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Abstract

Three different decompositions of the algebra of pseudo-differential operators and the
corresponding r-matrices are considered. Three associated classes of nonlinear integrable
equations in 1 +1 and 2 + 1 dimensions are discussed within the framework of generalized Lax
equations and Sato's approach. The 2 +1-dimensional hierarchies are associated with the
Kadomtsev-Petviashvili (KP) equation, the modified KP equation and a Dym equation,
respectively. Reductions of the general hierarchies lead to other known integrable 2 + 1-
dimensional equations as well as to a variety of integrable equations in 1 +1 dimensions. It
is shown, how the multi-Hamiltonian structure of the 1 + 1-dimensional equations can be
obtained from the underlying r-matrices. Further, intimate relations between the equations
associated with the three different r-matrices are revealed. The three classes are related by
Darboux theorems originating from gauge transformations and reciprocal links of the Lax
operators. These connections are discussed on a general level, leading to a unified picture on
(reciprocal) Backlund and auto-Backlund transformations for large classes of integrable equations
covered by the KP, the modified KP, and the Dym hierarchies.
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§!„ Introduction

Large classes of nonlinear partial differential equations are integrable
by the inverse spectral transform (1ST) method and its modifications (see
e.g. Refs. [1-4]). There exist different approaches to a unified description
of these integrable equations and their properties. Two of them reveal a
deep interrelation between the integrable equations and infinite-dimensional
algebras. One is based on the treatment of partial differential equations as
dynamical systems on the infinite dimensional algebra of pseudo-differential
operators (see e.g. Refs. [5-9]). Introducing an infinite set of "time" variables
one can also treat the integrable equations as flows on infinite dimensional
Grassmannian manifolds ([10-14]). This method (Sato and T-function
approach) yields a beautiful and adequate description for a class of
2 +1-dimensional integrable equations.

Another approach to a unified description of the integrable equations
is based on the use of a simple and powerful algebraic tool, the so-called
r-matrix ([15-17]). This approach can be formulated in a rather abstract
algebraic way and gives a simple but effective method for the analysis of
the Hamiltonian structures of the integrable systems.

The Hamiltonian construction of the integrable equations using
pseudo-differential operators becomes quite transparent when using the
terminology of r-matrices. Based on results by Gelfand and Dikii ([5])
Adler ([7]) used a Lie algebraic setting to describe integrable partial differential
equations such as the Korteweg-de Vries (KdV) equation via their Lax
representations. As an important consequence it turned out that integrable
systems of different nature (discrete lattices systems or differential equations)
may be constructed in a similar manner using Lie algebraic techniques. The
celebrated Adler-Kostant-Symes (AKS) scheme starts with a (dual) Lie
algebra as the natural phase space for the integrable equations. The
Lie-Poisson bracket associated with the Lie algebra structure provides a
natural Hamiltonian structure, the invariant functions provide a natural set
of functions in involution on the algebra. In order to obtain a nontrivial
integrable dynamics for these functions only a few additional structures have
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to be provided, which are again of purely Lie algebraic nature. As simplest
example, a decomposition of the original algebra into proper subalgebras
gives rise to a hierarchy of integrable Hamiltonian equations. It turned out
that this construction may be regarded as a special case of a yet larger
picture. Following Drinfeld's ideas ([15]) Semenov showed that the notion
of classical r-matrices leads to an algebraic construction of integrable systems
generalizing the AKS scheme. Not only a systematic view of the multi-
Hamiltonian nature of such equations can be given in terms of r-matrices
([16]), they also provide a general interpretation of the dressing transformations
used to solve these equations in terms of group factorizations ([17]). In
Refs. [18,19] it was shown that —subject to suitable technical assumptions—
there are in fact three natural Poisson brackets associated with such classical
r-matrices. They lead to an abstract tri-Hamiltonian formulation of the Lax
equations describing the nonlinear integrable systems. Applications of the
general construction to the particular algebra of pseudo-differential operators
used by Adler ([7]) were given in Ref. [19], leading to a compact formulation
of the multi-Hamiltonian structures found for certain classes of integrable
hierarchies.

In this paper we again pick up this construction on the algebra g of
pseudo-differential symbols. Considering Lax operators L = ̂ iui(x)dl it turns
out that there are in fact three natural and simple r-matrices on this
algebra. They originate from decompositions g=g>k®g<k in^° subalgebras
of the form

(1.1)

The three given choices for h are distinguished by the fact that both of the
complementary subspaces define proper Lie subalgebras. Application of the
general scheme with these particular r-matrices results in the following
generalized Lax representation of integrable equations

(1.2)

where & = 0,1,2 and q may assume suitable integer or rational values. By
P> fe we denote the projection to the subalgebra g>k. Restriction to the
invariant subspace of purely differential operators for k = 0 yields the
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well-known ("standard") Gelfand-Dikii hierarchy of equations, which includes
the KdV-hierarchy as a particular case. Restriction to another invariant
subspace of operators of the particular form L = d + T.i<0ui(x)dl with k = 0
leads to Sato's approach to the integrable Kadomtsev-Petviashvili (KP)
hierarchy.

The generalized Lax-equation (1.2) for k^Q were considered by Reiman
([20]) and Kupershmidt ([21]), who called them the "nonstandard cases". He
demonstrated that the hierarchies of the Kaup-Broer system and the modified
KdV are related to the first nonstandard case k — 1. He analysed the
Hamiltonian structure of theses hierarchies and other properties. He also
showed that some of the equations in (1.2) admit a reduction to the invariant
subspace on which the adjoint Lf of the Lax operator is related to L by
Lf = (- lfdkLd~k. Here the sign is determined by the order N of L. We
will refer to this reduction as the Kupershmidt reduction.

For all three classes As = 0,1,2 we will discuss in detail subspaces of Lax
operators which are left invariant by the dynamics (1.2). A list of the
simplest equations connected with (1.2) will be given. Regarding the KdV
and the modified KdV equations as the prototype equations associated with
the classes k = 0 and k = 1, respectively, one discovers the Dym equation as
the most prominent example of the last class k = 2. Following Sato's approach
hierarchies of integrable 2 + 1-dimensional equations can be extracted from
(1.2). In this context the nonstandard cases were also observed recently by
Kiso ([22]). The class k = 0 is associated with the KP hierarchy, whereas
the nonstandard cases k = l and k = 2 lead to the modified KP and a
2 + 1-dimensional Dym equation found in Ref. [23]. A description of the
three basic 2 + 1-dimensional hierarchies and their links is given in [24]. In
this paper we will concentrate on reduction aspects of these hierarchies, that
is, the emphasis will be placed on realizations in terms of 1 +1-dimensional
nonlinear equations.

In Section 2 we review the background on r-matrices used in the
Hamiltonian constructions following later on. We also discuss the prototype
equations KdV, modified KdV and Dym in terms of fractional powers of
Lax operators. Section 3 is devoted to realizations of the general Lax
equation (1.2) in terms of 1 + 1-dimensional equations. In Section 3.1 the
reduction properties of (1.2) are discussed in detail. A characterization of
admissible classes of Lax operators is given, for which the Lax equations
lead to a consistent dynamics for the fields parametrizing the Lax
operators. In Section 3.2 a list of the simplest isospectral equations is given
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for operators up to fifth order. It turns out that a surprising variety of
both well-known and novel integrable equations are covered by the Lax
equations (1.2). Additional reductions given by the Kupershmidt constraints
are discussed in Section 3.3. The Hamiltonian background of the r-matrix
approach is used in Section 3.4 to derive the Poisson brackets for the
nonlinear equations given by (1.2). It turns out that the three abstract
Poisson structures associated with r-matrices can indeed be used to extract
the multi-Hamiltonian formulations for these equations, when suitable
reduction techniques are used. The curious role of the general quadratic
bracket associated with the cases k = l and k = 2 will be pointed out. In
Section 4 realizations of (1.2) in terms of 2 + 1-dimensional equations are
discussed. In Section 4.1 the three general hierarchies are identified as the
hierarchies of the KP, the modified KP and the 2-hi-dimensional Dym
equations, respectively. In Section 4.1 the Kupershmidt constraints are
considered. The resulting nonlinear equations are shown to be 2 + 1-
dimensional versions of the 5th order KdV-type equation of Kupershmidt
([25]), of the Sawada-Kotera equation ([26]) (the "BKP" in the notation of
Ref. [12]) and a higher order Dym equation first constructed by
Konopelchenko and Dubrovsky ([23]). Section 5 is devoted to a general
discussion of (reciprocal) Backlund and auto-Backlund transformations.
Gauge transformations of the Lax operators and reciprocal links (transfor-
mations of the independent variables) provide a surprisingly general and
unified picture of the relations between the three classes (1.2). A large
number of Darboux-type transformations is discussed, leading to a coherent
concept for a variety of both well-known and novel transformations between
the integrable hierarchies.

§2. General Background and Basic Definitions

The construction of the integrable nonlinear equations discussed here
is based on the ideas of classical r-matrices as discussed by Semenov
([16]). As we will apply these ideas to one particular algebra (of pseudo-
differential symbols), we will not give an account of these notions in full
generality, but review the relevant structures in a slightly restricted form
suitable for the applications following later on. Having in mind Lax equations
we start with an abstract associative algebra g of Lax operators as the natural
phase space of integrable dynamical systems. We assume that g bears a
symmetric, non-degenerate trace form tr:g—*R, so that g can be identified
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with its dual g* via the symmetric pairing

<a,b> =tr(ab) = tr(ba)= <b,a>, a,beg. (2.1)

Considering the natural Lie algebra structure [a,b] = ab — ba on g, we thus

have an invariant metric satisfying

<a,[b,c]> = <c,[a,b]> (2.2)

for arbitrary a,b,c£g. A classical r-matrix on g is a linear map r:g—>gy so

that the modified bracket

[a,b]r = [r(a),b] + [ayr(b)] (2.3)

satisfies the Jacobi-identity and hence provides a second Lie algebra structure

on g. As shown in Ref. [16], a sufficient condition for a linear map r to be

an r-matrix is given by the so-called modified Yang-Baxter equation

[r(a),r(b)-] + [a,b] = r([a,b]r). (2.4)

Complete classifications of such r-matrices have been given for certain types

or Lie-algebras ([27,28]), for our purposes only the following simple type

of r-matrices will be relevant. We assume that the Lie algebra g can be

decomposed into two smaller Lie algebras g+ and g_y i.e.

£=£+0£-> \Jg±yg±]^g±' (2-5)

Denoting the projections onto these subalgebras by P+, it is easy to verify that

I °n *+ (2.6)
-1 on g_

satisfies the Yang-Baxter equation (2.4) and hence constitutes an r-matrix

on g. Here 1 is to be the-identity map. The corresponding bracket (2.3)

is calculated as [a,6]r = 2[P+(fl),P+(ft)]-2[P_(ei),P_(ft)], which clearly is a

Lie bracket as g+ were supposed to be Lie subalgebras of g. The new Lie

product endows g=g* with a natural Poisson structure, that is, the Lie

Poisson bracket
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{F,H}1(L)= <L,[VF(L),VH(L)l>, (2.7)

where Leg and F,H are functions on g. In fact, three potential Poisson
brackets are introduced with the skew symmetric tensors 0>i(L)\g-*g defined by

= [r(VH),L\ + r*([VH,L]),

>2(L)VH= [r(LVH+ VHL),L] + Lr*(\VH,L\) 4- r*([VH,L])L, (2.8)

= [r(LVH L),L] + Lr

where r* is the adjoint of r relative to the trace duality (2.1), that is
<r(a),b> = <a,r*(b)>. These tensors shall be called "linear", "quadratic"
and "cubic", referring to their polynomial dependence on the point
Leg. Among the corresponding brackets

{F,H}t(L) = <VF,0>i(L)VH>, 1 = 1,2,3, (2.9)

the linear bracket coincides with the Lie Poisson structure (2.7) and hence
defines a Poisson bracket for arbitrary r-matrices. It was shown in Refs.
[18,19] that also the cubic bracket will be a Poisson bracket, automatically,
for all r-matrices satisfying the Yang-Baxter equation (2.4). The Poisson
properties of the quadratic bracket are more delicate: equation (2.4) for r is

not sufficient to guarantee that {.,.}2 w^ De a Poisson bracket. Additional
assumptions on r have to be imposed. According to Refs. [18,19] a sufficient
condition for the quadratic bracket to be a Poisson bracket is given, if r

and its skew-adjoint part r = —(r — r*) both satisfy (2.4). In particular, for

skew-adjoint solutions r* = — r of the Yang-Baxter equation (2.4), one finds
a set of three Poisson brackets (2.8)7(2.9) associated with the r-matrix. We
remark that all three brackets are related by the simple deformation

2(L + el ) =

>1(L), (2.10)

where 1 is the identity element of the algebra. It is well known in the
theory of soliton equations that an important property of multi-Hamiltonian
formulations for such equations is the compatibility of the Poisson tensors
([29]). We recall that two Poisson brackets are called compatible, if their
sum is again a Poisson bracket. From (2.10) it is readily seen that all three
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brackets will be compatible, automatically, if r is such that all three brackets
are indeed Poisson brackets. In particular, for any solution r of the
Yang-Baxter equation (2.4), the linear and the cubic bracket are Poisson
structures. Using (2.10.ii) it is easy to see that these two brackets are
compatible if and only if also the quadratic bracket is a Poisson structure.

