ is (xc, yc). Hence the sequence {zt}, 1=1, 2, 3, • • • , con-
verges to (xe, yc) as /->oo.

It is proved that there is a sequence Si, 1=1, 2, 3, ••• , satisfying Jze9Dc2)n
3?\ 1=1, 2, 3, - , and y=0(zj, 2i=faM), 1=1, 2, 3, ••• , and limf^Ji=(*c, y&
On the other hand, Proposition 3.3 implies that for (x, y)=dD™, if x>$i(x,y)
then fa(x, y)>fa($(x, y)), and if x<fa(x, y) then fa(x, y)<fa($(x, 3;)). This
with Proposition 3.4 implies that (j)i(^>n(x, y}) approaches xc monotonically as
n->oo. If y^(xc, yc), this is a contradiction. Therefore $=(xc, yc), which
implies that the only accumulation point of {Xn(x}} is (xc, yc}- Therfore Xn(x)
converges as n-*oo to (xc, yc). This completes the proof. Q

Let

(3.8) ZiiB(j8)= S exp(-pL(w», jSeft, i=l, 2, 3, 4, we=Z + .
WE^W^

Then Z n(/8)=^Il(exp(-j8)> exp(-2]8), exp(-2j8), exp(-3/9)).

Corollary 3.6. There exists a constant fic such that

HmfB(/8)=(Ol 0, 0, 0),
7l-»oo

\imZn(p)=(xe, yc, 0, 0),
7l^CX3

limf n(]8)=(oo, oo, oo, oo),
n-»oo

The proof of Theorem 1.1 is as follows. Note that

where Win\ i=l, 2, 3, 4, are defined at the beginning of Section 2, and W^ in
the proof of Proposition 2.1, and
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W'F>= {wt=W'n-°'a^\ w(Z+)r\ (bn, cn] = { c n \ } .

Therefore, Zt=Z l i n+2Z3 in4-2Z4 in follows, which, with Corollary 3.6, implies
Theorem 1.1.

The first derivatives of $ are used to study the distributions of path
lengths. Let 3=(fli, az, fls, fl4)=(*c, yc, 0, 0) and

(3.9) £=(-3—(3), -, -=—(

Proposition 3.7. (1) The matrix B has a form

(P q Blz B

q r BZz B

0 0 Bzz B

0 0 0 0 J

B=

Every element is non-negative, and the four elements Bijf i'=l, 2, /=3, 4,
are positive.

(2) Denote the four eigenvalues of B by /I*, *'=!, 2, 3, 4. T/zen one can
arrange the order of the eigenvalues so that they satisfy

and B<M—ZZ. In particular, B is diagonalizable by an invertible matrix P:
P-1BP=diag«1> **, I* 0).

Proof. The four elements B^, i=l, 2, /=!, 2, are obtained from Proposi-
tion 2.1 (3). Proposition 2.1 (6) implies B^XcX), ;=3, 4, and 52J-^%|>0, ; =
3, 4, and 54J-— 0, y=l, 2, 3, 4. The non-negativity of elements are obvious.

It is easy to see that the four eigenvalues are l/2{p+r+V(p— r)2+4<?2} =
2.7965-, l/2{/>+r-V(£-r)2+4#2}:=0.2537---, ,633, and 0. The numerical values
are derived by the estimates for xc and yc given in the remark after Proposi-
tion 3.1.

From Proposition 2.1 (5) one has Bzs=@Sil(a). From Proposition 2.1 (5)
and the fact that a is fixed point it follows that $3>i(a)^l — xc<l. From
Proposition 2.1 (4) one has 5M^*§+2*!!=0.3428— . This completes the proof.

D
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Remark. The explicit form of B obtained using the explicit form of the
recursion relations, is shown in Appendix B.

Let

(3.10) B^ButEF^cE*.

Proposition 3.4 and Theorem 3.5 imply that if x^dDr^Bi, then \imn-^Xn(x)=
(xc, yc, 0, 0).

The following proposition states how Xn(x} converges to (xc, yc, 0, 0) as
n~>oo. Though the proof is similar to that for the case of diffeomorphisms
in [5], we give a proof here for readers' convenience.

Proposition 3.8. Assume x<=dDr\Sl. Then there are positive constants C
and p<l, such that

Xl,n(x)-ai <Cpn, j=l , 2, 3,4,

Proof. 0(x) can be expressed as

where d: R*-*R* satisfies, for x^R* and \x-a\<l,

with a positive constant Cl. R* splits into 0 -invariant stable and unstable
subspaces

where Vs is spanned by the eigenvectors corresponding to 22, /13 and 0, and Vu

by that corresponding to %lt where Az s' are as in Proposition 3.7. Denote the
restrictions of B to Vs and Vu by Bs and Bu, respectively. For xf^R4 define
norms

def

def
\x\0 = max{|f s l* , \ x u \ * } ,

and for an 4x4 matrix A,

Let

\\A\\*d= sup \AxI*.
\X |* = 1

a=fmaxi||Bf||*, ||B^||

Take /c>0 such that a+K<l. Then by eq. (3.11) there is a d, 0<3<1, such
that
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6(x-a)\0<K\x-a\0,
for

\x-a 0<d.
Assume that x<E.dDr\5i. Then there is an n0 such that

\Xn(x)-a 0<d,

for n:>nQ. Let x0=XnQ(x).
Consider

Then
\(0(x0)-a)s * |̂|S.||

Suppose that |£ 0 — &\0= \(x°— 3)«|*. Then

!*!)— 2 o.
By induction,

Since (a+tc)~n— >oo as n-^oo, this leads to a contradiction. Thus, XQ— a\0=

IUo-2).l*.
A similar argument shows that $(£0)— 5|0= |(^U0)— 3).|*. Thus | 0(x 0)

i ^ o — fl o- By induction it follows that

where p=a+tc, 0</o<l. Thus for each x<=dDc\5i there is a positive con-
stant C' such that

for all n^Z+. This completes the proof. D

§ 4. Limit Theorem for Distribution of Path Lengths

First we define probability measures pn(x\ t*i,n(x\ and vn(x) on W^n\
W(n\ and W^, respectively. W*^ is defined in Section 1, and Wi^ and W^
in Section 2. Each measure is parametrized by x=(xlt x2, xs, ,r4) taking values
in Bi\{(0, 0, 0, 0)}. To each w(=W^n\ we assign the weight

PnWlw'] = {X,, nW+2Xs, n(x)+2X,, n(x)} ~> ft X\^ ,

to each
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^ {*!, „(*)} -1 .

and to each w^W2
n\

where st(w) and X i i n ( x ) t i=l, ••• , 4, n<=Z+ are defined in Section 2.
Our objective in this section is to study the asymptotic distribution of path

lengths L(w) under pn(x), fjtlin(x)and un(x), respectively, as n tends to infinity.
Each element of W^ consists of two path segments. Since we want to deal
with these segments separately, we define, for w=(wlf

Note that

(4.1)

(4.2)

Let Y n be another generating function for W2
n:> defined by

Fn(z)=f 2 Ilx!iW,
iv&V^ i=1

where

Z2=(X5, XQ, X7, X8) .

