
Publ. RIMS, Kyoto Univ.
29 (1993), 511-533

General Integral Representation of the
Holomorphic Functions on the

Analytic Subvariety

By

Shu Jin CHEN*

§i. Introduction

Henkin[1] and Ramirez[2] obtained an integral representation of
holomorphic functions for strictly pseudoconvex domains in Cn. Range and
Siu[3] gave a generalization of Henkin-Ramirez's formula to the domains in
Cn with piecewise smooth strictly pseudoconvex boundaries Sommer[4] proved
an integral formula of Weil type for analytic polyhedra in C". Sergeev and
Henkint5] also obtained an integral representation for the strictly pseudoconvex
ployhedra. Stout[6] and Hatziafratis[7] have respectively proved integral
formulas for strictly pseudoconvex domains in codimension-one and
codimension-m complex submanifolds of Cn. The formula which was given
by Stout is valid not only for nonsingular hyper surf aces, but also for certain
subvarieties which may possess sufficiently restricted singular points. Hatzi-
afratis' work is based on the results of Stout.

In this paper we derive integral formulas which include all the above
([!]-[?]) integral formulas for holomorphic functions. The papers of Stout[6],
Hatziafratis[7] and the author[8] are most relevant references to this work.

§2. Definitions, Symbols and Terms

Definition 1 (Polyhedral domain[8]) Let O be a domain of holomorphy
in Cn. An open set Dcz c:O is called a polyhedral domain if there is a
neighbourhood Up of D and holomorphic mappings:
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Xx:UB-+Cm*, a = \,2,-,N, £ mx ̂  n,

and Z^ccC""*, a.= \,2, — ,N, such that

If P1,--',PN are differentiable functions in the neighbourhoods QI,---^N of
SDit'-tdDft respectively, and

then dDciXi^OjU'-O X^l(6N) and a point
belongs to D if and only if zeX~1(6OL) and P[Xx(z)]<Q for some
a:l^a^AT. D is called a non-degenerate polyhedral domain, if we can
choose the functions Xa and Pa so that

d(Pxl • XJ(z) A - A rf(Pa, • Za,)(*) / 0.

Whenever Pxl[Xxl(z)] = -=Pxl[Xxl(z)] = Q, for all l4«i<
In this paper we only consider non-degenerate polyhedral domains.
A nondegenerate pohyhedral domain will be called a strictly pseudoconvex

polyhedron if Pa(a=l,2,--,A7) are strictly plurisubharmonic functions; and
called a holomorphic polyhedron (including Weil polyhedron) if the mapping
Pa(a = l ,2,--- ,AO are pluriharmonic functions (or usual harmonic functions
when n = \)y i.e. Pa(oc = l,2,---,JV) are twice continuously differentiate and
d2P(t/dzjdzk = Q, j,k = l,2,--,n. There exist continuously differentiable sup-
port functions for the nondegenerate polyhedral domains, support functions
holomorphic in z for strictly pseudoconvex polyhedrons, and holomorphic
support functions for the holomorphic polyhedron.

Definition 2 (Space with slits[9]) A compact metric space R is called
a slit space or a space with slit <S if <S is a nonempty closed subsed of R
each point of which is an accumulation point of R — S and R — S is
homeomorphic to a topological product Xx Y, where X is a connected
m-dimensional differential manifold of class C2, called the base space, and
Y is a compact set, called the side space. The homeomorphism
(p:Xx Y^-R — S is called the coordinate function.

Example. The closure R of any bounded domain in a ^-dimensional
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Euclidean space E" can be considered a slit space with the boundary as its

slit. Y is then a set consisting of a single point.

Definition 3* A sequence of spaces Rl^R2^---^>Rk is called a chain

of slit spaces, if each Rv is a slit space with Rv+i as its slit (v = !,•••, & — 1).

Firstly, we consider the following two types of bounded domains DaO,

in C":
(I) Its boundary dD consists of a chain of slit spaces, and this chain

can be written as:

where a(/~^ is the slit of ej(/~1}, a(i + X) is the slit of d(0, (7(/~1} = \J a<f-V,
Jl<-<jv

o*fi~.}l is of real dimension 2n — f$ — v + \\ a(l^= (J O"k^?..ki, and (7^!..k| is of

real dimension 2n — i. cr^~1) is called the distinguished boundary of D.