The introduction of an r-matrix on g thus turns the algebra into a
Hamiltonian phase space. Further, it turns out that there is a natural set
of functions in involution relative to all three brackets discussed above. These
are the so-called Casimir functions on g*, which are invariant with respect
to the co-adjoint action of the Lie group generated by g. Infinitesimally,
they are characterized by the fact that their gradients, evaluated at a point
Leg=g*, commute with L. As we have assumed a non-degenerate trace
form tr on g, we will consider the Casimir functions given by the traces of
powers of L. Their gradients relative to the trace duality are given as
powers of L, that is, we will be interested in

Cq(L)=-tr(L*)9 VCq(L) = L«-1. (2.11)
q

The involutivity of these functions with respect to the three brackets given
by (2.8) is evident. The Hamiltonian equations associated to these Casimir

d
functions are given by —L = 0*iVCq. Observing the particular form of the

dt
tensors (2.8) one finds the following hierarchy of equations

-^-L = [r(L«),L]=P1VC,+ 1=lp2VCf = P3VC<_1, (2.12)
atq 2

which are evidently tri-Hamiltonian with respect to the three brackets above
(provided r is such that all three brackets are indeed Poisson brackets). In
the Lax equations (2.12) we have introduced an evolution parameter ("time")
tq for each power q. For any r-matrix each two evolution equations in the
hierarchy (2.12) commute due to the involutivity of the Casimir functions
Cq. Each equation admits all the Casimir functions as a set of conserved
quantities in involution. In this sense we will regard (2.12) as a hierarchy
of integrable evolution equations. In this construction we have defined the
equation based on a Hamiltonian framework involving the r-matrix. The
Lax form (2.12) owes its simplicity to the assumption of the trace-duality
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(2.1) on the algebra g. We remark, however, that for the construction of
d

a hierarchy of commuting equations of the form —L = [r(VCa),L] neither
dt q

the Hamiltonian framework nor special assumptions on the duality are
required. If we consider two evolution equations

then the identity

dt dl dt dt

immediately shows that the two equations (2.13) will commute, if r satisfies
the modified Yang-Baxter equation and the expressions A = A(L) and A = A(L)
commute with L. Hence, the hierarchy of evolution equations (2.12) will
commute independent of its Hamiltonian background, that is, independent
of the presence of a trace formalism.

For the special r-matrices (2.6) originating from a Lie algebra
decomposition of the algebra g, we can use the identity

] (2.15)

to rewrite the integrable hierarchy as

, _ \ = 2[P+(L«),L]= -
"tq

(2.16)

Here we remark that the commutativity of these equations for different
values of q is also reflected in the following compatibility equations for the
projected powers P+(Lq). Using the fact that g form subalgebras in g, it
is readily verified that they satisfy the zero-curvature equations

, + ( L * ) ] = 0. (2.17)
dtq dt~

We will apply this formalism to the algebra of pseudo-differential symbols
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as discussed by Adler ([7]). We will consider the operator algebra

(2.18)

where d = d/dx and the coefficients ut are to be functions of the "space
variable" x. The negative powers of 8 are to be understood in the following
way. One introduces a formal integration symbol 5"1, for which algebraic
multiplication with a multiplication operator a (given by a function a = a(x))
is defined as the formal series

d~la = ad-l-axd~2 + axxd-3----. (2.19)

In fact, this algebraic rule is just a special case of the general Leibniz rule

(2-20)

for differential operators, now extended to negative powers i. With these

assumptions we have fixed the algebraic structure of the set (2.18), which
corresponds to the multiplication used by Adler. The decisive observation
in Ref. [7] was that the trace form

(2.21)

yields a symmetric and non-degenerate pairing on g. In (2.21) the integration
denotes the equivalence class of differential expressions modulo total

derivatives. As a consequence, for operators L = T,uid\ vectorfields —L and
dt

gradients VH are conveniently parametrized by

dt i i du?

where

' *—}„ — • (2-23)
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is the usual variational derivative of a functional H=H(L) = H(uiyuix,..) in
terms of the Euler operator. In these frames the trace duality assumes the
usual Euclidean form

^L,VH>=Z f
dt i J

<f trf*. (2.24)
du{

The integrable equations considered in Ref. [7] are given by the r-matrix
(2.6) associated with the Lie algebra decomposition g=g+®g- with

(2-25)

that is, operators are split into purely differential parts versus integration
parts. The corresponding integrable nonlinear systems are given by the

d
Lax equations (2.16), that is, —L = 2[P>0(L*), L], where P>0(Liaid

l) = 'Li>Qaid
l

dtq

represents the projection to the purely differential part of the operator. These
are the Lax equations originally studied by Gelfand and Dikii ([5]).

In Ref. [21] Kupershmidt observed that also modifications of these Lax
equations will lead to integrable systems. He considered Lax equations of
the type

dtq ~ *k

where P>k(Liaid
l) = !Li>kaid

l. The additional cases k=l and k = 2 were
titled the "nonstandard" cases in Ref. [21]. In the framework of r-matrices
and Lie-algebra decompositions this construction can be understood
easily. We consider simple decompositions of g of the form

i > k i<k

WithP+ =P> f e andP_ =P<k we denote the projections to these subspaces. In
order to ensure that the maps rk = P>k — P<k define classical r-matrices, we
have to look for those cases of k, for which both g>k and g<k are Lie
subalgebras of g. It is readily verified that g>k constitutes a closed subalgebra
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of differential operators for any integer values &>0. On the other hand,
due to (2.19)7(2.20), it is also easily checked that g<k constitutes a closed
subalgebra of integro-differential symbols for any integer values k<2. The
common cases k = Q,l and 2 correspond precisely to the three classes of
integrable equations considered by Kupershmidt.

For the rest of the paper, we restrict k to one of the three choices
& = 0,1 or 2 and discuss the properties of the three Lax hierarchies (2.16)

k = 0,1 ,2, (2.28)

where the irrelevant factor 2 in (2.16) will be dropped for convenience in
the rest of the paper.

The main advantage of having formulated Kupershmidt's equations
(2.26) in terms of classical r-matrices is the fact that the Hamiltonian nature
of the nonlinear integrable systems encoded in these Lax equations is built
right into their construction. In particular, Kupershmidt revealed three
local Hamiltonian formulations for a system of classical dispersiveless long
wave equations, which turns out to be one of the realizations of the equations
(2.28) for k = l (see also Section 3.2). As we have available three candidates
(2.8) for Poisson tensors one expects that these abstract brackets reduce to
the specific Hamiltonian structures found by Kupershmidt upon insertion
of a specific Lax operator L corresponding to these equations. This, however,
turns out to be the case only in a restricted way. Only for the k = 0 class
of (2.28) all three brackets are Poisson structures, so that the abstract
multi-Hamiltonian structure (2.12) does indeed account for the specific multi-
Hamiltonian structures and recursion operators associated with the
corresponding nonlinear equations. For the other two cases k = l and k = 2
only the linear and the cubic bracket are Poisson structures for general L in g.
Thus, we have a general formalism to derive Hamiltonian formulations
from two of the tensors (2.8). The technical assumptions needed to render
the quadratic bracket a Poisson bracket are satisfied only for the k = Q
case. Hence, from a general point of view, no further Hamiltonian
formulations should be expected for the nonlinear equations encoded in the
hierarchies associated with the k = \ and k = 2 cases. As a surprising fact,
though, the quadratic bracket will become a Poisson structure when imposing
Dirac constraints to certain subclasses of operators. It will be demonstrated,
that certain Hamiltonian formulations can be extracted from the quadratic
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bracket for the cases k = 1 and k = 2, too. This will be discussed in Section 3.4.
Before entering a systematic discussion of the integrable nonlinear systems

hidden in (2.28), we look at the three simplest examples of equations related
to the three choices for k in (2.28). We consider the operators

£ = 0: LKdV = 82 + u,

k = l: LmKdV = 82 + 2vd + l, (2.29)

= 2:

and try to evaluate the hierarchies of Lax equations (2.28) with these operators
and the corresponding values for k as indicated above. Here, u, v and w
are the dynamical fields satisfying the nonlinear equations given by the Lax
representation. For reasons to become obvious in the final Section 5 we
have included arbitrary constant parameters 1, A l j 2 in these operators. The
subscripts are motivated by the fact that these operators constitute the
well-known Lax operators associated to the KdV equation, the modified
KdV equation and the Dym equation, respectively. The crucial point about
the following analysis is that in all cases the isospectral hierarchy of equations
associated with a given operator L can be calculated from L in a straightforward
way. The recipe to obtain the second operator P>k(L

q) needed for the
dynamical equations (2.28) is simply given by choosing a power q of L and
applying one of the projections P>fc to this operator. It should be noted,
however, that integer powers q of L will not lead to any interesting dynamics,
when we start with purely differential Lax operators. In the case k = Qy

for instance, we would have P>0(L
q) = Lq for integer q, leading to the trivial

d
dynamics — L = [L*,L] = 0. As shown by Gelfand and Dikii ([5]) fractional

*'powers of the differential operators will lead to interesting results. In context
of the algebra (2.18) the relevant procedure can be summarized as follows. We
first consider the Schrodinger operator LKdV of (2.29) and review how
fractional powers can be calculated in a purely algebraic way. Using the
formal integration symbol d~l we consider operators of the form

L\gv=d+aQ+ald-*+a2d-*+asd-* + — . (2.30)

Trying to turn the ansatz (2.30) into a formal square root of the Schrodinger
operator, we identify the coefficients fl0,a1,a2j'" by calculating
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d-i + (..)d-2 + .. (2.31)

using (2.20) and dd~l=d~1d = l. Hence, requiring (LjJt
2

v)
2 = d2 + u, we can

calculate all the coefficients a0,«1,a2,.., recursively in terms of the field u. In

particular, one finds the formal expansion

(2.32)

Calculating the third power of (2.32) (or multiplying with 82 + u) one finds

the operator

_ ,-Ma+-«x+(..)<r'+(..)<r2 + ... , (2.33)

which —by construction— commutes with d2 + u. Applying the projection

P>o we have extracted the second operator of the Lax formulation of the

KdV equation as the purely differential part of (2.33):

2 3/2 _ 3 3 3

KdV- +U, >o( KdV)- +-U +-«*>

d
^ KdV >0 KdV *

In fact, the entire hierarchy of higher KdV equations can be obtained in

the same fashion. For instance, including further terms in the expansions

(2.32) one can easily calculate LfJdV and consider its differential part. This

operator will supplement the Schrodinger operator to form a Lax pair for

the 5th order KdV flow l6ut = uxxxxx + 10uuxxx + 2Quxuxx-{-3Qu2ux commuting

with the KdV.

In a similar way one can extract the second operators for the Lax pairs

of the modified KdV and the Dym equation out of the given Lax operators

LmKdv and LDym in (2.29). Using the same ansatz (2.30) for L^dv and a

modified ansatz Lp2
m = wd + aQ + aid~1 4- •• for the Dym case, one calculates

1 2 _! _2

2
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w w

i _L ) r i + ( . . ) f l -2 + . . t (2.35)
w zu

and

(2.36)

Using the projections P>fc with ^ = 1 for the modified KdV and k = 2 for
the Dym equation one obtains the Lax pairs for these equations:

and

(2.37)

—LmKdv = [P> i(L%Kdv),LmKdv] <^ 4vt = vxxx - 6v2vx
at

) = w3d3 + ~(

(2.38)

t = w3wx

For the special choice A1=0 of the constant parameter we have the Dym
equation in its standard form.

Having identified KdV, modified KdV and Dym equation as the simplest
realizations of the three classes (2.28) by choosing second order differential
operators for L, we note that there are well known relations between these
equations. The link between KdV and modified KdV is given by the
celebrated Miura transformation

u = h-vx + v2. (2.39)
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We also briefly review the reciprocal link of KdV/modified KdV to the Dyrn
equation. One way of describing this link originates from the Painleve
analysis of integrable PDE's as introduced by Weiss et al ([30]). For both
the KdV and the modified KdV the singularity field €> used in this analysis
has to satisfy the nonlinear equation

(2.40)

where {®',x} = (^xx/^x)x — (0>xx/<l>x)
2/2 is the Schwarzian derivative and /i is

an arbitrary constant parameter. In Ref. [31] it was noted that one may
introduce the new independent variables x' = 3)(xyt) and t' = t. Then w = <f)x,

expressed in terms of x and t' ', will satisfy the Dym equation 4wt, = w3wxfxfx,
in these new coordinates.