Yn satisfies the following recursion relation.

J^+i(*)=yi((*nC?i), xn(z,\
We also have
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(4.3) YMzt, Slt *>))=02(*i, xz, xz, x 4 ) .

We start out with

Let dH^n\z) be an 9x9 matrix defined by

def / 8 d
< n = - - t ™ - . - -

Since the recursion relations imply,

(4.4) J/cn)(z)=

we have

(4.5) dHw(z)=dH^(H^-

Throughout this section, we write,

def
fl=(fli, ••• , aB) — (*c, Jc, 0, 0, xe, yc, 0, 0, yc).

We have, in particular,

Proposition 4.1. (1) All the eigenvalues of 9//(1)(fl) are non-negative. The
largest of them, 1, is a double eigenvalue with corresponding left eigenvectors
(au #2, «3, «4, 0, 0, 0, 0, 0) and (0, 0, 0, 0, alf a2, as, «4, 0), satisfying at>^} i—
1, 2, 3, 4. ,4723; 0£/z0r eigenvalue is less than 1.

(2)

(/, j)-element of A(a), Atj(a), is non-negative for i=l, ••• , 9, ;'=!,
• , 9. /n particular, An(a)>Q and A91(a)>Q.

Proof. It is easy to see that 3//(1)(a) has the form
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0

B 0 0

0

0

(4.6) 3trrr»/..\_ 0

0 B

l ~2~ 2 ~2 l 2 ~2~

where Ci is a constant satisfying O^Ci^r/2. The 4x4 matrix B and the
positive constant r are defined in Proposition 3.7. dH^(d) has four double
eigenvalues X1} A2, >U, 0, and a single eigenvalue r~2d. Note that /ii>r=0.3277
•••^r—2Ci. It is also easy to show that the right and left eigenvectors of
B corresponding to /U can be chosen as *(«!, a2, 0, 0) and («i, a2, as, #4), with
a<>0, f=l, 2, 3, 4, af+a|=l. The assertion (1) follows with ̂ =^.

There is an invertible matrix P such that

P-1dH^(a)P=diag(Z, ^2, ^., 0, ^, ^2, ^s, 0, r-2d),

and that the first and the fifth columns of P are I(al9 az, 0, • • - , 0, C2) and '(0, 0,
0, 0, «i, az, 0, 0, C2), C2>0, respectively, and that the first row of P~l is (ait

az, «3, o:4, 0, • • - , 0). Combining these with

limP-^-BOtfcl)(fl))BP=diag(l, 0, 0, 0, 1, 0, 0, 0, 0),

one has the assertion (2). In particular, An(a)=al and ^9i(a)=C2ai. This
completes the proof. D

From the proof of Proposition 3.7, we have ^=2.7965-••.
In studying the limit of l~n(dH<il\z)}n for more general z, we make use of

the following lemma. It can be proved in a similar fashion to Lemma (3.1)
in [3].

Lemma 4.2. Let A, An, n = l, 2, •••, be NxN matrices. Assume that there
is an invertible NxN matrix P such that />~MP=diagW1, • • • , ZN), ^^0, i=l,
• • • , ^V, ^max=niax^>0. Assume further that

2 \\An-A\\<oo.
71= 1

Then
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(4.7) lim lim

P~1QP— diag(#i, ••• , qN) with ql—l if ^=Amax flwd ^ = 0 otherwise.
Moreover, \imn-+«> Am^An ••• AI exists.

Let Si be as in eq. (3.10) and

F={Z=(XI, x2, ,T3, Xi, Xi, xz, *a, *4, #2)l(*i, *2, *s, *4)^3£nSi}.

Proposition 4.3. Zef * = (zi, ••• , z9) e F. Then \imn^A-ndH™(z) = A(z)
exists, and Al}(z)^Q for i=l, ••• , 9, /=!, ••• , 9. In particular, Au(z)>Q and

Proof. By the mean-value theorem,

(4.8) 9#u(z)-9#u(a)=

where

Since T7 is a bounded region in jR9 and (d/dzk)dHlj(z) is a polynomial in zj, • • - ,
2r9, there is a positive constant M such that

(4.9) <M

for all u=a + 6(z-a), 0<f f< l , ^^r, t, ;', ft = l, ••• , 9. On the other hand, by
Proposition 3.8, for each x^dDr\Sit there are positive constants C and p, p
<l, such that

(4.10) \Xl>n(x)-al{^Cpn
) i=l, - ,4 .

From eq. (4.8), eq. (4.9), and eq. (4.10), it follows that there is a constant d
such that

(4.11)

Now let An=dH(H™(z}} and A=dH(a). From eq. (4.11),

Lemma 4.2 implies the existence of limn_oo^~n3//C7°(^). Since Q=A(a) in this
case, eq. (4.7) implies that for sufficiently large m, the (1, 1) and the (9, 1)-
elements of lim n^li-ndH(H<n+m>(z))-'-dH(H<m+1>(z)) are positive. From Proposi-
tion 2.1(3), Xi.i(x) includes xl, and Xz.i(x) includes x\, which implies that
dH(H<k:)(z)), k = l, ••• , m, has positive (1, 1) and (9, l)-elements for x<=dDr\3i.
Therefore, AlJ(z)>Q for (i, ;')=(!, 1) and (i, ;')— (9, 1). This completes the proof.

D



482 KUMIKO HATTORI, TETSUYA HATTORI AND SHIGEO KUSUOKA

Proposition 4.4. Assume zr~P. Let

Hln\ze*-nt}*= Hln\z^-nt^ zze
x~nt*, -, ZB*'~B|B), i=l, • • • , 9 .

(1) There are entire functions H*: C9 -» C, such that Hkn\ze*-nt)-*H*(t),
as n-+oo uniformly in {t=(tl9 ••• , fB)^C9 | \tt\^R9 i=l, ••• , 9} for all R>Q. In
particular, ff?(f)=0, for i=3, 4, 7, 8.