Example. The closed bicylinder R = {(zl,z2)'. l # i l ^ l » tazl^l} can De

considered a space with the boundary Ri = { ( z ^ J z 2 ) ' |#i| = l, l^i l^^ an<^

l^ i l^ l , 1^2! — ̂ } as s^t- Moreover the boundary Rl can also be considered

a space with slit J^ — {(^i ̂ 2)'- l^il = U I22l = ^}-

<II) Its boundary 5D consists of a chain of slit spaces, and this chain

can be written as:

SD = a ( 1 )z>.. .z><j<'>iDff<'>:^

where a^ is slit of a^, and the dimensions of <j^ may be at least one

dimension greater than the dimensions of (7(/?). cr^-1) is also called the

distinguished boundary of D.

Example. The closure of all invariant subspaces of the classical

domain*^ consists of a chain of slit spaces mentioned above.

Secondly, if F1,---,Fm are holomorphic functions in the neighbourhood

Up of D, and set

We asume that Z(Fl9--',Fm) meet dD transversally. We set D = Z(F1 , • • • ,Fm)

, and consider
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where <?«" = Z(F1,...,JFJ[><(» and <rf -1> =
When ra = 0, <F> and <IF) coincide with <I> and <II) respectively.

According to Hefer's theorem, we have

n

Fl(Q-Fl(z)= X (Cj-*j)VC>*)>/=1>2» "•,»*, where htj are holomorphic
j = i

functions on a neighbourhood of Dx D.

§3. Some Lemmas

In what follows let D be a nondegenerate polyhedral domain.

Lemma 1. Let Ml be a continuously differentiate support function

for D, then we have

on -

Proo/. SinceM1=M1(U)= (Cj-^^i/C^), i.e. (^ - ^ = 1 ,
j=1 j=i MI

n _

we obtain ]T (^. — zj)d^(Nlj/M1) = 0. Thus we have the following determi-
j = i

nant of
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1 0 - 0 Fk+l

/Zi i ••' HL\ hir+ii Url I '•• Url

Ml \Mj \M>,
= 0, (2)

, ,In •" "fcn k + 1 1it JT in nn I I T ^ I I LI Tt ir
Ml \Mi

on Z(Fli-"yFk) — Z(Fk+l). Taking it into account that F1,---,Fm are the

holomorphic functions and drdr(N^;/Ml) = 0J by (2) we have

Thus we obtain (1).

Since

M, Ml Ml

we can apply the properties of the determinant and write (1) as:

det(«) (JVi.Ai.-.AtA+iAJVi,-,^,)

det(»> (^i.Ai.-.MtNi.-AJV,). (3)

Especially when /e = 0, we have
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on D-Z(FJ.

Lemma 2, If

- _ (*-*-!)!

A

where

|Vf+1(Ola= I

(especially #0(0 = ̂  ^(O* ̂ (0 = ^Ci A ••• A JQ, then we have

! = ( — - B f (0 (5)

on .

. When * = 0, as |Vf(0|2=
j= i

, so (5) may be written as

T/ze proof of Lemma 2[7]. First of all, Notice that |Vfc+1(0|^0 implies
. Since we can assume that
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where ^QEZ(Flt"-yFk)i according to the implicit function theorem, restricted

to Z(Fly--,Fk) locally at a point £0, we have

such that

therefore, the following equations are true,

For a fixed sequence 1 ̂ ^ < • • • <jk ^ w, let us assume that

Then it follows from (*) that

1

where 5t =(- l)«( fc-0 (_1yi + i + -+j fc(_

So we have

A dCi = dCi A •--;!-">«••• ArfCB-fcAdC»-fc+i A

A

where 52 = (-l)(fc-""(-iyi + -+

From the above we obtain
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(**) (_iyi+-+A A rfc,-

where d = (-\)k{"-k\-

It follows from (**) that

1

Using the above expression, we obtain

2|vr+1(C)l

1 «^fc

1-1 '

Lemma 3. Let Dk = Z(F1,--,Fk)f)JD, D0=D, Dm = D and Mt a

continuously differentiable support function. If f ( z ) is a holomorphic

function on I)fc and |V£+1(()I/0, then
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= ck I ^^t^N^h^-A^N^-^N,) ABftO, (6)
JdDk

 M\

where ck = (-l)h(n+l\-l)k(k+1}/2/(n-k)\ (2ni)n~k.

