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Abstract

We study self-avoiding paths on the three-dimensional pre-Sierpinski gasket. We
prove the existence of the limit distribution of the scaled path length, the exponent for
the mean square displacement, and the continuum limit. We also prove that the con-
tinuum-limit process is a self-avoiding process on the three-dimensional Sierpinski gasket,
and that a path almost surely has infinitely fine creases.

§1. Introduction

The three-dimensional pre-Sierpinski gasket is a pre-fractal which we in-
troduce as a three-dimensional analog of the pre-Sierpinski gasket. Let O=
0, 0, 0), a,=(1/2, Vv'3/6, V6/3), by=(1/2, V3/2, 0), co=(1, 0, 0), and let F, be the
set of vertices and edges of the tetrahedron Oa.b.c,. We define a sequence of
graphs F,, Fy, F,, ---, inductively by

Fn+1:FnU(Fn+2nao)‘J(Fn+2nbo)b(Fn+2"CU); n:O, 1: 2: ]

where, A+a={x+alx=A}, and kA={kx|x=4}. We call F=5-, F, the
three-dimensional pre-Sierpinski gasket. We denote the set of vertices in F by
G, and put a,=2"a,, b,=2"b,, c,=2"c,.

Let Z,=1{0, 1, 2, ---} and define the set of self-avoiding paths W, on G to
be the set of mappings w: Z,—G such that there exists L(w)eZ_\U{co} for
which

w@=w(Lw)), i=Lw),

Recieved September 28, 1992
1991 Mathematics Subject Classification : 60G99, 60J99, 82C41
* Department of Pure and Applied Sciences, University of Tokyo, Meguro-ku, Tokyo
153, Japan.
+* Faculty of Engineering, Utsunomiya University, Ishii-Cho, Utsunomiya 321, Japan.
#+* Department of Mathematical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan.



456 Kumiko HATTORI, TETSUYA HATTORI AND SHIGEO KUSUOKA

wi)#w@s), 0=i<i,=LWw),
lw@—w@E+1)i=1, 0=i=L(w)—1, and
w@w(@E+1)CF, 0=i<L(w)—1.

We call L(w) the length of the path w.

In previous papers [2, 3,4], we studied the self-avoiding paths on the
(two-dimensional) Sierpinski gasket. Here, we study the self-avoiding paths
on the three-dimensional Sierpinski gasket. In the case of the two-dimensional
Sierpinski gasket, a self-avoiding path is allowed to pass through a unit triangle
at most once, while in the case of the three-dimensional Sierpinski gasket, it
is allowed to pass through a unit tetrahedron more than once. One might
suspect that this fact affects properties that enabled the detailed analyses in
the two-dimensional case. We will show in this paper that despite such com-
plexties, we can carry on our analyses in the three-dimensional case.

Define W*™cW, by

Wrm={weW, w0)=0, w(L(W))=a,, w(Z.)=F,},
and let
ZHp= 3} exp(—pLw), PR, neZ,.
wew=(n
In Section 3 we prove the following.

Theorem 1.1. There exists a constant B. such that
lniirovai‘f(,@)=0, B>8.,
limZ3(B)=xc,  B=4e,
imZi(@)=c0,  F<e.

This theorem suggests that in terms of statistical mechanics, 8> 8. is the
low temperature regime, 8<f. is the high temperature regime, and 8. is the
critical point.

The asymptotic behavior of the partition function Z3% is related to the
asymptotic distribution of the path length L. In fact, in Section 4 we prove
the following. Let u% be a probability measure on W+*™ defined by

uilwl=2%B:) " exp(—B.L(w)), w=W*m

Theorem 1.2. There exists a constant A satisfying 2<A<3 such that the
distribution of ‘scaled path length® A "L under pi comverges to a probability
measure p* on R as n—oo. The measure p* has a C> densily p, which satisfies
p(x)=0, x<0, and p(x)>0, x>0.
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Numerically, 1=2.7965---, to be compared with the corresponding constant
Ase, for the (two-dimensional) Sierpinski gasket, Asg,=(7—+/5)/2=2.381966-.

In Section 5, we study the continuum limit construction of self-avoiding
process.

Let F,=2-"F,, n=0, 1, 2, ---, and define the finite three-dimensional Sier-
pinski gasket F by F=\Uz_,F,. Fisa graph obtained by giving a substruc-
ture to a unit tetrahedron Oa,b,c,. Let

C={weC([0, ) — FY|w(0)=0, limw(t)=a.}.
C is a complete separable metric space with the metric
d(u, v)= sup |u@®)—v()!, u, veC.
tEe[0, c0)
Define 7: UW*™ - C as follows: For ucsW*™ ru(y)=2""u(j) for j=Z.,

and for t£ Z,, u(t) is defined by linear interpolation. Also define time-scale trans-
formation U,(1): C—C, n=N, by (U,Qw)H=w(™?), weC.
Denote by P, the image measure of g% induced by U,(2)-7.

Theorem 1.3. P, converges to a probabilily measure P on C weakly as n—
co. The stochastic process defined by P is almost surely self-avoiding, and the
Hausdorff dimension of the trajectory, {w@)|0<t<oo}, is almost surely greater
than one.

See Theorem 5.5, Theorem 5.15, and Theorem 5.16 in Section 5 for the proof.

Since P, is supported on piecewise linear curves, the Hausdorff dimension
of a curve is almost surely 1 with respect to P,. The statement on the Haus-
dorff dimension in Theorem 1.3 implies that the continuum limit n—oo, is a
nontrivial limit, and that with P-probability one, we have self-avoiding paths
with infinitely fine creases.

The two ingredients for the proof of the results are the convergence of
the distribution of crossing times of tetrahedrons. obtained from the results in
Section 4, and the considerations about the distribution of the shape of the
paths. See Proposition 5.2 for more properties on the crossing time distribu-
tions, and Theorem 5.11 and Proposition 5.14 for more on the distribution of
the shape of the paths.

In Section 6 we consider a set of paths on the pre-Sierpinski gasket with
a fixed length, instead of paths with fixed end points. Let W= {w=W, w(0)
=0}, and for each 2=Z,, let N(k) be the number of elements in {wsW®|
L(w)=Fk}. Let 15,,, k=Z,, be probability measures on W defined by,

Pi(A=Nk)#{ws Al Lw)=k}, AcCW®.

For weW®, let |lw||=max{{w(k)|; k=1, 2, ---, L(w)}, where |-| is the (Eucli-
dean) length in R®. Put t=logd/log2, where 1 is as in Theorem 1.2.
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Theorem 1.4. (1) lkim/e~1 logN(k)=8..
(2) There exists a positive constant a such that
lkimﬁk[lIWH<(10gk)'“k”" or |wl|>(logk)“k''*] exp((logk)*)=0.

(3) ;zifn(logk)-l log EZ:[Jw(k)|[*]=s,  s>0.

This theorem says that the exponent for the mean square displacement
of self-avoiding random walk on the three-dimensional Sierpinski gasket is
log2/logA.

The starting point for the analyses in this paper is the study of re-
normalization group, which is a dynamical system in a certain parameter space
which specifies the path ensemble. Such dynamical system is derived as the
response in the parameter space to the change in n. In Section 2, we study
the behaviors of this dynamical system. A certain graphical property of the
three-dimensional Sierpinski gasket implies that the renormalization group is a
finite dimensional dynamical system. (We prefer to call this property the finite
ramification of the fractal.)

We would like to mention some previous works in the physics literature.
The two-dimensional mapping defined by eq. (2.3) and eq. (2.4) in Proposition
2.1 is given in [1, 7]. In [1], a set of self-avoiding paths on a slightly different
fractal is considered, where this mapping is an exact renormalization group
recursion relation. In [7], self-avoiding paths on the three-dimensional Sierpinski
gasket is studied, where the authors state (without explicit discussion or proof,)
that the same mapping becomes ‘relevant’ (i. e. determines the asymptotic be-
havior) of the present problem. Numerical estimates of the fixed point ((x., V)
in Proposition 3.1) and the derivative (p, ¢, and » in Proposition 3.7) of this
mapping together with the exponent for mean square displacement are also
given in these references. However, their results are based on the assumption
(based on numerical studies) of the existence of these quantities and the good
limiting behaviors. We believe that this is the first time to give mathemati-
cally rigorous proofs. A well-defined statement on the exponent (Theorem 1.4)
seems also to have been lacking. We also believe that the limit theorems for
path length distribution (Theorem 1.2) and the continuum limit (Theorem 1.3)
are new.

We would also like to take this opportunity to note that the reference [1]
should also have been included in the reference of [3].

We would like to thank Professor N. Asano and Professor H. Nakajima for
bringing our attention to the references on dynamical systems.
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§2. Recursion Relations for the Generating Functions

Let T denote the set of subgraphs in F which are the translations of F,.
T is a set of the unit tetrahedrons that compose F. For each weW,, let @<
F be the curve defined by joining each pair of points w(Z) and w(i+1) with an
edge of F, for all /=0, 1, 2,---, L(w)—1. For each tetrahedron A<T, the in-
tersection @A is either empty or one of the following four possibilities:
case 1) one edge, case 2) two disjoint edges, case 3) two edges connected at a
vertex, and case 4) three edges that constitute a chain. Correspondingly, define
Siw), i=1, 2, 3, 4, wsW,, as: S;(w)={AcT |wNA is of case 7).}. For each
i=1, 2, 3, 4, let s;,(w) be the number of the elements of S;(w). Note that s,+
28:+2s3+3s,=1L.

For n=Z, and peG, q=G, define W™ PO, by

Wero={yeW, wl)=p, w(Lw)=q, w(Z,)=F,},
and let W™, =1, 2, 3,4, n=Z_, be as follows:
W= {weW™ %2 | w(Z)N b, ca} =0},
W= {(w,, wo) =W ™ Ot X W bntnd |y (Z,)wo(Z,)=D},
Wim={weW ™% w | w(Z )N\ {bn, cat={ba}},

WMm={w=W™0 | there exist two positive integers 7 and j
such that i<j, w(@)=b,, and w(j)=c,}.

For a subset W of W,, let X(W) be the generating function for W defined
by

@.1) X))@= 3 T8, £=(xy, x5, Xo, 2)EC
wWEW i=1

To extend the definition of s; to W™, note that if w=(w’, w”)sW{ and A=
T, (@’ Um”)NA is either empty or one of the four possibilities mentioned above.
Therefore, the definition of S;(w) given above has a natural extension to we<
Mm.s(w), weEW™, is again defined to be the number of the elements of S;(w).
Let X, .(8)=XW ™) (%), i=1, 2, 3, 4.

Proposition 2.1. The following recursion relation holds:
2.2) XoanD)=0(X(2), neZ,,

where Xn(f):(Xl,n(fé): X5, n(%), Xa (%), X4,4(%)), and )’(’0(92):7z §=(¢1, D,, Oy,
@) satisfies the following :

(1) Each function @,, i=1, 2, 3, 4, is a polynomial of degree 4 in 4 variables
with positive coefficients. Each term in @, i=1, 2, 3, 4, is at least of degree 2,
4, 3, 4, respectively.
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(2) Let B,={x=R'|x,=0,i=1, 2,3, 4, X’=x,} and S={i=R*| x>0, i=1,
2,3, 4, x3=x,}. Then ®(F)5, and B(&E)c5.

(3)
2.3 D.(x, y,0, )=x2+2x*+2x*+4x°y+6x2y%,
(2.4) Dy(x, v, 0, 0)=x*+4x2y+22y*.

(4) There exist polynomials @,,, D.. and Ds,, with positive coefficients,
satisfying the following :

2.5) D (2)=04,1(£) X3+ Dy o(%) %4,
.6 O,(D=2D, (215 D (D)) +Dy(2).

Moreover, @, (%) has terms xix;+2x3x;.
(5) There exist polynomials @,,, D, and D, , with positive coefficients,
satisfying the following :

(27) ¢3(£):¢3,1(?3)753‘!‘@3,2(72)«\74;
2.8) Ou(B)= s (@ xs+ 5 Do £)5 4 Dyo(®).

Moreover, @, (%) has terms x%, x3, and x3.

(6) @,(%) has terms x,x; and x,x,, DP(%) has terms xix; and x}x,, and @,(%)
has a term xixi. Furthermore. all the terms in @,(%) are at least of degree 2
n x; and x,.

Proof. The methods of obtaining the recursion relations eq. (2.2) are quite
similar to the case of the (two-dimensional) Sierpinski gasket [3], so that the
explanations will be brief. Note that F,,, is composed of 4 tetrahedrons f*,
k=1, 2, 3, 4, say, each congruent to F,. These 4 tetrahedrons assemble to
form F,,,, in the same way as 4 unit tetrahedrons, congruent to F,, assemble
to form F;. This similarity of the composition leads to a natural mapping = :
wWeb W, For each k=1, 2, 3,4, and for each weW{™*», consider the

intersection w* &t f*Nw(Z,). Under the identification of f* and F,, w*e\Ui.,
wim. If one classifies the summation of w in eq. (2.1) for X; ,..(%) by =(w),
one finds that eq. (2.2) holds with @z)?,. Since there are 4 unit tetrahedrons
in Fy, @,(%)=X,.(%), i=1, 2, 3, 4, are polynomials of degree 4. Since weW®
passes O and a,, each term in @,(%)=X, (%) is at least of degree 2. Similar
arguments hold for @,(%), i=2, 3, 4, by which the assertion (1) is proved.

Let =Z(&=5,, respectively). From the assertion (1) it is clear that @,(%)
>0(0,(#)=0, respectively). Let #=0(%).
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2i=X,,.(%)?

4
= 3 I xgecwn sucwn
wew D wrew 1) =1

m»

> x-zi(w’)ﬂi(w”)

1

w=(w' ,w”)EWz(l) i
Z Xz, 1(£)=x2,

where the last inequality comes from x?>x,. Therefore the assertion (2) holds.

The two formulas eq. (2.3) and eq. (2.4) are obtained through the explicit
calculations of (5(::, v, 0, 0=Xi(x, v, 0, 0). An example of the paths w=W®
which contribute to the x*y* term in @,(x, v, 0, 0)=X;,,(x, ¥, 0, 0) is given in
Figure 1(a) (the slim lines in the figure represent F,=O0a;b,c, projected onto
the Oa,b, plane, and @ is represented by the bold lines), and a path weW§»
for the y* term in @y(x, v, 0, 0)=X,,,(x, v, 0, 0) is given in Figure 1(b).