It will turn out in Section 5 that both the Miura transformation as well
as the reciprocal link to the Dym equation originates from the construction
of these equations as representatives of the three classes (2.28). In fact, the
existence of these links is granted by this construction and is in no way
related to the fact that these equations are given by the particular second
order Lax operators (2.29). As will be shown in Section 5, such links can
be established for a whole family of scattering problems representing the
three classes in (2.28).

§3. Three Classes of Integrable Equations in 1 + 1 Dimensions

§3.1. Reductions

As a first step in a more general discussion of the integrable equations
(2.28) we have to explain what type of Lax operators may be used in (2.28) to
obtain a consistent operator evolution equivalent to some nonlinear integrable
equation. In particular, we have to explain why the particular choices of
Lax operators (2.29) work. We start by looking a Lax operators L in general
position

L = uNdN + uN_1d
N-i + .. + uld + uQ + u.ld~i + ... (3.1)

of AT-th order, parametrized by infinitely many fields UN, uN.ly.. . To obtain
a consistent Lax equation we have to ensure that the commutator in (2.28)
yields an integro-differential operator of order not exceeding the order N
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of (3.1). Observing [P>fc(L«),L] = -[P<fc(L«),L] with some P<k(L
q) =

ak-i dk~l 4- a f c_25 f e~2 H ---- one immediately obtains the highest order of the
commutator as

L = - [P<Jk(L«),L] = - [«fc_ !#' 1 + /o^er, i^S* + lower]
dt

(3.2)

where lower represents lower differential orders. Hence, for the cases
& = 0,1,2 under consideration here, the form of the commutator (3.2) matches
the form (3.1) of the Lax operator, and the corresponding time evolution
for the fields UN, uN^iy.. is obtained from the coefficients of each power of
d in (3.2). However, we note that for & = 0 the two highest orders N and
N— 1 are not present in the commutator. As a result the fields UN and
MJV-I of (3.1) will not inherit any dynamics from the Lax equation (3.2). With
other words, the two highest fields will be time-independent functions (of
the space variable x) which can be chosen arbitrarily. For h = I only the
highest field UN will inherit a trivial dynamics, for k = 2 all fields in (3.1)
will be dynamical fields. Hence, as a first step, we have obtained some
information on the highest orders of the operators admissible for the Lax
equations (2.28). They are given in the form

= 2:

(3.3)

where the ut are dynamical fields and CN, c w _i are arbitrary time-independent
functions of x. The three hierarchies of equations (2.28) in general position
(3.3) are to be interpreted as nonlinear hierarchies of coupled systems for
the parametrizing fields ut. In this sense (2.28) represents three hierarchies
of 1 + 1 -dimensional equations involving the time variable tq and the space
variable x for an infinite number of fields ut. For k = 0 this point of view
represents Sato's construction of the KP hierarchy, from which the KP
equation itself can be isolated as a 2 + 1 -dimensional equation. In a similar
fashion the modified KP as well as a 2 + 1 -dimensional Dym equation can
be extracted for the cases k=l and k = 2, respectively. This point of view
is adopted in Ref. [24] and will also be discussed in Section 4. At this
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stage we are interested in a different way of extracting closed systems of
nonlinear integrable equations for a finite number of fields. Having discussed
the properties of the highest orders for the admissible Lax operators, we now
discuss reduction possibilities concerning possible lowest differential orders
of the operators.

It is readily verified that Lax operators (3.1) in general position can
be restricted to the form

k = 2:

(3.4)

We point out that here the integration symbols 5"1 and d~2 turn up on the
left of the fields u^t and n_ 2 , hence — rewriting these symbols using (2.19) —
one encounters an "infinite tail" of integration symbols in these operators. It
is quite easy to see from a direct computation that operators of the above
form do indeed lead to consistent Lax equations of the form (2.28). For
instance, for the case k = 0 the commutator [P>0(L

€),L] will be a purely
differential operator, if L is a purely differential operator. For the case
k = l the commutator [P>t(L

€),L] will be of the form Dl—d~1u_lD2 with
differential operators -D1>2. Here the term d~iu_lD2 can be rewritten as
d~l function + differential operator, matching the form of the operator in
(3.4). A similar analysis applies to the case k = 2 as well. As we will see
in Section 3.4, the reduction to operators of the form (3.4) can be best
understood from the underlying Hamiltonian concept. The operators (3.4)
lie in the dual of the subspace g<k given by (2.27). It will be argued in
Section 3.4 that the linear Poisson bracket associated with a Lie algebra
decomposition can always be properly restricted to the dual subspaces.
Hence, all Hamiltonian equations — in particular the equations (2.28)
associated with the Casimir functions — can be restricted to the dual
subalgebras. As a result, all the nonlinear equations (2.28) with Lax operators
of the form (3.4) will inherit a Hamiltonian formulation from the abstract
linear bracket.

We remark that for k = 1 further admissible reductions for the equations
(2.28) are given by
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L = cN8N + uN_ld
N-i+uN_28

N-2 + .. + uld + k, (3.5)

where X is an arbitrary constant parameter. Again, this is easy to see from

a direct computation. In the reduction to u_i=Q the operator L becomes

purely differential and the commutator with P^^JL9) will be again purely

differential. In the last reduction the parameter A has no effect in the

commutator [P>1(L
q),L] = [aid + higher, X + 1/13 + higher} = (..)8 + higher, and

the resulting operator matches the form of the Lax operator. As a result,

one can immediately predict the following property of the nonlinear equations

for M_ 1 , . . s w A r _ 1 given by the choice L = cN8N + .. + d~1u_i: These equations

are such that they will admit the reductions w _ 1 = 0 and (u_l=Q,

UQ = const = h). We will see, however, that only the first choice in (3.5) stems

from the Hamiltonian reduction mentioned above. The additional reductions

to U-i = 0 and ( M _ I =0, w0 = A) will leave the particular Hamiltonian equations

(2.28) associated with the Casimir functions Cq = tr(Lq)/q invariant, but do

not necessarily admit a proper restriction of the Hamiltonian structure.

In a similar way, following reductions

(3.6)

are admissible for the case k = 2, where all /I's are arbitrary constant

parameters. In all these cases it is readily verified that the lowest order of

the commutator [P>2(L
€),L] matches the lowest order of — L for arbitrary

dtq

operators P>2(L
q) = aM8M + .. -\-a28

2. Again, only the first case in (3.6) is a

Hamiltonian reduction for the general linear Poisson bracket. All other

reductions leave the equations (2.28), k = 2y invariant, but will not necessarily

admit a reduction of the Poisson structure.

§3B20 A List of Integrable 1 + 1-Dimensional Equations

In this section we will display a list of the simplest nonlinear integrable

equations encoded in (2.28) by specializing the Lax operator as in (3.4) and
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(3.5)7(3.6), respectively. All equations exhibited in this section are obtained
in exactly the same way as the three "prototype" equations KdV, modified
KdV and Dym in Section 2. We consider a Nth order operator
L = uNdN + lower orders. Here the highest coefficient will be chosen as
uN = cN=l for the cases & = 0,1 and UN = UN (with some dynamical field u)

for the case k = 2, respectively. Then, following the procedure of algebraically
calculating the "ATth root" as explained in Section 2, one constructs

LN = Ad + a0 4-<z1<9~ * + .., where A = l in the cases k = Q,l and A=u in the

case k = 2, respectively. Calculating the powers LN and applying the
projections P>fe one considers the Lax equations

,], n = 1,2,3,.. . (3.7)
dtn

For k = Q,l the choice n = l will always lead to the dynamics uitl = uix for
the fields ut in L, so that we may identify t±=x in these cases. For & = 0
and purely differential L the equations become trivial for integer values of

n/Ny because then P>0(L
N) = LN. In the calculations leading to the nonlinear

equations the only difficulty arising is of a technical nature. In order to
n_

obtain P>fe(L
jV) one has to calculate sufficiently many coefficients of the

expansion LN = Ad + lL,i<0aid
l in terms of the fields ut parametrizing the Lax

operators. In particular, the coefficients up to an-^^k will contribute to the
nth equation in the hierarchy (3.7). Hence, for large n and N, these
calculation will become very cumbersome. We have implemented the
necessary routines on a computer using the Symbolic Manipulation package
Maple ([32]). In the following list of equations we will consider Lax
operators up to fifth order. For each choice of & = 0,1 or 2 and N we will
exhibit the first nontrivial of the nonlinear isospectral equations (3.7) associated
with the chosen scattering operator.

The case £ = 0:

As already discussed in Section 2, considering second order Lax operators
one obtains

L = d2 + u, P>0(L*) = d3+-ud + -ux, (3.8)
2 4
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so that (3.7) is equivalent to the KdV equation 4ut 3 = uxxx + 6uux in accordance
with the results of Section 2.

third order Lax operators one finds

, (3.9)

where the fractional power was calculated according to the procedure given
in Section 2. The resulting equation is

(3.10)

As a consequence, the field u satisfies the Boussinesq equation 3ut2t2 + (uxxx +

For 4th order Lax operators one finds

. (3.11)

The resulting equation is

2 " = ~

For 5th order Lax operators one finds

(3.13)

The resulting equation is

.

M
V 1 = I ~* ' ~ ' " * I. (3.14)
mi I I 4 f \ P" i - t f \ S A I V /

^ t2 \ _ 2uxxxxx + 5zxx — 2uuxxx - 2vuxx - 2wux
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The case k= 1.

For first order Lax operators one obtains

L = d + u + d~1v, P>l(L
2) = d2 + 2ud, (3.15)

so that (3.7) is equivalent to the system of equations

of Kaup and Broer discussed in Ref. [21]. According to the additional
reductions given by (3.5) we can restrict the operators and equations to
v = Q, leading to Burgers' equation

2 = uxx + 2uux. (3.17)

For second order Lax operators one finds

L = d2-\-ud-\-v-\-d~1wy P> i(L) = d2 + ud, (3.18)

leading to the equation

n / 2u
(») = »x» + 2w, + «w, |. (3.19)
Vw/» \-Wxx + (u^x

The reduction w = Q leads to

2V" ' (3.20)

which turns out to be Burgers equation with a time independent driving

term, when introducing the variable f=2v — ux u2:
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The next reduction to v = l leaves (3.20) trivial. However, for the next
equation in the hierarchy one calculates

2 -1 1 3 3 2 3 2
>1 2 g x

The resulting equation is

/ 2uxxx +12vxx + 24wx - 3u2ux +12(uv)

(3.23)

for which the reduction w = 0, v = A leads to the modified KdV equation

2 ~ 3 3 2 3 2
>i 2 §

3 2
ut3-uxxx--u ux+ ux

in accordance with the results of Section 2.

^or third order Lax operators one finds

3 2 - 1 ~ 2 2

>!( )- +-M .

The resulting equation is

l — 3uxy. -f- 6tL. — 2MM,,.

(
.. + 2uVy. — 2Uy.v — 'i_. „ . (3 26)
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For the reduction z = 0, w = const we obtain a "modified Boussinesq" equation

— 2uxv — 2uuxx

It will be explained in Section 5, how a Miura transformation to the

Boussinesq equation (3.10) can be constructed.

4th order Lax operators one finds

P>l(L*) = d2+-ud. (3.28)

The resulting equation is

r — 4uxx + 4vx — 2uu

I A*. L o«, i A~., — 2uxv-i-uv.c — 3uu

(3.29)

2zxx + 4rx 4- M^X

-2rxx + (wr)x

For the reduction r = 0, z = const we obtain a "modified" version of equation

(3.12)

(3.30)

5th order Lax operators one finds

s, P > ^(1%) = d2 +-ud . (3.31)

The resulting equation is
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- 20uxxx 4- Svxx +1 Qwx -12uuxx - 6uxv 4- 2uvx

+ 5 wxx 4-10*x - 8uuxxx - 6uxxv - 4uxw 4- 2uwxv

- 2uxxw -

(3.32)

For the reduction 5 = 0, r = const we obtain a "modified" version of equation
(3.14)

\
I 9, \ — ̂ MXJCJC+5^^4-10^— IZtttt.^ — buxv + 2uvx

5
-l 2uuxx - 6uxv + 2uvx

( M

?;
w ' — 1 OMXXXJC + 5 wxx +10^x — 8uuxxx — 6uxxv — $uxw 4- 2uwx

\— 2uxxxxx 4- 5zxx — 2uuxxxx — 2uxxxv — 2uxxw — 2uxz 4- 2uzx

(3.33)

The case k = 2.