Proof. Let (8Dk)E = {^EdDk:\Fk+1(^)\>G}. By lemma 1 and lemma 2,
taking account that ck+i =( — l)n+k(n — k)2nick, we obtain

^*\n)(Ni>his

k + 1

f rf ^[ T^kTi
J|t|=e J{Ce5Dk:Fk4.1(0 = t} ^Wl

(7)

Let 50 = 3Dfc+1 = {(e5Dfe:Ffc+1(C) = 0} and v(Q be the normal direction

at £es0. We consider the smooth mapping /:(£>?)-*C + 'l:v(0> ^o x {Kl^8}"*"
F0 = {Ce5Dfc:Ffc+1(0 = T}||T|<6. Since 50 is compact and the Jacobian J/|^>0)^0
for every (C,0) in j^2"-2^-^ there is the inverse /"*. Here e is chosen to

be sufficiently small. From the above, we conclude that {(e3Dfc:Ffe+1(() = T}
is (for teC, |T|<£ and s a small positive number) diffeomorphic to dDk+i.

When e-»0, the left side and right side of (7) tend to the right side
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and left side of (6) respectively.

Corollary 1. Let /(#) be a holomorphic function on Dl9 then when

*eD l f and |V{(C)|^0 on 8Dl3 we have

etw(J^ (8)

Proof. Applying remark for lemma 2 and (6), we have

dDo

By Canchy-Fantappie formula, the right-hand side of (9) equals to /(#),
(8) is obtained.

Remark. In fact, representation (8) is more evident than that in [6].

Corollary 2. Let/(#) be a holomorphic function on D, then when

and |V£(Q|/0 on 35, we have

^n^ (10)

Proof. By lemma 3 and its corollary 1, we obtain (10).

Lemma 4. Let 7$= J] (f ,— *j)S({J(f ,*) ̂ O(C^ar) for some continuous

functions 5^=1,2) on D, and let T,= (C7— ^,/C,»)(/=l,2,-»,w-A-
j= i

be continuously differentiable support functions for D. Then we have
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1 , I ~U T 73 / 1\ 3 f~n— K— Ix I /4 -« \= det(»)^./zi'--'^,5c(—),-•-,5C(^-—) I (11)

on Dk.

n

Proof. Since £ ((,- - ^-)5V/T, = 1, then

M _

Since

JL /^> A2A
0, (13)

and on Dfc

thus by (12)-(14), we obtain

on Dk, i.e. we have (11) on Dk.

n

Lemma 5. Let Tt= ^ (£,- — Zj)Su(^z)9l = 0,1,2,- --.n — k — 1, be continu-
j= i

ous differentiable support functions for D, then

n-fc-1

(15)
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is the exact differential form of d on Dk. Here St and Tj are of the same
properties as St and Tt respectively.

Proof. Since

n-k-l

(16)

by lemma 4, replacing ^/T*/ and SifTt by SO/TQ in two determiants of the
right-hand side of (16), we can conclude that (15) is a exact differential form
of 3.

Corollary, With the identical assumptions of lemma 5,

Q Q
0 7 ; J/ 1\ %( °n-fc-l \

n-k-l

is a exact differential form of 3. Here Sly"-,Sn-k,l and Tl,--,Tn_k_l are
of the same properties as S1 , - -- ,SB_k_1 and T^-'-jT^.^.! respectively.

§4. Main Theorems

Let {C/jJJLj be a finite open covering of an open neighbourhood U of
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dD, and let XfU^R(\^j^N) be C1 functions, such that

(i) D(}U8D = {zeU: for l^j^N either z$Uj or jr/*)<0},

(ii) for l<f! , <--<il^N, dX^-^dX^ are linearly independent over R at

every point of Q C7fv.
v = l

For every ordered subset {/i,--J0} of {1, ••-,.#}, define

<?..;„ = {* s a*> H f/, A<*) = - = *,.<*) = 0}
a = l

and choose the orientation on 0*$ .• such that the orientation is skewJi "JO

symmetric in Oij'"J0) anc^ the following equations hold when D is given

the natural orientation:

8D= u «yv»= u <).,8,̂ <?.,,= U <.w.