Fig. la.

Fig. 1b.
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Denote by A., the tetrahedron F,+c,, which is the unit tetrahedron in F,
that has ¢, as one of its vertices. To obtain eq. (2.5), classify the summation
over w in eq. (2.1) for @,(#)=XWM)(%) by the shape of the intersection w(Z.)
MNA.. Only case 3) or case 4) is possible for the intersection, which gives the
contribution of factor x; or x, to each term in @,(%), respectively, which in
turn gives contribution of the first and the second term in the right hand side
of eq. (2.5), respectively.

Consider now the relation between @, and @;. Denote the four vertices
of A, by p,q,r, ¢;.. Note that the paths contributing to @,(%)=X, (%) must
pass the vertex c¢;. One can obtain a path contributing to @, from such a path,
by short cutting ¢, such as (-, p, g, --) instead of (---, p, ¢4, ¢, ---). Denote
the mapping induced by such operation by p: W»—-W{. For the paths con-
tibuting to @, 4(%)x, in @,(%), p is a two-to-one mapping, since p((:-, P, ¢1, 7,
¢ N=C b7 q ) and o((+, b, 7, €1, G <)) = (-, b, 7, ¢ ). Therefore
such paths, mapped by p, give contribution of (1/2)®@, (%)xs to @4(%). Similarly,
the paths contributing to @, ,(%)x; are mapped one-to-one onto the paths con-
tributing to the term @, (%), in @4(%). Let

Wim={w W™ %2 |there exist two positive integers i and j
such that i<j, w(i)=c,, and w()=b,} .

Then it is easy to see that WP pWi®) and p(WP)NpWiP)=@. The
paths in p(Wi?) give the same contribution to @,(%) as the paths in p(W{).
Hence the factor 2 in the right hand side of eq. (2.6). There are paths we
W§» which are not in the image of p, namely, those paths that do not pass
through A.. Such contribution are denoted by @;,(%). In particular, there is
a path in W§ which starts at O, moves in a straight line to b,, and then
moves in a straight line to a,, which gives a contribution x}x, to @ ((%).
This proves eq. (2.6). The formulas eq. (2.7) and eq. (2.8) are derived by
similar arguments. The assertion (6) is straightforward. This completes the
proof. O

Remark. By aid of computers, it is not difficult to obtain the full forms
of the recursion relations @. The full explicit forms of @ are given in Ap-
pendix A. They are, howerver, unnecessary for the analyses of the limit n—
co in this paper.

Let 5, be as defined in Proposition 2.1 (2). For .4cCZ,, let A be the closure
of Ain Z,, A*=&,\A, 0A=ANA°, and A°=A\GA. Let

D={z=25,| sup (X, 2(£)+Xo, (%)) < oo},

neZ .,

Iy

D'={x=E5,| max supX;.()<1},

i€(1,2, 3,4} neZ
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D={z€5,|lim max X .(&)=0}.
n-oo 1€{1, 2, 3, 4}
Proposition 2.2. (1) D=D’. In particular, D is a closed set in 5,.
(2) Let 2=Dand #'5,. If xi<x; for all i with x,>0, and x'=0 for all
i with x;=0, then #'<D.
(3) D=pr.
@

(2.9) &(D)cD’, B@D)caD, and B(D?)cD".

Proof. Note that by Proposition 2.1 (5) and eq. (2.2), X ,.1(%)=X, (%)
X1, n41(£)2 X5, 2(%)%, and Xi, n.1(£)2 X, 2(%)* hold. Also by eq. (2.4), X, n.1(#)=
Xs, 2(%)* follows. Therefore, if £=D’¢, then lim,..X;, ,(£)=c0 or lim, .X;, .(%)
=oo hold, which proves that D’°cD¢. By definition, D’cD, hence D’'=D.
Since by definition D’ is a closed set in Z,, D is a closed set in Z,.

Let =D, #'=5,, and x;<x; forall 7 with x,>0, and x/=0 for all ; with
x;=0. If :?’26, then #<=D. Assume #’#0. Put ¥ = maxy; z;-0(x7/%;). By
assumption, 0<»<1, and 0= xi<rx,, i=1, 2, 3, 4. By Proposition 2.1 (1), @,(z")
<r*@.(%), i=1, 2, 3, 4, hence by induction X;, .(")<7*"X,, (%), and 0<lim Sup,_.
maXieq, s, s, 4 X, n(f/)é(limn-mrzn) SUPrez, MaX;e1, 2, 5.0 X;,(%)=0, which proves the
assertion (2).

For ¢>0, define D, by D.={%<=5,Imax;en,»sa%:<e}. By Proposition 2.1
(1) there exists a positive constant M such that if 0<e<1 and #<=D,, then
D,(%) < Me(xy+ x4+ x34+2x4)/4, i={1,2,3,4}. Put e=min{l/2M, 1/2}. Then
for all Z=D, and for all i, @,(%)<e/2 holds, which further implies @(z)=D,
and @,(%)+0y(%)+Py(%)+Du(%) < (x,+x,+x3+x4)/2. By induction, X1 (%)+
X, n(2)+ X5, n(£)+ Xy, o () <27 ™(x1+x,+x:+x,). Hence, there exists a positive
constant & such that

(2.10) D.cD.

Fix such an ¢ and let z=D. By definition, there exists a positive integer
n such that X,(#)D,. holds. Since X,(%) is continuous with respect to %,
there exists an open set U in &, such that for all 2'=U, Xn(ﬁ’)EDe holds.
Then by eq. (2.10), lim,.o MaX;cu,2 3.0 Xi,2(2")=0. Therefore, UcD. This
proves that D is an open set in Z,. By definition, DcD and also D° is the
largest open set that is included in D. Therefore, Dcpe.

Now let #’<D°. Since D° is an open set in 5,, there exists a Z<=D° such
that xi<x;, i=1,2, 3, 4. From the assertion (2), #’eD. Hence, D°cD, and
the assertion (3) is proved.

By definition, (D)= D, B(D)c D¢, and (D). From the assertion (3),
the assertion (4) follows. This completes the proof. O
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Monotonicity properties similar to but slightly different from the Proposi-
tion 2.2 (2) hold, which shall be listed here.

Proposition 2.3. (1) If €D, # <=5, and xi<x,, i=1, 2, 3, 4, then #'=D.

(2) If #€0oD, #'€5,, and xi>x;, i=1, 2, 3, 4, then #’'=D".

(8) Let E be as defined in Proposition 2.1 (2). If 2€0DNE, 'S5, ¥’ +%,
and x;<x,;, 1=1, 2, 3, 4, then ' =D°.

4) If x=0DNE, ' =5, ¥'+%, and x;=x;, i=1, 2, 3, 4, then ' D".

Proof. Assume €D, #'5,, and xi<x;, i=1, 2, 3,4. Since @,, i=1, 2,
3, 4 are polynomials with positive coefficients, X; ()< X, (%), neZ,, i=1, 2,
3, 4. Therefore, #’D follows.

Next assume x€dD, #'€5,, and x;>x;, i=1,2,3,4. If #’=D then by
Proposition 2.2 (2) and Proposition 2.2 (3) #eD=D°, which is a contradiction.

Next assume ¥€dDN\5, '8, #'#%, and x}<x;, i=1, 2, 3, 4. Since &'+
#, xi<x, holds for at least one 7. If xi<x,, then by eq. (2.7), @s(")<D4(%).
If xj<zx, then by eq. (2.8), @,(%)<®,(#). If x;<x, or x{<x,, then by eq.
(2.3), 0,(#)<®,(%). Therefore, for every case, X, ,(&')<X,, (%), n=2, which,
with eq. (2.3), eq. (2.4), eq. (2.6), eq. (2.5), implies that X, ,(%)<X; (%), 1=
1,2, 3,4, n=4. #<dD and eq. 2.9) imply that X,(#)edDcD, n=4. From
Proposition 2.2 (2) and Proposition 2.2 (3), X.(#)eD°, hence #<De.

Finally assume #<0DNE, ¥’ S5, &'+ %, and xi=x,, i1=1, 2, 3,4. By the
same argument as above, it follows that X; ,(2)>X; .(%), t=1, 2, 3, 4, n=4.
By the assertion (2), #/<=D° follows. This completes the proof. O

Define a function R: Z—R by

R(x):max{—;ci, 2:3}
Lo
and let

R.(®=R(X.(%), icE, neZ,.
Here, £ is defined in Proposition 2.1(2). Proposition 2.1 (2) implies that R, is
well-defined.

Proposition 2.4. (1) For each # € B, R,(%) is non-increasing in n. In
particular,
def |
R (%) = limR (%)
TN —>00
exists and is non-negative.

(2) If 2=DNE, then R.(%)=0.
(3) There exists a constant v satisfying 0<y <1 such that for every ¥ =DNE,
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@2.11) lim sup Fon1 (%)

_mTeM L
A e M

(4) If x€D°N\E, then lim sup,-.27"logX; ,(%)<70, j=1, 2.
Proof. From Proposition 2.1(4) and Proposition 2.1(5) it follows that

Oy(R)SR(END(E)—D1,0(%)), E=Z, and 20,(%)SR(%)(Ds(%)—Ds,4(%)), £=Z, from
which follows

@@(f)) 2®4<§n<x»}
O (X(2))" Ou(Xo(%))

@l,o(gn(-f)) @3.0(3?71(5?))‘}
O(X,(2) " Ou(Xn(2) 7

2.12) R,Hl(x):max{

glen(fc){l—min{
In particular, R,(%) is non-increasing in 7.

Assume that % = . From Proposition 2.1(5) and Proposition 2.1 (4),
By o(Xu(2) = X1, (2)? and @y o(X,(%) = Xy, 2(%)* X5, 1(%). Therefore eq. (2.12)
implies

- - . Xl. n(x)z Xl, 1L(-9-C)Z/Y3. 'n.(j‘)
(2-13) R]Hl(x)éRn(x){l—mln{@1()_(”(56")) > @3()‘('11(72_)) }}

On the other hand, if =5, @,(x)<?,(x,, x}, x5, x,), so that with Proposition
2.1(1) it follows that there exists a polynomial P, of 5 variables and with
constant positive coefficients, such that x720,(%)< Pi(x,, X3, X4, X3/ X1, X4/ X1),
and similarly, there exists a polynomial P, of 5 variables and with constant
positive coefficients, such that (x3x;)'@:(%)< Py(xy, X3, X4, X3/%1, x4/%s). Note
that if #=DNZ&, then by Proposition 2.1 (2) and Proposition 2.2 (4) it follows
that X, (#)eDNE, n=Z,. Also, by Proposition 2.2 (1) it follows that if ¥<D,
then x,<1, /=1, 2, 3, 4. Therefore, from eq. (2.13) it follows that there exists
a polynomial P of 1 variable and with constant positive coefficients, such that

2.14) Run(B)=R(X)(A—-P(R(%)7),  Z€DNE.

From the assertion (1), P(R,(£)<P(R,(%)=P(R(%)), so that 1—P(R,(£))™" is
bounded from above by a constant 1—P(R(%))™* less than 1. The assertion (2)
is thus proved.

From the assertion (2) it follows that there exists a positive constant M>1
independent of # such that

lim supP (R (%)< M, reDNE.

The assertion (3) therefore follows from eq. (2.14).

Next let £=D°NE. From Proposition 2.1 (1) and Proposition 2.1 (3), there
exists a polynomoial P, of three variables with positive coefficients and without
constant terms (i.e. Py(0, 0, 0)=0), satisfying
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D (%)< 231 +Py(x1, %o, R(%))).
This with eq. (2.2) implies
(2.15)  logX; n.1(%)=21ogX,, o(2)+log(l+Pa(Xy, n(£), Xon(E), Ra(%))).

This and Proposition 2.2 (3) and assertion (2) imply
tim sup(10g X, n+()— 0 X, n(8)) = 0,
N —00 2

which, with Proposition 2.2 (3) implies

lim sup((—g—)nlog)ﬁ, n(ic)) <0.

00

This and eq. (2.15) with Proposition 2.2 (3) and assertion (2) imply

1irmup(1ogxl, ,m(x)—(z—(—g-)") logX,. ,,(x))<0 .

Therefore for sufficiently large N,

klill(l_ %(%)“N_l)—lz—n logX), nen(£)=log X, n(%).

This with Proposition 2.2 (3) implies assertion (4) for j=1. The case j=2
follows because X, ,(#)<X, .(%)?.. This completes the proof. 0

§3. Fixed Points of the Renormalization Group Flows

Let ¢: R*—>R* be a natural embedding of the x,—x, plane: ¢(x;, x;) = (x4,
%5, 0, 0). From eq. (2.5) and eq. (2.7), x,—x, plane is an invariant submanifold
of the mapping @ ; d_s(z(Rz))c:(Rz). Therefore, the restriction of & onto the
x,—X, plane,
_, def

¢=c"bor: R —> R,
is well-defined. Let {5=(¢1, @5). From eq. (2.3) and eq. (2.4),
3.1) o.(x, y)=x242x° 22" +4x°y +-6x°y2,
(3.2 O.(x, y)=x'+4x°y+22y".
Proposition 3.1. The fixed points of the mapping 53 in the first quadrant

def

R:= {(x, »)&R* | x=0, y=0} are (0, 0), (0, 227'%), (1/3, 1/3), and (x., yc), where
% and Y. are positive constants. They satisfy 3/7<x.<1/2 and 0<y.<9/49, in
particular, x2>y..

Proof. Assume that (x, y) is a fixed point: ¢:(x, y)=x and @,(x, y)=y.
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If x=0 then y=0 or y=22"'%, and if y=0 then x=0. Assume in the follow-
ing that x>0 and y_>0. Then,
3.3) 1=6xy*+4x2y+2x°+2x%+x,
(3.4) xt4xdy 422yt —y=0.

From eq. (3.3) follows 1>2x°+2x%+x. The right hand side of this inequality
is increasing in x, and 2(1/2)*+42(1/2)*+1/2=5/4>1. Therefore, x<1/2. From
eq. (3.4) follows y>22y* from which follows y<227'/*<2/5. Then from eq.
(3.3), 1<(49/25)x+(18/5)x*+2x%. The right hand side of this inequality is
increasing in x, and its value at x=1/4 is 597/800<1. Therefore, x>1/4. Let
I1=(1/4, 1/2). If (x, y) is a fixed point, then x<1.