(2) L^ #*(0 = (#*(*), #*(0, 0, 0, tf ?(f), #*(0, 0, 0, #?(*)). Then H*(t)
satisfies,

(4.12) H*(W=H<l>(H*(f)),

for any t~C*. Moreover,

-^-
01 j

Proof. Let

for z=(zi, -•• , ^9)c=C9. 1 • 1* satisfies the conditions for a norm. From Proposi-
tion 4.1, («!, «2, «„ «4, 0, 0, 0, 0, 0) and (0, 0, 0, 0, al9 a*, «8, «4, 0) are the left
eigenvectors of 3//(1)(a) corresponding to 1. It follows that

(4.13)

Now fix a z^T and let w^R9. Put

(4.14)

def

From the mean-value theorem combined with eq. (4.13), it follows that there
is a positive constant Ci such that

(4.15) H^a+Vn+w^-H^^a+v^l^^l + C, vn\*)(l + C1\w\*)\w\*

for i w U ^ l and nc-Z+. By Proposition 3.8, there are positive constants C2

and p<l such that,

(4.16) \vn

Take a positive number b such that

where C3=CiC2. Then by eq. (4.15) and induction,
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(4.17) \

for k^Z+9 Q^k^n, and w^R\ w\*£bX~n. Thus the estimates eq. (4.16) and
eq. (4.17) together with eq. (4.14) show that there is a <5>0 and a C4>0 such
that

(4.18) |ff , ( B )(*^~B ' ) l*^C4 ,

for £e/29, \t\*<d. Since each #t
(7° is a polynomial with positive coefficients,

def
we see that eq. (4.18) holds also in Q = {t^C*\ \t\*<d}. Therefore, for each i,

forms a normal family of holomorphic functions in Q. Let

(4.19) fl^^^nt)=Sfli(

By Theorem 3.5,

(4.20) at
(n)(0) — > at, w — > oo .

Define e(l)-'-Z+
9 by e.,(i)=«t;. By Proposition 4.3,

(4.21) fl<n>(g">) — > ^^i/2:), n — > oo .

Substitute eq. (4.19) into eq. (4.4) and let n^oo. By induction starting with
eq. (4.20) and eq. (4.21), we see that there are af(k)'s such that

Therefore there are holomorphic functions / /?:$— >C, such that H^(ze*~nt)~*
Ht(t), as w-^oo uniformly in {^C9| \t\*^d/2}, satisfying eq. (4.12). For any

0, take an m~N such that X~mR<d/2. Then

as n— oo uniformly in {tf=C9\\t\*^R\ . This shows that H* can be extended
to an entire function in C9, satisfying eq. (4.12).

Let ^-"'"^(^-""i, • • - , 2f9eA"B"»), ^=(^1, -, *9)=U, ^ Jca)^r, and ft,
••• , to)^R9. Since yY3

(7l) is a polynomial with positive coefficients,

Therefore, by Theorem 3.5,

Hp>(ze*-nW) — > 0, n
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This and the fact that #f is an entire function leads to

on C9. In the same way, we have

on C9, for i=4, 7, 8. This completes the proof. D

Note that H* has an f-dependence, though we do not write explicitly.
Let pn(x) and p%(x) denote the law of A~nL(w) under fjtn(x) and under

Pi.n(x), respectively. Let qn(x), qn(x), and q%(x) be the law of (X~nL(w1\
l~nL(wz)), l~n(L(wl}-\-L(w2})) and ^~nL(wl}, respectively, under vn(x). Note
that the law of X~nL(w2} under vn(x) is also equal to q%(x). We often omit
writing the dependence on x, when no confusion occurs.

We define

(4.22) scn)(0=f

def r°°
(4.23) gl*\f)=\ >

Jo

and
def

(4.24) h™(tlf U) =

Note that

From the relation, L(w)=s1(w)+2s2(w)+2sz(w)+3s,(w)> w<=W*™, and eq.
(4.1) and eq. (4.2), it follows that

where

A _f_ /r .o
Xn,t — \xl*

and

h™(tl, U-)={X2

Theorem 3.5 and Proposition 4.4 imply that for x^
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gcio(f) — > —Hftt, 2t, 2t, 3t, 0, 0, 0, 0, 0),
xc

— > - # * ( f , 2t, 2t, 3t, 0, 0, 0, 0, 0),
xc

—//,*(fi, 2f l f 2tlt 3f,, tt, 2t2, 2tt, 3t,, d

as n-^oo uniformly in {t^C \t\^R} and {(tlf tz)*E.C2\ \ t z \ <^R, i—l, 2} , respec-
tively, for all #>0. This leads to

Proposition 4.5. Assume x=(xl9 xz, xz, x^^dDi^E^. There are entire func-
tions g : C—C and h : C2->C such that

as n-^oo uniformly in \ti=C \t\^R}, and

as n-^co uniformly in {(t1} tz)<=Cz\ \ t t \ ̂  R, i = 1, 2}, for all R>Q. g(t) and
h(tlt t2) are the unique solution to ;

(4.25) XcgW=<f>i(xcg(t\ ych(t, 0)*

(4.26) ych(til9 tf,)=/(xcjstfi), yMl9 tjt xcg(t2), yeh(t*, W,

where $1 is defined in eq. (3.1) and

def
) = Yi(ylt y2) 0, 0, ys, yi9 0, 0,

(4.27)

-
3;c

Proposition 4.6. Assume x=(xlt x2, xs, x^^dDr\S\. There are probability
measures, p(x\ q+(x) and q*(x) on R, and a probability measure q(x} on R* such
that
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?*(*)=)<?*(*),
and

as n— »oo, where =) denotes weak convergence.
(1) The Laplace transforms of the limit measures are given by,

M ) = A ( f , 0 ) ,

and

(2)

(3) Aforce o/ ^(f), q^(x) and q*(x) is concentrated on a single point.

The assertion (2) follows from Proposition 4.3, eq. (4.27), and ed. (4.28).
The assertion (2) combined with eq. (4.25) and eq. (4.26) leads to assertion (3).

Proposition 4.7. There are positive constants Ci and Cz such that

h(it, i

\h(it, 0)i = |A(0, i

for t^R, where £=

Proof. By Proposition 4.5 and eq. (4.3),

(4.29) g(ttt)=— fa(xeg(if)9 ych(it, it)),

(4.30) h(M, «0=
Jc
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Define

G(Od=-|* | -Mogls(f t) | ,
and

H(t)=-\t\-K\og\h(it, ft) | .

Substituting these in eq. (4.29) and eq. (4.30), and using the fact that \g(it)\
^1 and \h(it, ft)|^l, we have, from eq. (3.1) and eq. (3.2),

log | h(M, tff) 1 r£2(log | g(it) | v h(it, it} | ) .

From these it follows that .

(4.32)

By Proposition 4.6(3), there is a constant <5>0anda constant C, 0<rC<T such
that

o<i£(ft)l<c,

0<

for any t(=R, ^~1d^\t\<d. Therefore, eq. (4.31) and eq. (4.32) lead to

G(0>C l f

for any t^d with Ci=— d~K logC>0. This implies

h(it, it}\<

for t^d. Take Cz>ec^dK. Then we have

for fe/2. The estimate for | A(ft, 0)1 is obtained similarly. This completes the
proof. D

We use the following property in later sections.