For first order Lax operators one obtains

so that (3.7) is equivalent to the system of equations

tu

l\ ./: :.:". • (3-35)
v Z ,

According to the additional reductions given by (3.6) we can restrict the
operators and equations to
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I u2uxx + 2u2vx

v ] = 1 w2?;^ 4- 2u(uw)x I, ,2Muxx

\-<K2«)«

Mt2 = M2
Mjcx + 2^M2. (3.36)

For the last reduction we have used z = w = Q, v = Ax.

For second order Lax operators one finds

leading to the equation

u \
, \

1w =

* /r /
' t2

/ uvx-vux \

u2vxx-\-2u2wx

u2wxx + 2u(uz)x

, 2 N , Of 2 ^
V.M ^Jxx i ^v^ ^x

i x T v J
\-(u2r)x

The reductions according to (3.6) lead to

(3.38)

(3.39)

for r = 0 and r = z = ®. Choosing w = hx and (v = kxy w = const), respectively,

one can reduce (3.39) to the following equations

M
vt2

For the very last reduction the evolution equation for u has become linear. It

is the first member of the Dym hierarchy, its solution describes a scaling

of the variables. Indeed, for the next equation in the hierarchy one calculates
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2, . . . . ,- • (3-41)

The resulting equation for general (u,v,wyz,r) is rather complicated, we only
write down its reduction to z = r = Q:

2u3uxxx + 6u2vxx -f 12u2wx + 3u2(u ~ 2v2)x

\ 8u3wxxx + 4(u3)xwxx + 12uvwxx

(3.42)

The reduction w = hx leads to the integrable equation

3uxxx + 6u2vxx + 3u2(u-2v2)x . ,

which is the next equation in the hierarchy associated with the equation
(3.40J), related to the scattering operator L = u2d2 + vd + Ax. Imposing the
reduction w = const, v = lx on (3.42) one obtains the Dym equation

4Mt3 = u3
M_ + 3A2/^ (3.44)

u

in accordance with the results of Section 2.

^or third order Lax operators one finds

L = u3d3 + vd2 + wd + z±d-lr + d~2s, P>2(L^ = u2d2. (3.45)

We only exhibit the resulting equation for the choice z = r = s = Q, w = hx:

We found that the next equation in this hierarchy admits an additional
reduction to v = w = z = r = s = Q, so that one discovers the simple scalar fifth
order equation
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L = u3d3, P> 2(L*) = du5d4 +-u3(u2)xxd
3, 1 Suts + u4(u2)xxxxx = 0, (3 .47)

which is related to the equation discussed in Ref. [33]. We observe that

no second order term is present in the projected operator P>2(^)- However,
there does not seem to be a structural reason for this phenomenon, explaining
why the additional constraint to v = 0 is admissible for the fifth order equation.

4th order Lax operators one finds

L = u
4d4 + vd3 + w82+zd + r + d-1s + d-2fy P>2(L*) = u2d2. (3.48)

We only exhibit the resulting equation for the choice r = s=f=0y z = kx:

- 2uu)xxxx - 2v(u2)xxx - 2w(u2)xx + 2u2w

(3.49)

No equations associated with operators of order N>4 shall be presented,
as even the simplest equations in the hierarchies are of an extremely
complicated form.

§3.3. A Discrete Invariance and Kupershmidi Reductions

For any given Lax formulation — L = [B,L] encoding a nonlinear
dt

integrable equation one can use an equivalent Lax formulation in terms of

the formally transposed pair L = L^ and B= —B^, which again satisfy — L =
dt

[B,L]. In terms of the Lax operators (2.18) the transposition is given by

- (3-50)

We now discuss the invariance of the Lax equations (2.28)7(3.7) with respect
to transposition of L. It is readily seen that
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Pz0(A*), (P<0(A))+ = P<0(A? (3.51)

for any operator A eg. Further, observing Ps.k(A) — P>0(Ad~k)dk, one derives
the identity

d-"(P>k(Arfdk = P^(8-kA*dk). (3.52)

For a given Nth order operator L = ANdN + lower orders all integrable equations
discussed in the last section were constructed via the 'Wth root"

.. (3.53)

from the condition (LN)N = L. All coefficients aQy #1,.., in this ansatz are
determined uniquely from this condition, once the leading order term A is
fixed. The isospectral equations then were obtained using (integer) powers

of LN. We now consider transposed operators

= Ad + lower, (3.54)

having the same leading order term A as the original L^. This is exactly
the operator representing the (<Nth root" of the operator

L = (— 1 )Nd ~ kL^dk = (— 1 )Nd ~ k(aNdN 4- lower)^dk = AN8N + lower (3.55)

in this construction. Using (3.52) the time evolution for L is obtained from
(3.7) as

—L = (-lfd-fc([P>ft((L»)"),L]^ (3.56)
dtn

Hence, up to the sign ( —1)"+1 , the construction (3.7) of all the equations
discussed here is invariant with respect to transposition of the Lax
operators. Absorbing the signs into the time variable we have the result
that all equations (3.7) are invariant under the discrete transformation

L -» L =(-\fd~kL*dk,
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tn, n odd.
(3.57)

— tn, n even.

Using this result certain discrete invariances for the nonlinear equations can
be extracted directly from the Lax operator. For instance, the Boussinesq
equation (3.10) is associated with the third order operator L = i

constructed via P>2(I*
3). Considering

v (3.58)

we immediately obtain the invariance

t2-»i2=—t2 (3.59)

for (3.10). The same analysis for the "modified" Boussinesq equation (3.27),

associated with the operators L = d3+ud2 + vd, P^U), leads to

ux)8. (3.60)

Hence we obtain the invariance

u-*u= — u, v-*v = v — ux, t2-»f2=—t2 (3.61)

for (3.27). As a further example, also the simple invariance u—*u= — u of
the modified KdV (3.24) is a consequence of the transformation

L = d2 + ud + l^L = 82 + ud + l = d-1L*d = d2-ud + l (3.62)

of the Lax operator.
As an important consequence of these symmetry transformations, one may

conclude that for odd n, that is fn = tn, the fixed points L = L of the
transformation (3.57) are invariant with respect to the dynamics (3.7). In

d
fact, for any dynamical system — -L = K(L) — given by some vectorfield K —

dt

and a symmetry transformation L-»L, one has — (L — L) = K(L) — K(L) = 0
dt

for L = L. Hence, the dynamics is tangent to the set of fixed points of the
symmetry transformation. For even n the conditions for fixed points of the
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transformation (3.57) include tn=—tn, so that the evolution equations
associated with even times tn will not admit a reduction to the Lax operators
which are invariant with respect to the transformation (3.57). However, no
such obstacle arises for the flows associated with the odd times tn. As a
result, we may restrict each second equation in the three hierarchies (3.7)
(with odd n) to Lax operators satisfying the constraint

L = (-l)Nd~kL^dk. (3.63)

This constraint was discussed by Kupershmidt in Ref. [21] and shall be
referred to as Kupershmidt reduction in the following.

We present a list of the first nontrivial equations of the hierarchies
associated with operators (3.4) up to fifth order. Again, the arbitrary
functions are chosen as %(#) = ! and c N _ l ( x ) = Q for simplicity.

The case k = Q.

The second order operator L = d2 + u associated with the KdV hierarchy
satisfies the Kupershmidt constraint (3.63). Imposing this constraint on

third order operators L = d 3 - f W i 3 + u0 one finds the condition un = -u i Y. ThisP 1 0 o 2 i »

reduction cannot be imposed on the Boussinesq equation (3.10), because it
represents the flow associated with the even time t = t2. The next admissible
index n = 3 leads to a trivial flow for third order operators, the flow associated
with £4 does not admit the Kupershmidt reduction. Hence, we have to
choose n = S to find the first nontrivial flow associated with third order
operators constrained by (3.63). Putting M1 = 2w, one finds

1 5 10 3 3 5
>0 - ^ -i

10 ,,
+— (du2 + u2d), (3.64)

9

leading to the Kaup-Kupershmidt equation ([25])

It represents a reduction of the £5-flow in the Boussinesq hierarchy.
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For 4th order Lax operators L = d + U2d
2 + uld + u0 the constraint (3.63)

leads to the condition ul=u2x. With u = u2, v = u0, one finds

1 3

~° 8

leading to

- 3 (uxxxxx + uuxxx + uxuxx) + Svxxx + 6uv

For 5th order Lax operators L = d5 + u3d
3 + u2S

2 + uld-{-u0 the constraint (3.63)

3 1 1 1
leads to the conditions u2=-u3x, u0= w3jcjcjc + -wlx. With u = -u3,

3 1
v=--u3xx + -uiy one finds

4 2

-(du-}-ud)y (3.68)

leading to

_ +1 luu^v + ̂ uxu^ 4- 6uvx — 6uxvX ' XXX ' X XX ' X X *

The case k — \.

Imposing (3.63) on first order operators L = 5 + M0 + 3~ 1 w_ 1 one finds the

constraint w0 = 0. With w = w_1 one calculates

(3.70)

leading to the KdV equation

(3.71)

The fact that the KdV hierarchy can be represented in the class k=l using

the operator L = d + d~1u was discussed by Kupershmidt ([21]) (using the
transposed operators).
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For second order operators L = d2 + ul8 + UQ + 8~1u,l the Kupershmidt

constraint leads to M1=0, u^i = -- u0x. Putting u0 = 2u one finds

(3.72)

again leading to the KdV equation

(3.73)

In this case the Lax operator may be regarded as the transposed of the
well-known recursion operator of the KdV hierarchy, when identifying the
pseudo-differential symbol 3"1 with the integration operator D~1=|x.

For third order operators L = 83 + u28
2 + uld + u0 + 8~1u_l the Kupershmidt

reduction leads to the conditions u2 = u0 = Q. With M = MI, v = u_iy one
finds

(3.74)

leading to

/11 \ I '\n\ \

(3.75)

We can intersect the Kupershmidt constraint with the additional reductions
given by (3.5). Assuming v = Q equation (3.75) becomes trivial. However,
passing to the next nontrivial flow admitting the Kupershmidt constraint,
one finds

3 - 5 5 2 10 2 3 5 2- +U y >! )- -- U +— U U ) + -U ,

leading to the Sawada-Kotera equation ([26])

It represents the reduction v = Q of the £5-flow of the hierarchy associated
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with (3.75).

For 4th order Lax operators L = 8 + u^d* + u28 -j-u^B-j-Uo + d 1 the constraint

(3.63) leads to the conditions u3 = Q, ul=-u2x, U-l=-u0x. With u2 = 2u,
z, z,

u0 = 2v one finds

2 , (3.78)

leading to

2 ( ) = (~Uxxx Vx~ UUA . (3.79)
\ a\ I \ ^7) —I— ^f/7) /\c//*, \ Z.c/vvv i^ "-^M-L>Y /\ / 13 N XJCX JC /

Intersecting with the additional reductions of (3.5), that is, assuming v = ®,

we again find the KdV equation

4 2 1 3 3

> >l( -" , Mt3 Wxxx MMX-

For 5th order Lax operators L = 85 -\-u48
4-\-u^83+ u28

2-}-ul8-\-UQ-\-d~iu_1

the Kupershmidt constraint leads to the conditions u4 = u0 = 0, u2 = w3;c. With
u = u3, v = ui, w = U-1 one finds

1 3

leading to

' — 1 OMXXJC + I5vx — 6uux

(3.82)

Intersecting with the additional reductions of (3.5), that is, assuming zu = 0
we find the system
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l 3 3

5
(3.83)

u\ ( — I0u^v + I5vv — 6itUr

\vjt3 \ - luxxxxx + 5vxxx - 3uuxxx - luxuxx + 3uvx- luxv

The case k = 2.

Imposing (3.63) on first order operators L = Uid + u0 + d~lu_i+d~2U-2
 one

finds the constraints u0

uxx + 2v, one calculates

finds the constraints u0= -- uit u_2 = -uixxx -- u-ix- With ui = 2ui u_1 =
2 4 2

) = 4(u3d* + du3d2), (3.84)

leading to the equation

(3.85)

We can intersect the Kupershmidt constraint with the additional reductions

given by (3.6). We may assume v = —A = const and find

(3.86)
ut3 = 4(2u3uxxx + 3 u2uxux

An alternative Lax pair Lt3 = [B, L] for this last equation is given by the
1 and B = dP(L^)d~l =4(d2u3d +

du3d2).