Let

gu(x, Y)=y'422""dxPy—y+xY),
and

(%, y)=y2+%xy+(6x)‘1(2x3+2x2+x—1).

Then the set of fixed point conditions eq. (3.3) and eq. (3.4) is, for x>0 and
y=0, equivalent to a set of conditions g,(x, ¥)=g,(x, y)=0. Note that g,(x, v)
=go(x, VIX{Y*—(2/)xy+(4/9)x*—6x)"'2x*+2x*+x—1} +h(x, y), where,

h(x, y)=594"h,(x)y+1188"'x"2hy(x),
hy(x)=—1594132x +264x2+196x°,
hy(x)=33—66x—99x%+88x%+176x*4-88x°+10x°.

hy(x) is increasing in x and h,(1/2)=—5/2, so that A,(x)+0 for x=I=(1/4, 1/2).
Therefore, the set of conditions g;(x, y)=g.(x, ¥)=0 is equivalent to a set of
conditions, g.(x, y)=0 and

3.5) y=—2"1x"2hy(x)" hy(x).
Substituting eq. (3.5) into gu(x, y)=0 and noting that x>0 and h,(x)+0 for
the fixed points, one sees that the condition g,(x, y)=0 is equivalent to
1
(x—5)fw=0,
where
f(x)=19239—35211x—112167x2—41179x*+518440x* 4725492 x°
+2124x°—2096944 x"— 3168164 x°* — 1048100 x° 43320820 x*°
45564268 x'* +4315264 x 1%+ 1787888 1% 353584 x ¢ .

A computer calculation was used here (and also in the following) to handle
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large coefficients. If x=1/3, then it follows from eq. (3.5) that y=1/3. The-
refore (1/3, 1/3) is a fixed point.

From the preceding arguments, a necessary and sufficient condition for
(x, y) to be a fixed point satisfying x>0, y >0, and x+#1/3, is f(x)=0 and eq.
(3.5). It has also been proved that if (x, y) is a fixed point satisfying x>0,
y>0, then x=71=(1/4, 1/2), and that h,(x)#0. Assume that x<=1I in the follow-
ing. Denote by f™, the n-th derivative of f. Since

J O (x)=—2620254-8302050x +76508685x% 237339520 x°
+319584980x*4-176968792x°,

f®(x) is increasing for x=I. This with f¢(1/4)=1500788509/128>0 implies
F®(x)>0, x=1I, hence f®(x) is increasing for x =1.

Similarly, since f®(1/4)=51984265459/128 >0, and f‘"(1/4)=6064495535/512
>0, f(x) is increasing for x& . f©(1/4)=—17104786191/16384<0 and f(1/2)
=2781099317/64>0. Therefore there exists an x,&71 such that f®(x) is de-
creasing for x<(x, and increasing for x>x;. f®(1/4)=—148288007935/32768 <.
0 and f(1/2)=2507283275/32>>0. Therefore there exists an x,=[ such that
f®(x) is decreasing for x< x, and increasing for x > x,. f®(1/4)=—25860012481/
262144<0 and [ (1/2)=742821129/256>>0. Therefore there exists an xs&/ such
that f®(x) is decreasing for x<=x; and increasing for x™>x;. [®(1/4)=
96806613501/32768 >0, f(1/2)=81366081/32>0, and f*(3/8)=—124154731777731/
67108864 <0. Therefore there exist x,=/1 and x;=1I such that x,<3/8<x; and
that f®(x) is increasing for x<=x,, decreasing for x,<x< x,. and increasing
for x>=x,. [f®(1/4)=106573809241/524288>>0 and f®(1/2)= —2264445/128<0.
Therefore there exists an x,=[ such that f®(x) is increasing for x<x, and
decreasing for x > x, [f®M(1/4) = —120599934157/2097152<0 and [f™(1/2) =
14625/256>0. Therefore there exists an x,=/[ such that f(x) is decreasing for
x< x, and increasing for x> x,. Finally, f(1/4)=89607188671/167772162>0and f(1/2)
= —125/1024<0. Therefore there exists one and only one x.=1 such that f(x)=0.

£

From eq. (3.5), ycdze —27'xz%hy(x:) " hy(x,) is uniquely determined. Since
f(3/7)=216853862622/96889010407 >0, the above arguments imply 3/7<x.<(1/2.
From 3/7<=x. and eq. (3.3), it follows that

2 8
2 24 O
Vet 7 e gq7 <0
which imply y.<(~17—3)/21<(3/7)*<x% This completes the proof. d

Remark.

(1) By the same arguments as the proof of 3/7<x. and y.<(+/17—3)/21,
it is not difficult to obtain (x. y.) to an arbitrary precision. For example,
one can prove 0.4294449 < x.<0.42944491 and 0.0499839< y.<0.049984.
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(2) x. is not a rational number. This can be proved by standard arguments
using the explicit form of f(x).

Define (x,(x, v), va(x, ¥)), n=0, 1, 2, 3, ---, inductively by (x,(x, ¥), yo(x, ¥))
=(x, y) and (x,.1(%, ), Ynelx, y))_=$(xn(x, ¥), ¥alx, ¥)). From eq. (2.2), it
follows that (x,(x, v), y.(x, ¥)) is X,(%) with % restricted to the x,—x, plane:
(xa(x, 3), ¥alx, IN=("e Xpo0)(x, 3.

Let D® ={(x, y) = R:|supnez. (x.(x, ¥)+y.(x, y))<<oo}. Define also D®F,
D®° and 0D, to be the exterior, interior, and boundary, of D® in RZ,
respectively. Notice the slight difference in the previous definition of D. The
condition x?*>=vy is dropped here and the whole first quadrant is considered.
Let Z®={(x, y)=R?|x*=y}. Then from the definition of D, D®NZ{® is the
restriction of D to the x,—x, plane: D®NE{®=,*D). Note also that Pro-
position 2.1 (2) implies q_S'(Eé”)CEé”. Define also D’® = {(x, y)=R%|suprez,
max {x,(x, ¥), ¥.(x, YI=<1}, and D® = {(x, y)=R}|lim,_. max{x,(x, ¥), yu(*,
)}=0}.

Proposition 3.2. (1) D is a closed set in R2 satisfying D®=D"»,
The interior of D® satisfies D®eo= @ They are invariant sets of q—S

g;(D‘?)")CD(Z)", gZ(GD‘Z’)CaD‘Z), and gZ(D(W)CD(Z)C.

(2) There exist a positive constant ¢ and a continuous strictly decreasing
Sfunction p: [0, c]—R such that 0D®= {{x, p(x))|x=[0, c]}. For (x, y)=RZ it
holds that (x, y)=D® if and only if y=p(x).

Proof. The assertion (1) may be proved in exactly the same way as Pro-
position 2.2, if one notes the explicit formula eq. (3.1) and eq. (3.2). Let (x, ¥)
€R? in the following. From eq. (3.1) and eq. (3.2) it follows that (0, y)=
0D® if and only if y=22-'/,

Assume that x>0 and (x, y)=oD. If y’ ~>y, then eq. (3.1) and eq. (3.2)
imply ¢,(x, ¥')>¢:(x, y) and @y(x, y')>d(x, y). Let

O(x, ¥') &y, 3)

remin{ S ey L

Then from eq. (3.1) and eq. (3.2), it follows by induction that
xa(x, Y= x,(x, ¥),  n=1,2,3, -,
and
Yalx, ¥)Zr" yu(x, y),  n=L,2,3, -,
which imply (x, y")=D®°. If y’<y, then just in the same way as in the above

argument, it follows that (x, y")=D®°. Therefore for each x=0, there exists
at most one y>=0 such that (x, y)=oD®.
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Let J={x=0]| there exists y=0 such that (x, y)=0D‘®}, and define a func-
tion p: J-R by (x, p(x))€0D®. The above arguments prove that p is well-
defined, and that if y<p(x) then (x, y)eD®°, while if y> p(x) then (x, y)=D®".

Let x=J, x’=J, and x’>x. Put y=p(x) and y’=p(x’). If y’=y, then
from eq. (3.1) and eq. (3.2) @.(x, ¥)>¢.(x, ¥) and @o(x’, ¥')>¢s(x, ¥), hence
as in the previous arguments, (x/, y')eD®° follows. Therefore y’<y, which
proves that the function p is strictly decreasing.

Now D™ is a closed set in R? and eq. (3.1) implies that if x=1/2 and
y=0 then (x, y)&D®°, hence 0D intersects the x-axis. Therefore, there
exists a positive constant ¢ such that p(c)=0. If x>>¢ and y=0, then ¢.(x, y)
>¢y(c, 0) and @y(x, ¥)>ds(c, 0), so that (x, y)=D®¢. Therefore if x2>c then
xé&J. If x<c then the same argument as before implies (x, 0)=D®°, while
(x, )eD®c. Therefore there exists a y such that (x, y)=9D®, hence x=].
This proves that J=[0, ¢]. Since by construction dD®={(x, p(x))| x<[0, cl},
the continuity of p follows from the fact that 6D is the boundary of D.
This completes the proof. O

A numerically obtained shape of D® together with the fixed points of 93
is given in Figure 2 (the black dots in the figure represent the fixed points).

If (x, y)e D®° then Proposition 3.2 (1) implies lim,_.. x,(x, y)=0 and
lim, e ya(x, ) =0. If (x, y) = D®¢, then from Proposition 3.2 (1) and the
explicit recursion formula eq. (3.1) and eq. (3.2) it easily follows that lim,_.
Ya(x, y)=oco, and lim,_ e x,(x, y)=0 if x=0 and lim,.. x,(x, y)=o0 if x=0.
The convergence of the sequence {(x,.(x, ¥), y.(x, )}, n=1, 2, 3, ---, for the
case (x, y)=0D®, is not obvious from previous arguments alone, because the
sequence may either converge to one of the fixed points, or approach a non-

Yy

T

05

0.5 X
Fig. 2.
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trivial attractor. However, the next two propositions show that the latter is
not the case.

Proposition 3.3. Let (x;, y))E0D® and (x, y,)S0D®. If x,< x5 then
¢1(x1: y1)<¢1(7€2; Ya).

Proof. The mapping ¢ is a C* mapping. Its differential g is, from eq.
(3.1) and eq. (3.2),

(3.6) g(/\f, y):( ¢1.I\x; y) ¢1_y(x, y) )

Pe.z(X, 9) Ga, (%, )
2x+6x24+8x*+12x%y+12xy% 4x*+12x%y
:( Ax* 4122y 45488y )

Therefore the Jacobian is,
detg(x, y)=8x(2x°+3x*+x*—6x'y—12x°y*
+132y°+132x y*+88x%y* +66x y*+22y°)
=8x(3x'+x*+132y°+88x2y*+66x y>+22°

21 N2 87
3 . 2 - 2__ T2 i) 4
+x3%(x—3y) +.x(x 2y)+4xy).
Since (0, 0)=D®° and 90D 1is a closed set, it follows that there exists a
positive constant e, such that

3.7 detg(x, y)>e;. (x, y)=0D®.

Denote by <U.(x, y) the e-neighborhood of (x, y) in R%. The mapping g};
is a C* mapping on R:%, and detd(x, y)>0 if (x, y)=0D®. Therefore for
each (x, y)=0D® there exists a positive number e&(x, y) such that ﬁ, when
restricted to0 Ugca, ,»(x, ¥), is a diffeomorphism of class C=. Let P=(x,, y,)=
dD® and e=e(x,, y,). By Proposition 3.2 (2), p(x,)=2,. The line segment of
the line x==x, inside U=U.(%x,, y,) is mapped onto a smooth curve which cuts
the domain 5(‘1]) into two pieces. By Proposition 3.2 (1), this curve intersects
dD™ at one point ¢(P). Put U,=UN{x<x,}, which is the left half of @,
and U,=UN\{x>x,}, the right half of . Likewise denote by Ui the piece
of qz(CU) which contains the points of 0D® which satisfy x<¢.(x,, ¥,), and the
other piece by wj. Then @, is mapped by ¢ onto either 9/ or WUj;, and U,
is mapped onto the other piece.

Let 0<le’< e and put Q=(x,+¢"y,), R=(x,, yo+e’) Denote by P/, Q’, R’,

the images of P, Q, R, by ¢ respectively. Put el—PQ, ez—-PR el-—P Q’, and
def
#=P'R’. Define 81X 8y = @y,3€4,y—01, 405, . Proposition 3.2 (1) implies that if

(%o, y0)=0D®, then x,<1 and y,<1. Therefore from eq. (3.1) and eq. (3.2),
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there exists a positive constant M independent of (x, y) and &’ such that
|81 X &;—(detT (xo, ¥0))81X &,
=[(@:1(x0+¢", yo)—P1(Xo, Yo))(Pe(X0, Vo) —Po(%0, Y0))
—(@o(x0+€, Yo)—@o(X0, Yo))(B1(X0, Yot&)—hi(%0, Vo))
—(detT (o, y0))e")|
<Me¢e".

By eq. (3.7) detd(x,, yo)>¢;. Therefore for sufficiently small e, it follows that
if 0<e’< e, then

(detT (x,, ¥0))81X8,=(detd (x,, yo))e’?>Me’?,

which implies that if e’<e, then &;x&; and ¢,x&, have the same sign. On the
other hand, by Proposition 3.2 (2) R<D®¢, and by Proposition 3.2 (1) R’ =D®¢,
so that R’ is above the curve y=p(x). Therefore Q' is contained in the piece
that contains the points in 0D® with x > ¢i(x,, y,), that is, the piece .
Therefore, ﬁ(cul)zcué, i=1, 2. In particular, for (x, y)=dD®NU, if x>x,
then ¢.(x, 3)>¢i(x,, yo), and if x<x, then @.(x, ¥)<d:i(xy, o).

Therefore, for each point (x, y)=0D®, there exists an e-neighborhood U(x)
such that if (x’, ¥)=0D®NU(x), then the order of x and x’ is conserved by
the map @.

