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The objective of the article is to show that the orbit space of a finite
reflection group acting on the complexification of the real vector space carries
naturally a complex vector space structure Q together with a nondegenerate
bilinear form J on it defined over the real number field. For details of the
results, one is referred to Theorems I, II and III in the introduction. This
structure on the invariants is called the flat structure.

Originaly, the flat structure (published later in [7], Oda [24]) is defined
on the deformation space of an isolated hypersurface singularity via
Gauss-Manin connection and higher residue theory in general. On the other
hand, the deformation of a simple singularity is described in terms of a
simple Lie algebra. Namely, the deformation space is given by the quotient
space of the Cartan algebra by the action of the Weyl group (Brieskorn [2],
Slodowy [33]). This suggests that the flat structure is described in terms
only of the Weyl group in that case. Actually, such a description is achieved
in the present article so that the above mentioned flat structure on the
quotient space of a finite reflection group is obtained. The key fact in the
construction of the flat metric is the regularity of the eigenvector for exp

(2n*f^\/K) of a Coxeter element with the Coxeter % = h (cf. [6], [15], [34]).
Since the present article was written (cf. the Footnote *)), there have

been several developments in the study of the flat structure and its

generalization, as will be summarized below. Nevertheless the present article
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gives a systematic definition and a complete proof of the existence of the
flat structure for all finite reflection groups (including Weyl groups of simple
Lie algebras) which has not yet been covered by other articles. On the
other hand, the subject gets a new impetus from conformal field theory in
physics. Thus it seems to be of interest to publish this in the original form
without any changes, even though it missed a conceptual explanation at that
time.

The rest of this new introduction is devoted to give a brief review on
some subsequent developments. For more results on related subjects, the
readers are referred to the bibliographs in the papers quoted below. We
shall distinguish between the flat structures defined on the invariants of
reflection groups and those defined on the deformation spaces by calling
them flat invariants and flat coordinates respectively.

1. Definition of flat structure.

i) The definition of the flat structure on the deformation space of an
isolated singularity is given in [7], [24] (cf. [21], [27], [28] for the higher
residue theory).

ii) For a general reflection group, there is no definition of flat invariants,
for which a notion of a Coxeter element is necessary. At this moment, the
notion of flat invariants is established for finite reflection group in [9] and
the present paper, and for extended affine Weyl groups in [29].

2. Simple singularity and finite reflection group.

i) The flat coordinates for simple singularities from the view point of

the Gauss-Manin connection are carried out by several authors:

a) The ^4^-type singularities can be treated simultaneously by a use of

generating function [18]. For the singularities of type E6, E7 and E8i it is

done in [37], [38] and [19].

b) A systematic determination of the flat coordinates for all simple

singularities by a use of ^-expansion is carried out in [22].

c) Another concrete and detailed description of their Gauss-Manin

system for the types Af and Df is given in [13].

d) The subspace, corresponding to a folding of a Dynkin graph, in

the deformation space of a simple singularity is linear with respect to the

flat structure [40].

e) The theory of Brieskorn-Slodowy is reconstructed by using geometry
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of momentum maps, which leads to a construction of a primitive form [36].
ii) The explicit case by case determination of the flat invariants for all

finite reflection groups except for the types E7 and E8 is done in [9]. The
flat invariants for the group E7 are given in [39].

3. Simple elliptic singularity and extended affine root system.

i) Simple elliptic singularities are introduced in [26] and their primitive
forms are given in [7]. Tables of the flat coordinates for simple elliptic
singularities are in [20], [23].

ii) For a root system belonging to a positive semidefinite Killing form
of 2-dimensional radical, called an extended affine root system, one has a
Coxeter element with regular eigenvectors, which makes it possible to
construct flat metric on the invariants and to introduce the flat invariants
[29]. The modular property of the flat invariants is studied in [31] and the
flat invariants are being described by the Jacobi forms [32] (cf. [35]). A
survey is given in [30].

4. Unitary reflection group.

The concept of the flat structure can be generalized to a certain class
of unitary reflection groups [25].

5. Deformation of conformal field theory.

In the topological conformal field theory, one finds the same mathematical
structure as the theory of flat coordinates and higher residue pairings ([16],
[17] and [14]).

Introduction

Let V be a real /-dimensional vector space and W be a finite group of
linear transformations of V generated by reflexions. Suppose that the action
of W on V is irreducible. The group W acts also on the symmetric l?-algebra
*S of V. Let us denote by R = SW the subalgebra of S of all invariants of
S. Then R is generated by / algebraically independent homogeneous
elements whose degrees m1 + l , > - - ,m ( f +l are described by the eigenvalues of
a Coxeter transformation. This fact was shown by Coxeter using the
classification of finite reflexion groups. Then Chevalley, Coleman and
Steinberg gave other proofs without using the classification (see Bourbaki
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[1] Chap. 5).

Let us denote by Der^ the jR-module of all ^-derivations of R. In

this note in §5 (5.4), we introduce canonically a non-degenerate jR-bilinear

form,

J: Der^ x DerR -» R.

Then the main purpose of this note is to show the following theorems

(see (10.5), (10.6) and (10.7)).

Theorem I. There exist an £ -dimensional R-vector subspace OczDer^

such that

1) O has a direct sum decomposition O=0O(WI|+1) such that any element
o/Q(m' + 1)

 2-5 homogeneous of degree — (mr-+ 1).

2) O generates DerK: i.e. DerR~Q(g)RR.

3) O is integrable: i.e. [8l,d2'\ = Q for any 6iy (52eO.

4) The restriction of J on OxO takes constant values in R. Hence we

get a non-degenerate R-bilinear form,

J: OxQ -» R.

Theorem II. Conversely to the theorem /, if a vector subspace fl' c DerR

satisfies conditions 2)', 3)' and 4)' (replace O by Q' in the conditions 2), 3) and

4) of the theorem /), then Q' = Q.

Theorem III. Put Q*: = {Pe/Z+; SPeR for

Then, 1) ft* is naturally a dual vector space of O.

2) The algebra R is generated by Q*.

Corollary. Spec R has a structure of a vector space O with an inner

product J .

In a previous paper [9], we studied such vector space Q,*c:R of the

above theorem. We called an J?-basis of O*, a flat generator system of R

and have shown the existence of a flat generator system for each type (except

E-j and E8) of groups separately. (See Theorem (1.14) and Definition

(1.15) of the note.) In this note, we give a systematic (including E7 and

Es) proof of existence of O by the use of a connection with logarithmic pole [8].

Originally this note was planned as a part of the theory of primitive

integrals [7], for the application to the study of universal unfolding of simple
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singularities (see Brieskorn [2]), from where the problem of this note has
started. Since the things treated in this note can be read relatively
independently of the whole theory, we publish this part separately. Never-
theless the whole idea of constructions are due to the theory of primitive
integrals, such as the use of a primitive vector field Dw and the reduction
of the coefficient ring from R to T: = ker(D(ft)) and the reductions of DerR

to ^ and QR to IF in § 2, computation of the multiplicity of the discriminant
A2 = dim V in § 3, use of DerR(log A2), Q^(log A2) and several dualities between
them by the use of / and /* in § 4, use of v and w and the comparison of
/and /by J* = jD(fl)f* and J = T(w(-),-) in §5 and §6, the use of Euler operator
E in §7, study of a torsion free connection V with VI* = 0 in §8, study of
a torsion free connection V/ with V/J* = 0 and the integrability of V/ in § 9
and the introduction of a linear space O:=ker V/in §10.

It must be noted that our construction of O, A2, J from Wy V, I is
just the reversed direction of the construction of Poincare duality of vanishing
cycles of simple singularities from the duality of certain local cohomology
groups (for detail see §11 and [7]).

Contents
§ 1. Basic notations and results on finite reflexion groups
§2. D(h) and the reduction of jR to T, Der^ to 9 and Q.R to ^
§3. The multiplicity of A2 of R
§4. Der^log A2), OR(log A2) and dualities by I and /*
§5. Bilinear form J: DerR x DerK -> jR
§6. Graduation of DerR and QK by the order of Pe, v and w
§7. The Euler operator E
§8. Torsion free connection V with VI* = 0
§9. Torsion free connection V/with V/J* = 0
§10. Space Q=©Q(m''+1)

§11. Concluding remarks

§1. Basic Notations and Results on Finite Reflexion Groups

In this paragraph we repeat basic notations and results on the invariant
rings of finite reflexion groups from N. Bourbaki [1] Chap. 5.

i) Let V be a real /-dimensional vector space and let W be a finite subgroup
of GL(V) generated by reflexions. Then the isomorphism type of W is
given by one of the following symbols: A£, B£, D^, E6, E7, E8, F4, G2, H3,
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H4,
ii) Let S be the symmetric algebra of V with the natural graded ring

00

structure, S= @ S(d\ (i.e. S is an J?-algebra generated by V.) An element
d=0

P of S(d) is called homogeneous of degree d.

in) The action of W on V is naturally extended to the action on the algebra
S. We denote by R the subring Sw of S of all PF-invariant elements of

00

S. R inherits a graded ring structure R= ® R(d) from S, by R(d): = RnS(d\

d=0,l,2,-». Put R+= ©
d>0

iv) As an ^-module, S is jR-free of rank $W.

v) As an J?-algebra, R is generated by / homogeneous elements
Plf"-yP^ES. Pl9-'9Pf are algebraically independent over R. Thus the
invariant ring R is isomorphic to a polynomial algebra ^[P^-'-jPJ.