°*n-je> 3&> °(6)> 38h»-J9 is defined as above, and it is easy to verify the
following (cf. [3]):

d(£(- l)ea(6) x A<0
0)) =^(0) x A('" ̂ -^ x Ao0)> (18)

® 0

where ® = {/i,-",.;0} is a ordered subset of {l,'~,N}, ji<-" <je
m,

1:|xj>0, 5>j=l}, (19)
7 = 0

.+/ijo = l,Alf> = (l,Or (20)

= U Aft-jJ. (21)
h<"-<je > h< — <je

Theorem 1. Let D be a nondegenesate polyhedral domain in Cn

whose boundary can be written as a chain of slit spaces;

(7(1)I3(J(2)^..-ID(7W. (22)
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Assume that Z(F1 , • • • ,Fm) meets dD transversally yielding a chain of slit spaces;

dD = a(l^d(2)^'"^d(p\ (23)

and that |V£(()MO on dD. Then

(w)(0,^,...X,%Q,---,%0) A B£(0 if

(24)

and

/(*) = '*, f •^^^w(N0,hl,-,hm,d^0,-,d^°) A B£(0 i f /*=l ,
Jafl-^o

(25)

for any holomorphic function on D and zeD. Here

where M0= (Cp-arp)Nj(C,a:)^0 (when C^ar), M,-= (fp - zp)NJp(M * 0
P = I P = I

(when £=/=%), i.e. Af0, Afy are the continuously differentiable support functions;

and Qp=ZnjNJp(
je®

Proof. Since (^-z^Q^z^l on A<?>, then 1^-
j= i j= i

CJ^JM) = 0- According to Hefer's theorem, we have Q = Fl(£) — Fl(z) =
_

z) on dDxD, I =!,•••, m. By (***) we have 3^(0 = 0. As

a result we obtain

-)^)ar,0,.--,%0) A ££(0]

1)...^m)%0).-,%0) A BJ(0 = 0 (26)

on a(0) x A(Q}. Using Stokes' theorem and taking account of (18) and (26),

we obtain
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A

A

JV° AT0 AT0

/(Odet(n)(— ,/h,...,fcm,ac-(-r ),-., flj(_)) A
' '

= *„ I
Jd

A Bftf). (27)

Applying corollary 2 of lemma 3 to the right-hand side of (27), we obtain (24).

Remark. Obviously, (24) includes the generalizations of Range and

Siu's formula^, and of Sergeev and Henkin's formula^ on the analytic

subvariety.

Theorem 2. Let/(#) be a holomorphic function on D, then, for

we have

(nhlt...,hm,d,---,d,(^)) A ̂ (C). (28)
dB ^0 ^1 ^ n - m - 1

Remark 1. When m = 0, cm = l/w! (2ni)n, BF
0(& = w!cu(0 in (28), and (28)

can be rewritten as:

A oKC). (29)

This is the generalized Cauchy-Fantappie formula for the bounded domains
in Cn. In fact, let S1 = ••• = *S'M_m_1 = *Sr

0, (29) is the Cauchy-Fantappie
formula.

Remark 2. If S1 = - = S B _ m _ 1 = S0, then Tt = ••• = T n _ w _ 1 = T0. Thus
(28) is the generalization of the generalized Cauchy-Fantappie formula on
analytic subvarieties.

Remark 3 . For fixed zeD, we consider the following surface in C2n ~ 2m
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We make the following assumptions: Wj = w££,z), (£,#) e 3/5 x Z5, j =!,•••,n,
n

which belong to C1(3D) in £, and the condition ]T (£j — Zj)Wj = l is

fulfilled. C0 denotes a cycle on Mz and cycle C0 represents a homology

class f)e Jf 2w-2m-iC^z)- Then, for any holomorphic function/(#) in D and

any cycle Cef), we have

eW^L-.^.^.-^^P^)) A B£(0. (30)

Proof of theorem 2. According to the corollary of lemma 5, we have

f—ihi*'-.hm.dr(—),-",3r( )) A Bm(C)

.....^)) A
* o ^ o

A
o io

A

By further applying corollary 2 of lemma 3, we obtain (28).

Theorem 3. Let D be a bounded domain with piecewise smooth

boundaries in C", the boundary dD of D consisting of a chain of slit spaces

Assume that (7^ be a 2n — /i dimensional boundary chain, i.e. there is a

dimensional chain TO, such that dtQ = a^\ Correspondingly

and when Ce3i5, |V^(OI/0 and

, 3(Nl
f,.~,N})

rank-— - _^ w _ m _j8 . (31)



GENERAL INTEGRAL REPRESENTATION 527

Then, for a holomorphic function f ( z ) on D we have

t^O^,..^,3&Q,...,a&0) A Bj(0, /or

(32)

Proof. Let

c = 5(r0 x Aft - '>) = <r(*> x A<* - » + £OTO x

c = d(im x A(^1)) = <7W x AW-^ + CT,

where e0)e= +1. Thus on A'^"1', we have

det(B)(0, A! , • • • ,hm,d^Q, • • • ,d^Q)