Now assume that (x;, y,)=0D®, (x5, y,)=0D®, and x,< x, Since {U(x)|
%, <x=<x,} is an open ball covering of the closed set 0D N\ {x,<x<x,}, one
can choose a finite number of U(x)s’, say U,, U,, -+, U,, that covers the set
0D N {x;<x<x,}. It is further possible to choose them in such a way that
none of the <, is included in some other €,. Arrange the balls in a way
that the x-coordinates xi, x, Xj, --, x, of the centers of the balls are in in-
creasing order. For each /=1, 2, .-, n—1, take x;,=U,N\U,.,/\0D®. Then
the order of the points

X< X< XL Xy s <Xy <Xy

is conserved by 5 Since (x,, )€U, and (x,, y,)=U,, it follows that the
order of x; and x, is conserved by q_i), that is, @i(x:, ¥)<@:(xs, y»). This
completes the proof. O

Proposition 3.4. If (x, y)=0D®, then (x,(x, v), y.(x, ) converges to one
of the fixed points of the mapping ¢ as n—oo. In particular, if (x, y)< dD®
NE®, then lim,_ .(x.(x, ¥), y.(x, y)) = (Xc, Vo), where (x., Vo) iS as given in
Proposition 3.1.

Proof. Assume that (x, y)=0D and that the sequence {(x.(x, ), y.(x,
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)}, n=1, 2, 3, ---, has an accumulation point (x,, y,) which is not a fixed
point. Put (x,, yz)zg_é)(xl, ¥y1). Since (x;, y;) is not a fixed point, x;+ x,.

Assume first that x,>x,. The continuity of $ implies that for any positive
number é there exists a positive number ¢ such that the es-neighborhood U.(x,,
y,) is mapped into the Us(x,, y,). In particular, there exists ¢>0 such that if
(x, V)= ULxy, y1), then ¢i(x, y)>x,. But if (x, y)€dD® and x> x,, then
Proposition 3.3 implies ¢i(x, y)>x,>x,. By induction, if (x, y)&U.(x,, y1),
then ¢1($"(x, ) >x,, n=1, 2, 3, ---, where {5” is the n-th iteration of 5 By
assumption, the sequence {(x.(x, v), v.(x, ¥))}, n=1, 2, 3, ---, accumulates at
(x5, v1), therefore there exists an integer N such that (xy(x, ¥), ya(x, V)=
Ue(x;, y1). Therefore if n>N then ¢.(x.(x, ), ¥a(x, ¥))>x,>x;, which says
that (x,, y,) cannot be an accumulation point, which is a contradiction. The
case x,<x, can be handled in the same way. The conclusion is that if (x, y)
=0D® then every accumulation point of the sequence {(x.(x, v), v.(x, )},
n=1, 2, 3, ---, is a fixed point.

If (x, y)=0D®NE®, then from gZ(EéZ))cEéz) it follows that the sequence
(xa(x, ), ¥a(x, ¥)) accumulates at a fixed point in Z¢{. Proposition 3.1 there-
fore implies lim,..(x,(x, ¥), ya(x, ¥))=(x., y.), wWhere (x. y.) is as given in
Proposition 3.1. This completes the proof. O

The original problem of four dimensional parameter space is now considered.

Theorem 3.5.

limX,(%)=(0, 0, 0, 0), i=D'NE,
lim X, (2)=(o0, o0, o0, o), r=D'NE,
limX,(#)=(%c, ve, 0, 0), F=0DNE .

Here x. and vy. are as given in Proposition 3.1.

Proof. The first two cases are direct consequences of Proposition 2.2 and
Proposition 2.1. Consider the case #=dDNE. Since oD is a closed set, the
sequence {X.(#)} has an accumulation point in dD. From Proposition 2.4 (2)
and Proposition 2.2 (1) follows lim,.« X, ,(%)=0, 7=3, 4. Therefore every ac-
cumulation point of {X,(%)} is in (@D®NF). Denote an accumulation point
of the sequence by ¢(3), 3=aDPNE®. Let {Xi x(#)}, n=1,2,3, -, be a
subsequence of {X,(#)} that converges to «(3). By the same reasoning, every
accumulation point of {)_('klcn)_l(i')} is in «(@0D®NE®). Denote one of the
points by «(Z), 2€0DPNEP, and let {Xi ayan-(2)}, n=1,2,3, -, be a
subsequence of {Xt,c0-1(%)} that converges to «(3,). By definition X c,cnr (%)
:(D(X’kl(“(n))_l(a‘c)), and @ is a continuous map, therefore it follows that j=

- -

¢(2,), where ¢ is defined at the beginning of the section. By induction, one
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obtains a sequence of points {3}, /=1, 2, 3, ---, such that 2,=0D®NE, [=1,
27 3) B and j’>=¢(§l)’ 2l:¢(2l+1)7 1:1: 2: 37 .

Since 0D®NE® is a closed set, every accumulation point of the sequence
{2}, =1, 2,3, -, is in dDPNEP. Let wcdD®NE be one of the accumula-

tion points. Assume that %@ is not a fixed point of the map 5: ﬁ;’lizefq_;(w)iw.
Since 5 is a continuous map, @’ is an accumulation point of {5(51)}={2’l_1},
[=2,3, ---. Assume that w,>w}, where @w=(w,, w,). Proposition 3.3 implies
that if there exists an [ such that z;,,>wi, then z;.,,=¢7'(Z;) >w,>w}, and
consequently, zl+n_1=$‘"(§z),1>w1>w{, neZ.. This contradicts the fact that @’
is an accumulation point. Thus z;,<wi for all [.=Z,.. But this contradicts
the fact that #% is also an accumulation point. The case w,< w{ may be handled
in a similar manner and a contradiction occurs. Therefore w,=wj, hence w=".

Therefore every accumulation point @ of the sequence {2}, /=1, 2, 3, -,
is a fixed point of the map 5 in 0D®NE{®. By Proposition 3.1 the only fixed

point in 0D®NE® is (x., y.). Hence the sequence {2;}, (=1,2, 3, -, con-
verges to (x., y.) as [—oo.
It is proved that there is a sequence 2;, [=1, 2, 3, -+, satisfying 2,0D* N

E®,1=1,2,3, -, and 3=6(2), 2=8(2..1), [=1, 2, 3, -, and lim;.. 2,=(x., yo).
On the other hand, Proposition 3.3 implies that for (x, y)=0D®, if x >¢.(x, y)
then ¢,(x, ¥)>6,@(x, 3)), and if x<g,(x, ) then ¢,(x, ¥)<d,(@(x, »)). This
with Proposition 3.4 implies that ¢1(5"(x, y)) approaches x, monotonically as
n—oo. If J#(x, y.), this is a contradiction. Therefore y=(x., y.), which
implies that the only accumulation point of {X’n(x)} is (x¢, y.). Therfore X,(%)
converges as n—oo to (x, y.). This completes the proof. |

Let
(3.8) Zi'n(ﬂ):we§<"> exp(—BL(w)), PER,i=1,2,3,4,n=Z,.
Then Zn(ﬂ)=Xn(exp(—ﬁ), exp(—28), exp(—28), exp(—34)).
Corollary 3.6. There exists a constant B. such that
limZ,(8)=(0, 0, 0, 0), B>B.,
imZ(8)=(xe, 3 0,0, B=pe,
limZ ,(8)=(co, o0, o0, ), B<B..
The proof of Theorem 1.1 is as follows. Note that
WHm =W (™ JW ™ JW P UW PO ™,

where W™, =1, 2, 3, 4, are defined at the beginning of Section 2, and W’{™® in
the proof of Proposition 2.1, and
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W= {w Wm0 o | 'LU(Z.,.)./\ {ba, ca}= {cn} }.

Therefore, Z¥=Z, ,+2Z, .+27Z,, , follows, which, with Corollary 3.6, implies
Theorem 1.1.

The first derivatives of @ are used to study the distributions of path
lengths. Let d=(a,, @, G5, a)=(%c Y¢, 0, 0) and

39) B=(22@, -, $2@).

Proposition 3.7. (1) The matrix B has a form

(.’b g B Bu
g v By Bu
0 0 By Bul

0 0 0 0
with
p=8x3+6x5+2x.+12x%y.+12x.y%,

g=4x}+12x%y,,
and
r=4x34-88y:.

Every element is non-negative, and the four elements B;; i=1, 2, j=3, 4,
are positive.

(2) Denote the four eigenvalues of B by A;,i=1,2,3,4. Then one can
arrange the order of the eigenvalues so that they satisfy

21>1>22>23>24=0,

and Bis=2,. In particular, B is diagonalizable by an invertible matrix P:
P-'BP=diag(4,, 4, 45, 0).

Proof. The four elements B,j, i=1, 2, j=1, 2, are obtained from Proposi-
tion 2.1 (3). Proposition 2.1 (6) implies B,;=x.>0, 7=3, 4, and B,;=x2>0, j=
3,4, and B,;=0, j=1, 2, 3, 4. The non-negativity of elements are obvious.

It is easy to see that the four eigenvalues are 1/2{p-+r+~/(p—r)l+4q¢*} =
2.7965--, 1/2{p+r—~/(p—r)¥+4¢? =0.2537 -, By, and 0. The numerical values
are derived by the estimates for x. and y, given in the remark after Proposi-
tion 3.1.

From Proposition 2.1 (5) one has B;=@; ,(d). From Proposition 2.1 (5)
and the fact that & is fixed point it follows that @, ,(d)<1—x.<1. From
Proposition 2.1 (4) one has Bi;=x2+2x3=0.3428---. This completes the proof.

O
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Remark. The explicit form of B obtained using the explicit form of the
recursion relations, is shown in Appendix B.

Let

de

rh

(3.10)

Ly
Il
83
<

™
N
8

Proposition 3.4 and Theorem 3.5 imply that if £€dDNE,, then lim,.. X,(¥)=

(xey ¥e, 0, 0).

The following proposition states how X,(%) converges to (X ¥ 0, 0) as
n—oo, Though the proof is similar to that for the case of diffeomorphisms
in [5], we give a proof here for readers’ convenience.

Proposition 3.8. Assume ¥ <0DNE,. Then there are positive constants C
and o<1, such that

| X, n(#)—a;|<Cp™,  i=1,2,3,4, neZ,.
Proof. @(i) can be expressed as
‘B(x)="d+B i—d)+'0@—1),
where §: R*—R* satisfies, for ¥ =R* and |2 —d| <1,
3.11) 1B(z—a) < Cil2—al,

with a positive constant C,. R* splits into @-invariant stable and unstable

subspaces
R'=V DV .,

where V, is spanned by the eigenvectors corresponding to 4, 4; and 0, and V,,
by that corresponding to 4,, where 4, s’ are as in Proposition 3.7. Denote the
restrictions of B to V and V, by B; and B,, respectively. For #=R* define
norms

def

|Zl1*= |P %],
def
ix|a:max{ljxl*: liu[*} ’
and for an 4X4 matrix A4,
def
| All* = sup | AZ|*.
| 2*=1
Let
def .
a = max{|Bs|*, || Bz'[I*} <1.

Take £#>0 such that a+£<1. Then by eq. (3.11) there is a §, 0<d<1, such
that
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|§(E'_a)}a<ldf—'l—i!a:
for
[£—d|,<0.

Assume that =0DN\5,. Then there is an n, such that
| Xa(%)—81,<0,

for n=n,. Let %=X, ().
Consider
B(#0)— 8=(D(%0)—)s+(D(o)— ) -
Then
[(D(Z0)—a)s | *< || Bsll* | (Ro—8)s | *+£| Zo—3 o
S(a+k) Zy—dl,.
Suppose that |%,—d|,=|(¥°—d),1*. Then
(D(0)—B)u *=(a™ —k)i 2o—i 0
>(a+k) Zo—dlo.
By induction,
| X () — 8 lo=(at+8)" 20— lo.
Since (a+k)"—oco as n—oo, this leads to a contradiction. Thus, |Z,—d|,=
[(Z0—d)s!*. B )
A similar argument shows that |@(%,)—a|,=|(@(#,)—ad)s|*. Thus Ié(iu)
—d|o<(a+k)|%,—dl|,. By induction it follows that
IXn(fo)—ﬁloépn]fcu_&lo;

where p=a+k, 0<p<1l. Thus for each £=dDN5, there is a positive con-
stant C’ such that

I)?n(f)"'alag C'Pn,

for all n=Z,. This completes the proof. 0

§4. Limit Theorem for Distribution of Path Lengths

First we define probability measures p,(£X), #1, (%), and p,(%) on W*™,
W™, and W™, respectively. W*™ is defined in Section 1, and W{™ and W™
in Section 2. Each measure is parametrized by Z=(x;, x,, x; x,) taking values
in R4\{(0, 0, 0, 0)}. To each weW*™, we assign the weight

(0T Z (Xo D)+ 2Xo (842X, (2}~ T 2050,

to each weW{™,
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def 4
th, () [w] = {X1. (D)} —lg x50
and to each w=W™,
def 1
vo(D)[w] = {Xe (%)} ‘11_1;[1 xiw)

where s;(w) and X; (%), i=1, ---, 4, n=Z, are defined in Section 2.

Our objective in this section is to study the asymptotic distribution of path
lengths L(w) under p,(%), p:, (%) and v,(%), respectively, as n tends to infinity.
Each element of W{™ consists of two path segments. Since we want to deal
with these segments separately, we define, for w=(w,, w,)€W§™,

So(w)=s55(w)—so(w1)—s2(W2),
Si(w)=s:(w1)—8,(w),
Sa(w)=ss(w),

Ss(w)=s5(w1),

Siw)=sy(w1),
Ss(w)=s:(wo)—8s(w),
Se(w)=ss(w>),

Sa(w)=s5(ws),

S(w)=s4(w,).

Note that
“4.1) L(w)=58(w)+28(w)+28,(w)+38(w)+3s(w),
4.2 L(wy)=5:(w)+28(w)+28,(w)+355(w)+3(w) .

Let Y, be another generating function for W™ defined by

v cl:ef 9 §icw)
a(2) 2 I x,2 ™,

wew{m 1=t
where
z=(21, 25, x)=C?,

Z1=(%1, X3, X3, X4),
Z:=(X5, Xg, Xq, Xg).
Y, satisfies the following recursion relation.
Y wn@=Y1(Xa(2), Xa(20), Va(2))).

We also have
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4.3) Y3y, 21, x))=0y(%y, xa, X3, X4).
We start out with
H™(2)=(H{™(2), -, H{™(2))
def _, R .
= (Xn(21), Xn(22), Ya(2)).

Let dH™(z) be an 9Xx9 matrix defined by

3H<n)(z)°_l_ff(_a_aa¢ch)(z), ., aixgtH(m(z))'

Since the recursion relations imply,

4.4) H™(z)=H®(H™ (z)),
we have
(4.5) OH™(2)=0 HO(H™ ()0 HP(H™ ®(2))--- 0 H®(2).