Note that this description of R is not canonical, since the generator
system Pi,-"1Pf is not canonically determined.
vi) Let Z be the set of reflexions in W which is not equal to 1.

Then there is an equality

£ (deg. P,-1) = *Z.
i = l

vii) A reflexion g e Z is described by g(x) = x +fg(x)eg xeV, for some egeV

and fg e V*. Put A: = \[eg E S.
»eZ

viii) An element PeS is called anti-invariant, if g(P) = (det g)~1P for
geW. Then

a) The set of all anti-invariants of W coincides with AjR.
b) By a choice of a linear basis X l 9 - ~ 9 X f of V9 we identify S with a

polynomial ring R[Xl9-"9X^]. Let Pi,-"9P^ be a system of homogeneous

generators of the algebra R. Then the Jacobian det. — is of the
\_d(Xl9'"9X^)_\

form A A for some constant A el?*.
ix) Let ceW be a Coxeter transformation whose eigenvalues are

exp(27CN/—1 mt/h)y i =!,•••/, where h is the Coxeter number of W and

Then by a suitable change of the order,
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Hence, #Z= £ m,
i = l

x) Let Je.R be a PF-invariant form of degree 2, which is unique up to a

constant factor. By a suitable choice of a sign, / is a positive definite

symmetric bilinear form

I: V*xV*-+R,

where V* is the J?-dual space of V. Thus / induces an isomorphism

F* ~ V. By this identification, one gets a PF-invariant symmetric positive

definite bilinear form /*: VxV-+R.

§2. D(h) and the Reduction of R to T, DerR to ^ and O^ to ^

(2.1) Definition. We define following graded S or R modules.

(S,S): 6(PQ) = (SP)Q + P(6Q) for all P,0eS}

Os : = Homs(Ders,S).
P A

Then Dere and Oe are free S-modules of rank / with basis - . • • • , -
5 5 d X i d X <

and dual basis dXi^-"ydX^.

An element (5eDers is homogeneous of degree d, if
00

^ = 0,1, 2 , - - - . Hence we get graded AS-module structures, Ders= 0
d=-l

(Ders)<
d) and Qs= 0 (Qs)<

d>.

ii) Der^—^eHom^ (R,R): d(PQ) = (dP)Q + P(SQ) for
QK : = HomR(DerR,R).

A P
Then DerR and QR are free ^-modules of rank £ with basis - , - • • , -

R R BP, dP,
and dual basis dP^-"^dPf.

An element (SeDer^ is homogeneous of degree d, if <5jR(fc)cijR(fc+d),
OO

e = 0,2,--- . Hence we get graded jR-module structures DerR= 0 (DerR)(d)

d=2

(2.2) Let us choose and fix a generator D(fl) of the one dimensional vector

space (DerR)(~ft) (cf. §1 ix)), which is spanned by .
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Definition.

T := {Pel?: D(fl)P = 0}

3F := {coeOR: LD<h)O) = 0, where LD(h) is the Lie derivative of

^ := {(5eDerK: [D(h\ e5] = 0, where [ , ] is the bracket product}

Here, one recalls that the Lie derivative and the bracket product are related
by the relation: <Lda),S'> = 8<a>,df> — <co,[8,8f]> for any 8, ^'eDer^ and
coeQfl with respect to the natural pairing <*,*> between Der^ and £1R.

(2.3) One may check easily the following assertions.

i) T is a polynomial R-algebra generated by homogeneous elements, Pi , • • • ,P^ _ i of

(1) v). Hence R is a polynomial ring T[P^] with one indeterminate over T.

ii) OF is a graded free T-module of rank /, such that we have an isomorphism

& ®r R~flR.
We have an inclusion d^ c ^ A &> . ('.' As a T-module, ^ is generated

by dP^dPt.)

iii) ^ is a graded free T-module of rank /, such that we have an isomorphism

T •£*- — *

The module & is closed under the bracket product. ('.' As a T-module,

d .
^ is generated by

iv) The canonical pairing DerK x QR -> R induces a T-bilinear form 3F x @ -> T,

50 that each of 3F and *§ is a dual T-module of the other.

(2.4) Let us introduce an increasing sequence {<^(m* }i=i,...^ of T-

submodules of 3F, and a decreasing sequence {^(mi + 1)}i=i,...,<? of T-submodules
of *& as follows.

Definition.

•\ ^Z'C'W; "I* 1) . \T T* J~D * 1 fi) ^^ i ,= ^ 1 ar, t=iy'-,£.
PeR

degP < m,- + 1
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(2.5) Let Plt'~,Pf be a system of homogeneous generators of the algebra
R of (1) v). Then we have presentations,

0 T dPt
m, + 1 < d

so that we have the following assertion.

i) 0

is an increasing sequence of graded free T-submodules of 3F such that
jzrCmf + 1)^^+1) ^ fl 7^^ mojM/e 0/ raw^ egMfl/ to #{!<&</: mj<mk<mi}

ii) ^ = ̂ (2>g . . .g^< m < + 1 > j- .-g »WgO

M « decreasing sequence of graded free T-submodules of & such that
#<mj+i) /^<m l+i) ^ fl T-/r6e mo^M/^ o/ rank equal to #{!<&<*?: mj<mk<mi}.

(2.6) i) TTze pairing 3F x 3? -> T induces zero homomorphisms ,

) x ̂ (d2) -* 0 /or rf!<rf2.

ii) For de{ml + l , - - - ,m^ + 1}, /e£ M^ denote by d+ the smallest element of

{ml + l" ' ,m^-fl, oo}n{^': ^;>J} anJ denote by d~ the largest element of

iii) ^4s T-modules we have the following identifications,

The proofs of i), ii), and iii) are almost evident by the presentation of (2.5).

(2.7) ATote. From the presentation of (2.5), Gr. (&<*>) =@&w/P(d~} and
d

* are T-free modules of rank /. Later in (10.3), we
d

shall give canonical identifications,

and ^-
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§3. The Multiplicity of A2 in R

The main purpose of this paragraph is to show that A2 is a monic
polynomial of degree / in Pe over T (cf. Lemma (3.1)).

(3.1) ASnR = A2R ('.' If APeR for a PeS, then P is an anti-invariant
and PgAP by (1) viii) a).)

Let us develop A2 eP = T[Pf] as a polynomial in P,. Then the following
lemma is crucial for all what will follow.

Lemma, A2 has the following development.

where c is a non-zero constant and AteT, i = !,•••/.

Proof. Since deg. A2 = 2*Z = /*/ = / deg.P, ( Y (1) ix)), we have the form,

where AteT and deg.At = hi, i = 0,l,---/.

Thus all we have to show is y20/0. It is enough to show that
A2 ^ T+R where T+ : = TnR+ . Let us show the following stronger assertion.

(3.2) Lemma. Consider the ideal T+ S of S generated by T+ . Then,
A £ radical of T+S.

Proof. Let £eF*(X)uC be an eigenvector of a transformation ceW,

such that c£ = A£, where A = exp(27ix/
r^Tg//))J />,geZ, (/>,g) = l. Let PeP be

a homogeneous invariant polynomial of degree d.

Then, P(0 = P(^) = PaO = ^P(^.
Hence if pjfd, then P(£) = 0.

Now let c be a Coxeter transformation and £^0 be an eigenvector

belonging to the eigenvalue exp(27Cx/— l//z). Since l<deg.PJ-</z for
j = l,.../-l (•/ (1) ix)), we conclude P1(^) = .-.=P /_1(^) = 0. Since the
ideal T+ S is generated by Pi,-",P jf-i, the vector ^6F*(X)nC is a root of
the ideal T+S.

On the other hand, £ is not contained in any hyperplane of a reflexion
of W ('.' [1] chap. V, §6, n°2, note). This means A(£)^0. Hence A£
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radical of T+S. q.e.d.

(3.3) Note 1. Since R=T\P^ the Lemma (3.1) is equivalent to the

following statement.