For second order operators L = u2d
2 + M13 + M0 + 3~ 1 M_ 1 4-3~ 2 M_ 2 the Kuper-

shmidt constraint leads to u^, = 0, u _ l = — u0x. Putting u2 = u2, u0 = v, U-2 = w

one finds

(3.87)
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leading to the equation

/u
4 v = 4u\xxx + 6(u\vxx + 2(u*)xxvx + 8(u3)xw + l2u*wx \. (3.88)

+ 1 Q(u*)xwxx + S(u*)xxwx + 2(u*)xxxw

We can intersect the Kupershmidt constraint with the additional reductions

given by (3.6). Assuming w = Q we find

2), (3.89)

leading to the equation

( «3««. + 6«3»« "i (390)

\ 4u3vxxx + 6(u3)xvxx + 2(u\xvJ '

The additional reduction v = i leads to the Dym equation

For third order operators L = u3d
3 + u2d

2 + u1d + u0-\-d
 1U-i+d 2u_2

 tne

1 1
Kupershmidt reduction leads to the conditions u2 = -u3x, u0= -- ulx,

u_2—-uixxx -- u-ix- With M3 = 2w3, u1 = 2v, u_1=vxx + 2w, one finds
4 2

(3.92)

(3.93)



NONSTANDARD INTEGRABLE EQUATIONS 617

We can intersect the Kupershmidt constraint with the additional reductions
given by (3.6). Assuming w = A = const equation (3.93) becomes

L = M
3a3 4- du3d2 + vd + d~1vd2, P> 2(L) = u*

(3.94)
2uv — 2uv

An alternative (purely differential) Lax pair is given by the gauge equivalent

pair dLd~1 = du3d2 + d2u3d + dv + vd, 8P>2(L)d-l = 8u3d2 + d2u3d. With the
additional reduction t; = A1# + A2(A1 2

 = const), w = A = 0, equation (3.94)
becomes linear. However, passing to the next nontrivial flow admitting the
Kupershmidt constraint, one finds a nontrivial equation corresponding to
this reduction. By a shift of the x coordinate we may absorb A2 into x,

that is, we assume 12
 = 0- The resulting Lax pair is

L =ii3

6(23)

w4Mxxx 4- 2Wu3uxuxx + 75u2u3
x)d

2 + 4Q^x(u2d3 + uuxd
2)

252) (3.95)

leading to the scalar equation

0 = 9(23)Mts + 4u5uxxxxx + 20u4uxuxxxx + 1 Ou4uxxuxxx + 1 Su3u2uxxx

(3.96)

+ (2Qu2uxxx + 1 5wx - 30wMxMxx)^A1 4- (Wu2uxx - 1 SMM^A! + 40(x:MJC - u)*A? .

It represents the reduction ^ = 1^, w = 0 of the £5-flow of the hierarchy of

(3.93).

For 4th order Lax operators L = u48
4 + u3d

3 + u2S
2 + ulB + u0 + d~iu_i 4-

d~2u_2
 tne constraint (3.63) leads to the conditions u3 = u4x, M1=0,
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u_i = — u0x. With M4 = M4, u2 = vy u0 = w, u_2 = z one finds

-

leading to

f u \

v

w

2), (3.97)

\
4u3vxxx-2(u3)xvxx+Uu3wx-2u*(u3)xxxxx-2(u*Uu3)xx,

4u3zvxxx + 6(u3)xwxx + 2(u3)xxzvx +12u3zx + 8(u3)xz

4u3zxxx+lO(u3)xzxx + 8(u3)xxzx + 2(u3)xxxz /

(3.98)

Intersecting with the additional reductions of (3.6), we may impose the
constraints z = Q and (z = Q, w = const) on this equation and its hierarchy.

^or 5th order Lax operators L = u5d
5 + U4d

4 + u3d
3 + u2d

2 + uld + u0+ d~lu_1

-\~d~2u_2 the Kupershmidt constraint leads to the conditions u4 = -u5x,

u2=--u5xxx + -u3x, u0=--ulx, u_2 = -ulxxx--u_lx. With u5 = 2u5, u3 =

3
—u5xx + 2v, ul = 2w, u_l=wxx + 2z one finds

2), (3.99)

leading to

(2J)ut}= 2u3uxxx + 45u2uxuxx-\ — u~lvx -- u~2uxv,

(2 V,, = - *"3vxxx - 7(u3)xvxx + I(u3)xxvx + 4(u3)xxxv + 6u3wx - 2(u3)xw

-2u5(u3)xxxxx-l9(u5Uu3)xxxx-27(U
5)xx(u

3)xxx
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(2zv,3 = 2u3zvxxx + (u3)xzvxx + 6u3zx + 2(u3)xz,

(2*)*,,= 2u3zxxx + 3(u3)xzxx + (u3)xxzx. (3.100)

Admissible reductions to Lax operators of the type (3.6) are given by the
constraints z = const and (^ = 0, w = A.1

§3.4. The Hamiltonian Concept

As discussed in Section 2 the equations (2.16) originate from a
Hamiltonian concept making use of the algebraic properties of the
r-matrix. Hence, the Lax equations (2.16) as evolutionary systems on the
algebra g are Hamiltonian. In fact, they are multi-Hamiltonian according
to the representations (2.12) involving the three natural brackets (2.8)
associated with the r-matrices

rk = P>k-P<k, fe = 0,l,2 (3.101)

under consideration. As already mentioned before, it must be pointed out,
however, that only for the case k = Q all three brackets are in fact Poisson
brackets. For k = l and k = 2 only the linear and the cubic brackets are
Poisson brackets, as r^ and r2 fail to have the additional algebraic properties
required to turn the quadratic bracket into a Poisson structure. Both the
linear and cubic brackets will be Poisson structures for any r-matrix satisfying
the modified Yang-Baxter equation (2.4). As (3.101) stem from Lie algebra
decompositions of the algebra of pseudo-differential symbols, they do indeed
satisfy the Yang-Baxter condition and hence lead to two Hamiltonian
formulations (2.12) involving 0^l and ^3. It was pointed out in Refs. [18,19]
that the quadratic bracket is more delicate. A sufficient condition for this
bracket to be a Poisson structure, too, involves the skew-symmetric part

—(r — r*) of the r-matrix. In particular, if this skew-symmetric part agains

satisfies the modified Yang-Baxter equation, then this will guarantee the
Poisson properties of the quadratic bracket. For the case k = Q the r-matrix
r0 turns out to be skew-symmetric. Hence its skew-symmetric part coincides
with r0, thus satisfies the Yang-Baxter relation and leads to the quadratic
Poisson structure. For the cases k = l and k = 2 the r-matrices are not
skew-symmetric any more. In fact, it can be shown, that in these cases the
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quadratic bracket does not define a Poisson bracket for generic points in the
algebra. Further, from the deformation property (2.10) it is clear that the
linear and the cubic brackets are compatible if and only if the quadratic
bracket is a Poisson structure. Hence, on the general abstract level, for the
cases k = l and k = 2 the Poisson brackets associated with ^ and &2

 are not

compatible.
As we will see in this section the general multi-Hamiltonian formulation

(2.12) for the Lax operators leads to Hamiltonian formulations of the nonlinear
integrable equations discussed before. As a surprising fact, also the abstract
quadratic bracket for the cases k=l and k = 2 will yield a Hamiltonian
formulation for the corresponding equations. This is related to the fact
that the nonlinear equations of interest are related to Lax operators of a
specific form. In particular, all the equations discussed before are connected
with operators of the form (3.4) or (3.5), (3.6). Hence, we are not dealing
with Lax operators in general position, but we are concerned with the
restriction of the general flows (2.12) to subspaces of the form (3.4), (3.5),
(3.6). These subspaces are invariant with respect to the particular
Hamiltonian dynamics associated with the Casimir functions on g. However,
these subspaces will not automatically be invariant subspaces for the brackets
under consideration. Special care has to be taken in evaluating the general
Hamiltonian structures for some of the Lax operators used in the last
section. If these operators form a proper Poisson subspace of the abstract
Hamiltonian structure, then simple restriction of the general Poisson bracket
to this subspace provides the Hamiltonian formulation for the associated
nonlinear equations. In some cases, however, the general Poisson structure
can not be properly restricted to the class of Lax operators under
consideration. In such a situation it is often very useful to embed this class
into a larger space of operators, which forms a proper Poisson subspace and
hence enjoys a restricted Hamiltonian structure. Then Dirac reduction can
be invoked to reduce (rather than restrict) the Poisson bracket to the class
of operators under consideration. A formulation of this reduction process
in suitable notation was given in Ref. [19]. It may be summarized as follows:

Dirac reduction.

For two linear spaces U and C, spanned by the coordinates ueU and ceC,

respectively, let
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(3.102)

be a Poisson tensor on U@C. Then, for arbitrary fixed ceC, the tensor

®(ii;c) - »m(u,c) - 0>uc(u,c)(0>cc(u,c)) ~ I0>cu(u,c) (3.103)

is a Poisson tensor on the affine space c+U spanned by the variable u.

The Dirac reduced tensor & depends on the fixed c as a parameter only. It
will turn out that many of the Hamiltonian operators connected to the
equations of Section 3.2 originate from this reduction process. The inverse
8P~C

V in (3.103) then accounts for the non-localities (inverses of differential
operators) often encountered in such formal Poisson brackets. We point
out that this reduction depends on a rather severe "technicality": the element
&cc of the Hamiltonian matrix (3.102) has to be invertible. Hence, in some
reductions there will not be any chance to obtain a Poisson structure, when
^cc is degenerate. In fact, some of the equations of Section 3.2 (such as
Burgers equation (3.17)) are of dissipative nature and do not admit a
Hamiltonian formulation. As we will see, the general Poisson brackets can
not be properly restricted to the Lax operators of those cases, and Dirac
reduction cannot be invoked for the reason given above. Hence, we may
loose the Hamiltonian structure in the reduction process from generic Leg
to specific Lax operators of the form (3.4), (3.5), (3.6).

On the other hand, it can happen that the Dirac reduced tensor (3.103)
is a Poisson structure, even if the original tensor (3.102) was not a Poisson
tensor. This seems to be the situation that we will encounter in context
of the quadratic bracket, which is not a Poisson bracket for k = 1 and k = 2. It
will turn out that in these cases Dirac reduction does indeed lead to
Hamiltonian formulations, although the general bracket does not enjoy any
distinguished algebraic properties.

For a detailed discussion of the reduction properties of the tensors (2.8)
we first rewrite them in terms of the particular r-matrices (3.101) under
consideration here. The transpose r* entering the definitions are given by
r* = P*fe — P<fc, where P|fc and P*fc are the projections to the dual subalgebras

given by the dual decomposition g*=g=g'tk®8:<k with

*<* = { Z 3'«,}, *£* = { Z 3'«,}- (3-104)
i>- fc i<-fc
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This dual decomposition is readily verified observing

<g:>k>g<k> =0 using the trace duality (2.1)7(2.21). Thus, the tensors are
defined in terms of the four projections P>fc, P<&, P*fc and P<fe. Using

P>k + P<k = Plk + P<k = ̂  we can either eliminate P<ft = l -P>&, P|fc = l -P*<k

or P> fc = l —P<k, P*fe = l — P*k and obtain two equivalent representations for
each of the tensors (2.8):

= -2[P<jk(LVH+VHL),L] + 2L P*lk([VH>L]) + 2P*lk([VH,L])L,

(3.105)

It turns out that for each tensor the second representation yields direct
access to the highest differential order of the operators &i(L)VH, 2 = 1,2,3,
whereas the first representation yields information about the lowest orders
present. To see this, we summarize the projections entering (3.105). At
this stage it is more convenient to parametrize each element A eg by

A=Y, *!#+£ Slat. (3.106)
i>0 i<0

Thus, the projections are given by

P<0(A) =

k = 2: P>2(A) =

P*<2(A) = a

P<2(A) = ai

a- 3a_3 + a- 4 a_ 4 H-- - - . (3.107)
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The case k = ®.

We will be interested in operators LGg< 0 =g> 0 of the form

L = cNdN + cN_i8
N-l+uN_2d

N-2 + .. + uid + u0 (3.108)

with fixed CN, cN_i and dynamical fields uN_2>->uo- These are the
Gelfand-Dikii spectral problems, for which some of the isospectral equations
were exhibited in Section 3.2 for N<5. Inserting such an operator into
(3.105), it becomes clear from the first representation for the linear tensor
that &f = 0\L)VH will be a purely differential operator. From the second
representation it is clearly seen that the highest differential order stems from
the commutator of P<0(Vfl) with L. This highest order will be at most
N—2. Hence, for L of the form (3.108) with given CN and c#-i> *ne

Hamiltonian vectorfield ̂ (
1
fc = 0)(L)VH is tangent to the affine spaces of operators

(3.108) spanned by the coordinates w#_2 , . - ,Mo- As a result, these spaces are
proper Poisson subspaces of the linear bracket on g. Hence, the reduction
of the integrable hierarchy (2.12) to operators of the form (3.4, ft = 0) = (3.108)
is in fact a proper Hamiltonian restriction. The corresponding equations
inherit a Hamiltonian structure from the linear bracket on g.