Throughout this section, we write,

def
a:(ah Tty aQ) = (xc, Ve, 07 0: Xey Ve 0’ O, yC)
We have, in particular,
H™(a)=a,
0H™ (a)=0H™(a))".
Proposition 4.1. (1) All the eigenvalues of dH(a) are non-negative. The

largest of them, A, is a double eigenvalue with corresponding left eigenvectors
(ay, as, as, a,,0,0,0,0,0) and 0,0, 0, 0, @y, as, as, ay, 0), satisfying a;>0, i=

1, 2, 3,4. Any other eigenvalue is less than 1.
)

limaA"@H " (a))*=A(a)

L)

exists. The (i, j)-element of A(a), A;;(a), is non-negative for i=1, ---,9, j=1,
-, 9. In particular, A,,(a)>0 and Ay (a)>0.

Proof. It is easy to see that 0 H(a) has the form
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0
B 0 0
0
0

4.6) dHD(g)= o
0 B 0
0
0
q Bys Bw g By;; B, .

2 6 5 5 g 65 5 G

where C, is a constant satisfying 0<C;<r/2. The 4x4 matrix B and the
positive constant » are defined in Proposition 3.7. 0H™(a) has four double
eigenvalues 4,, 45, 45, 0, and a single eigenvalue »—2C,. Note that 1,>r=0.3277
-.2r—2C,. It is also easy to show that the right and left eigenvectors of
B corresponding to 4, can be chosen as (a,, @, 0, 0) and (a;, @,, as, a,), With
a; >0, i=1, 2, 3, 4, a®+ai=1. The assertion (1) follows with 1=A4,.

There is an invertible matrix 2 such that

P-19H®(a)P=diag(a, 25, 25, 0, 2, A3, 23, 0, ¥—2C),

and that the first and the fifth columns of 2 are ey, @, 0, -+, 0, C,) and %0, 0,
0,0, as, a5, 0, 0, Cy), C,>0, respectively, and that the first row of P-1is (ay,
as, @, @4, 0, -+, 0). Combining these with

limP-12-"0H(a)"P=diag(, 0, 0, 0, 1, 0, 0, 0, 0),

N0

one has the assertion (2). In particular, A, (a)=a} and A,(a)=C,a,. This
completes the proof. N

From the proof of Proposition 3.7, we have 2=2.7965---.

In studying the limit of A-"(@H ™ (z))" for more general z, we make use of
the following lemma. It can be proved in a similar fashion to Lemma (3.1)
in [3].

Lemma 4.2. Let A, A,, n=1, 2, ---, be NXN matrices. Assume that there
is an invertible N XN matrix P such that P-*AP=diag(d,, -+, An), 4;=0, i=1,
-y N, Amax=maxi;>0. Assume further that

3 A=Al <eo.

Then
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4.7 lim lim supl|Az5(AnsmAnsm-1 = Ams1)—Q=0,

—00 —00

where P*QP= diag(q:, -, gny) with ¢,=1 if A;=Amax and g, =0 otherwise.
Moreover, lim, o Agh A, -+ A, exists.

Let £, be as in eq. (3.10) and

I'={z=(x1, Xy, Xa, X4y X1, Xgy Xy, Xgy X5)| (X1, Xg, X, X)=0DNE}.

Proposition 4.3. Let z=(zy, -, z9) 1. Then lim, .2 "0H™(z2)= A(z)
exists, and A,,(z2)=0 for =1, ---,9, j=1, -, 9. In particular, A,,(z)>0 and
A (2)>0.

Proof. By the mean-value theorem,

«8) OH@)—0H (@)= 3 (0., (zs—as),

where

u=a+0(z—a), 0<O<l.
Since I” is a bounded region in R? and (0/0z.)0H,;(z) is a polynomial in z, -,
2y, there is a positive constant A/ such that

4.9) ia—zkaHi,-(u) <M

for all u=a+60(z—a), 0<0<1,z=1",14, 7, k=1, ---,9. On the other hand, by
Proposition 3.8, for each x=dD™5,, there are positive constants C and p, p
<1, such that

(4.10) [ X n(%)—a, ZCp" =1, -, 4.

From eq. (4.8), eq. (4.9), and eq. (4.10), it follows that there is a constant C,
such that

4.11) l0H(H™(2))—0H (a)| = C:p".

Now let 4,=0H(H™(z)) and A=0H(a). From eq. (4.11),

3 dn—Al<oo.

Lemma 4.2 implies the existence of lim,.. A "0H ™ (z). Since Q=A(a) in this
case, eq. (4.7) implies that for sufficiently large m, the (1, 1) and the (9, 1)-
elements of lim,.. A "0H(H ™ ™ (z))---0 H(H‘™*"(z)) are positive. From Proposi-
tion 2.1 (3), X, ,(%) includes x% and X, ,(#) includes x% which implies that
OH(H(z)), k=1, ---, m, has positive (1, 1) and (9, 1)-elements for #=0DN5,.
Therefore, 4,,(z) >0 for (7, j)=(1, 1) and (¢, 7)=(9, 1). This completes the prqof.
O
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Proposition 4.4. Assume z<=I'. Let
3 pd -1ty S 1y e a-me 1-mg 1-n¢ :
H{™(ze* ™) = H{™(z1e* 7", z5et "2, o) 20 7™09),  i=1, -+, 9.

(1) There are entire functions H%: C°— C, such that H{™(ze* ") — H*(t),
as n—oo uniformly in {t==,, -+, t)=C?| {t,| <R, i=1, ---, 9} for all R>0. In
particular, H¥(t)=0, for =3, 4,7, 8.

2) Let H*@)= (H*@), H¥®), 0,0, H¥®), H¥{®), 0,0, Hf®). Then H*()
satisfies,

4.12) H*(At)=H®(H*®),

for any t=C°. Moreover,
a * —
’a‘gHi(O)“‘ZjAzj(z)-

Proof. Let
def
P |211;|25i +a2max(|zzl42—|zei ’ lzg\)+a3 lzsl—;lm La, |24|‘;!Zsl ,
for z=(z,, ---, 2,)=C" |- |4 satisfies the conditions for a norm. From Proposi-

tion 4-1, (ah Qs, A3, Ay, 07 0: 0: 0; O) and (O; 0; 0, 0) Qy, O, Ay, Ay, 0) are the left
eigenvectors of 6 H(a) corresponding to A. It follows that

4.13) |0H M (a)'z]x<A]2z|%.
Now fix a z=/" and let w=R®. Put
(4.14) H™Gz+w)=a+v,+w,,
def
v, = H™(z)—a,
def
w,=H™E+w)—H™(2).

From the mean-value theorem combined with eq. (4.13), it follows that there
is a positive constant C; such that

(4.15)  1H®(a+v,+w)—HP(a+0v,) |« A1+ Cilva )1+ Colw )| w

for |w|x«<1 and nc=Z,. By Proposition 3.8, there are positive constants C,
and p<1 such that,

4.16) [valx=Cop™.
Take a positive number b such that
b- ,§0<1+c3pk)(1+clz—k)g1,

where C;=C,C,. Then by eq. 4.15) and induction,
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(4.17) 4S50 1T (4 Cop? )1+ Cid- )
!

<A wly/b,

for k=Z,, 0£k<n, and weR?, |w|«+<bA ™. Thus the estimates eq. (4.16) and
eq. (4.17) together with eq. (4.14) show that there is a 6:>0 and a C,>0 such
that

(4.18) |H{M(ze* ") 4= Cy,

for t<R®, |t1+<d. Since each H{™ is a polynomial with positive coefficients,

we see that eq. (4.18) holds also in Qd—-—e—f {tcC®||tl4<0}. Therefore, for each 7,
{H™(ze*" ™)), n=1,2, -

forms a normal family of holomorphic functions in £. Let

(4.19) H{P(ze ")=Sa{ ()it -t

k=(ky, -, k)EZY.
By Theorem 3.5,

(4.20) a™0) —> a,, n—> 0.
Define ¢ =Z2? by ei=4d,,. By Proposition 4.3,
(4.21) a{"’(é‘”) —> Zj/_lij(Z), n—> co,

Substitute eq. (4.19) into eq. (4.4) and let n—oo. By induction starting with
eq. (4.20) and eq. (4.21), we see that there are a¥(k)’s such that

a™(k) —> a¥(k), n—> co.

Therefore there are holomorphic functions H¥: 2—C, such that H{™(ze? "*)—
H*(t), as n—oo uniformly in { =C?||t|+<0/2}, satisfying eq. (4.12). For any
R>0, take an m=N such that -™R<d/2. Then

Hén+m)(zex—(n+m>c):ngm)(H(n)(Zez—n(x —"lt)))
—> H{™(H*@A™ ™)),

as n—oo uniformly in {{=C°||t|4«+<R}. This shows that H* can be extended
to an entire function in C°, satisfying eq. (4.12).

Let ze? "D =(z,e* "1, ... | 2,02 "), z2=(2y, -+, 2)=(%, %, x.)=1", and (¢,
-+, t)=R®. Since X{™ is a polynomial with positive coefficients,

| H{™(ze* ") < | H{M(2)| = | X§™(2)].
Therefore, by Theorem 3.5,

H{™(ze* ") —>0, n—> .
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This and the fact that H¥ is an entire function leads to

Hit)=0
on C°. In the same way, we have
H¥)=0
on C? for 7/=4,7,8. This completes the proof. O

Note that H* has an #-dependence, though we do not write explicitly.

Let p.(%) and p%(%) denote the law of A "L(w) under p,(%) and under
U1, (%), respectively. Let ¢,(%), ¢i(%), and ¢¥(#) be the law of (A7"L(w,),
A" L(wy)), A~™(L(wy)+ L(w,)), and A "L(w,), respectively, under v,(%). Note
that the law of A-"L(w,) under v,(%) is also equal to ¢%(%). We often omit
writing the dependence on #, when no confusion occurs.

We define
def [
4.22) gm0= e puide),  t=C,
def (oo
4.23) em0= [ e prae),  teC,
and
def
(4.24) h™(t, 1) = S ehf1tiateg (d€,d§,), (t, 1)=C?.
R+xR+
Note that

h(t, 0= egide),

Rew(, O)ZS:’etéq;*:(ds).

From the relation, L(w)=s;(w)+2s,(w)+2s5(w)+3s«(w), w=W*™  and eq.
(4.1) and eq. (4.2), it follows that

g™()
= {Xl. n(x)+2-X3, n(£)+2X4, n(’z)} - {Xl, n(in, t)+2X3, 7L(x7'h L)+2X4. n(-’zn. c)} ’
gl("')(t)'—_— {Xl n(x)} —IXI. n(in,t) )

where

def
5 -n - -n -7
Fps = (xlez c’ xzeu t’ xse“ z, xwal t),

and

Ry, t)={Xs, n(E)} T FalXn s Eny Xae? WMD),

Theorem 3.5 and Proposition 4.4 imply that for Z<0DNZ%,,
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) 1 ¥
14 (t) —— THl(t: 2t: 2t} Stx 0; 0) 0: 0’ 0))
‘e
1
gl(.n)(t) —— -x—HT(t: 2t: 2tr 3t; 0; 0, 0: 0» 0)’
c

1
h(n)(tb tZ) —> TH;)"(th 211: 2t1} 3t1; tZy 2i2) 2t2) 3t2y tl_l_tz)v
4

as n—oo uniformly in {{=C||t|<R} and {({;, t,)=C*||t,|<R, i=1, 2}, respec-
tively, for all R >0. This leads to

Proposition 4.5. Assume i=(x,, X,, X3, X,\)=0D\E,. There are entire func-
tions g: C—C and h: C*—C such that

g — g,
g™ — g,
as n—oo uniformly in {t=C||t|<R}, and
h™ (4, t) —> h(ty, t5),

as n—oo uniformly in {(t, t) =C?||t,| < R, i=1,2}, for all R>0. g(t) and
h(t,, t;) are the unique solution to;

(4.25) Y 8(A)=0(xcg(t), ych(t, 1)),
{4.26) ych(ll‘n Atz):f(xcg(h); yeh(ty, t), xcg(ls), yc/l(tz; ta), ych(tn 1)),
where ¢, is defined in eq. (3.1) and

def
f(yl) Yoy Vs, Vi, yﬁ): Y](yl; Ya, O: 07 Y3 Yy 0) 0: 3’5)
= ¥1¥8+2(01ys+ 3199 ys +6(i+ ¥ y3+4(y2+3.)35+255 .

(4.27) a§§°)=%<x1/1u<z>+2x2/1m<z>+2,\-3A13(z>+3x4/114<z>>,

(0, 0) _ A, 0)

@28~ =%,

1
:T(-‘:IASI(Z)+24‘:Z/192(Z)+2x3/193(2)+3-x1/194(2)+szDQ(Z))y
4
where z=(x, %, Xs).
Proposition 4.6. Assume i=(x;, x5, X5, Xx4,)=0DNE,. There are probability

measures, p(x), ¢ (%) and ¢*(%) on R, and a probability measure q(%) on R® such
that

pu(2) = p(%),

pi(a) == p(%),
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gi(x) = ¢*(%),
gH(%) = g*(%),
and

g (%) = q(%),

as n—oo, where = denotes weak convergence.
(1) The Laplace transforms of the limit measures are given by,

[ eparae=ga,
[" er@ao=na v,

[ eqraao=ha, 0,

and

[ g e etg(aXdidg=hit,, 1)
@

[ entexag >0,
[ eraae 0,

| erraxaeo.
(3) None of p(%), ¢°(%) and q*(%) is concentrated on a single poini.

The assertion (2) follows from Proposition 4.3, eq. (4.27), and ed. (4.28).
The assertion (2) combined with eq. (4.25) and eq. (4.26) leads to assertion (3).

Proposition 4.7. There are positive constants C, and C, such that
| g(it)] <Cpe=C1'*'",
| A(it, it)| < Cae 0114,
[ h(it, 0)i =1 R0, it)| < Cye~C1it1",
for teR, where k=log2/logA.

Proof. By Proposition 4.5 and eq. (4.3),

(4.29 GA)=— (g, yehit, i0),

(4.30) h(idt, ili):;l—@(xcg(z’t), veh(it, it)).
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Define

def
G(ty= —I|t| " logl g(it)!,
and

def
H(t) = —|t|~* log| h(it, it)] .