Assertion. R/&2R is a T-free module of rank /. In particular R/t±2R

is integral over T.

Note 2. Let e1,--^ eR/A2R be a T-free basis. Let us present by a

matrix A the endomorphism of R/A2R defined by multiplication by Pe.

Then one may construct an jR-free resolution of R/A2R,

0 -> (Rf ¥.+ (R)e ^ R/&ZR -> 0,

where N(Qlt-,Qt)= £ Qj
i= l

Then we obtain a presentation of A2 by the determinant of M.

det.M=det(P(f/<f — A) = cA2 for a non-zero constant ceR*.

§4. DerR(logA2), QR(logA2) and Dualities by /and 7*

In this paragraph, we introduce DerR(logA2) and QR(logA2) and then

give a description of them by a use of 7 and 7* (cf. Theorem (4.6)).

(4.1) Since F* can be identified with its tangent space, and V can be

identified with the cotangent space of V* at anypoint of V*t we may extend

the bilinear forms / and /* on V* and V of (1) x), to the tangent bundle

and cotangent bundle of V*. We shall denote the extended bilinear forms

by 7 and 7*.

Thus we get symmetric /S-bilinear forms,

/: DersxDers^5, /(—,—) :=^7TTr / for i,j = !,-/.
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/*: nsxns^S, ^(dXt,dXj):=I(XlrXj) for i,j=l,-/.

Since / and /* are non-degenerate, we get ^-isomorphisms

7: Ders^(Ders)*~Qs, 7(<5): =/(<5,-) for <5eDers.

/*: ns^(ns)* * Ders, 7*(cw):=/*(av) for cuens.

where Jo/* and /*o/ are identities.

Note that I and /* are homogeneous of degree 2 and — 2 respectively

in the natural sense.

(4.2) For later purposes, we introduce a notation. Let M be an

jR-module. We shall denote by M[A~2] the localization M®RR±2 of M by A2.

(4.3) Remember that we have an inclusion R d S so that S is finite over R.

Then we obtain liftings of forms and vector fields,

* dP •

DerKc:Ders[A-2]5 — H-> V ^' —, i = l,»./,K s

which are injective jR-homomorphisms.

Combining these liftings with the bilinear forms /and /* of (4.1), we

obtain symmetric l?-bilinear forms, which we denote by the same notations

I and /*.

/*: Q,Rx£lR-+ R

('.' Since /and /* are PF-invariant, the values of /JDerRxDerR anc^ -^*lnRxnR

are TF-invariant.)

(4.4) Now we introduce the concepts of logarithmic one forms and

logarithmic vector fields along A and A2.

Definition.

): = {coeOs[A~2]:
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s: Me AS}

ii) Q,R(\og&2): = {a)eD,R[A-2]: A2o)eQR, d&2 AcoeQ* /\Q,R}

(4.5) The general theory of the modules of logarithmic forms and logarithmic
vector fields (cf. [8] §1) shows that the canonical pairing of one forms and
vector fields induces non-degenerate jR- or <S-bilinear mappings,

Qs(logA) x Ders(logA) -> S

x Der^logA2) -> R

so that each of the modules is a dual S- or jR-module of the other.

(4.6) Theorem. The R-bilinear forms I and I* of (4.3) induce the following
non-degenerate R-bilinear forms,
i) /: Der^ x DerK(logA2) -» jR

/*: Q

so that we obtain R-isomorphisms

ii) /:

/*: O^

Hence we obtain formulas
iii) nR(log&2) = T(9)®TR

Der^(log A2) = T*^) (X) TR

iv)

Proof. We divide the proof of the theorem (4.6) in several steps.

Step 1. /*QKc:Ders(logA), J*QK c Der^(logA2)

".' For any coed^, /*a) = /*(co,-) is a derivation in Der^ and Ders. By
definition I*o)(A) = /*(co,JA). Since a) and /* are PF-invariant and A is
PF-anti-invariant, I*(a},d&) is an anti-invariant, so that 7*(o>,dA)e A.R by
(1) viii) a).

Then J*ca(A) = /*(<MA) e AR c A>S
and /*co(A2) =
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This means by definition J*co e Ders(logA) and /*a>eDeru(logA2).

Step 2. Let (Dlt~-,a)t be free basis of the T-module
Then T^co^-'-J^co^ form free basis of the S-module Der5(logA) and

the ^-module Der^ClogA2).
".' By the use of basis X^-",X£ of V and a generator system Pi>-"JP^ of
R, we have presentations,

J*a;.= £ T^co^dXj)- eDers(logA) /=!,-••/
j=i oXj

and Pa>t=Z P&t'JPjh^- 6 Der^logA2) /=1,.../.
j=i ^j

Then due the general theory (cf. [8] §1 (1.5) iii)), it is enough to show,
*) d
**) det.(7V,,dP,))(j= !....,, = unit A2.

Since *) and **) don't depend on the choice of the free basis <DI>~ •>(!)£, we may
take dPly"-,dP^E^ as free T basis of & .

Then

=CI det
and

where cx and c2 are non-zero constants. Thus from (1) viii) b), we obtain
the results. q.e.d.

Step 3. Combining Step 2 with (2.3) ii), we obtain,
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Step 4. Combining Step 3 with (4.5), we obtain,

Step 5. Proof of iv) of Theorem (4.6).
Using Step 2, we calculate,

= DerR(logA2) (X) RS.

Since & and ^ are dual T-modules ((2.3) iv)), T*& and 7^ are dual
T-modules. Thus

) = (Der*(logA2))* = (I*& ®TR)* = I<$® TR

and
Os(logA) = (Ders(logA))* = (

This completes the proof of Theorem (4.6).

(4.7) Theorem (4.6) means that the identifications by 7 and 7* induce the
following commutative diagrams.

DerK(logA2) c DerR

II II
ni c nR(iogA

2)
and

Ders(logA) cz Ders c= DerR

II II I
(4.8) Note. Let aj!,--,^ be a homogeneous free basis of the T-module
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3F . We may assume, deg.cof = mf + l, i = !,•••/ ((1) ix) and (2.3) ii)).
Then the S-free basis T*(col)t-"yT*(o)^) of Ders(logA) consists of

homogeneous elements with deg.T*(a}i) = deg.a)i — 2 = mi — lJ « = !,••-,/•
Then vii) and iv) of § 1 , imply the following equalities

a)
i= l

I

b) J^ (deg./*(a>i) + 2) = %W= number of chambers of W.
i= l

These equalities are those which appeared in the general theory of
arrangements (cf. [8] (1.12)).

§ 5. Bilinear Form J: DerR x DerR -» R

In this paragraph we introduce a non-degenerate bilinear form J on
the tangent bundle of SpecJR.

(5.1) Lemma, i) Let us restrict the R-bilinear map /*: O^ x O,R -+ R to the

T-submodule ^x^. Then the values of I*\pxp are polynomial in P£ of

degree one.

ii) Let us define ,

T for

Then the T-bilinear symmetric map

j*.

is non-degenerate.

Proof, i) Let dPiy--,dPt be a T-basis of &. Then deg.I*(dPhdPj) =
deg.P^ + deg.Pj — 2<2h = 2 deg.Pf for ij=l, •••,/. Hence as a polynomial in
7TP,], I*(dPhdPj) is at most of degree one in P,. Hence D(h)T*(dPitdPj) E T.

ii) As in Step 2 of the proof of (4.6), we have,

*) det.((/*(</Pi)^PJ.)i,J-) = A2 = ̂  + ̂ 1 P$-l + ---+Af,

where c is a non-zero constant and AtET, deg.A^hi (cf. (3.1)).
By comparing the leading coefficients of the two sides of the equality *),
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we get,

**) d

This means that the bilinear mapping J*=D(h)J* is non-degenerate.

q.e.d.

(5.2) Since the T-bilinear map J*: ^x^-tT is non-degenerate, we get

an isomorphism from 3F to its T-dual space <^r* = ^, which we denote by

the same symbol J*.

J*. &^<g.

Then the bilinear form J* on 3F is transformed to a non-degenerate bilinear

form J on ^,

J: ^x^->T, J(51,52) = (J*(J*"151, J*"1^) for oi9S2e9.

We shall denote the inverse (J*)'1 by the symbol J: 3?-* '̂, so that

JJ* and J*J are identities.

Note that deg.J*= -(A + 2) and deg.J=h + 2.

(5.3) Lemma. Let {^(mi+1)}f=i,../ and {^(mi + 1)}I-=i,...,(f te the filiations of

3F and *§ introduced in (2.4)

i) J*|^(d)x^(d0 = 0 ford+d'<h + 2

• 7 | < « x « ' > =0 for d+df>h + 2

ii) J*:

J • ̂ d)~

Proof, i) Let Piy'--,P^eR be a generator system of the algebra

R. Then the dP,, m, + l<rf form a T-basis of J^^ and the - , mt + l>d

form a T-basis of ^(d).