Proposition 4.8. p, q+, and q* have C°° densities. In particular, p, the
density of p, satisfies

, and
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Proof. Proposition 4.7 and the fact that g and h are entire functions
imply that g(if), h(it, it], and h(it, 0) with fe/2 are rapidly decreasing functions.
From this, the existence of the C°° densities for p, q+, and q* follows. Let
p+ be the density of q+. Then eq. (4.25) and eq. (3.1) imply that

(4.33) ^-1p(^1S)=

Let A be the support of p. It is clear that 4c[0, oo). From eq. (4.33) it
follows that if x, y, z<=A, then lr\x+y), ^(x + y+z^A. Note that 2<^<3.
By Proposition 4.6(2), there is an x^A such that *0>0. Then (2X~l)nx0^Af

72 ^>1. Since A is a closed set, this leads to OeA Therefore, 0, l~lxQ, 2/l~1%0,
S/l^o-E/l, and by induction, it follows that mA~nxQ^A, w=0, 1, ••• , 3". This
implies /1=[0, oo). This completes the proof. D

Note that p$ in Section 1 is equal to (jLn(xc) with

*c=(exp(-0c), exp(-2/3c), exp(-2/3c), exp(-3j8e)).

The definition of f}c implies xc^dDr\Si. Therefore Theorem 1.2 in Section 1
follows from Proposition 4.6 and Proposition 4.8.

§ 5e Continuum Limit of Self-avoiding Paths

Let Fn, n—Q} 1, 2, ••• be the graphs defined in Section 1. Let Fn—2~nFn,
72=0, 1, 2, • • - . Each Fn is a finite graph obtained by giving a substructure to
a unit tetrahedron OaQbQCQ. Let us define the finite three-dimensional Sierpinski
Gasket by

We define Gn to be the set of vertices in Fn, and Tn to be the set of closed
tetrahedrons in jR3 whose vertices belong to Gn and whose edges are of length
2-n>

Let

°)-»F)\w(ty=0, l imu;(0=flo}.

C is a complete separable metric space with the metric

d(u,v)= sup \u(t)~v(t}\,
JGCO, oo)

u, v^C.
We define a mapping T' U^*cn)-^C as follows. For u<=

n

(1) ru(j) = 2-"u(j), for j-=Z+
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(2) ru(t) =
Note that ? is an injection. We denote

~ def
-

+cn) js self -avoiding in the sense that w(t^w(t^ if
Let pn(x) be the image measures of fjtn(x) induced by p. pn(x) is a prob-

ability measure on C supported on ffi*m. Throughout this section we con-
sider the case x^.dDr\3i. Our objective in this section is to study the limit
of fln(x) as n tends to infinity.

Let us begin with some definitions we use in this section. First we define
"hitting times", TJ: C->fl+, k, i^.Z+. Let T$(w)=Q, and by induction, for

if the right hand side is finite, otherwise, Tk
l(w)=oo. Tk

x is the time when w
hits the elements of Gk for the z'-th time on condition that if w hits the same
element of Gk more than once on end, we consider it "once". Writing w(oo)
= aQ, and noting that w(t)-*aQ as £— »oo, we obtain a finite sequence {T?}l=i,....ji
such that w(Tk

M(w))=a0, w(T\(w}}^a,, i=l, ••• , M-l.
Next we define the "exit times", {T*k(w)}i=Qt...,NW, and the "& -skeletons",

the sequence of tetrahedrons a path passes through, ak(w)=(Ai, ••• , A^c^)).
Let {T$(w)}iss0....,M be the finite sequence obtained above. Let T?fe(w;)— Tl(w)
=0. AI is defined to be the element of Tk that contains O=(0, 0, 0). For /^l
we proceed by induction. Define

exit(0=f min{y^Z+]y<M, T}(w)>TS1(u;), i^T^O^AJ.

As long as the right-hand side exists, we define T^k(w)= Tgxitco and A4 + i to
be the element of Tk that contains both w(T*k(w)) and w(T*xitCl)+i(M;)). .V=
N(w) denotes the number of the elements of ak(w} defined in this way. Let
T%k(w)=Tk

M(w). We write S?(^)=n*(w)-Tfi(M;) and call it the crossing time
of A*. In the following we denote an ordered set of tetrahedrons like (A1? • • • , A,v)
and an unordered set like {Ai, ••• , A#}. Let w~C, k<=Z+, and ak(w) —
(Ai, ••• , AN). The following properties are straightforward consequences of the
definition.

1. OeAi, aQ^AN.
2. A^nAj+i is equal to neither 0 nor At.
If w^W*^, n, k<=Z+, n^k, ffk(w) further satisfies,
3. Each element of Tk appears at most twice in (At, ••• , AN).
4. {Ait Ai+i}^{Aj, Aj+1\, i^j as unordered sets.

Let us denote £T k = {A=(Alf ••• , AN)\Ai<=Tk, i=l, ••• , W, A/=l, 2, ••• , ^

satisfies 1. through 4.}, and 2la =f {2f=(Ai, ••• , A^IA^T*, f=l, •-, ,¥, A^=l,
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2, • • • , J satisfies 1. and 2.}.
For n^Z+, we define a "decimation" map Qn : C->C by

for /=0, 1, 2, ••• , M, with w(Tn
M(w})=a,,

(Q»u;)(f)=(i+l-0 (Qnu

for zgZ<Tz+l , 2=0, 1, 2, ••• , M-l, and

for ^M. Note that if &^ra, we have Qk°Qn=Qk.
Let m<^?2 and Qmpn(x) be the image measure of pn(x) induced by Q

Proposition 5.1. For w>^.W*™ and

def
In particular, for a = (xe, yc, 0, 0),

The statement on Qmfln(x) is obtained directly from the recursion relations,
eq. (2.2) in Proposition 2.1.

We introduce a time-scale transformation Un(a): C->C, ae(0, oo),
For w^C, define

Let us denote by Pn(x) the image measure of pn(x) induced by Un(X)- We omit
the x dependence of Pn when no confusion occurs.

We define

Note that for

for
In the following we write, for example, PnLQmw=v~] instead of Pn[

C Qmw=v}l.
We obtain the following proposition in a similar way to the case of the

two-dimensional Sierpinski Gasket.

Proposition 5.2. Assume m<Ln, v~V<m\ and am(v)=(Ai, • • • , AN). Under
the conditional probability Pn\_- \Qmw=v~\, we have the following.

(1) The set of S f ' s with i^ {ilf i2, ••• , iK\ <= {1, ••• , N] are independent
random variables, if A f j ^A t j f e , for any j'
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(2) For l^i^N, if A* appears only once in am(v), the law of lmSf is equal
to p*-m, thus converges weakly to p as n-+oo.

(3) // A,=Ay, l^i<j^N, then the law of (lnS?, ^mSf) is equal to qn.m,
thus converges weakly to q as n— >oo. In particular, the law of XmSf is equal to
q*-m> converging weakly to q* as w— >oo.