Substituting these in eq. (4.29) and eq. (4.30), and using the fact that |g(if)i
<1 and |h(ét, ¢t)| =<1, we have, from eq. (3.1) and eq. (3.2),

log| g(idt)| <2 log| g(i1)|,
log| A(iAt, iAt)| =2(log| g(it)| \/ | h(it, it)|).
From these it follows that .
4.31) GAH=G(1),
(4.32) HAH=GHNH®{).

By Proposition 4.6 (3), there is a constant >0 and a constant C, 0< C<1 such
that

0<jglit)| < C,
0<|h(t, it)| < C,
for any t=R, A7'0<|t|<d. Therefore, eq. (4.31) and eq. (4.32) lead to
G@t)>C,,
H®>C,,
for any t=0 with C,=—d0"logC>0. This implies
| g(it)| < .e~Crit®,
[ h(dt, it)] < e Crie1",
for t=6. Take C,>ef. Then we have
| g(it)| < CpeCrit®,
| A(it, )] < Coe~Cr'41%,

for t=R. The estimate for |A(:t, 0)| is obtained similarly. This completes the
proof. O

We use the following property in later sections.

Proposition 4.8. p, ¢*, and ¢* have C*= densities. In particular, p, the
density of p, satisfies

p(&)=0, £<0, and p€)>0, &>0.
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Proof. Proposition 4.7 and the fact that g and & are entire functions
imply that g(¢t), h(it, it), and h(it, 0) with t& R are rapidly decreasing functions.
From this, the existence of the C* densities for p, ¢*, and ¢* follows. Let
0" be the density of ¢*. Then eq. (4.25) and eq. (3.1) imply that

(4.33) A7 p(A76)=x.0%p(§)+2x% pxp*p(§)+2x¢0* pxp%0(§)
+4x%y.0%p* 00" (§)+6x.yi0x0x0 0" (§).

Let A be the support of p. It is clear that AC[0, ). From eq. (4.33) it
follows that if x, y, z=4, then A"'(x+y), 1-'(x+y+2z) =A. Note that 2<A<3.
By Proposition 4.6 (2), there is an x,= A such that x,>0. Then (217)"x,=A4,
n=1. Since A is a closed set, this leads to 0=A. Therefore, 0, 17 x,, 247 x,,
347'x, =4, and by induction, it follows that mA-"x,=A, m=0, 1, ---, 3*. This
implies A=[0, o). This completes the proof. |

Note that g% in Section 1 is equal to u,(%.) with

xc.=(exp(—fc), exp(—28.), exp(—28.), exp(—38.)).

The definition of B, implies £, =0DNZ,. Therefore Theorem 1.2 in Section 1
follows from Proposition 4.6 and Proposition 4.8.

§5. Continuum Limit of Self-aveiding Paths

Let F,, n=0, 1, 2, --- be the graphs defined in Section 1. Let F,=2-"F,,
n=0, 1, 2, ---. Each F, is a finite graph obtained by giving a substructure to
a unit tetrahedron Oa.b,c,. Let us define the finite three-dimensional Sierpinski

Gasket by

We define én to be the set of vertices in F,, and T, to be the set of closed
tetrahedrons in R® whose vertices belong to G, and whose edges are of length
27",
Let
C={w=C([0, w)—w0)=0, lim w(t)=a}.

C is a complete separable metric space with the metric
d(u, v)= sup |u(®)—v(t)|,
te[0, o0)

u, v=_C.
We define a mapping 7: \UW*™C as follows. For ucW*™m,

. def . . .
1) ru@) =27"u(), for j=Z,
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def . . .
@) ru® = U+1-Dru(N+e—NruG+D, for j=<i<j+1, jeZ..
Note that 7 is an injection. We denote

~ def
W*(n) — TW*(”) .

weW*m is self-avoiding in the sense that w(t)#=w() if 0<th< LS LT 'w).

Let fi,(%) be the image measures of p,(%) induced by 7. f.(%) is a prob-
ability measure on C supported on W*™. Throughout this section we con-
sider the case 2=dDN5,. Our objective in this section is to study the limit
of fi,(%) as n tends to infinity.

Let us begin with some definitions we use in this section. First we define
“hitting times”, T%:C—R,, k,i=Z,. Let Tkw)=0, and by induction, for
izl,

THw)=inf {t>T-,(w) | wB =G ™ {w(Th-w))}},

if the right hand side is finite, otherwise, T#(w)=co. T?% is the time when w
hits the elements of G, for the i-th time on condition that if w hits the same
clement of G » more than once on end, we consider it “once”. Writing w(oo)
=a,, and noting that w(¥)—a, as t—oco, we obtain a finite sequence {T% .-, ..
such that w(T%w))=a,, w(TXw))+a, i=1, -+, M—1.

Next we define the “exit times”, {T¥*(w)}:=o,... vcw>, and the “k-skeletons”,
the sequence of tetrahedrons a path passes through, ¢,(w)=(4A,, -, Aycwy).
Let {T%w)}:=o. .. » be the finite sequence obtained above. Let T¥*(w)=T%kw)
=0. A, is defined to be the element of 7T, that contains O=(0, 0, 0). For =1
we proceed by induction. Define

def
exit(d) = min{j=Z,|j<M, Tiw)>T W), w(T5)EA}.

As long as the right-hand side exists, we define T%*(w)=T%.«> and A;,; to
be the element of T, that contains both w(T#*(w)) and w(T%;ra(w)). N=
N(w) denotes the number of the elements of ¢,(w) defined in this way. Let
THw)=T%w). We write SHw)=T%*(w)—T#,(w) and call it the crossing time
of A;. In the following we denote an ordered set of tetrahedrons like (A, -+, Ay)
and an unordered set like {A,, ---, Ay}. Let w=C, k€Z,, and o,(w)=

(A, -, Ay). The following properties are straightforward consequences of the
definition.

1. O€A, a,=Ay.

2. A;NA;., is equal to neither § nor A,.

If weW*m™, g, keZ., n=k, o,(w) further satisfies,

3. Each element of T, appears at most twice in (A;, ---, Ay).

4. {A;, Asi} #= {4, Ajyi}, @7 as unordered sets.

Let us denote Ty = {d=(Ai, -, Aw)| ATy, i=1, -, N, N=1,2, -, 4

def
satisfies 1. through 4.}, and g}%= {4=(A,, -, AW |A,=T,, i=1, ..., N, N=1,
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2, -+, 4 satisfies 1. and 2.}.
For n=Z,, we define a “decimation” map Q,: C—C by

(Q.w)O)=w(T3(w)),
for /=0, 1, 2, ---, M, with w(T%(w))=a,,

Q.w))=(GE+1—1) (Qw)(@)+({t—17) (Q.w)(i+1),
for i<t<i+1, 7=0,1, 2, ---, M—1, and

(Qnw))=a,

for t=M. Note that if £<n, we have Q;°Q,=Q,.
Let m<n and Q,/i,(%) be the image measure of i,(%) induced by Q.

Proposition 5.1. For w=W*™ and m<n, Q qw=W*m,
Qmﬁn(j)zﬁm(}?n—m(i))'

det
In particular, for @ = (%¢, Yo, 0, 0),

The statement on Q,/,(%) is obtained directly from the recursion relations,
eq. (2.2) in Proposition 2.1.

We introduce a time-scale transformation U,(a): C—C, a=(0, ), nN.
For w=C, define

def
Un(@)w)(t) = w(a™).

Let us denote by P,(%) the image measure of ji,(%) induced by U,(4). We omit
the # dependence of P, when no confusion occurs.
We define

def
Ve = {w =W | sy(r w)=s.7 " w)=0} .
Note that for wcV ™),
T w)=THw),

for k<n, 0<iEN(w).

In the following we write, for example, P,[Q.w=v] instead of P,[{w=
ClQnw=uv}1].

We obtain the following proposition in a similar way to the case of the
two-dimensional Sierpinski Gasket.

Proposition 5.2. Assume m<n, v==V™, and o¢,w)=(4,, -, Ay). Under
the conditional probability P,[-|Q.w=v], we have the following.

(1) The set of S™'s with i={iy, 25, -, ixgt < {1, -, N} are independent
random variables, if A;,#A,,, for any j*k.
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(2) For 1=Zi<N, if A; appears only once in ¢ ,(v), the law of A™S™ is equal
to pi_m, thus converges weakly to p as n—oo.

) If A;=A;, 1<i<j<N, then the law of (A™ST, A™ST) is equal t0 qn-m,
thus converges weakly to q as n—oo. In particular, the law of A™ST is equal to
q%_m, converging weakly to ¢* as n—oo.

By Proposition 5.1 combined with Theorem 3.5, we have

Proposition 5.3. For any k=Z,,
{ xN1-t1yle if vev |

lim P, [Q.w=v]=
oo otherwise,

where Ny=s,(r7'v) and Ny=s,(7"').
Proposition 5.4. The family of measures P,, n=1, 2, ---, is tight.

Proof. Since we already have
P.lw(0)=0]=1,

it suffices to show that for any ¢, >0, there exist a positive integer 7, and
a positive number § such that

P"[[ss.‘z‘.ﬂa [lw(s)—w()| >el<y, n=n,.

For an arbitrarily given ¢, choose 2=Z7, satisfying

2:27k<e.
We have,

P,[ sup |w(s)—w(t)| >¢]
|8~t1<0

<P,[S¥w)<.d for some i=1, ---, Nw)]

< 5 "9 PISw) <8 Quuw=v]P.[Qw=0]

=veV(k) i=1
+P,[Qwe W Ny ]
<2-4%(p3_ils: s<A*0]+qi_i[s: s<a*a])
+P,[Quw ANV ]

The last inequality is obtained from Proposition 5.2 and the fact that L(y 'v)
<2.4%, a,s.. By Proposition 5.3, there is an n,&Z, such that

P,[QweWHo\Vb]< %, for n>n, .

Take a ¢ >0 such that
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pls: s<A*6]+g*[s: s<2”5]§—;— 4Ry

Then by Proposition 4.6 and Proposition 4.8, there is an n,>n, such that
ph-als: s<AE]+g% 4l s<ato]<4™+ 1y,

for n=n,. This completes the proof. 0

Now we will show the convergence of the finite dimensional distributions.
For weC, 056, -+ <tp, m=1, 2, ---, let us define

hm(w(tl)r ) w(tm)):eizlw(tl)+m+izmwum)7 (xly tty xm)ERm .

For a probability measure Q on C, define Fn(Q)({#, -, ta): R™—C by,

def
Fa(@ s, -+, 1) = B hn(w(t), -, w(ta))] .
Fix an m=Z,. For any k=Z, and n=k,

Fu(Py)(ty, ) tn)= 3 EPn[hn|Qw=v]P,[Q,w=v]
veV (k)
4+ EP2[ hyy | Quw EWHONY P, [Qw =W HO\V 4],
def
FP)= 3 EPr[hn) Quuw=v]P,[Qw=0]
veV (k)

=2 X Epn[hmIka:U; T¢f§t1<Ti‘}:+h Z.=1, Tty m]

veV (k) (1)
XPn[Tf’:_S_ti\/T)TEI;-H, Z=l; Tty leku}:U]Pn[ka:v]!
where 3} is taken over {1, 2, ---, N@w)}™ with r,<r, < - Zra.
irg}

For simplicity write
def .
Efn = EP"[hm{ka:‘U, T¥§§t1<T§:I£.‘_1, l:l; Tt m] ’
def .
P;’; = Pn[Tf§§t1,<T>’IEI:+1; Z=1: T lekw:V] ’
~ def
Py = Pa[Qrw=0],
and

def
Ry = P[Quw =WV,
Then for n, n'=k,

| F(P,)—F(P,)]
< S S IEPn—EPV(PEP,+ X 3 |EP||PE—PE|P,

veV (k) (ry;) veV (k) (1)

+ X X (EP'|PE|B,—P,|.

veV (k) (1)
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Put
u,=w(T**), =1, -, N@).

Under the condition that Q.w=v, v=V®, T¥<t, <T¥,,, =1, -+, m, there
are positive constants C, and C,, independent of k&, v and {r,} such that

ih‘m(w(tl)l R w(tm))'_hm(u'rp Tt u'rm)l §C12—02k .

Thus the first term is bounded by C,2-C2#*!, For an arbitrarily given &>0,
choose a %k such that

—Cok+1_ &
C,2 < 1

Note that for a fixed k, the summation over v and {r,} is finite. By Proposi-
tion 5.2 and Proposition 5.3, for sufficiently large n and »n’, the second and the
third sum are less than ¢/4, respectively, and

R,,+Rn.<7:—.

Thus we see that {Fn(P,)®, -+, tm)}a=1,2... is @ Cauchy sequence in C(R™—C),
and therefore converges uniformly as n—co. We have shown that the distri-
bution of (w(t), ---, w(t,)) converges for any 0=t < - Ztp, m=Z,. This
result combined with Proposition 5.4 leads to the following theorem.

Theorem 5.5. P, converges to a probability measure P on C weakly as

n—oo,

Now we will proceed to study the properties of P. For A=T,, let us
denote its neighbouring elements of 7°,, by A%, .-, A®, if A contains any

element of G,, or by A®, .-, A, otherwise. Let us denote (UA“’(\G,@)\(Ar\Gk)
by dN(4), and (JAPUANIN(A) by N(A),

Proposition 5.6. Assume d=(4,, -+, Ay)ET,, k=Z,. Let A={w=Cla.(w)
=4}. A is an open subset of C.

Proof. Take any w=A. From the definition of the skeleton, for T#, <t
< T**k =1, ..., N,
whONG,<cANG, .
that is, w()&N(,). Let

ro=inf{d(w(®), ON(A) | TF <t< T¥*,
and
tL=inf {t>TF w)EA,, dA . NA, wE)=27*"}.

Noting that r,>>0, we can find an >0 satisfying
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€< min r; A27F°2%,
i:!....’N

Then it follows that for any w’, d(w, w’)<g,
w'(t;)=ANG,,

{wOIL<tSTHFING,<ANGy

{w' @O T St<ti} NG =414,

for /=1, ---, N, and A;#A,_, for /=3, ---, N. This means w’eA. This com-
pletes the proof. |

def
For d=9}?, define a subset of C as u(4) = {w<=_C|there exists a sequence
0<8:1< 82+ < sy< oo such that w(s;)€ANG, and w((s;, s;. )NG4, for all

def
i=1,2, -, N}, where w((a, b)) = {w(®)|a< t<b}.
By a similar argument to the proof of Proposition 5.6, we have,

Proposition 5.7. u(d) is an open set.
Proposition 5.8. If 4=}, then
{w=Clea(w)=4} cu(d).