Evidently, J*(dPi9dPj) = 0 for mt + mj<h and J( - , - ) = 0 for mi + mj > h,
dPi uPj

since the degrees of them are negative.



552 KYOJI SAITO

ii) Remember (2.6) ii). Then the above i) of (5.3) implies that the image
of ^(d) by the morphism J* is contained in (f^(* + 2-«0~)i~<#<* + 2-d)> Thus

J*: 3F -> ̂  is an anti-graded homomorphism. We have that rankT(^(d)) =
#{!<;</; mi + l<d} is equal to rankT(<g(h + 2~d}) = {l<i<J>: h-^2-d<mi+\]
(V (2.5) ii) and (1) ix)). Since J* is non-degenerate, J*: f (f>~ &* + *-*) .

q.e.d.

(5.4) Since we have ^-isomorphisms: DerR~@(x)TR and QR~^(g)TR, we
may extend / and /*, J?-linearly to DerR and QjR. We shall denote them
by the same notations J and J*.

J: Der# x DerR -» R

J*:

and

J:

J*:

§ 60 The Grading of Der^ and O,R by the Order of Pfy v and w

From the presentations DerK^^® TT[P^] and QK^ J^® rT[PJ, DerK

and OR have filtrations by the polynomial degree in Pf. In this paragraph, we

introduce a somewhat finer structure in Der R = 0 ^fe and O^ = 0 «^"fc for
fc>0 k>0

later purposes.

(6.1) Lemma. ^4^ T-modules, we have the following direct-sum decomposi-
tions.

ii) O^logA2)-1(^)00^ = 1(^)0^®^

Proof. Because of Theorem (4.6) ii), the above statements i) and
ii) are equivalent.

Firstly let us show that ^n/*(OJ?) = {0}.
Let aje£lR satisfy /*(o))e^. By definition of 9, this means [D(h\

I*a)] = Q. Hence for any PtER, i=l,~-/
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0 = [D(h\T*co]Pj = D(h)I*(a),dPj) - T*(co9G

Put o}= ]£ (pl dPh where cpleT[Pf], i = !,•••/ are polynomials in P^ of
i= 1

degree less than or equal to d>0. Then,

0 = (D(h))d

Since (f*(dPi,dPJ))iJ=lt...j is non-degenerate ((5.1) ii)), we get (D(ll))V = 0

f = l,-/.
By descending induction on J, we conclude <p' = 0, i = !,•••/.

Conversely let us show that

' 3
Take any element 8= ̂  9^ - of DerR where (p,-6T[P^], i = !,-••,/ are

polynomial in P^ of degree 6/. If d=0, then SE&. Suppose d>0 and let

us show the assertion by induction on d.

Let us decompose, ^. = ^. + «i P£, z = l ,---/ , where flj6T i = l ,--- / and

i^i,-",^^ e T[PJ are polynomials in P^ of degree less than d. Since

(J*(dPi,dPj))ij=it...tf is non-degenerate, one can find ft1,---^^ e T, such that

dPj), j =!,-••/. P u t ^ ' = ^ b^-^^dPi). Then 5' e
i = l

Since S' = £ b^dP^dP^PJ-1 - , the coefficients of 5-5' are of

degree less than d in P^.

This completes the proof of Lemma (6.1).

(6.2) Let us introduce two endomorphisms of Der^.

v : DerK->DerR, 6 i-»[Z)(fl),(5] (T-homomorphism)

w : DerR -> DerR, 5i— >(/*°J)5 (R-homomorphism)

Then we have the commutator relation, [v,w] = identity.
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' d
Proof. For an element de ̂  cpt - of

q.e.d.

(6.3)

^0: = ̂  and 3Fk : = ( J° J*)feJ%

i) ^[5 T-modules, we have the following direct sum decompositions.

© ^fcs DerR(logA2) = ©
fe=0 fc=l

= © &k.
fc=0 fc=-l

ii) Lei M5 denote by RN the T-submodule of R of all polynomials of Pg of
degree less than or equal to N. Then

, /
k + 1 vt/ " ' " vf ^ k + N —

Proof. We shall prove the statements on ^*. The statements on ^*
are shown almost similarly by using Lie derivatives LD(H) and JoJ* instead
of v and w so that we omit them.

By repeated use of (6.1), we get decompositions,
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Der*(logA2)= 0
fc=i

Thus DerR ID 0 ^fc and DerK(logA2) z>
k = 0 k=l

To show the converse inclusions, it is enough to show ii) of (6.3). By

shifting by wk, we have only to show, ^0 0---0 ^N — ^Q®T^N-

Assertion. v\9k = k(w\9k_l)~
l.

Proof. Let us show the assertion by induction on k. For & = 0, it is

trivial. For an de&k-ly

C.' (6.2))

= kS

(By induction hypothesis)

As a corollary of the above assertion, ^fe+1|^fc = 0. Hence ^0 0---0

9N c ker(^jv+1) = ̂ 0 (g) jR^. Conversely take an element 5 of ker(z/+1).

Since ^+1^ = 0, v"d is contained in ^ = ̂ 0-
 Put S' = S-(N\)~iz^vNS.

Then by a repeated use of the above assertion, vN(6') = vN8 — (N\)~1vNwNvN6 =

0. Hence 8 = 8' + (N\)~1wNvNSekervN -\-&N. By induction on AT, this proves

the ii) of (6.3). q.e.d.

(6.4) i) For any 6 e^y wk(5) is the last direct sum factor of Pf

ii) [wk(d),wm(d')]=wk + m([d,df]) mod ^0 0.

Proo/. By ii) of (6.3) Pj<5e#0 0"'0^fc- Using the assertion of the
proof of (6.3), we compute vk(Pk,5-wkd) = kid- kid = 0. Hence F^d-

(6.5) By definition of w (6.2), we have a formula,

,df) = T(5,w5') for 6,d'

This formula is very interesting, since two bilinear forms J and / are

combined by the use of w. For instance, suppose we have informations of
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D(ft) and A2 6 jR and /but not of /. Then one may reconstruct I as follows.

i) The direct sum decomposition DerR = ^0Der1?(logA2) depends only on

and A2.

ii) w: <&Q -» ^1 c DerR(logA2) is well defined by using only the direct sum

decomposition above, i.e. w(d) = the second factor of P^e^Q^Der^logA2).

iii) Since /|^x^ is non-degenerate, let d1,-",d^e(^ and d1*,--^* e& be dual

basis of ^ with respect to /.
f

iv) Then /*= £ ^-(X)^*.
i= l

In the application, J is described by certain duality of local cohomology

groups and / is describing the intersection form of certain vanishing cycles

of rational double points. Thus the above construction means that the

topological intersection form is described by algebraic local cohomology

groups and vice versa. This process is valid not only for rational double

points but for all isolated hypersurface singularities. For the detailed study

see [7] and (11.4) of the present note (cf. [42]).

§7. The Euler Operator E

In this paragraph we introduce the concept of an Euler operator E.

(7.1) Let I be the W-invariant quadratic form of (I) x). Here we understand

I as an element of R.

Definition. We denote by E the logarithmic vector field

DerK(logA2) and call it the Euler operator.

(7.2) (i) The Euler operator E has the following presentations

for Xi,-,X< basis of V,
i=\

= £ (mi+l)Pf— for P15--,P, a generator of R in (1) v).
t=i oPi

ii) EP = (deg.P)P for a homogeneous PeS or R.

iii) [E,S] = (deg.i))d for a homogeneous (5eDers or DerK, where [ , ] is the

bracket product of vector fields.
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iv) LEo} = (deg.a))a) for a homogeneous o>eQs or OR) where LE is the Lie

derivative of E.

v) Euler operator is equal to hw(D^).

Proof. By definition of /*, I*(dl) is the identity on V=Sl.

i.e. EX = I*(dI,dX)= X - I*(XPX) = X fo
j=i dXj

Then as a vector field in Ders, E has the following development

Therefore as an element of DerR, E has the development

E=i(EPi)~ =Z (degJ^P*
i=i oPi 1=1 oPi

Then the assertions ii), iii) and iv) are easy consequences of these presentations
of E.

* d e 8
On the other hand, J*(dl)= ^D(K>T*(dI,dPj) - =^D(h\EPj) - -

j=i dPj j=i SPJ

h(D(h)Pj)^- =hD(h\ Then hw(D(h}) = hT*J(D(h)) = I*(dI) = E. q.e.d.
dPe

(7.3) In the presentation E = hw(D(h}) of (7.2) v), we don't need the
information on / or J. i.e. The Euler operator can be constructed only by
the informations of D(h) and A2e# (cf. (6.5)).