= Xo(C,A») + Xi(C,M)+-+X/i-i(f,A«), (33)

where Xr(C>AO are differential forms, the degrees of <^0 and d£j are r and

w — m — r— 1 respectively. By (31), #r(C>AO = 0> if r<j8 — 1, and by the degree

reasons, we have

[
Thus

r A F -

Therefore we obtain

L
= f

J
A B£(C). (34)

On the other hand, let C\ = 5(5 x A(^) = dDx A(
0

0). Since C and C^ are the

cycles of real dimension 2n — 2m— 1, and
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4det(n)(Q^,..^m,%0,.. •,%£>) A BJ(01

= detM(d?/tQ,hl,-,hm,dfrQ,--,dfrQ) A

on 3.D = <?(1), then

f
J

= f /[Odet0l)(0,A1,...,AI11>5&0>...,55lO) A B£
Jer

= f
J d

= f
J5

A BftO. (35)

Applying (34), (35) and (25), we obtain (32).

Theorem 4. Let D be a nondegenerate polyhedral domain in Cw, such
that its boundary 8D consists of a chain of slit spaces

dD = <> ^ <7<2°' = • • • => fli°> 3 <j 1=> oi«2 = > . . • = » of>,

where 0k+i,"m,G^ are the boundary surfaces of polyhedral type which is
n

defined by pluriharmonic functions. Let $^(£,2:)= ^ (£p — Zp)(pjvp(£,z) be
P = I

the holomorphic support functions on (7^ + j and HjDp = (pjvp/<$jv. Let

be the corresponding chain of slits of dD and assume that |V£(OMO on

dD. Then for a holomorphic function f ( z ) in jD we have

f fc + 1

z /(OK-i)^1-^^^,...,^,^,,.-,
/e J f f t ° > x A r

 p=l
0^H-m) J0

 Je-fc

.-.^^^^^.-^^) A 5£(C), for^e^ (36)
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where C£ = (-ir(-l)

Proof. It is easy to verify the following

3( Z (-D940
8

)xA0/8_t)= Z dS
Je Je

Z rf(.0) xA (17}Vji-jk+i X£*0- \J')

Since

i o .•• o i ... i o ... o

Qn hm ... hmn Hhn

on (i^ x AOJ0_k(& + l <0^AO, then

fc+i
v (_ i ) f c + l

P = I

Then

(38)

It is from (37), (38) and Stokes' theorem, that

r k+i
c° y /(o y ( — i ) f c + :

0) A

k+l

Z(-
P = l

=c° y f— °m /2 I
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[H-\,...,H,Q,dQ,-,dQ) A l

f
= C° I

j i < - - - < J k + i J ^ O )

A B£(t). (39)

Since

1 0 ••• 0 1 ..- 1 G ••• G

= 0

N°
j± hln - ^mn Hhm - fl^ W - d?N

(40)

where G= f (tj-ZjtyNj, then

G A det,./*!, • • • .A,,^,,''' ,HA^V°,

(41)

On the other hand, we have

AT0

.̂-^H^
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<,o<*ir-̂ ,Ĥ -̂ [HĴ

(42)

on dD.

Moreover, since 3<r^?..[i/p]..._/fc+1 = lJ( —l) k + 1~po!^?..i/fc+1, and
JP

i-t = /? , l\i 2-r '

then by Stokes' formula and (41), (42), we obtain

r
I

J i < - - < j k + i J# P =i
+ 1

^v° _.
A

i fc+i f
=c°--—z z z

(/e + l)! p=i </ l f... f[ i/p],... fjk+1 jp j£to)

AT0

,...,HJ.k+1,—^
M"0-

1 fc+1 f
= C- TITT^ S I(«+lj!p=l ji,-,Up],-Jfc + i JffO)

AT0

Mf
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Using (43) repeatedly we obtain

f
Z

Ji< — <jk-n J3^°>

k + i
C°m

p=l

r
= C° Z

jl Jff

Applying (25) to the right-hand side of (44), we have

f
2:

l < " - < j k + l J^

fc+1

JV°

(44)

O. (45)

(39) and (45) imply (36).

Remark. When k = n — m — 1, (45) can be rewritten as:

(46)
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Let D be a holomorphic polyhedron. Then (45) and (46) are
generalizations183 of the integral representation formulas of holomorphic
functions for analytic polyhedrons[4] in analytic subvarieties (the generalization
of Weil's integral representation in analytic subvarieties[73 is also included).
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