The quadratic tensor defines a Poisson bracket on g, as the underlying
r-matrix is skew symmetric for the present case k = Q. From the first
representation in (3.105) it is clear that ^>(

2
k = 0) yields a purely differential

operator, if L is a purely differential operator. Hence, the quadratic bracket
can be properly restricted to the subalgebra g>0 of differential operators.
Inserting an operator L of the form (3.108) into the second representation
in (3.105), one sees that the highest differential order of the Hamiltonian
vectorfield 0><f = 0\L)VH will be AT-1. Hence, operators of the form (3.108)
spanned by the variables uN_2>-->uo do not form a proper Poisson
subspace. Instead, the quadratic bracket can be properly restricted to affine
spaces of the form

L = cNdN + uN.1d
N-l+uN-ld

N-2 + .. + uld + u0 (3.109)

spanned by the coordinates UN-I,..,UO (with CN given and fixed). As the
spaces (3.108) sit inside (3.109), it is simple to invoke Dirac reduction to
reduce the quadratic bracket on (3.109) by the constraint UN-I = CN-!.
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For the cubic tensor the first representation in (3.105) shows that ^(
3
fc = 0)

yields a purely differential operator, if L is a purely differential
operator. Hence, also the cubic bracket can be properly restricted to the
subalgebra g>0 of differential operators. Inserting an operator L of the
form (3.108) into the second representation in (3.105), one sees that the
highest differential order of the Hamiltonian vectorfield ^f=0)(L)VH will be
2N—1. Hence, operators of the form (3.108) spanned by the variables
uN-2y>uo d° not form a proper Poisson subspace. In fact, there are no
obvious proper Poisson subspaces for the cubic bracket, apart from the trivial
case of first order operators. Nevertheless, Dirac reduction can be invoked
to restrict the cubic bracket on the differential operators to the affine subspaces
of the form (3.108).

It was demonstrated in [19] that these considerations lead to the usual
bi-Hamiltonian formulations for the isospectral hierarchies associated with
the Lax operators of the type (3.108). The two basic Hamiltonian operators
®! and ©2,

 sav> are obtained from the linear and the quadratic bracket. The

reduction of the cubic bracket turns out to be given by ®3=-®2©["1©2,
4

involving the recursion operator 02®iT1 °f *ne bi-Hamiltonian formulation
given by ®l and ©2.

The case k = l.

We will be interested in operators Leg^l of the form

L = cNdN + uN-.ld
N-l + .. + uld + u0 + d-lu.1 (3.110)

with fixed CN and dynamical fields uN_iy..yu_l. These are the spectral
problems, for which some of the isospectral equations were exhibited in
Section 3.2 for N<5. Inserting such an operator into (3.105), it becomes
clear from the first representation for the linear tensor that ^(

1
fe = 1)(L)VH will

be of the form Dl+d~lD2, where D12 are differential operators. It is easy
to see that such operators do again lie in g< i. From the second representation
it is clearly seen that the highest differential order stems from the commutator
of P<l(VH) with L. This highest order will be at most N—l. Hence, for
L of the form (3.110) with given CN, the Hamiltonian vectorfield 0*f =1)(L)VH
is tangent to the affine spaces of operators (3.110) spanned by the coordinates
M#_ !,..,!*_!. As a result, these spaces are proper Poisson subspaces of the
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linear bracket on g. Hence, the reduction of the integrable hierarchy (2.12)
to operators of the form (3.4, k = l) = (3.110) is in fact a proper Hamiltonian
restriction. The corresponding equations inherit a Hamiltonian structure
from the linear bracket on g.

We now calculate this Poisson structure for JV<4. We insert
u2d

2 + u1d + u0 + d~1u_l and (according to (2.22))

2 + d~3 + a~4 (3.111)
ou_i ou0 du1 5u2 du$

d
into (3.105). Thus, the Hamiltonian equation —L = &\ \L)VH translates to

dt

I 0

*0 ~0-1 ®00 ®01 ®02 °

d ._„„ . ^^^ 0^ 0^ Q Q
M t

* M, © 2_! ©20 0 0 0 dH/du,

j_! 0 0 0 0 / \6H/du3 I

(3.112)

where the non-zero elements are given by

®00 = Du2 + u2D + u3D
2 - D2

©10 =Du3 + 2u3D + 3c4D
2-D2c4,

©20 =Dc4 + 3c4A®n = 2Dc4 + 2c4A (3.113)

and skew symmetry of ©. Here, D is the differential operator acting on
the dynamical fields, which we wish to distinguish from the (pseudo-)
differential symbol d (acting on a suitable space of test functions). Now,
the linear Poisson tensors for the various equations of Section 3.2, k = l, are
obtained easily. For instance, for L = d-\-u + d~iv we can restrict (3.112) to
the smaller subspace given by u1 = l, u2 = u3 = c4 = Q. Putting u_^=v and

u0 = u one obtains

-dt \v \D 0 / \6H/dv
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as the "first" Hamiltonian formulation for the Kaup-Broer system (3.16). As

this equation is obtained from —L = [P>1(L
2), L]=^(

1
k=1)(L)V^(L3)/6, the

dt2

Hamiltonian function for (3.16) is calculated as H = tr(L3)/6 = -l(uxv + v2-{-

u2v)dx using (2.21). We had observed in Section 3.2 that the Kaup-Broer
system can be restricted to Burgers equation (3.17) by the constraint
u_1=v = Q. However, as is clearly seen from (3.112), the linear bracket
cannot be properly restricted to the subspace given by this constraint.
Further, Dirac reduction cannot be invoked, as the tensor element 0^l_l

vanishes. Hence, although Burgers equation is a restriction of the
Hamiltonian equation (3.16), the Hamiltonian structure is lost in the
reduction. Also, the Hamiltonian function H=tr(L3)/6 becomes trivial for

v = Q.
In the same way we can obtain the Hamiltonian formulations associated

with higher Lax operators. For N=2 we consider L = d2 + ud + v + d~lw.

Putting «_!=«;, u0 = v, ui=ui w2 = l, ^3 = £4 = 0, the Hamiltonian equation
(3.112) translates to

/SH/Su \

8H/dv . (3.115)

\5H/Sw/

This is the Hamiltonian formulation for the equations (3.19) and (3.23). The
Hamiltonian functions can be calculated as H=tr(L2)/4 for (3.19) and

H=tr(L*)/5 for (3.23), e.g. one finds tr(L2)/4 = ~lvw dx. Again, in the

reduction to w = 0 we will loose the Hamiltonian structure for equation
(3.20). However, in the reduction (w = Q, v = A = const) to the modified KdV
equation (3.24) we can use Dirac reduction on (3.115) to obtain

2D
dt~ "^'"~\Du-D2 0

as a formal Hamiltonian formulation. With

2D uD + D2\~l _f 0

Du-D2 0 / "V^"1^-!-^)'1 -2-
(3.117)
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one obtains a formal Hamiltonian formulation

- (3.118)
dt du

for the modified KdV equation (3.24). This, in fact, corresponds to the

formal Hamiltonian operator R~1S^ =©1®^"1©1 obtained from the recursion

operator JR = 020f1. Here &1=D and ®2 = D3 -DuD~iuD= -D(u-D\

D~i(u + D)D are the two Hamiltonain operators constituting the well known

bi-Hamiltonian formulation for the modified KdV. We will identify these

operators as reductions of the quadratic and the cubic bracket, soon.

In a similar fashion, all Hamiltonian formulations associated with any

Lax operator of the form (3.110) can be calculated for any N. In all cases

one looses the Hamiltonian structure in the reduction to u_l=Q. However,

Dirac reduction will lead to the Hamiltonian operators for the equations

associated with the reduction (w_ 1 =0, u0 = A = const).

The quadratic tensor ^2
 m (2.8) does not define a Poisson bracket on

g for the present choice k = l. Nevertheless, it turns out that Hamiltonian

formulations are hidden in this tensor for certain reductions. Considering

the reduction properties we first look at the second representation for ^2 ^n

(3.105). Inserting L of the form (3.110), the highest differential order of

the operator ^(
2

 = 1)(L)VH ^s easily seen to be at most N—l, matching the

form of the highest differential orders of the ansatz (3.110). Concerning

the lowest differential orders we insert L of the form (3.110) into the first

representation for P2 in (3.105). The second and third term will produce

expressions of the form — 2(u0 + d~iu_l)d~la_i and — 2d~1a-1d~1U-l, where

a- 1 is the corresponding coefficient of the operator [V£T,L]. Such terms

do not lie in the dual subalgebra g < i > from which the Lax operators (3.110)

were chosen. Hence, the quadratic bracket cannot be properly restricted

to g< !• However, choosing L to be of the form

L = cNdN + uN-lff'-
i + ..+uld + A, N>2y (3.119)

the operator ^2
fc=1)(L)V£f will take values in g*,lm Still, expressions of both

zero and minus first order, i.e. of the form d ~ 1 ( . . ) y will be present. Hence,

the quadratic bracket cannot be properly restricted to operators of the form

(3.119), either. Nevertheless, these properties allow to apply Dirac reduction
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to operators (3.119) in a simple way. We demonstrate this considering the

Lax operator L = d2 + ud associated with the modified KdV hierarchy. We

think of L as L = d2 + ud -f v + d ~~ 1 w, subject to the constraint v = w = 0. Insert-

ing VH= - + d~l - + d~2 - , the evolution equation —L = 0>%=i)(L)VH
bw bv bu dt

translates into

4Du ; 2D(D 4- u)D \ / SH/Su \

u2 ; (D + u)D(D + u)D\\ SH/dv .

\ 2D(D -u)D;- D(D - u)D(D -u);
(3.120)

The Dirac reduced equations reads

// iW
(3.121)

dt bu

where

; (D + u)D(D + u)D\-1

-D(D-u)D(D-u) ; 0

' ( ) . (3.122)
\2D(D-u)Dj

Making use of the factorizations of the operators, the formal inverse in

(3.122) can be evaluated, leading to

—u=-SD— . (3.123)
dt bu

Despite the fact that the general quadratic bracket is not a Poisson structure,

its Dirac reduction leads to the well known "first" Hamiltonian formulation

of the modified KdV given by the differential operator.

In a similar way the Dirac reduction of the quadratic bracket can be

performed for any operator of the form (3.119). We expect that Hamiltonian

formulations for the isospectral hierarchies for these operators can be obtained

this way for N>2, too. However, as the general quadratic tensor does not
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enjoy any Poisson properties, there is no structural justification for this
construction and the derivation of Hamiltonian formulations such as (3.123)
from the abstract bracket remains somewhat mysterious.

The cubic tensor in (2.8) does define a Poisson bracket, so that the
following considerations are well motivated. An analysis similar to the case
of the quadratic bracket shows that only for Lax operators of the restricted
class (3.119) in g^l the operator ^=i\L)VH will take values in
g*i- However, for the cubic bracket, this Hamiltonian vectorfield will
actually take values in g > i < = g < i > when the parameter A vanishes. Hence,
the cubic bracket can be properly restricted to the subalgebra g> j. Consider-
ing the second representation for ^3 in (3.105), one easily deduces that the
highest differential order of 0>$ = l\L)VH will be 2N-2. Hence, there only
is one simple Poisson subspace for the cubic bracket in the class (3.110),
given by second order operators of the form L = vd2 + ud. We insert

2— + d-3— and — L = ̂ (
3

fe=1) (L)VH translates to
dv 5v dt

uvD2v-vD2vu ; -vD2v2 + Duv2-2uDv2\ fdH/du\
2v + uv2D-2v2Du ; -v*D-Dv* ) \SH/6v) '

(3.124)

Dirac reduction to v = l produces the "second" Hamiltonian formulation

8H
. (3.125)

dt du

of the modified KdV hierarchy.

For N>2 Dirac reduction can be performed to obtain further Hamiltonian
formulations of the isospectral hierarchies associated with Lax operators of
the form (3.119).