§8. Torsion Free Connection V with V/* = 0

In this paragraph we characterize the vector space V by means of a
connection V for a later purpose. This whole paragraph may be considered
as a preparation for the proof of Theorem (9.4).

(8.1) A torsion free affine connection V is an J?-bilinear map
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such that i) Vpdd
f = PV8d' for

ii) Leibniz rule, Vd(Pd') = (SP)d' + PVdd' for PeR[A~2]
in) Torsion free, Vdd' -Vd,5 = [d,5']

Here, one recalls that the notation M[A~2] for an .R-module M means the
localization M(X)R R^ (cf. (4.2)).

(8.2) The next fact is a standard result in Riemannian geometry. For the
sake of completeness, we give a proof of it.

There exist uniquely a torsion free affine connection V, with the property,

VI* = 0.

i.e. dI(dl
yd") = I(Vdd'yd") + I(5',Vdd") for <5,<5',(5"

(This connection is often called the Levi-Civita or Riemannian connection.)

Proof, i) Uniqueness. Using the torsion freeness and VI* = 0, we
compute

= SJ(82,83)-T(62,[S1,SJ)-83I(82,61)

Thus altogether we obtain the FORMULA

Since the right-hand of i) is calculated only by the use of /, the left-hand

T(V 3^2,83) does not depend on V. Since /is non-degenerate over
Vd 52 is uniquely determined by the formula.
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ii) Existence. Let us denote by /(<?!, <52»^3) the right-hand of the formula
of i). Then one may check easily the following properties,

i) / is additive for each variable dly S2, $$•

ii)

for PeR[A~z] and d1,d2,

Then i) and ii) imply that there exists an affine connection V such that

f(dl)62yd3) = 2T(Vdl62^3). The property iii) implies that V is torsion free and
iv) implies that V/* = 0.

(8.3) The connection V is integrable.

i.e. VdlVS2-Vi2Vdl = VlSlM for S^eDer^A'2].

Proof. Let us extend the connection V to the module.

This extension will be done in the following way. Firstly, note that we
may extend /to the module Ders[A"2]

7:

Then as in (8.2) we define,

for 5^52,33 6 Ders[A~2]

so that we obtain a connection,

V: Ders[A~2] x Ders[A-2]

such that V|Der_R[A-2] = V. Since V is the Levi-Civita connection for the flat
inner product / on the vector space V, V is integrable and hence its
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restriction V = V|DerjR[A-2] is integrable. q.e.d.

(8.4) The connection V is logarithmic in the following sense

i) V:DerR(logA2) x DerK(logA2)-»DerK(logA2).
More precisely, for i,j>l,

V : 0 £ -

ii) V:DerjRxDerR(logA2)-^Derl?

More precisely, for z>0,/

V -•

iii) V:Der^(logA2) x
More precisely, for i

V: ^ i a ^ ^ 9 . U ^ ' ' < V ± ^ ^ / ^ ^ n U ^ ^ i < ^ < > ' U 3 ' ^ , - ^ ^ n U 3 ' ^ i C D ' ' ' C D ^ i + j .

Proof. Remember that, Der^ = ̂ 0® TR and Der1?(logA2) = (^1 ® TR, and

^o©-"©^i = ̂ o®r^i and ^i0"'©^i = ̂ i®r^i-i» where ^ denotes the
T-submodule of jR = T[PJ of all polynomials in Pe of degree less or equal
than i (cf. (6.3)).

Then by using the Leibniz rule of the connection, one may reduce the
proof to the following simplest cases.

i) V: »! x »!-»»!© »2

ii) V: S0 x ^ -» gr0 © 0!
iii) V: #j x ^0-»^o©^i

Proof of i). For 5j, 52, (53 of ^0, let us compute,

where [^1)(W(<52)]=K;2(t<51>52]) + «)(5') (cf. (6.4) ii)). Thus
el?! for ^L^^eSo.
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Denote <p(83) = T(V^fv(82)983) for fix 8l9S2. Then Dw(p(83)eT for

<53e^0. Thus there exist a (54G^0, such that Dw(p(83) = J(S4,83) (cf.

(5.2)). Thus (p(83)-I(w
2(d4),83)ET for <53e^0. Then there exist a (55e^0

such that 9(63)-I(w
2(84),83) = J(85,83) = T(w(85),83). Hence Vw(dl)w(82) =

Proof of ii). For <5 t , <52, ̂ 3 °f ^o> ^et us compute /(V5lw((52),w;((53)). As
in the case of i) one may check that T(Vdlw(82),w(83))eR1.

By a similar argument to the proof of i), one may deduce that

Proof of iii). For 8i9 d2, 83 e^0, let us compute T^^^S^S^e^.

One may show that Vw(5l)52
e^o0^i as m tne proof of i) and ii). q.e.d.

(8.5) Let us fix an element £eDerK(logA2). Then from (8.4), we obtain

jR-homomorphisms,

logA2) -> DerR(logA2)

Assertion. VE is the identity.

Proof. Suppose that 8 and d' are homogeneous, so that

[E,S\ =

and

ET(8',8) = (2 + deg.(5' + deg.8')T(8',8).

From the formula (8.2) i), we compute

2T(VdE,8') = 8I(E,6f) + El(&',8) - S'T(6,E)

= 21(6,8') + T(E,[8',6]) - S'T(8,E) + 8T(E,8').

On the other hand, since T(E) = dIis a closed form (cf. (7.1)), 6T(E96')-8'T(E,8)

= dd'I-S'dI=[d,S']I=I(E,[d)d']). This means T(V fi 98') = 1(8 98') for any 8

and 8'. q.e.d.
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§9o Torsion Free Connection V/ with V/J* = 0

In this paragraph, we introduce a connection V/and show the integrability
of it.

(9.1) There exists uniquely a torsion free connection,

V/: Der^ x Der^ -» DerR

with the property, V/J* = 0.

Proof. Since the proof is the same as in (8.2), we omit it.

(9.2) Using the same argument as in the proof of (8.2), there is a formula,

(9.3) From the FORMULA of (9.2) and (6.3), one may compute easily,

W <& /T\ . , /T\ <& v <& /T\ ,./TN6£ _ K ^ /TN . „ , (T\<jf}
^0 vt/ dl/ ^i A ^OUy vt/^j ^OvP vi/^i + j-

Especially,

V/: ^0 x ^0 -* »0.

(9.4) Theorem,, The connection W is integrable.

For the proof of (9.4), we prepare a lemma

(9.5) Lemma.

Vwi(,X(^) = ̂ +W^2) mod 9i@~-®Vi+j-i

for dit d2E^0 and i, j>l.

Proof. For 8lt <52 and (53e^0, and iy j>l, let us compute,
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mod Ri+j-2 (Here c5'e^0 ©•••© ^i+J--2 cf. (6.4).)

= Pi+J-1/((V/,152,a3) mod.R (+;_2

EE J(wf+j"1(V/a^2),(53) mod /?i+J._2 (note that (V/dl62e$0)

Since Vw,Wl)a»'(52)6DerJl(logA2) (cf. (8.4) i)), Vwi(dl

) for a 546Derj{. Then the above computation implies,

I(w(d4),d3) = J(d4,d3)eRi+j_2 for any 536^0-

Since J is a non-degenerate T-bilinear form on ^0 (cf. (5.2)),

» 0 ®r^(+j -2 = *o ©-© ^i+J--2, and (VwiWiy(52)-w'+^(V/,1J2) =
! ©•••© ^,+j-i. q.e.d.

proof of Theorem (9.4). Put

It is enough to show «(51,52)53) = 0 for 51,52>536^0 = ̂  (cf. (2.3) Hi)). Note

that R(di,82,os)e<$0 for Slt S2, S3e&0 (cf. (9.3) and (2.3) Hi)).

mod <3i © ^2 (cf. Lemma (9.5))

mod
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(cf. Lemmas (9.5) and (8.4) i))
= 0 (cf. (8.3)).

Thus to3(R(dl9d2963)) = Q mod ^ \ © &2 and w3(R(Sl9S2983))e939 and
therefore w3(R(Sl9S29S3)) = 0. Hence R(dl9S2963) = Q for Sl9S29S3e90.

This completes the proof of Theorem (9.4).

§ 10. The space Q = ©O(mi + 1}

In this paragraph we introduce an jR-vector space Q of dimension /,
with a non-degenerate inner product J, which we may regard as a scheme
theoretic quotient variety of F* by the action of W. Our subsequent
development may also be regarded as a consequence of the fact that J is an
everywhere flat nondegenerate quadratic form on the quotient variety VC/W.

(10.1) Let us fix a homogeneous generator system Pl9"*,Pf of the algebra R

of (I) v).