By Proposition 5.1 combined with Theorem 3.5, we have

Proposition 5.3. For any k^Z+,

x^y?* if v<=V<k\

0 otherwise,

where JVi=s1(7'~1v) and N2=s

Proposition 5.4. The family of measures Pn, n = l, 2, ••• , is tight.

Proof. Since we already have

it suffices to show that for any e, 77 >0, there exist a positive integer nQ and
a positive number d such that

Pnl sup \w(s) — w(t)\>e]£i], n^nQ.
\s-t\<3

For an arbitrarily given e, choose k^=Z+ satisfying

2-2- f e <s .

We have,

Pn[ sup |u;(s)-u;(OI>e]
!*-«!<«

<PnlS
ki(w)<d for some i=l, • • • , N(w)]

LCr-lt))
^ S S P»[SJ(u;)<«!Q»M;=i;]-Pn[0.u;=t;]

The last inequality is obtained from Proposition 5.2 and the fact that L(r~lv)
^2-4*, a. s.. By Proposition 5.3, there is an n^Z+ such that

] ^ - , for n>nl .

Take a 5>0 such that
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Pis : s

Then by Proposition 4.6 and Proposition 4.8, there is an nQ^nl such that

for n:>n0. This completes the proof. D

Now we will show the convergence of the finite dimensional distributions.
For w^C, O^fi^ ••• <tm, ro=l, 2, ••• , let us define

For a probability measure Q on C, define Fm(Q)(ti, ••• , tm): Rm-^C by,

def

Fix an m^Z+. For any k^Z+ and n^k,

Fm(Pn)(ti, • • • , tm)= 3

- S S£p»[Aml<?*w=v, T?*^^<T?*+1, i=l, • • - , w]

?*+1, 1=1, • • - ,

where 2 is taken over {1, 2, ••• , N(v)}m with ri^r2^ ••• ^rm.
i - T j l

For simplicity write

def

/v def

and

Then for n, n'^k,

F(Pn}-F(Pn,}\

S Ifi^-fi^'IPjPnH- S S \Ep«'\\P*-P*,\Pn

+ 2 2 \Epn'\P*,\Pn-Pn, .
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Put

Under the condition that Qkw=v, v^V^k\ T?*^*t<T?J+i, * = 1, ••• , m, there
are positive constants d and C2, independent of k, v and {rz} such that

Thus the first term is bounded by Ci2~C2*+1. For an arbitrarily given s>0,
choose a & such that

Note that for a fixed k, the summation over i; and {rj is finite. By Proposi-
tion 5.2 and Proposition 5.3, for sufficiently large n and n', the second and the
third sum are less than e/4, respectively, and

Thus we see that [Fm(Pn)(ti, • • - , tm)} 71=1,2.... is a Cauchy sequence in C(/2m— >C),
and therefore converges uniformly as ft— >oo. We have shown that the distri-
bution of (w(ti), ••• , w(tm)) converges for any O^i ^ ••• ^tm, m<=Z+. This
result combined with Proposition 5.4 leads to the following theorem.

Theorem 5.5. Pn converges to a probability measure P on C weakly as
n—>oo.

Now we will proceed to study the properties of P. For A*E Tk, let us
denote its neighbouring elements of Tk, by Acl), • • • , AC3), if A contains any

element of G0f or by A(1), • • - , A(4), otherwise. Let us denote (uA(l)

by 9/V(A), and UA^UAxdJVCA) by N(A).

Proposition 5.6. Assume A— (Al5 ••• , A^^ff*, k^Z+. Let A={w^C ak(w]
=J}. A is an open subset of C.

Proof. Take any w^A. From the definition of the skeleton, for Tf^<

that is, u/(0<=/V(A t) . Let

r t=inf{d(u;(0f

and
^^infi^Tf

Noting that rt>0, we can find an s>0 satisfying
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min r
= 1,—, N

Then it follows that for any w't d(w, w')<e,

for f=l, • • - , N, and Ai^Al.z for j=3, ••• , N. This means w'eA This com-
pletes the proof. D

def
For Je£Tj i2, define a subset of C as w(J) = {w/^C| there exists a sequence

0<Si<s2< ••• <,s#<oo such that w(st)^Ai\Gk and u>((s*, s i+i))nGAc:Ai for all

/=!, 2, • • - , # } , where w((a, b))*= \w(f)\a<t<b}.
By a similar argument to the proof of Proposition 5.6, we have,

Proposition 5.78 u(A) is an open set.

Proposition 5.8. // JeETi'2, then

Proof. Let ti} /=!, • • - , A7" be as defined in the proof of Proposition 5.6.
Since T^OKTT, {w(t)\T*^<t<tt\r^GkcL^1r\^f and [w(t)\tt<t<T*k\n
GkaAi. Take Si=tt, i=l, 2, ••• , AT. This completes the proof. D

From this proposition we have,

Proposition 5.9. // J^ff i '2 does not satisfy the condition 3. or 4.,

< liminf Pn[M
7l-^oo

= liminf Pn
n-»oo

=0.

The first inequality comes from Proposition 5.8 and the second comes from the
weak convergence of Pn to P. The probability vanishes because Pn is sup-
ported on a set of self-avoiding paths. This completes the proof. D

For each J=(Ai, • • • , AN}>^3:k, there is a unique element v^ of V c & ) such
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that ak(vA)— 4. VA is determined by vj(i)^Air^Al+i, i=l, 2, ••• , /V— 1, and vj(N)
= aQ. On the other hand, for each z;cEFcAo there is a unique element J of £T f e ,
such that (7*(vj)=J. This defines a one-to-one mapping from ET/, to

Proposition 5.10. For d=(A1} • • - ,

where Nz denotes the number of distinct tetrahedrons that appear twice in A.

Proof. By Theorem 5.5, Proposition 5.6, and Proposition 5.3, we have

P\_ak(w}=A~\< lim inf Pn\_ah(w)=A]
7l-»oo

= lim inf Pn[_Qkw=vi] -\-\\m inf Pn[ak(w}=d,

This completes the proof. D

Theorem 5.11. For 4<~2*J-S ,

^f-2^-^^ if 4eff

0 otherwise.

Proof. Proposition 5.9 implies that P is supported on
Assume that for some J'CES"*,

P[cyfc(u;)=^]<xjr-"^-1^8.

This assumption together with Proposition 5.10 leads to

1= 2

= ^^*(A;C, yc}

= 1.

Here, %A is defined in Section 3 and we used

2 xN-*N*-lyN*=xk(x, y),

which follows from the correspondence between 5Tft and Fa). This is a con-
tradiction. This completes the proof. D

Remark. Though P itself has an .f -dependence, the probability that a path's



496 KUMIKO HATTORI, TETSUYA HATTORI AND SHIGEO KUSUOKA

skeleton takes a certain form is independent of x. The dependence appears
only in the crossing times of tetrahedrons. (See Proposition 4.5.)