The case k = 2,

We will be interested in operators Leg<2 °f tne form

L=MNa j V+wN_ 1a j V~ 1 + . . + M 1 a + M 0 - f 3 " 1 M _ 1 + 5 ~ 2 M _ 2 (3.126)
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spanned by the fields uN,..,u_2- These are the spectral problems, for which
some of the isospectral equations were exhibited in Section 3.2 for
N<5. Inserting such an operator into (3.105), it becomes clear from the
first representation for the linear tensor that &^f=l\L)VH will be of the form
Di + d~1D2 + d~2D3, where Dlt2,3

 are differential operators. It is easy to
see that such operators do again lie in g<2. From the second representation
it is clearly seen that the highest differential order stems from the commutator
of P<2(VH) with L. This highest order will be at most N. Hence, for L
of the form (3.126), the Hamiltonian vectorfield ^(f = 2\L)VH is tangent to
the spaces of operators (3.126). As a result, the spaces given by these
operators are proper Poisson subspaces of the linear bracket on g. Hence,
the reduction of the integrable hierarchy (2.12) to operators of the form
(3.4, k = 2) = (3. 126) is in fact a proper Hamiltonian restriction. The
corresponding equations inherit a Hamiltonian structure from the linear
bracket on g.

We now calculate this Poisson structure for N<3. We insert

L = u3d
3 + .. + d~2U-2

 and (according to (2.22))

(3.127)

into (3.105). Thus, the Hamiltonian equation— L = 0*f~2)(L)VHtranslates to
dt

/©_2_2©_2_ ie_2 0@-21®-22©-23\/^/^-2\

©_!_ 2 0 © _ 1 0 © _ u © _ 1 2 0

©0_2 ©o-! ©00 ©01 0 0

dt

\
U2

II3

= 20VH=2
© t _ 2 ©!_! 010 0 0 0

©2-2 ©2-1 0 0 0 0

0 0 0 0

SH/8u2

SH/du 3 /
(3.128)

where the non-zero elements are given by

0_ 2 _ 2 =-jDtt_ 2 - t t_ 2 A ©-i-2=-DU-l> ©0-2=-I)^0 + MoA

2 + u3D
3, ©2-2= -D
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(3.129)

and skew symmetry of ©. Now, the linear Poisson tensors for the various
equations of Section 3.2, k = 2, are obtained easily. For instance, for

L = ud + v + d~iw + d~2z we put u_2 = z, w_1 = w, u0 = v, ul=u, u2 = u3 = 0
and obtain

d

~dt

V

w

/

0 0 0 - D u + 2uD\ /5H/8u\

0 0 uD -Dv + vD

0 DM 0 —Dw

\-uD + 2Du -vD + Dv -wD -zD-Dz I

dH/dv

8H/8w
J

(3.130)

as the "first" Hamiltonian formulation for the system (3.35). As this equation

is obtained from —L = [P>2(L
2),L]=^>(

1
fe = 2)(L)V^(L3)/6, the Hamiltonian

dt2

function for (3.35) is calculated as H =tr(L3)/6 = — §(uw2+ v2w + 2uvz-\-uvxw-{-
z,

zuux)dx using (2.21). We had observed in Section 3.2 that this system can
be restricted to the equations (3.36) by the constraints z = 0, (# = 0, w = 0),

and (z = Q, w = Q, v = lx), respectively. As is clearly seen from (3.130), the
linear bracket cannot be properly restricted to the subspace given by these
constraints.

Further, Dirac reduction cannot be invoked, as the corresponding matrix
blocks are degenerate. Hence, although (3.36) are restrictions of the
Hamiltonian equation (3.35) the Hamiltonian structure is lost in the
reduction. Also, the Hamiltonian function H=tr(L3)/6 becomes trivial for
these constraints.

In the same way we can obtain the Hamiltonian formulations associated
with higher Lax operators. For N=2 we consider L = u2d2 + vd-\-w-\-d~1 z +
d~2r. Putting u_2 = r, u_1=z, u0 = w, ui=v, u2 = u2, u3 = c4 = Q, the
Hamiltonian equation (3.128) translates to
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/ M \ /

d

dt

I \
V

w

z

= 2

V \u-

0

0

0

0
lDu

0

0

0

2Du2

2 -vD + 2Dv-D2u2

0

0

2uDu i

Dv-D2u2

-wD + Dw

0

2u2D

)D -j- u2^

0

-zD

u2Du~l \

-Dw+wD

-Dz

-Dr-rD /

/*H\
bu

6H
6v

dw

~fe

1 6H

\dr/

(3.131)

This is the Hamiltonian formulation for the equation (3.38). The

Hamiltonian function is calculated as H=tr(L2)/4=-§ wz dx. Again, in the

reduction to (3.39) we will loose the Hamiltonian structure and the
Hamiltonian function will become trivial.

However, in the reduction (r = # = 0, w = const, v = lx) to the Dym
equation (3.44) we can use Dirac reduction on (3.131). For 1 = 0 one obtains

-u = 16(u2Du2)(^-D - 3\)(u2Du2)(~D ~ 3\)(u2Du2) — (3.132)
dt u3 u3 u3 u3 du

as a formal Hamiltonian formulation. This, in fact, corresponds to the
formal Hamiltonian operator R~2S1 =©1©^1©1€)^"1©1 obtained from the
recursion operator ^ = ©2Bj~1. Here ®l=u2Du2 and &2=u3D3u3 are the
two Hamiltonian operators constituting the well known bi-Hamiltonian
formulation for the Dym equation. These more elementary Hamiltonian
operators will turn up in the reductions of the quadratic and the cubic
bracket, too.

In a similar fashion, all Hamiltonian formulations associated with any
Lax operator of the form (3.126) can be calculated for any N. In all cases
one looses the Hamiltonian structure in the reductions (3.6.ii-iv). For the
final reduction (3.6.v) Dirac reduction will lead to the Hamiltonian
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formulations for the equations associated with these Lax operators.

The quadratic tensor ^2 in (2-8) does not define a Poisson bracket on
g for the present choice k = 2. Nevertheless, it turns out that Hamiltonian
formulations are hidden in this tensor for certain reductions. Considering
the reduction properties we first look at the second representation for ^2 i*1

(3.105). Inserting L of the form (3.126), the highest differential order of
the operator ^(

2
fe = 2)(L)VH is easily seen to be at most N, matching the form

of the highest differential orders of the ansatz (3.126). Concerning the
lowest differential orders we insert L of the form (3.126) into the first
representation for 0*2

 m (3.105). The second and third term will produce
expressions of the form — 2(u1d + u0 + d~1u^i +5~ 2 M_ 2 ) (3~ 1 f l_ 1 + 3~2a_2)
and — 2(8~1al H-5~ 2 a_ 2 ) (5~ 1 M_ 1 H-3~ 2 M_ 2 ) , where a_ 1 ? 0_2 are the cor-
responding coefficients of the operator [VH,L]. Such terms do not lie
in the dual subalgebra g<2, from which the Lax operators (3.126) were
chosen. Hence, the quadratic bracket cannot be properly restricted to
g* 2. However, choosing L to be of the form

L = uN8N + uN_ld
N-i + .. + u2d

2 + (llx + l2)8 + X3, (3.133)

the operator ^2
k = 2)(L)VH will take values in g<2. Still, expressions of first

to minus second order, i.e. of the form (..)3-i-(..)4-3~1(..)-|-3~2(..), will be
present. Hence, the quadratic bracket cannot be properly restricted to
operators of the form (3.133), either. Nevertheless, these properties allow
to apply Dirac reduction to operators (3.133) in a simple way. We
demonstrate this considering the Lax operator L = u2d2 associated with the
Dym equation (3.44), where all constant parameters are chosen to be zero. We
think of L as L = u2d2 + vd + w + d~iz + d~2r, subject to the constraints

(5H 6H ^ .5H a 2dH a , 1 SH ,
Inserting VH= - d + - + <9~ 1 - + d~2 - + <9~3 -- , the

dr dz 8w 8v 2u du

evolution equation — L = ̂ (
2

 = 2)(L) VH translates to
dt
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U\

Vd
wdt
z

= 2

f 0 0 2u2Du 2u2DuD

0 4u2Du2 2u2Du2D 4u2DuDuD

2uDu2 -2uDu2Du2 Du2Du2 + u2D2u2D u2D2u2D

-2DuDu2 4DuDuDu2 -D2 + u2D2u2 0

\D2uDu2 -D2u2D2u2 0 0

2

U
2DuD2 ^

u2D2u2D2

0

0

0 /

du

6H
dv

SH

dw

6H

bz

i***l

(3.134)

The Dirac reduced equations reads

(u2Du2)(D-3)(u2Du2)— . (3.135)
dt u3 u3 du

Again, one encounters a formal Hamiltonian operator of the form
©1©^"1O1, where ®j_ and 02

 are the basic bi-Hamiltonian operators of the
Dym equation already encountered in the reduction of the linear
bracket. Hence, despite the fact that the general quadratic bracket is not
a Poisson structure, its Dirac reduction does lead to a Hamiltonian formulation
of the Dym equation.

In a similar way the Dirac reduction of the quadratic bracket can be
performed for any operator of the form (3.133). We expect that also for
N>2 Hamiltonian formulations for the isospectral hierarchies for these
operators can be obtained this way. However, just as in the case k = l, there
is no structural justification for this construction as the general quadratic
bracket does not define a Poisson structure.

The cubic tensor in (2.8) does define a Poisson bracket, so that the
following considerations are well motivated. An analysis similar to the case
of the quadratic bracket shows that only for Lax operators of the restricted
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class (3.133) the operator ^^ = 2\L)VH will take values in g<2- However,

for the cubic bracket, this Hamiltonian vectorfield will actually take values

in g>2<=:g:<2> *f tne constant parameters vanish. Hence, the cubic bracket

can be properly restricted to the subalgebra g>2. Considering the second

representation for ̂ 3 in (3.105), one easily deduces that the highest differential

order of ^ = 2\L)VH will be max(N,2N-3). Hence, there is only one

simple Poisson subspace for the cubic bracket in the class (3.126), given by

second order operators of the form L = u2d2. In this case, we insert

^H=d~3 -- and —L = 0>(£ = 2)(L)VH translates to the Hamiltonian
2u du dt

formulation

-u = u2Du2— (3.136)
dt du

of the Dym hierarchy.

For N> 2 Dirac reduction can be performed to obtain further Hamiltonian

formulations of the isospectral hierarchies associated with Lax operators of

the form (3.133).

Summarizing this section we point out that the abstract brackets (2.8)

indeed encode the multi-Hamiltonian formulations of the nonlinear integrable

systems defined by the Lax equations considered here. Depending on the

reduction, either a simple restriction or Dirac reduction to the corresponding

class of Lax operators will lead to the Hamiltonian formulations in a

straightforward, although sometimes technical, way. As a surprising fact,

also the quadratic bracket for k = 1 and k = 2 yields Hamiltonian

structures. We believe that also the multi-Hamiltonian formulations of the

Kupershmidt constrained systems of Section 3.3 can be obtained as Dirac

reductions of the general brackets.

§4. Sato Approach: Three Classes of Integrable Equations

in 2+1 Dimensions

§4.1. The KP Hierarchy and Nonstandard Sato Equations

In this section we will copy the construction of the KP hierarchy within

Sato's approach ([10-14]) for the three classes of equations (2.28). The idea

essentially is that one considers Lax operators spanned by infinitely many



636 BORIS KONOPELCHENKO AND WALTER OfiVEL

fields. Hence, for fixed k and varying q, each of the equations (2.28)
represents a 1 +1-dimensional integrable system with infinitely many
fields. As all equations commute for different values of g, they may be
considered simultaneously. Then one tries to extract a closed equation for
a single field by eliminating the other fields using the evolution equations.

We consider operators of the form (3.3), where we assume that an
infinite "tail" of integration symbols is present. Without loosing generality,
we may assume N=l, as the Lax equation (2.28) for any L = uNdN-flower
for a given power q leads to the same equation as the Lax operator
~ I. i.
L = LN = (uN)Nd -f lower with the power p = Np. Thus, the construction only
depends on the choices of the non-dynamical leading order coefficients in
L. For simplicity, we will again choose cN = l and cN_1=Q as the leading
orders in the cases k = Q and k = l. Further, we will fix AT=1, and the
powers q in (2.28) will be restricted to the natural numbers. As we will
consider the equations simultaneously, we introduce a different time variable
tn for each choice of q = neN. Thus, we will consider the hierarchy of
equations

£ __ rp (Ln) Z/1 n = l 2 3 • • • (41)
dtn

where we choose

1 _ t _2 _3

as in standard Sato theory, together with

(4.3)
Dym

1+w2

Here the "highest dynamical coefficients" u, v and w carry no index, since
they will be taken as distinguished fields which satisfy identifiable integrable
equations. These are the KP hierarchy for & = 0, the modified KP hierarchy
for k = l and a 2 +1-dimensional Dym hierarchy for k = 2, as indicated by
the choice of subscripts for the Lax operators. The remaining fields
U2>U3>"'>V1>V2>"'>WQ>W1>'"> mav be regarded as auxiliary fields to be eliminated
in the following construction.
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The case k = Q. The Kadomtsev-Petviashvili hierarchy

Here, we review the construction of the KP hierarchy via Sato theory. Thus,

with L = LKP = d + —ud~l+u2d~2-\-u38~3-\ ---- one readily calculates the

differential operators

P>0(L) =5,

P>0(L2) = a2 + M, (4.4)

P>0(L3) = 53+-Md+-

In general, it is clear that the operator P>0(L") will be a differential operator
of order n involving the fields u,u2,u3,---,un_l. Thus, the first of the evolution
equations (4.1) become

«i =«*>
2"I"2*' (4.5)

T _rp (T2\n «_» ) 2y 2XX 3x X, (. ,.
Lf2-[P,0(L),L] ~ 1 = - (4'6)

(4.7)

with the more convenient notation y = t2y t = t3. The first set of equations
indicates, that we may identify x = t^. These are the first equations of a
countable hierarchy of commuting coupled equations involving all the fields
M , M 2 , M 3 , - - - . For each w, the corresponding evolution equation represents a
1 +1-dimensional system in the two independent variables tn and x and
infinitely many dependent fields. In Section 3 we have discussed reductions,
in which only finitely many of these variables are present. Namely, we may

assume L to be of the form L = LN, where L = 8N + UN _ 2d
N ~ 2 +.. + u0 is a purely

differential operator. This is indeed an admissible reduction for the dynamics
(4.1). Now all coefficients of L can be expressed in terms of the N—2
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dynamical fields w/y_ 2 , " ">^o m L, an<^ (4.1) will be equivalent to the isospectral
hierarchy for L as constructed in Section 3.