Then V/_a_ ( - )e^
(Wk+1) for ij=l ,•••/, where mk is the smallest such thatdpt dP

Proof. Since V/JL ( - )e9 is homogeneous of degree (wf + w/ + 2), it

~\
must be a combination of - such that m i-fra /- + 2<w fc + l. q.e.d.

dPk

(10.2) Corollary.

i) V/ : ^x^ (mi + 1)->

ii) V/ : D(h) x » -> 0, # x £)<*> -* 0

iii) V/ : Ex^ (mi+1)-^^ (m ' + 1), ^m«+1> xE1-* ^Wi+1> for i = l,-"/

i.e. V/E: ̂  -* ̂  w 0 ,/i/ter preserving T-homomorphism.

Proof. Since #<m '+1> is spanned by - with mj>mi (cf. (2.5)) and

£ - for a non-zero constant c (cf. (2.2)), i) and ii) are trivial.



FLAT STRUCTURE FOR FINITE REFLEXION GROUP 565

Let us present the Euler operator in a form E = cP^D^ + E'y for some
ceR* and E'E<$. Then for any (5e^(m' + 1),

cP, V/D(h) 8 + V/E,d

V/F(5 (V ii))

and hence

V/dE=V/E8-[E,d]e^(m^1). q.e.d.

(10.3) Lemma. As a T-module, & has uniquely a direct sum decomposition,

such that

i) ^m' + 1) is a T-free homogeneous submodule of & of rank equal to #{1 <j

mj = mi} for i = l ,---/ .

iii) T/ze restriction of V/E on ^(m' + 1) induces an endomorphism of it, so that

\&rnl + i) = (mi + 1) x identity, for i =!,•••/.

Proof. Since V/E is a filter preserving T-endomorphism of ^ (cf. (10.2)
iii)), let us consider the endomorphism of Gr.^**) induced by V/E.

mod ^< + D (cf. (10.1)).
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Thus

) V/gE = (mt + l)d mod #« + '> for any

Now let us define,

*

which is the eigenspace of the operator V/E for the eigenvalue mt+l. By
definition, <^(mf + 1) is a homogeneous T-submodule of 9.

Now let us show ii) by a descending induction on mt. Since ^(o0* and
^(oo) are zero, we may assume that

for a

Then by this induction hypotheses and the formula *), for any 5 of
we have a presentation

S ^., where ^
mj > mf

+

Put 5f =5— ̂  - 6j. One computes easily,

V/SiE=V/sE- X —— V/fjE
-

Thus <5 = <5. + £ <5;-e 0 ^mJ + 1>, and the assertion ii) is proven. To-
J rnj~nii mj>mi

gether with (2.5) ii), one shows easily the assertion i) and the lemma is proven.
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(10.4) Definition. Put,

Q(mf + i) : = {Se9(mt + l):S is homogeneous of degree -(mf + l)}

for i = !,-••/ and put

(10.5) Theorem.

i) Q(mf + 1) « an R-vector space of dimension equal to #{1 <j<£\ mj = mi}J such

that <i(mi + 1) = O(fftl + 1}(X)Rr. Hence O is aw R-vector space of dimension t, such

that ^ = O®RT and

ii) O is integrable, in the following sense. For any 6^ and <52eO, the bracket

product [ S l t d 2 ] = Q.

iii) The restriction of the T-bilinear form J on the vector space O x O takes

constant values in R, so that we get an R-bilinear form

J : O x O-^JR.

Proof. Take a projection of - e^
(m' + 1) to the factor <^<m' + 1>, and

denote it by D{. Since deg. f - =— (mf + l), we also have deg.(D^ =

-(mi+\) and D feO (m '+1). Because of the description of (2.5), one

may easily check that O(mi+1) is spanned by Dj with m~mi as an l?-vector

space and that ^(mf + 1) = O(mi + 1)®HT. Other statements of i) are direct

consequences of the above statement.

Proof of ii) and iii).

Assertion 1. V/£O = 0.

Proof. Take an element <5eQ(m' + 1). Then V/Ed = V/8E+[E,o] = (mi + l)d

Assertion 2. Q = ker(V/E : DerR — > DerR).



568 KYOJI SAITO

Proof. Since Qcker(\^) is shown in Assertion 1, let us show the
converse inclusion.

Because of i) of (10.5); we may present any element deDerR, in the
t

form ^ q>i Dh for some (pt€Ry i=li--/. Suppose that V/Ed

(cf. Assertion 1). Since Dt are ^-linearly independent, we get E(pt = Q,
i=l ,•••/. This is possible only when (ph i=l,--/ are constants in R. (cf.
(7.2) ii)).

Assertion 3. Q = {(5eDerK: V/5><5 = 0 for any (5'eDerjJ.

Proof. Because of Assertion 2, we have the inclusion,

: V/^ = 0 for any (5'eDer*}.

Because of Theorem (9.4), The right-hand of the above inclusion has
Ji-dimension /, which is equal to dim^O (cf. (10.5) i)).

Assertion 4. For d^ and <52 of O, [51,<52] = 0.

Proof. Because of the torsionfreeness of V/ and the above Assertion 3,
[^1,^] = V/^2-V42<51 = 0.

Assertion 5, The restriction of the form J on O x O takes constant values
in R.

Proof. For 5, (5'eQ, let us compute

/Ed') = Q (by Assertion 1).

Then E(J(6,5')) = Q is possible only when J(d,S') is a constant.
This completes the proof of the theorem (10.5).

(10.6) The uniqueness of Q,

Let O'cDerR[A~2] be a real £ -dimensional subspace such that

ii) O' i5 integrable. That is: [d,S'] = Q for S 9 S ' e f l ' .

iii) The restriction of J on O,' x Q,' takes constant values.
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Then Q' = Q.

Proof. For 51,<52,53 eQ', using the conditions ii) and iii) let us calculate

= 0.

Because of the condition i) and the non-degeneracy of J, we get V/dl62 = 0

for 51,526Q'. Again by the condition i) V/5<52 = 0 for any deDerR and

(52eQ'. Comparing this with Assertion 3 of the proof of the theorem

(10.5), we get Q = Q'. q.e.d.

(10.7) Now let us show that we may regard R as the symmetric algebra

of the l?-dual vector space O* of Q.

Theorem. Put

£l*: = {PeR + (elements of positive degree); 6PeR for any (5eQ).

Then i) O* is an R-dual vector space of Q by the pairing, QxQ*9(<5,P)i— >

SPeR.

ii) R is generated by Q* as an R-algebra

iii) Let us decompose, Q* = 0 Q*(m' + 1\ which is dual to the decomposition
i

of (10.4). Then any element of Q*(m< + 1> {s homogeneous of degree

w,- + l, for i' =!,•••, A

Proof. By using the basis Dt, i=l,--/ of Theorem (10.5), let us
€

develop the Euler operator E in the form E= £ (wf-f 1)0 ,̂ where Q^R,
i = l

i =!,-••/ are homogeneous of degree m £ +l .

Since [E,Dj]=-(mJ + l)DJ,j=l,-,S (cf. (7.2) iii)),

-0 (cf. (10.5) ii)).
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Thus we get

DjQ. = djti (Kronecker's symbol) for 2j = l ,---/ .

This means 0,-eO* f = !,--•/. Since det.(DjQi)i>j=l, Qi,-~,Qt must be

J?-linearly independent so that they span the vector space O*, which becomes

the dual space of O.
p / p \

Since Df = mod I such that mk>mi}1 one may easily computeJ dPj \dPk
 k 7

SQi
that det.( )ij = det.(DjQi)ij=l. Hence Qi,"-yQf is a homogeneous gen-

dPj

£ d d
erator system of the algebra .R. ThenD^^ (DjQi) = fory=l,--/.

1=1 dQi SQj

Thus we get a presentation

J1*(». + D= 0 RQ for *•=!,•••/.

This completes the proof of (10.7).

§11. Concluding Remarks

As we have mentioned in the introduction, this note was planned as a

part of the study of primitive integrals in [7], since the results in this note

enable us to compute the Poincare duality of the vanishing cycles of rational

double points by means of a duality of certain local cohomology groups

which are associated to the unfolding of the singularities as follows.

(11.1) Let us remember the constructions in this note.

We started with a group W and its irreducible presentation as a reflexion

group acting on a real vector space V. After several constructions we

obtained at the end a weighted vector space O= ®O(mf+ 1J and an inner product

J (homogeneous of degree h + 2) on O and the discriminant polynomial A2

in the symmetric algebra R of O*.