Proposition 5.12. Let ak(w)=(Ai*\w), • • - , A$^O)), and denote by u^ and
vlk> the two vertices of Ap}(^) that are not contained in {w(Tfk(w)), w(T^(w))} t

i=l, •-, Nk. Then

^} for all t,

i=l, -,Nk, ft£=Z+]=l.

Proof. Assume for some i and k there exist A'GET fe, A'^A|A), and t',
), such that w;(f)eA'\G*. The definition of the exit times

implies that there are tlf ••• , f4, ti<t2<t/<U<t4t such that {w(tz)} = {w(tz)} =
>, and w(U\ w(t^A^\Gk. Let r^d(w(t'), A'nA,(*>) and rj=d(w(tj),

f >), y=l, 4. Choose an ?weZ+ such that 2-2-m<min(r, rly r4). Let Acm)

and Acm) be the elements of Tm satisfying

Then if follows that am(w} contains the subsequence (Acm), Acm)) or (Acm), AC77l))
at least twice. Thus for a fixed J— (A1? ••• , A#)(E3**,

=:J and w(f)^\^t for some i and f,

/v

^ 2 P[<y*(w)=J and u;(OeF\Af, for some t', Tfk
l(w)<tf<T*k(w)']

^ S S P\_ok(w}—^, ffm(w) contains some successive pair
i=i m=k+i

{Acm), Acm)} twice.]

To obtain the last equality, we used Proposition 5.9. Summing up over all
elements of 3k and all k^Z+ we obtain,

(5.1) P[>(OeApW for all T

Again, for a fixed J— (At, • • • , A.v)t£r*, and a fixed 2, l^i^N, we denote the
two vertices of At that are not contained in Atr\Ai+i or Aj_iOAi, by u and v,
and the element of Tm that is contained in Af and containing M, by A^m), for
m=^, k+1, ••• . If w(t)=u for some f, T^l(w}<t<T*k(w\ then ^ must go
inside A^m), which, from what we just proved above, implies that there is a
subsequence of am(w\ {A(

r
m), APR, • • - , AJ-TrJ, r, neZ+, n>0, such that Ajm)

c=A,, r^/rgr+n, u/CTfiC^W^A^, ^(Tt^i^eAffr^ and A^-A^5 for some
s satisfying r5js^r-frr In terms of probability,
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P[there exists t, T^l(w}<t<T^k(w}, such that w(t)=u{ak(w)=d~]

(w] has a subsequence satisfying above conditions I <rft(u;)=J]

where
def

b =

Since b<l and m can be chosen arbitrarily large, the first probability vanishes.
The same holds for v instead of u. Summing up over i, J^ff*, and k, and
combining with eq. (5.1) we have the statement. This completes the proof. D

We go on to prove that the stocastic process defined by P is almost surely
self-avoiding, that is, w(ti)^w(t2), for 0^£i<f2^Tao(u;), where

We classify possible self-intersections as follows.
(1) There are t^Q and t0>Q such that

w(t)=w(tl}, for t^t^U+

(2) There are tlf U, and fs, U<U<U such that

Type (2) can be further classified into two cases :
(2-1) uKfO

(2-2) w(t0) k
We start with dealing with type (1) case.

Proposition 5.13.

P[there exist t^Q and t0>0 such that w(t)=w(t!)^aQt t1<*t£t1+t0']

= 0.

Proof. Let AkitQ be the set of w^C such that there exist fi^O, and two
adjoining elements of Tk, A and A', satisfying w;(0^((AUA /)\G jk)U(Ar\A /)
for ti^t^ti+tt, or such that there exist ^^0 satisfying w(t)<=(A0\Gk)\J{O} for
ti^t^tt+to, where A0 is the element of Tk containing O. It is straightforward
to see that AkitQ is an open subset of C, and we have

^Pn [there exists i, 2^i^N(w), such that Sk
l.l(w)+Sk

i(w)>t0']
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= a p»iok=ft- s /Jn[s{-i
(=1

In the last inequality we used

- or

By Chebyshev's inequality and Proposition 4.5, for any a >0 and s>0

lim £*[£

A similar inequality holds for q%[t\ t>a~]. Therefore

where s and C are positive constants. Thus by Proposition 5.12, for any
£ezZ+ and £0>0,

P(tQ) = P[there exist ^^0 such that w(t)=w(ti)3=a*, t^t^t^+t^

Letting &— >oo, we see that P(tQ) is equal to zero. Therefore,

P[there exist f^O and ^0>0 such that w(t)=w(t!)^aQt t1<^t^tl

=0.

This completes the proof. D

Next we will rule out the possibility that (2-1) occurs. With Proposition
5.12 taken into consideration, it is sufficient to show that \w(t}} =£A tnA t+i for
Tf-l<t<T*k almost surely, where At is the z'-th component of ak(w}- Note
that {M;(T?*)}=AinAt^i, and assume there is a tlf Tf*i<fi<T?*, such that

i. Proposition 5.13 implies that w cannot stay at A tnA l+i for
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a finite interval of time. It follows that there must be an integer m>k and
AeTm, AtnAl+ic:Ac:At, that appears in am(w} three times. By Theorem 5.11,
this occurs with probability zero. We can show in a similar fashion that
(w(t)} ^Al-iC\Al, for Tf-1<t<T*k, a. s.. Therefore, we have,

Proposition 5.14.

P[>(0.=At
(*>(u;)\G* for all

where ak(w)—(A^(w), ••• , Aj^(uO). /n particular,

P[T*k(w)=Tk
t(w), for all /=!, ••• , A/*, £>-Z+] = l .

What is left is to show that the probability for the type (2-2) case is zero.
For x^P\{JGk, there is a sequence of tetrahedrons A£°, A^, • • - , Ai*>, ••• suchA
that

In order that u; hits ,Y twice, there must be an integer K such that ak(w]
contains A?} twice for any k^K, and aK-i(w) contains Ai*"1' only once. For
w^C let K(w) be the minimum integer, if exists, such that there exists a
sequence {Aa)}, k=K(w), K(w)+l, ••• satisfying

(1) A<k^Tk, Ac^+ 1 )c=A (^,
(2) ak(w) contains A c & ) twice.

Put qk = P[K(w)=k]. For any A*^TTO, m=l, 2, ••• , let ^ be the probability
that there exists a sequence {Aa)}, fe = m, m+1, ••• , satisfying (1) and (2) above
v/ith AC7n)==A*, under the condition that A* is contained in am(w) twice. Note
that by Theorem 5.11, q is independent of m and the choice of A*.