Proof. Let t;, i=1, ---, N be as defined in the proof of Proposition 5.6.
Since T¥, <t;<T¥:, {w®ITH¥ <t<tiNGrcA;-iNA;, and {w® |t <t<THIN
G,cA;. Take s;=t;, 1=1, 2, ---, N. This completes the proof. O

From this proposition we have,

Proposition 5.9. If 4=9}*® does not satisfy the condition 3. or 4., then
Pla,(w)=4]1=0.

Proof.
Plo(w)=4]<P[u(4)]
< lim inf P,[u(4)]
= lim inf P,[o,(w)=4]

=0.

The first inequality comes from Proposition 5.8 and the second comes from the
weak convergence of P, to P. The probability vanishes because P, is sup-
ported on a set of self-avoiding paths. This completes the proof. O

For each 4=(4,, ---, Ay)=d,, there is a unique element v, of V> such
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that o,(vs)=4. v, is determined by v4(Z)EA;NA,,1, 1=1, 2, -+, N—1, and v4(N)
=a, On the other hand, for each vV there is a unique element 4 of 9,,
such that ¢,(vs)=4. This defines a one-to-one mapping from g, to V¢,
Proposition 5.10. For 4d=(A,, -, AN)ET,,
Plo,(w)=4]1<xy 21y,

where N, denotes the number of distinct tetrahedrons that appear twice in 4.

Proof. By Theorem 5.5, Proposition 5.6, and Proposition 5.3, we have
Plo(w)=41< lim inf P,[o,(w)=4]

= lim inf P,[Q,w=v ]+]lim inf P,[g,(w)=4, Q,w+v]

N—o00 -0
— N1 N
__xcl ycz

=xd eyl
This completes the proof. O

Theorem 5.11. For 4=9}?,

Ploy(w)=4]=

{ xY-2Na-1ylVe if dea,,
otherwise.

Proof. Proposition 5.9 implies that P is supported on {w=C|o,(w)EST,}.
Assume that for some 4’=T,,

PLoy(w)=41< M1yl
This assumption together with Proposition 5.10 leads to

1= 3 Plo(w)=4]
4eTy,

N-2Ng-1,,N
< 30 xe ATyl
AeTy,

=x7"%4(Xe, Ye)
=1.
Here, x, is defined in Section 3 and we used

2wty Ne=a,(x, ),
(SE8

which follows from the correspondence between 9, and V. This is a con-
tradiction. This completes the proof. 0

Remark. Though P itself has an #-dependence, the probability that a path’s
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skeleton takes a certain form is independent of # The dependence appears
only in the crossing times of tetrahedrons. (See Proposition 4.5.)

Proposition 5.12. Let o,(w)=A" W), -, AF, (w)), and denote by uf* and
v the two vertices of A (w) that are not contazned in {w (T (w)), w(Tiw))},
i=1, .., N,. Then

Plw AP )N {uf®, v} for all t, TH (w)<i<TF*(w),
i=1, -, Ni, k=Z,]=1.

Proof. Assume for some ¢ and %k there exist A’cGT,, A’+A{®, and ¥,

¥ (w)<t'<T*(w), such that w#")=A'\G,. The definition of the exit times
implies that there are f,, -, ty, {;<t;<<t'<{f,<t, such that {w(f)}={w(t)}=
ANNAP, and w(ly), wit)=APNG,. Let r=dw@), ANA®) and r;=d(w(ty),

ANAP), j=1, 4. Choose an meZ, such that 2:2 ™ <min (r, 7y, 7¢). Let A™
and A™ be the elements of T, satisfying

AMCAE | AM A A NAE =A™ AR

Then if follows that ¢,(w) contains the subsequence (A™, A™) or (A™, A™)
at least twice. Thus for a fixed 4=(A,, -, AN)ET,,

Pla,(w)=4 and w(t)sF\A,, for some i and #, T (w)<' <T**w)]

P[ak(w) 4 and w(t)e F\A;, for some ¢/, T¥,(w)<t' < T**(w)]

"M.;

N = . . .
<> X Plo,(w)=d, o,(w) contains some successive pair
i=1 m=k+1

{A™, A™} twice.]
=0.

To obtain the last equality, we used Proposition 5.9. Summing up over all
elements of 9, and all k=Z, we obtain,

(5.1) PLw®EAP(w) for all TH (w)<t<T¥*(w), i=1, -, Ns, k=Z.J=1.

Again, for a fixed d=(4A,, -+, Av)=9,;, and a fixed 7, 1</<N, we denote the
two vertices of A, that are not contained in A;NA;,; or A;_;N\A;, by u and v,
and the element of T, that is contained in A; and containing u, by A{™, for
m=Fk, k41, ---. If wi)=u for some ¢, T (w)<t< TF*(w), then w must go
inside Af™, which, from what we just proved above, implies that there is a
subsequence of g.(w), {A™, A, -, AP, }, r, neZ,, r,>0, such that A{™
CA;, r=jsr+r, wTEHW) =AM, w(TH(w)eA, , and A™=A™ for some
s satisfying r<s<r+r,. In terms of probability,
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P[there exists t, T (w)<t<T**(w), such that wt)=u, 0,(w)=4]
<P[o,(w) has a subsequence satisfying above conditions|c,(w)=4]
<bm*,

where
b= max {xz(gs(xe, 90— xD), Y7 (alre, 70— D).

Since b<1 and m can be chosen arbitrarily large, the first probability vanishes.
The same holds for v instead of u. Summing up over i, 4=9,, and &, and
combining with eq. (5.1) we have the statement. This completes the proof. [

We go on to prove that the stocastic process defined by P is almost surely
self-avoiding, that is, w(t)#w({,), for 0=, <6=T, (w), where
T o (w)=inf {t 0| w()=a,}.

We classify possible self-intersections as follows.
(1) There are t,=0 and %,>>0 such that

wt)=w(t), for hstst+t,<Tq)(w).
(2) There are ty, t,, and ts, ;< t,<(t; such that
wt)=w(ts),
w(t)#Fwt).

Type (2) can be further classified into two cases:
2-1) w(tl)E\E)Glz;

(2-2) w(to)EF\kb}G ke

We start with dealing with type (1) case.

Proposition 5.13.
Plthere exist 1,220 and t,>0 such that w)=w(t)+a, L<t<t,+1,]
=0.
Proof. Let A, ., be the set of we C such that there exist #,>0, and two
adjoining elements of 7,, A and A’, satisfying w(t)=((AUANG,)\U(ANA")
for #,<t<t +1,, or such that there exist #;=0 satisfying w(#)=(A,\G )\ {0} for

L=<t<t -+, where A, is the element of T, containing O. It is straightforward
to see that A,,,, is an open subset of C, and we have

P[ A, J<lim inf P,[A..] -

PrlAg,,]< Pplthere exists 7, 2<i<N(w), such that S%_,(w)+SHw)>1,]
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= 5 Poy=41""S P.LS5s(w)+SKw) > 1| 0,=4]
i=1

dety

/Zkto

g4k“(p;§-k[t:t> 5 ]+q?:_k[t:t> 2;"’]).

In the last inequality we used

P,[Si i(w)+Siw)>t|o,=4]

éPn[S’E_l(w)>% or S’{(w)>% szd]

A%ty

A%t
gz(p;*:_k[t: t> bz‘i:‘—l—(];'f_k[t: t> 7—]).
By Chebyshev’s inequality and Proposition 4.5, for any « >0 and s>-0

lim p¥[t: t>al

<e™* lim Sme”ﬁi(dt)
oo J0
=e %% g(s)<oo.

A similar inequality holds for g¢}[¢:¢>a]. Therefore

P[ A, J<liminf P,[ A4, ]<48 CetA it

where s and C are positive constants. Thus by Proposition 5.12, for any
keZ, and t,>0,

def
P(t)= Plthere exist £,=0 such that w(®)=w(t)# s t<t<t,+t]
<P[A..,].
Letting 2—oo, we see that P(¢,) is equal to zero. Therefore,

P[there exist ;=0 and £,>0 such that w({)=w(t)+#a, Lt<th+1]

This completes the proof. O

Next we will rule out the possibility that (2-1) occurs. With Proposition
5.12 taken into consideration, it is sufficient to show that {w(®)}+#A4,NA,., for
T#, <t<T** almost surely, where A; is the i-th component of ¢,(w). Note
that {w(T*¥*)}=A;,NA,.;, and assume there is a t,, TF,<t;<T%**, such that
{w(t)} =A,NA;.,. Proposition 5.13 implies that w cannot stay at A,NA,,; for
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a finite interval of time. It follows that there must be an integer m>% and
AT, A,NA,,;CcACA,, that appears in ¢,(w) three times. By Theorem 5.11,
this occurs with probability zero. We can show in a similar fashion that
{w®} #A,.1NA,, for T¥, < t<T**, a.s.. Therefore, we have,

Proposition 5.14.

Plw@®=A"WING, for all TH# (w)<t<T¥(w), i=1, -+, Ny, kEZ,]1=1,
where a,(w)=AP(w), -, AP, (w)). In particular,

PIT¥(w)=T4w), for all i=1, -, Ny, k=Z,]=1.

What is left is to show that the probability for the type (2-2) case is zero.
For xeﬁ\\’s)Gk, there is a sequence of tetrahedrons AL, A®, ---, A®, ... such
that

AP=T,, xZTAPNG,CAY\G,.,, h=Z,.

In order that w hits x twice, there must be an integer K such that g,(w)
contains A® twice for any £=K, and ox_,(w) contains A% -" only once. For
w=C let K(w) be the minimum integer, if exists, such that there exists a
sequence {A®}, k=K (w), K(w)+1, - satisfying

1) A®=T,, A**DCA®,

(2) o,(w) contains A® twice.
Put ¢,=P[K(w)=Fk]. For any A*~=T,, m=1,2, ---, let g be the probability
that there exists a sequence {A®’}, k=m, m+1, ---, satisfying (1) and (2) above
with A =A%*, under the condition that A* is contained in ¢,(w) twice. Note
that by Theorem 5.11, ¢ is independent of m and the choice of A*.

Classifying according to the four possibilities of A™*" and using inclusion-
exclusion principle, we have

q=y: {4x8y.q+22y5(4q—6¢°+4q°—q")} .

The only solution to this equation found in 0<¢<1 is ¢g=0. By Theorem 5.11,
q and ¢,’s are related as follows;

r=x5" x5 1(Xe, V1= — X7 X p1(Xe(1—q1), ¥o),
G =4x2ycq+6xcy29—g") .
This leads to ¢,=0, for all k=1, 2, ---. We thus have

Pltype (2-2) occurs]< f} q.=0.
k=1

Theorem 5.15. The stochastic process defined by P is almost surely self-
avoiding, that is,
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Plw(t,)#w(t), 0=t <t=T, (w)]=1.

Let w=C. The image of w, G(w) ?——Efw([o, )), is a subset in three-dimen-
sional Euclidean space. We next study the Hausdorff dimension of G(w).

In the case of the self-avoiding paths on (two-dimensional) Sierpinski gasket,
Theorem 1.1 of [6] was sufficient for the probability one determination of the
Hausdorff dimension of curve G(w) (Section 1.4 of [2]). Unfortunately it is
not sufficient for the present case. The problem is as follows.

From Proposition 5.12, it follows that

Cw)=N U A P— as.
k=0 deo ()

Each skeleton ¢,(w) is a sequence of tetrahedrons A of side length 27%*. Note
that from Theorem 5.11, there are two types of tetrahedrons in ¢,(w) for each
k, namely those that appear just once in ¢,(w) and those that appear twice,
both type appearing with positive probability. The family of tetrahedrons
\ﬁ)ak(w) resembles the “random constructions” of Mauldin and Williams, but
their theory can be applicable to the case when only one type of tetrahedrons
appear.

Here we will state a weaker result, a lower bound of the Hausdorff dimen-
sion of G(w). This can be derived by considering a following subgraph of
Gw):

def o
Gw=nN U A4,
k=0 dsa), )
where

ow)={A=0c,(w)|A appears just once in o,(w)}.

The Hausdorff dimension of G’(w) can be derived from Theorem 1.1 of [6], in
a similar way as in [2], and the value can be used as the lower bound to the
Hausdorff dimension of G(w).

Theorem 5.16.
P[Hausdorff dimension of w([0, co))=log (8xi+6x%+2x.)/log 2]=1.
Remark.
(1) 8xi+6x24+2x,=2.599 .-+ >2.
(2) We conjucture that with P-probability 1 the Hausdorff dimension of

w([0, ) is log A/log 2, where 1 is as in Proposition 4.1. This could be derived
from an extension of the theory of [6].

§6. Mean Square Deviations of Self-avoiding Paths

In this section, we return to the self-avoiding paths on the three-dimen-
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sional pre-Sierpinski gasket, but instead of considering a set of paths with
fixed end points, we now consider a set of paths with a fixed length. The
arguments are similar to those in [4].

Let W®={w=W,lw(0)=0}, and for each 2=Z,, let N(k) be the number
of elements in {wEW® | L(w)=~Fk}. The first step is to bound N (k) from above
and below.

Proposition 6.1. Let b be a positive constant, and for n=Z. and E=R, let

ho=bA""Vn, and g.(&)=(~/2rh,) " exp (—&/(2h%). If b is sufficiently large,
then

(Pi)O= | 2Pt —> (2

uniformly in ER as n—oo. Here, 1 is as in Proposition 4.1, p} as in Proposi-
tion 4.6. p as in Proposition 4.8, i.=(exp(—pf.), exp(—28.), exp(—28.),
exp(—38c), and B. is as in Corollary 3.6.