Thus we get a correspondence of objects,

(1 1 .2) Assertion. The above correspondence is reversible in the following sense



FLAT STRUCTURE FOR FINITE REFLEXION GROUP 571

Suppose that we forget about W and V, but are given the information
on the weighted vector space O, the inner product J and the discriminant
polynomial A2. Then one may reconstruct V and W from Q, J, A2 in the
following algebraic way.

i) Consider the symmetric algebra ^! of Q* (cf. (10.7)).
Using the weights of O, we can attach a graded ring structure to R, so

that A2 is a (weighted) homogeneous polynomial of degree h-£.

ii) Consider Der^, Der^logA2) and OR, Q/?(logA2), which are graded
^-modules (cf. (2.1)).

One may naturally embed OczDer^. As a lowest degree element of
OdDer^, one may uniquely determine an element D(h) up to a constant
factor (cf. (2.2)).

iii) Put, T := {PeR: D(h)P = 0}

<$ := {(5eDerK:

Then T is a graded ring of dimension / — I and 3F ', <& are free T-modules
of rank £ . Naturally !F and *§ are dual T-modules of each other.

iv) Since ^ = O (x) T, we may extend J to *8 as a T-bilinear form,

J: * x # -* T.

v) As a T-module, we have a direct sum decomposition (cf. (6.1))

DerK = ̂  0 Der^logA2).

Then, one may define a T-linear map,

w\ <§ -» Der^logA2)

by w(d): = the second factor of Pfb in the above direct sum decomposition,
where Pf is any polynomial of R such that D(h)Pf = l (cf. (6.4) i)).

vi) Let 5i,~-,d€ be a T-free basis of $ and let ^*1
5---,^*<f be the dual basis

of *& with respect to the inner product J.
Put,
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Then /* is a symmetric jR-bilinear form on QR, which does not depend
onthe choice of the basis <?!,•••, bf. (cf. (6.5)).

vii) Consider the Levi-Civita connection,

V: DerjR(logA2) x DerR(logA2) -> Der*(logA2)

for the metric /* (cf. (8.2), (8.3)).

Let K be the algebraic closure of the quotient field of the ring JR so
that K^C. One may naturally extend V to

V: Der* x (DerK (x)* K) -> (Der* (g) R K).

viii) Put

F* : = {(5eDerK ®RK: V^ = 0 for any (5'EDer*}.

y : = |pej£: <5PeC for any (5eF*and homogeneous of deg. P>0}.

Then V and F* are dual complex vector spaces of dimension /, consisting
of elements of degree 1 and — 1 respectively.

ix) Consider the symmetric algebra SciK generated by V. Then Rc:S.

x) The extension of the quotient field of R by the quotient field of S is
a Galois extension. Let us denote by W the Galois group of the extension.

The operation of the group W preserves the vector space V so that we
obtain a pair (W,V) of a group W and its presentation in GL(V). This is
the one we are seeking.

(11.3) Note that by the above correspondence, (Q,J,A2)i— »(W,F), the
information of (Q,J,A2) does not contain explicit information on the group W.

Roughly speaking the information of W comes through the monodromy
representation of the fundamental group of the complement of the discriminant
locus A2 = 0 in the complexification of O.

If one may go through complex analytic geometry, the group W can
be rather easily constructed as follows (cf. [3], [4]).

Let Oc be the complexification of the real vector space O and let D be
the hypersurface of Oc defined by the equation A2 = 0.

Let g be a homotopy class of a path in Oc — D, which turns once around
a general (smooth) point of D and let N be the smallest normal subgroup
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of TC^Q' — £),*) containing g2 .
Then W is isomorphic to 7^(0° — D,*)/N. As a complex variety, the

complexification E of the real vector space F* is characterized by the following
properties,

i) E is a normal irreducible analytic space.
ii) There exists a proper finite map n: E-*Q,C such that n\E-n-l(D):

E — n~1(D)-*£lc — D is an unramified covering map corresponding to the
normal subgroup N.

As a covering transformation group, W operates naturally on
E — n~l(D). The uniqueness of E of the properties i) and ii) guarantee that
the operation of W on E — n~1(D) can be extended to the operation on E,
so that we get a natural inclusion W<^Aut(E).

(11.4) Now let us compute the intersection form /* of vanishing cycles of
simple singularities as an application of our theory. For detailed explanations
and proofs of iv), v), vi) below, one is referred to [7] and [42].

i) Let g be a complex simple Lie algebra and let G be the adjoint group
of g. Let I) be a Cartan subalgebra of g. The adjoint action of G on
g induces a Weyl group W action on I). It is a well known theorem of
Chevalley that the restriction of a polynomial function on g to the subspace
I) induces an isomorphism of the invariant rings,

(Here we denote by C[£"*] the ring of polynomial functions on a vector
space E.)

Since W is a finite reflection group acting on a real form I)R of the
algebra I), we may apply Theorems (10.5), (10.6) and (10.7) for (f)R, W). We
shall use the same notations R, Der^, D(h\ A2, I), J, Der^logA2), Q,-», etc.
(recall §2-5 and 10) for this complexified situation. So ,R denotes the invariant
ring C[I)*]wr and DerR is the module of its derivations. Then O is the
unique complex vector space of dimension f\ = dimcl) characterized by the
next properties a) — c):

a) there exists an inclusion of the dual vector space O* into C[I)*]wr, so
that one has an isomorphism:
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b) there exists a direct sum decomposition, O=0O(m' + 1), so that any

element of the factor Q*<m« + 1> is a homogeneous function of degree w^ + l

on I) (and hence on g).

c) there exists a non-degenerate bilinear form,

J: QxO-»C

which is related to the Cartan-Killing form I, by the formulas of (6.5) and (5.2).

d) From a) and b) together, we obtain a quasi-homogeneous mapping,

which we shall call an invariant morphism.

ii) Brieskorn [2] and Slodowy [10] gave a description of the universal

deformation X -» S of simple singularities of types Afy Df and E€ in terms

of corresponding simple Lie algebra, where the total space X is an affine

linear subspace of g of dimension / + 2 transversal to the nilpotent variety,

the base space S is the quotient space t)/W which will be identified with

O by i) a), and the deformation map is given by the restriction of the

invariant map i) d). The map X^S is quasi-homogeneous of type

(»!! + !, ••-,m, + l; !»! + !, • • • ,m^_ 1 + l, 1,1,1) for r = / + 2 (cf. Varadarajan [12],

Kostant [6]).

iii) The composition map X -> S ^ O -> fit/CD^ is easily seen to be

submersive so that the inverse image X0 of OeO/CD(fc) is isomorphic to a

three dimensional affine space. The restriction of the invariant map to

XQ -> C is denoted by/. Let Ply-~,Pf be a system of linear coordinates of

O such that deg(Pi) = mi + l. Their pull backs on X by the invariant map

are denoted by the same Plt---yP^. We can choose three homogeneous

polynomials X, Y and Z of degree 1 on X such that dX A dY l\dZ/\dPl

h'-hdPf..^® every where on X. The map (X9Y9Z9Pl9"-9Pf) defines

an embedding of X into C3 x O, whose image is a hypersurface defined by

a single equation of the form:

This is the universal unfolding of f(X,Y9Z) = F(X,Y,Z,Q,~-,Q), where

f(X9 Y,Z) = 0 defines the simple singularity of the corresponding type.

iv) a) Let us now compute the middle cohomology groups of the fibers
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of the mapping X -> Q, in the following two different ways and let us study
the difference of them.

:= Q,lx
+2/dP1/\'--/\dPt/\dO,ix

(Here Q£ is the C[X] module of polynomial p-forms on X.)

Then Jfif^ and ffl^ are .R-free modules of rank / and OF is an .R-torsion
module and is a T-free module of rank /.

We have a natural JR-exact sequence,

b) Parallel to the above situation one may compute the cohomology groups
of the fibers of the one parameter family /: X0 —> C, as follows

Then 3e(p and ^0) are C[PJ~J?/(P1>---,P^_1)^-free modules of rank f and
Qy is a C-vectorspace of rank £ .

We have the following natural identifications of two exact sequences

»• o

o —

Here T+ =(P1,---,Pf_1)T is the maximal ideal consisting of all positive degree
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elements of T.

v) a) Let us define a non-degenerate T-bilinear form, <^ , ]): Q p x Q j ? — >
T.

Let a>£eQF, t = l,2, be represented by forms (pidXdYdZdP1'"dP^_lE
2, j=l,2. Then

V,92dXdYdZ

This definition depends neither on the presentations of 0}t nor on the
choice of the coordinates X, Y, Z.

b) We define also a non-degenerate C-bilinear form, < , >: QyXQ^-»C.
Let o^eQy, i = l,2, be represented by forms cp^XdYdZeD.^ 2 = 1,2.