Classifying according to the four possibilities of Acm+1) and using inclusion-
exclusion principle, we have

The only solution to this equation found in 0^<?5£l is q=Q. By Theorem 5.11,
q and qk's are related as follows;

qk = x^1xk-i(xc, ;yc(l— q))— x^lxk^(xc(l — q^, yc),

This leads to qk=Q, for all k = l, 2, • • - . We thus have

P[type (2-2) occurs]^ f} qk = Q .
k=i

Theorem 5.15. The stochastic process defined by P is almost surely self-

avoiding, that is,
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def
Let w^C. The image of w, G(w}= w([§, oo)), is a subset in three-dimen-

sional Euclidean space. We next study the Hausdorff dimension of G(w).
In the case of the self -avoiding paths on (two-dimensional) Sierpinski gasket,

Theorem 1.1 of [6] was sufficient for the probability one determination of the
Hausdorff dimension of curve G(w) (Section 1.4 of [2]). Unfortunately it is
not sufficient for the present case. The problem is as follows.

From Proposition 5.12, it follows that

G(w)= H U A, P- a.s..
k=o Je<7Ao«)

Each skeleton a k ( w ) is a sequence of tetrahedrons A of side length 2 ~ k . Note
that from Theorem 5.11, there are two types of tetrahedrons in ak(w) for each
k, namely those that appear just once in ak(w} and those that appear twice,
both type appearing with positive probability. The family of tetrahedrons
\Jak(w} resembles the "random constructions" of Mauldin and Williams, but
their theory can be applicable to the case when only one type of tetrahedrons
appear.

Here we will state a weaker result, a lower bound of the Hausdorff dimen-
sion of G(w). This can be derived by considering a following subgraph of
G(w}:

def oo

G'(w}= n U A,
*=° jGcrfcCw)

where

a'k(w}— {A<Eff f t (u;) | A appears just once in a k ( w ) } -

The Hausdorff dimension of G'(w} can be derived from Theorem 1.1 of [6], in
a similar way as in [2], and the value can be used as the lower bound to the
Hausdorff dimension of G(w).

Theorem 5.16.

PlHausdorff dimension of w([Q, oo))^log(8*;+6jc?+2*c)/log 2] = 1 .

Remark.
(1) 8^+6*?+2;tc:=2.599 ... >2.
(2) We conjucture that with P-probability 1 the Hausdorff dimension of

w([0, oo)) is Iog^/log2, where 2. is as in Proposition 4.1. This could be derived
from an extension of the theory of [6].

§ 6. Mean Square Deviations of Self-avoiding Paths

In this section, we return to the self-avoiding paths on the three-dimen-
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sional pre-Sierpinski gasket, but instead of considering a set of paths with
fixed end points, we now consider a set of paths with a fixed length. The
arguments are similar to those in [4].

Let W^={wz:WQ\w(ty=0}, and for each k<=Z+, let N(k) be the number
of elements in {w^W^\ L(w)—k} . The first step is to bound N ( k ) from above
and below.

Proposition 6.1. Let b be a positive constant, and for n^Z+ and feft, let

hn=b^nVn, and ^n(f)=(V2?r/iJ-1 exp(-£2 /(2/in)). // b is sufficiently large,
then

uniformly in g<=R as n— >oo. Here, X is as in Proposition 4. 1, pn as in Proposi-
tion 4.6, p as in Proposition 4.8, fc=(exp(— /3C), exp(— 2jSc), exp(— 2j8c),
exp(— 3/3c)), and ^c *s as m Corollary 3.6.

Proof. Let

Then

where ZliH is defined in eq. (3.8), and g[n^ is as in eq. (4.23) with x=x0. Note
that xc^9Dr\Ei. Also note that from eq. (4.24), h™(it, it)=Z2,n(^cr

lZ2tn(ftc

-a~nt).
Let

Proposition 4.8 implies that sup£e^l^(^)l <1 and sup£e^| /i(^, 2 'OI<1- Therefore
from Proposition 4.5 and Corollary 3.6 it follows that there exist a positive
number £ and a positive integer nl such that for n~^nl and t^At

and

By Proposition 2.2, (A'C— e, ^c — s, 0, 0)eD°, and since D° is an open set in S0,
there exists a positive number 5 such that (xc— e, yc—£, d, d)^D°. Note that
\Zj,n(pc—tt-nt)\^\Zj.n(pe)\, y=l, 2, 3, 4, t^J. From Corollary 3.6, there exists
an integer n^nl such that \Zj,n(^c—i/l~nt)\<d, j=3, 4, n^nQ. Therefore,
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This together with Proposition 2.4 implies that there exist positive constants
C and T such that for n:>nQ, ?n^l, t^A,

(6.1) \Zj.n+n(pe-tt-
nt)\£C&w(-r2n), ; = !, 2,

(6.2) Zj,n^m(pc+X-n)<CQXp(-r2m)} y=l, 2, 3, 4.

Now let nQ be as above. Let n be a positive integer satisfying n>nQ, and
assume that t^R and \t\ e[l, /I71'710"1]. Let ra be the integer part of

l. Then m satisfies n-m^nQ and ^-^/"^UKl. Then

Since Zlin(f}c)-^xc and (f>n(t)-*g(it), n->oo, Proposition 4.7 and the dominated
convergence theorem implies,

J R

On the other hand,

^2(^n-»o-1)-1 exp (-(An^"-71"-1)8^)

=2^-1b~2lnn-1 exp (-^-2rao+2^n/2) — > 0 , n-»ou ,

if b is sufficiently large. Hence for sufficiently large b,

\ \fn(f)-g(it)\dt—*Q, ra-^oo,
J R

which implies the Proposition. This completes the proof. n

Proposition 6.2. There exist positive constants Ci, C2, and real constants
Yi> Tz, such that

d^i exp (!$ck)^N(k)^ C2k^ exp (f$ck) , k ̂  1 .

. Let D : W(0)->Z+ be a map defined by
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(6.3) D(w)= mm {n^O ; w(i)^FH for all z'^0.}.

Let
exp(-j8cL(u;)), neZ+ .

(w)^7i

Classifying the summation in the definition of Mn+\ in a similar way as in the
proof of the recursion relations in eq. (2.2), it follows that there exists a poly-
nomial /! of four variables with positive coefficients, such that

(6.4) A/n+ i^/i(ZB(j

By Corollary 3.6, Z71Q3C) converges as w->oo, hence there exist positive con-
stants AI and -42>1 such that

(6.5) M^A.A^, n^Z+.

By definition, 2D^~l^L(w] follows. Therefore,

which proves the upper bound in the Proposition.
To prove the lower bound, let b be a sufficiently large number satisfying

Proposition 6.1. Note that

Let kn= V21og/Mm>Z-n. Since

*.)(di?)^^(*I,)=(2si'n)-1"-^0, n-»oo.

Proposition 6.1 implies that

From Proposition 4.8, this implies that there exist an integer nz^l and a posi-
tive constant e such that hnlt%(xc)([£—kn9 f+^n])^s, n^?22 , f^L^"1 , ^2].