Proof. Let

¢u(t)=Sﬂexn(z'st)(pi‘(ﬁc)*gn)(s)dé, tER.
Then
Ou(O=21, (Be) Z1, n(Be—1A7 ") exp(— hi31%/2)
= g{™(it) exp (— hit*/2),

where 7, , is defined in eq. (3.8), and g™ is as in eq. (4.23) with =%, Note
that #,=0DNE,. Also note that from eq. (4.24), h™(it, it)=Z, (8c) " Z2, u(Be
—1A7").
Let
A={teC{3It=0, A<t 4%

Proposition 4.8 implies that sup,es! g(¢t)| <1 and sup.e4| h(it, i)} <1. Therefore
from Proposition 4.5 and Corollary 3.6 it follows that there exist a positive
number ¢ and a positive integer 7, such that for n=n, and {= 4,

| Z1 w(Be—iA7 "D =121, 2(B) I (1) <xc—e,
and
]ZZ, n(‘Bc"“iz—nt)l = ‘ ZZ, n(‘BC)h’(n)(it, lt)] <yc_"5 .

By Proposition 2.2, (x.—¢, y.—e¢, 0, 0)&D° and since D° is an open set in &,
there exists a positive number 0 such that (x.—e, y.—e¢, 8, d)=D°. Note that
V| Z; n(Be—1dA "D =1 Z,, 2(B)], j=1, 2, 3, 4, t=.1. From Corollary 3.6, there exists
an integer n,=n, such that |Z, .(B.—idA )| <0, =3, 4, n=n,. Therefore,
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iZ], n+m(,8c_i/z_nt)1 éth, m(xc—a: yc_e; 5; 5)7
7=1,2, n=zn, m=1l, tcA.

This together with Proposition 2.4 implies that there exist positive constants
C and 7 such that for n=n,, m=1, (= A,

6.1) | Zswem(Be—id ") =Cexp(—72™), J=L,2,
6.2) Zjn-mBetam)=Cexp(—r2™), j=1,2,34.

Now let n, be as above. Let n be a positive integer satisfying n >n,, and
assume that =R and |t|<[1, A»™*]. Let m be the integer part of
(log|t|/log A)-+1. Then m satisfies n—m=n, and 2 <A ™[¢|< 1. Then

| =21, 0(Be) M Z 1, n(Be— 127D
=Z1,2B) 1 21 n-mam(Be—1d " T4 "))
=Zya(Be)'Cexp (—r2™)
<Z1.2(Be) 7 Cexp (—rt] o828 %),

Since Z, .(Bc)—x. and ¢,(1)—g(it), n—oo, Proposition 4.7 and the dominated
convergence theorem implies,

[ o am 12900 — g1t —> 0, oo
On the other hand,

[/ Hon annan 20800~ g0 a

gZSln_no_lexp(——h,%tz/Z)dt
S2(hian o)t exp (—(ha A" ™) /2)
=2A"0"1p Pyt exp (—A 2 Epin/2) —> 0, n—ou
if b is sufficiently large. Hence for sufficiently large b,
Sﬂlfbn(t)_g(z.t)'dt——)(), n—oo ,
which implies the Proposition. This completes the proof. O

Proposition 6.2. There exist positive consiants C,, C,, and real constants
T1, Tz, SuCh that

Cik"exp (Bl)SN(R)SC, kT2 exp (B.k). k=1,

Proof. Let D:W®—Z, be a map defined by
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6.3 D(w)=min {n=0; w@=F, for all i=0.}.

Let
1\/1,7,: S eXp(—ﬁcL(w))r n€Z+ .

welv (9, Dcw) <

Classifying the summation in the definition of A/,.; in a similar way as in the
proof of the recursion relations in eq. (2.2), it follows that there exists a poly-
nomial f, of four variables with positive coefficients, such that

(6.4) My AZABNM,,  n=Z,.

By Corollary 3.6, Zn(ﬁc) converges as n—oo, hence there exist positive con-
stants ; and A;>1 such that

6.5) A< A, A%, nsZ, .
By definition, 22 -*< L(w) follows. Therefore,
exp(—Bek)N (B)< Mriog k/10g 2141 = A, AFARE #1052

which proves the upper bound in the Proposition.
To prove the lower bound, let b be a sufficiently large number satisfying
Proposition 6.1. Note that

(PHEI* )= guE—mPiENT).
Let k,=+/2log 2bn2 ™. Since

]gn(é—v)pﬁ(xc)(dn)égn(k71):(2nb2n)“’2 —0, n—oco.

SR\[;—kn,EHen

Proposition 6.1 implies that

sup!| o))~ | EE—MPEENAD)| 5 EZR)—>0, n—voo,

(E—kp. Srky

From Proposition 4.8, this implies that there exist an integer n,=1 and a posi-
tive constant & such that hy;'p¥(i)([E—Fk,, E+k, )=, n=n, E=[A7, A%].

Let k=Z,. Let n be the integer satisfying 2 "k=[1, 2]. For sufficiently
large k, n=n, and %k,<1—27' follows, hence p¥(&.)([A"k—2k,, A "k])=h,s.
Therefore,

Zl, n(,BC)hnsé 2 exp(——ﬁcL(w))

welW (M, k—2kp AN <L w) <k
= exp (Bc2k,A") exp (—fcR)N (k),

because wEW ™ with L(w)<k can be extended to a path in W® with L=k.
It follows that

N(R)ZZ 1 o(Be)ebA "n'? exp (—28:b(2 log 2)'/*n) exp (B.k).
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Since n<log k/log 4, this implies the lower bound in the Proposition. This
completes the proof. O

The next step is to give bounds for the numbers of short paths and long
paths. Let
Un.m.= > eXp(—‘BgL(lU)),

weWw 0, D(wysn, L(w)zAn+m/2

and
Vi a= by exp(—Bc.L(w)), n=Z,, mcZ,.

weW (03, D(wy=n+1, L(w)sAn-m

Proposition 6.3. There exist positive constants A,, C, and v such that

Un n<CAZ exp (—7A™?),
and
Van<CAbexp(—r2™), nsZ,., m=Z,.

A, may be taken to be the same as in eq. (6.5).

Proof. Put r=(@A—+/1)/5, and let
Sj o m= > exp(—B.L(w), n=Z,, mcZ,, j=1,2,3, 4.

weW}"’, Lw) 2" ™/2,

By a graphical consideration similar to that used to obtain eq. (6.4), one finds

- 2 4 0f1,5
Unor,n S FAZnBNUn.mort( 3 Sson gy (Zn(BD)Mo,

where f,(#) may be chosen to be the same as that in eq. (6.4), and f,(0,0,0,0)
=1. In particular, f, is a polynomial of four variables with positive coeffi-
cients. As in the derivation of eq. (6.5), there exists an integer n, such that
FAZ(B)< Ay, n=n,, where A, is as in eq. (6.5). Corollary 3.6 and eq. (6.5)
imply that there exists a positive constant C; such that

4
‘4E(n+I’Un+l.mSA;nUn. m.+1+c1 _Elsj,n,m’ n\énh 1";()-
j=

Note that since L(w)<3-42* it follows that U, ,=0 if 2»*™/%>3.4" which
holds if m=3n and n>4. We may assume that n,>>4. Hence

n [3/4>nl 4
~42 Un.mécl 2 Esj,n—k—l,m+k; ng4nl: mzo
k=0 j=1

On the other hand,
Sjinm=exp(—ri™?) 3 exp(—(Bc—A"")L(w))

wew}")

=exp(—rA™?)Z; ,(Bc—2A"").

Corollary 3.6 and Proposition 4.5 imply that there exists a constant C, such
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that
Z1.2(Be—A""M)=g{P()Z,2(B0)<Co, nEZ,,
and
Zoa(Be—2")=h™(1)Zs, 1(B)< Co, n=Z,.
Proposition 2.4 implies
Zan(Be—A SR w(Ze,n)Z1,n(Be—47")
SR(Ze,2)Ce
=2%¢,,Cs,

where %¢ ,=(X¢,n, X% 0, X%, X5 4) with x. ,=exp(—Bc+4""). Similar argument
holds also for Z,, ,(8.—2""). Therefore Z; .(8.—17"), /=1, 2, 3, 4, are bounded,
which, together with the above estimates on Az*U, . and S; . . implies the
bound for U, , in the Proposition.

To prove the bound for V, ., let

T m 2 exp(—B.L(w)),

wEW](-"H), Lw)<a®~™m

n=Z.,, mcZ, m=n, j=l1,2, 3,4,

and pat Tn,m=(T1,n,m., Tson.m» Ts.n.ms Ta.n.m). By a graphical consideration
similar to that used above, one finds

V= AT a)Mu—My=(f+(T 7 n)— 10, 0, 0, ODM, .
Note that if L(w)<A® ™ then 1—2™"L(w)=0. Therefore for j=1, 2, 3, 4,
Tinn< 3 exp(—(Bct+A™ " L(w)+1)=eZ; ,(8c+2™").

wew ®
This with eq. (6.2) and eq. (6.5) implies the bound for V, ,. This completes
the proof. O

The proof of Theorem 1.4 in Section 1 is as follows.

The assertion (1) is a direct consequence of Proposition 6.2.

To prove assertion (2), let K(k)=[log k/log 1], k=Z,. Note that AX"<
k< AK*  Then Proposition 6.3 implies that for m=Z. and k=Z, with
m<K(k),

#{w =W | L(w)=k, D(w)<K(k)—m}
<exp(Bek)Uxci>-m,2em
< Cexp (Bck+(K(k)—m)log A;—7A™)
=Cexp(Bce+(log A:/log 2) log k—yi™).

This and Proposition 6.2 imply that for sufficiently large a,
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P.LDw)<K (k)—a log log k]
< CCitexp ((log 4,/log 2—7,) log k—7(log k)02 %)
=C’exp(—(log £)").
Note that 221 ||w|| 2P, Therefore for sufficiently large «
Pi[lwl < (log k)="k"J exp ((log k)") —> 0, koo
Next note that for m=Z. and [=Z,, Proposition 6.3 implies
#{w=W®| L(w)=k, D(w)=K(k)+m-+I+2}
Zexp(Beh)V ke matsr mat
< Cexp (Bek)AF#+m*i+t exp (—y2m*)
< CAsexp(Bck+K (k) log As+mlog A,—y2m ) Afexp(—r2!Y).
Therefore,

P.IDw)=K (k)+(a/log 2) loglog #]

B[ D(w)=K (k)+I+(a/log 2)loglog k]

s

< C(CLA)™ S Abexp (—12+)
1=0

xexp((log A,/log A—7,) log & +(a log A,/log 2) loglog k2 —(7/8)(log &)°).
Therefore, for sufficiently large a
Pi[|wl>(log k)<k*/<] exp((log k)*) —> 0,  k—>oo.

This proves the assertion (2).

Let k=Z_ and s>0. Note that the reflection principle similar to the one
in the proof of the Lemma (4.2) in [4] holds also in the present case of three-
dimensional pre-Sierpinski gasket, which implies

B2 D8, [(l)| S22 ]S BPA[2P 8, (k)| 2220,
This with |w(L(w))] <|lw| <27 implies
(6.6) 271 EPR[2 0 S EPe fw(k) | *]< EP+[ w1 < EP#[2:P0]
Note next that
B[ w|*]=((log k)= k%) (1—P, [ ||| <(log &)~ "k*/<])..
With assertion (2) this implies

6.7 111;1 inf (log k)**k~*/*EP+[|w|*]>0.
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Similarly,
EPe[|w|* 1= ((log k)*k ey +E*Py[lw] =(log k)R ],
and assertion (2) imply

6.8) lim sup (log &)~k ~*/*EF[||w[*]<oo .

It is easy to see that eq. (6.6), eq. (6.7), and eq. (6.8) imply assertion (3). This
completes the proof. O

§ A. Recursion Relations

In this Appendix, we give the complete form of the function ® defined in
Proposition 2.1.

D(x, v, z, w)=x2+2x34+2x*+4x3y+6x2y*
+4xz+4xw+10x%2+8x*w+12x°z+8x*w+16x%yz
+8x*yw+12xy2z+422+-8zw +4w? +14x 22+ 16 xzw
+20x%224+16x%zw +12x yz2+62°+8z*w +8x2° ,

Dy(x, v, z, w)=x*+4x°y4+22y*
+8x%z+8x*w +24x% yz+24x* yw +20x22°+32x%zw
+8x*w?+436xyz*+48x yzw +16 x2° +24 x 2*w +8yz° +22°,

N

Dy(x, v, z, w)=x24+2x*w+2x°z+4x*w+4x2yz+8x2yw
+6xy2z+12xy*w+4x22+12xzw +8xw?+10x22°
+24x%zw +8x w46y 22 +24x yzw +12x y 2*
+8zw?+102°w +32° +4yz* +-24 x 22w +12x2° + 221,

D,(x, v, z, w)=x22+4x%zw +4x*w?+2x y22+8x yzw

+8xyw?+3y2 22 +12y%zw +4x2° +16x 22w

+16xzw?+4yz2+12y22w +32* +8z*w .

§ B. Derivative Matrices
We give the explicit forms of a 4x4 matrix B and a 9x9 matrix 0H®(a)
here. B is defined by

Bz(%(m, aa‘—fw)),
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Then an explicit calculation gives

b g p+s 2s

q r 2q 2q
“lo o %(p—g p—s|

00 0 0

B

with
p=8x34+6x%+2x.+12x%y.+12x.v%,
g=4x{+12x%y.,
r=4x3+488y3,
and

s=2x+4x2+4xi+4x2y, .

From this it is straightforward to obtain the eigenvalues,

b= b+ (PP A =2.7965 -
1
A= 7(1;—3):0.3861 T
A= % {p+7—/(p—r)+4g" =0.2537 .-
and
14:0.
Let
(9 9 i pems
VH®@)= (2 H (@), =, 52 H™ ()
Then
b q p+s 2s 0 0 0
g r 2 2¢ 0 0 0
0 0 %(p—s) p—s 0 0 0
0 0 0 0 0 0 0
aHO@=[0 0 0 0 p g pts

0 0 0 0 ¢ r 2q
000 0 0 0 0 409
0 0 0 0 0 0 0
9 4 g 4
5 16y¢ ¢ 9 5 16y: ¢

Kusuoka

3

’

0 0
0 0
0 0
0 0
2s 0
2q 0
-s 0
0 0

q 4xi456y}
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0H™(a) has double eigenvalues, 4=4;, 4;, 4;, 0 and a single eigenvalue, 4x3+

56 y3

=0.3276 ---. The left eigenvectors corresponding to 2 are (1, a, 2, 2, 0, 0,

0,0,0) and (0,0,0,0, 1, @, 2, 2, 0), with a=(A—p)/¢=0.1731 ---.
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