Then

'(pi(p2dXdYdZ

Sf df df

Evidently by definition, we have a commutative diagram,

OF x QF -+ T

i 1

af x sif -> c .

vi) Let us denote by V the Gauss-Manin connection of the family X -> Q,
which is a covariant derivative on the module 3tf(p)[&~2] = JJf(F)[&~2]. We
know that V has logarithmic poles in a suitable sense.

Let £(0)e^F0) be a class presented by a form

, where a,b,c

are constants such that

Theorem. The covariant derivation 0(0): = V'C(0) of C(0) wirfi*c«
R-isomorphism of exact sequences,
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0 » DerR(logA2) > DerR > <3 > 0

[I 0(0) i?0(0) i?0

0 Jfg" > tf^ > O&F r V

above isomorphism 6:&~£1F induces an identification of T-bilinear

forms J of (5.2), (6.5) and < , > of v) a) of (11.4).

Corollary. The above isomorphism ^~QF induces an isomorphism of

vector spaces Q~Qj. By this isomorphism, the bilinear form J on Q is identified

with the bilinear form < , > of v) b) of (11.4).

Now let C(1) = Vi)(h)C(0>e^fF
1) be the class represented by the form

dXdYdZdPl • • -dP,_! e Q£+ 2

Theorem. TYie covariant derivation 0(1): = V;C(1) of £(1) induces an

R-isomorphism of exact sequences

0 » DerR(logA2) > DerR ^ ^ > 0

Q

2] 15 aw ̂ -/ree moJu/e o/ ran* /.)

T/ze above isomorphism 6^ induces an identification of the connection V

of (8.2) with the Gauss-Manin connection V.

Corollary. Let d1,--^ and dl*9—,d'* be dual T-free bases of <§ with
£

respect to the form J, and let us put I*= £ 6l (X) w(S1*).
i= l

Then 0(1)(/*)e^fF
1) ®R JfF

2> w fAc intersection form on the middle homology

group of the regular fibers of the mapping X -+ Q.

Note. Combining the above corollaries with (11.2), one sees that

only the information of the vector space Oy = Q|0/J/rAn|0 with its bilinear

form < , ): Qj xO^ -» C of v) b) and the information of the discriminant

A2 6 C[Q*] of the mapping X—>Q,f together suffice for the calculation of the
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intersection form I (or I*). Then the vector space V may be regarded as
the middle cohomology group of a generic fiber of the map X-*£l.

References

[ 1 ] Bourbaki, N., Groupes et algebres de Lie Chap. 4, 5 et 6, Hermann, Paris, 1968.
[ 2 ] Brieskorn, E., Singular elements of semi-simple algebraic groups, Actes Congres Intern.

Math., 2 (1970), 279-284.
[ 3 ] ^ £)ie Fundamentalgruppe des Raumes der regularen, Orbits einer enddlichen

komplexen Spiegelungsgruppe, Invent. Math., 12 (1971), 57-61.
[ 4 ] Brieskorn, E. and Saito, K., Artin-Gruppen und Coxeter-Gruppen, Invent. Math., 17

(1972), 245-271.
[ 5 ] Chevalley, C., Invariants of finite groups generated by reflexions, Amer. J. Math.,

77 (1955), 778-782.
[ 6 ] Kostant, B., The principal three-dimensional subgroup and the Betti numbers of a

complex simple group, Amer. J. Math., 81 (1959), 973-1032.
[ 7 ] Saito, K., Period Mapping Associated to a Primitive Form, Publ. RIMS, Kyoto Univ., 19

(1983), 1231-1264.
[ g ] ? Theory of logarithmic differential forms and logarithmic vector fields, J. Fac.

Sci., Univ. Tokyo Sci. IA, 27 (1980), 265-291.
[ 9 ] Saito, K., Yano, R. and Sekiguchi, J., On a certain generator system of the ring of

invariants of a finite reflexion group, Comm. Algebra, 8 (1980), 373-408.
[10] Slodowy, P., Einfache Singularitaten und einfache algebraische Gruppen, Regensburger

Math. Schriften, 2 (1978).
[11] Steinberg, R., Invariants of finite reflexion groups, Canad. J. Math., 12 (1960),

616-618.
[12] Varadarajan, V.S., On the ring of invariant polynomials on a semisimple Lie algebra,

Amer. J. Math., 90 (1968), 308-317.
[13] Anbai, T., Explicit solutions of K. SaitoJs system of differential quations (the case of simple

singularities of types A and D), Master's thesis , Tohoku Univ., March, 1987. This article is in
the appendix of Tadao Oda: Introduction to algebraic singularities, Lect. Note, at Inst. of
Math. Sci., Madras, 1987-1988, unpublished.

[14] Blok, B. and Varchenko, A., Topological conformal field theories and the flat
coordinates, Preprint IASSNS-HEP-91/5, Jan. 1991.

[15] Coleman, A.J., The Betti numbers of the simple groups, Canad. J. Math., 10 (1958),
349-356.

[16] Dijkgraaf, R, Verlinde, H. and Verlinde, E., Topological Strings in d<l, Nuclear
Phys., B352 (1991), 59-86.

[17] , Notes on Topological Strings Theory and 2D Quantum Gravity, PUPT-1217,
IASSNS-HEP-90/80, Nov. 1990.

[18] Ishiura, S. and Noumi, M., A Calculus of the Gauss-Manin System of Type At. I,II,
Proc. Japan Acad., 58, Ser. A (1982), 13-16, 62-65.

[19] Kato, M. and Watanabe, S., The flat coordinate system of the rational double point
of Es type, Bull. Coll. Sci., Univ. Ryukyus. 32 (1981), 1-3.

[20] Kato M., The flat coordinates of universal unfoldings of E6 and E-,, Bull. Coll. Sci., Univ.
Ryukyus, 42 (1986) 5-10.

[21] Namikawa, Y., Higher residues associated with an isolated hypersurface singularity,
Adv. Stud. Pure Math., 1 (1982), 181-193.

[22] Noumi, M., Expansions of the solution of a Gauss-Manin system at a point of infinity,
Tokyo J. Math. 7, (1984), 1-60.

[23] , Flat coordinate system of type E, £6, E7, £8, Tables (1986), unpublished.



FLAT STRUCTURE FOR FINITE REFLEXION GROUP 579

[24] Oda, T., K. Saito's period map for holomorphic functions with isolated critical points,
Adv. Stud. Pure Math. 10, 1987, Algebraic Geometry, Sendai, (1985), 591-648.

[25] Orlik, P., Discriminants in the invariant theory of reflection groups, Nagoya Math. J., 109
(1988), 23-45.

[26] Saito, K., Einfach-Elliptisch Singularitaten, Inventories Math. 23, (1974), 289-325.
[27] , On the periods of primitive integrals, Harvard (1979) unpublishhed.
[28] , The higher residue pairings K$} for a family of hypersurface singular points, in

Singularities (P. Orlik, ed.), Proc. Symp. in Pure Math., AMS 40, part 2, (1983), 441-463.
[29] , Extended affine root systems I (Coxeter transformations), Pub!. RIMS, Kyoto

Univ., 21 (1985), 75-179, Extended affine root systems II (Flat Invariants), ibid. 26
(1990), 15-78.

[30] Saito, K. and Satake, I., On the extended affine root systems, RIMS Kokyuroku
(1991).

[31] Satake, I., Automorphisms of the extended affine root system and modular property
for flat theta invariants, to appear.

[32] , Flat structure for the simply elliptic singularities and Jacobi form, to appear
in the Proc. Trieste, 1991.

[33] Slodowy, P., Simple singularities and simple algebraic groups, Lect. Note, in Math.,
815, Springer, 1980.

[34] Springer, A.T., Regular elements of finite reflection groups, Invent, Math., 25 (1974),
159-198.

[35] Wirthmiiller, K., Root systems and Jacobi forms, Compositio Math., 82 (1992), 293-354.
[36] Yamada, H., Symplectic reduction and simultaneous resolution of simple singularities,

submitted.
[37] Yano, T., Flat coordinate system for the deformation of type E6, Proc. Japan Acad., 57,

Ser A, No. 8 (1981), 412-414.
[38] , Flat coordinate system for the deformation of type E-j, Preprint 1981.
[39] j On the invariant ring of the Weyl group of type E-j, Preprint 1981.
[40] , Free deformation for isolated singularity, Set. Rep. Saitama Univ., Ser. A, 9

(1980), 61-70.
[41] Yano, T. and Sekiguchi, J., The microlocal structure of weighted homogeneous

polynomials associated with Coxeter systems, I, II, Tokyo J. Math., 2 (1979), 193-219;
4 (1981), 1-34.

[42] Saito, K., On the identification of intersection form on the middle homology group
with the flat function via period mapping, Proc. Japan Acad., 58, Ser A (1982), 196-199.