Let k^Z+. Let n be the integer satisfying Z~~nk<~[l, ^]. For sufficiently
large £, n^n 2 and ^^l-;,-1 follows, hence p*(xc)(&-nk-2kn, *
Therefore,

^ exp (I$c2knl
n} exp (-pck)N(k) ,

because u^VF}70 with L(w)<*k can be extended to a path in 1/F(0) with L = &.
It follows that

nli* exp (-2/3c&(2 log /D1/2w) exp (|8cfe) .
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Since n^logk/logX, this implies the lower bound in the Proposition. This
completes the proof. D

The next step is to give bounds for the numbers of short paths and long
paths. Let

Un.m— S

and
S exp(—$ cL(w)\ n-^Z+, m<=Z+.

Proposition 6.3. There exist positive constants A2, C, and f such that

^.m^C/
and

T, m<=Z+.

A2 may be taken to be the same as in eq. (6.5).

Proof. Put r=W-vT)/5, and let

+, mt:Z+) ; = 1, 2, 3, 4.

By a graphical consideration similar to that used to obtain eq. (6.4), one finds

, ,

where /i(i) may be chosen to be the same as that in eq. (6.4), and /i(0, 0, 0, 0)
= 1. In particular, /\ is a polynomial of four variables with positive coeffi-
cients. As in the derivation of eq. (6.5), there exists an integer nl such that
fi(Zn(^c))<Az, n^n1} where AZ is as in eq. (6.5). Corollary 3.6 and eq. (6.5)
imply that there exists a positive constant C\ such that

Note that since L(w)<3-4:DCW>, it follows that Un.n=0 if ^n + r o / B >>3-4n , which
holds if m^3n and n>4. We may assume that Wi>4. Hence

[ C 3 / 4 ) n ] 4

A^Un^^C, S SS^. „.*_!. m+*,
A = 0 .7=1

On the other hand,

Corollary 3.6 and Proposition 4.5 imply that there exists a constant C2 such
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that

ZLntfc-i-^g

and

Z2, n(pc-t-
n)= h

Proposition 2.4 implies

where xe.n=(xe.n, %l,n, xz
Cin, *?.„) with #C t n=exp(— /3c+/l~n). Similar argument

holds also for Z4l7i(/3c-^-n). Therefore Zj,n(^c-^~n), /=l, 2, 3, 4, are bounded,
which, together with the above estimates on A^nUn,m and S j , n , m implies the
bound for Un,m in the Proposition.

To prove the bound for Vn,m, let

Tj.n.m 2
wew,jn+l)> L(u;)g^-m

/=!, 2, 3, 4,

and put Tn ,m=(ri i n i T O , T 2 i n ,m, 7\n,m, TVn.m) . By a graphical consideration
similar to that used above, one finds

Vn,m^fi( BlTO)Mll-MB=(/1( B.m)-/i(0, 0, 0,

Note that if L(w)<Xn~m then l-Xm~nL(w}^. Therefore for ;=1, 2, 3, 4,

This with eq. (6.2) and eq. (6.5) implies the bound for V n > m . This completes
the proof. D

The proof of Theorem 1.4 in Section 1 is as follows.
The assertion (1) is a direct consequence of Proposition 6.2.
To prove assertion (2), let tf(fe)=[log fc/log J], ^^Z+ . Note that ;i*cft)^

. Then Proposition 6.3 implies that for m^Z+ and k^Z+ with

-:^, D(w)<K(k)-m]

^ C exp (fick+(K(k)-m) log ^2-r^m)

^ C exp (j8c*+(log .4B/log ^) log ̂ -r/im)

This and Proposition 6.2 imply that for sufficiently large a,
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Pk\_D(w)<K(k}-a log log fe]

^ CCr1 exp ((log ,4,/log J-rO log *-rdog *)fl log ')

Note that 2D^-l^\\w\\^2DW . Therefore for sufficiently large a

Pkl\\u>\\ <dog &r a&1 / f f] exp ((log £)2) — -> 0, &-oo.

Next note that for m^Z+ and l^Z^, Proposition 6.3 implies

# {w <EP7<°> \ L(w)=k, D(w)=K(k)+m+l+2\

< C exp (pck)Af c* ) + ™ + ' + 1 exp (-

Therefore,

(a/log 2) loglog fe]

- S ft[^(ii;)=A'(*)+/+(a/log 2) loglog

12)-
1 S AI exp (-r2l-x)

z=o

X exp ((log .4a/log ^-n) log & +0* log A/log 2) loglog A> -(r/8)(log ̂ )rt

Therefore, for sufficiently large a

This proves the assertion (2).
Let k^Z+ and s>0. Note that the reflection principle similar to the one

in the proof of the Lemma (4.2) in [4] holds also in the present case of three-
dimensional pre-Sierpinski gasket, which implies

This with | w(L(w))\ <\\w\\^2DW implies

(6.6) 2-s-

Note next that

With assertion (2) this implies

(6.7) lim inf (log &) s a&- s /
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Similarly,

and assertion (2) imply

(6.8) limsup(log k)-sa

k-

It is easy to see that eq. (6.6), eq. (6.7), and eq. (6.8) imply assertion (3). This
completes the proof. D

§ A. Recursion Relations

In this Appendix, we give the complete form of the function 0 defined in
Proposition 2.1.

0i(x, y, z, w)=

0z(x, y, z, w)=x*

+24xzzw-}-8xzwz+6yzzz+24:xyzw+l2xyz

+8zwz+10zzw+3zz+4yz*+24:xzzw-i

y, z, w)=xzzz+4:Xzzw-}-4:Xzwz-}-2xyzz'}-8xyzw

§ B. Derivative Matrices

We give the explicit forms of a 4x4 matrix B and a 9x9 matrix d//(1)(fl)
here. B is defined by
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Then an explicit calculation gives

(p q p+s 2s }

B=
q r 2q 2q

0 0 ^(p-s) p-s

^ 0 0 0 0
with

and

From this it is straightforward to obtain the eigenvalues,

f^O.2537- - - ,LI

and

Let

3#<->(*)"(^'ff<->(z)f - *«#<»)(*)) .
M/AI "^9 '

Then

p q p + s 2s 0 0 0 0 0

q r 2q 2# 0 0 0 0 0

0 0 ^(p-s) P - s 0 0 0 0 0

0 0 0 0 0 0 0 0 0

00 0 0 p q p + s 2s 0

0 0 0 Q q r 2 q 2 < 7 0

0 0 0 0 0 0 ---(/>—s) p — s 0z
0 0 0 0 0 0 0 0 0

-9- 16^c ^ ^ -77 16;yc 9 <7 4.
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has double eigenvalues, A=Alt AZy /U, 0 and a single eigenvalue, 4*?+
56^?=0.3276 • • - . The left eigenvectors corresponding to X are (1, a, 2, 2, 0, 0,
0, 0, 0) and (0, 0, 0, 0, 1, a, 2, 2, 0), with a=(Z-p)/q=Q.1731 • • - .
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