Another way of extracting equations out of (4.6), (4. ?),••- , which involve
one field only makes use of the particular structure of the equations associated
with t2=y. In this connection, it is noted that by a simple integration with
respect to x the fields u2,u3,--, can be recursively expressed in terms of the

field u and its derivatives with respect to y. Hence M 2 > M 3>" ' maY be considered
as auxiliary fields to be eliminated via (4.6) from the higher equations in
the above hierarchy. For example, eliminating u2 and u3 via (4.6), one can
rewrite the first component of (4.7) in terms of M, its x- and its ^-derivatives.
The equation thus encountered is the Kadomtsev-Petviashvili (KP) equation

*utx = (uxxx + 6uux)x 4- 3uyy. (4.8)

Elimination of the auxiliary fields from the other components of (4.7) just
gives differential consequences of (4.8). One may also consider the higher
equations for u arising from Ltn = [P>0(L

n),L]. These are of the form
utn = En(u,u2,U3,---,un) with some differential expression En of the indicated
arguments. After elimination of the auxiliary fields via (4.6) there remains

an equation for u only. Since it has to commute with (4.8), it represents
the nth member of the KP hierarchy.

We remark that this elimination process can be simplified by directly
considering the operators P>0(LW). Using the zero-curvature equation (2.17)
the nth member of the KP hierarchy is encoded in the operator equation

' ~ - — - » - - f j-j f T n\\ i r J~s f T £\ L ,
>ol\0(L

2))—-(P>0(
dtn dy

The lowest differential order defines the time evolution utn in terms of the
auxiliary fields entering P>0(LM). The coefficients of the higher differential
orders define the constraints, from which the auxiliary fields can be eliminated
in terms of u and its ^-derivatives.

The case k=i0 The modified Kadomtsev-Petviashvili hierarchy

A similar analysis, now with k=\ and L = LmKP = d + v-\-vld~1+v2d~2-\ ,
leads to the modified KP hierarchy for the field v. In this case,

P>i(L) =d,
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+ v2 + vl)d. (4.10)

In general, the operator P>±(Ln) will be a differential operator of order n

which involves the fields v,vi,v2,-'Vn-2- The first of the evolution equations
(4.1) are

L -FP
'2"L

(4.13)

where again we have set 3^ = ^25 ^ = ^a- Now the auxiliary fields v i , ^2> '"> can

be eliminated by expressing them in terms of the field v and its
^-derivatives. For example, eliminating v± and v2 via (4.12), one can rewrite
the first component of (4.13) in terms of v. The equation so obtained is
the modified Kadomtsev-Petviashvili (mKP) equation

4vtx = (vxxx-6v2vx)x + 3vyy + 6vxvy + 6vxxD-ivy. (4.14)

Here D~1=JX d£ is the integration operator arising from the elimination of
the auxiliary fields. On consideration of the higher equations for v arising
fromL tn = [P>1(L

n),L] with n = 4,5,- •, one finds vtn = En(v,v1, v2, •••)vn_1) where
the expression En involves derivatives of the indicated arguments. After
elimination of the auxiliary fields via (4.12) an equation for v only
remains. This represents the nth member of the modified KP hierarchy.
Again, the necessary calculations are simplified by directly considering the
corresponding zero-curvature equations (4.9) (with P>0 replaced by P>i).

The case k = 2. The Dym hierarchy in 2 + 1 dimensions

A similar analysis, but now with k = 2 and L = LDym
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w2d~2-\ , leads to a hierarchy of 2 + 1-dimensional Dym equations for the

field w. Here

P*2(L) = 0,

P>2(L2) = ̂ 252
5 (4.15)

p> 2(L
3) = w3d3 4 3 w2(wx 4 w0)d

2.

In general, the operator P>2(L") will be a differential operator of order n

involving the fields w,wQ)wlt'-'Wn_3. The first of the evolution equations

(4.1) are

(«>.! =0,

Ltl = [P>2(L),L] « 0^ = 0, (4.16)

Wy = W W.

wt = w2(-(w2)xx

(4.18)

where again y = t2, t = t3. Now the auxiliary fields Wo,^,-", can be eliminated

by expressing them in terms of the field w and its ^-derivatives. For

instance, eliminating WQ and w1 via (4.17), one can rewrite the first component

of (4.18) in terms of w. The equation so derived is a 2 4-1 -dimensional

version of the Dym equation first constructed in Ref. [23]:

lD~l(-)y)r (4.19)
w w

Again, the integration D"1 =|x ctt; arises from the elimination of the auxiliary

fields.

As before, considering the higher equations for w arising from

Ltn = [P>2(L"),L] with « = 4,5,-», one finds wtn = En(w,w^w^---,wn_2} with

expressions En involving the derivatives of the indicated arguments. After
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elimination of the auxiliary fields by (4.17) there remains an equation for w
only. This represents the w-th member of the 2 + 1 -dimensional Dym
hierarchy. Again, the necessary calculations are simplified by directly
considering the corresponding zero-curvature equations (4.9) (with P>0

replaced by P>2)-

§4.2. Kupershmidt Reductions

As the 2 + 1 -dimensional hierarchies considered here really are just
reinterpretations of the 1 + 1 -dimensional hierarchies (4.1) for infinitely many
fields, we can apply the results of Section 3.3 to the present considerations,
too. In particular, we can impose the constraints (3.63) with N=l, and
each second equation in (4.1) with odd n will survive this reduction. Hence
we consider

— L = [P>k(L"),L], « = 1,3,5,»-, L + 5"kLt3k = 0. (4.20)
dtn

The constraint implies relations between the auxiliary fields of the operators
(4.2) and (4.3). In particular, we parametrize the Lax operators in the
following way:

£ = 0: L = d + ud~l+d

= l: L = 8-i(82 + v + v38-2 + 8-2v3+v58-4 + d-*v5 + --) (4.21)

=

= 2: L =

so that the constraints are satisfied automatically. In all cases the
distinguished fields are those connected with the highest dynamical differential
order of L. All other fields are auxiliary fields to be eliminated in the
following construction. The relevant differential operators P>fc(L

3) and

P>fc(L5) are calculated as

P>0(L5) =
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P>!(L5) =

= 2: P>2(L3) =
P>2(L5) -

+ w3dw282) 4- 80(<9o/X 4 w^w^d2. (4.22)

Now, for & = 0 the Lax equation (4.20) associated with y = t3 imply evolutions

of the form uy=E1(u,u3), u3y = E3(u,u3,u5),--, with certain differential

expressions E{ of the indicated arguments. We can use these relations to

express all the auxiliary fields u3,u5,--, in terms of the field u and its

^-derivatives. Eliminating the auxiliary fields from the equation associated

with t = t5 one obtains an equations for the distinguished field ti, only. In

exactly the same fashion 2 + 1 -dimensional equations for the distinguished

fields v and w can be extracted for the cases k = 1 and k = 2, too. Alternatively,

one may directly use the zero-curvature condition

j v ^ n. \ // 7N £^H^ ' ' ' "- iC «• N /•" >K^- /J \ " /

a£ dy

to derive the relations between the auxiliary fields and the prime fields as

well as the ^-evolution for the prime fields. The resulting equations are

= l: 9vt 4 vxxxxx 4 1 5vv xxx + 1 Svxvxx + 45v2vx — 5vyxx — 5D " 1vyy

= 2: 1 8wt 4- 64w5wxxxxx + 3 2Qw4wxwxxxx + 1 6Qw4wxxwxxx + 240w3 wxwxxx

(4.24)
w w

These equations were found in Ref. [23]. If we impose the additional

constraint L3 =P>fc(L3), then these equations reduce to their 1 + 1 -dimensional

counterparts associated with the third order Lax operators L = L3. In

particular, in this reduction the ^-evolution will become trivial. Hence,

omitting the y-derivatives in (4.24) and using a suitable rescaling of the

fields, these equations reduce to the Kaup-Kupershmidt equation (3.65), the

Sawada-Kotera equation (3.77) and the equation (3.96), A^O, respectively.

The hierarchies of the equations (4.24) are obtained from (4.23), when
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replacing t = ts-+tn, L
5-»L", w = 7,9,.. .

§5. Gauge Transformations and Reciprocal Links:
Darboux Theorems

In Section 4 we have identified the three integrable hierarchies

—L = [P>fc(L*),L], ft = 0,1,2 as the KP hierarchy, the modified KP hierarchy
dtq

and the 2 + 1-dimensional Dym hierarchy, respectively. The constrained
equations of Section 4.2 and all the 1 +1-dimensional systems of Section 3
may be regarded as reductions of these general hierarchies. It is well known
that these three hierarchies are connected via Miura type transformations
([34]) and reciprocal links ([35]), respectively. We will now show, that these
relations are actually built into the construction of these hierarchies using
the three different projections P>k. The relations between the classes k = Q
and k=l had already been observed in Ref. [21], a general analysis was given
in Ref. [24]. Here we briefly review the results of Ref. [24] and then discuss
some of the reduction aspects to the 1 + 1-dimensional hierarchies of Section 3.

The Lax equations —L = [P>fe(L
€),L] guarantee the compatibility of the

dtq
linear problems

L<D = M>,<5(g = P>t(L«)e&, (5.1)

which may be considered simultaneously for arbitrary q because of the
zero-curvature equations (2.17). In the case of 2 + 1-dimensional equations
the evolution equations for $ are in fact the linear problems from which
an Inverse Scattering Method for the corresponding nonlinear evolution
equation may be derived. For instance, for the KP equation (4.8) the linear
problems are given by ®y = P>0(L2)<I> and <I>f = P>0(L3)<I>, which involve the
potential u satisfying the KP equation. The auxiliary field u2 in P>0(L3)
has to be thought of as being defined in terms of u and its ^-derivative via
(4.6). For the reduction to the 1 +1 -dimensional equations one imposes the
eigenvalue problem L<D = A$ as an additional constraint, which is compatible
with the time evolutions of <D given by (5.1).

It turns out that Miura transformations as well as reciprocal links are
most conveniently generated from Darboux theorems involving eigenfunctions
of the associated Lax operators. The basic property of the eigenfunctions
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O are the time-evolutions given by (5.1), whereas the eigenvalue problem
jL<D = A<l> may be considered as an additional constraint. We fix this notion
of "eigenfunctions" with:

Definition 1. For given & = 0,1, or 2, a function <& = O(#,^) satisfying
the linear equations

9tt = P^(L*yi> (5.2)

shall be called an eigenfunction for the hierarchy of Lax equations — L =
dt

We shall use the term "reciprocal link" in a general way as referring
to a transformation involving a change of the independent variables. These
transformations will generalize the links found in Ref. [36], which are truly
reciprocal in the sense that they map Dym solutions w to new solutions via
w->w~l (and a suitable change of the independent coordinates). The precise
meaning of such a "reciprocal" link between Lax operators is given by

Definition 2, With a given function <$)(x,tq) we introduce new independent

variables x=®(x,tq), t'q = tq. To each function a(x,tq) we associate the "linked"

function af(x',tq) defined by d(x,t'q) = a(x,tq). By d = dx, d' = dx> we denote
the differential operators associated with the different variables. Observing
d = tj)xd

f we associate the operator A = ̂ iia
f
i(x ,t'^(^xd')1 to a given pseudo-

differential operator A = ̂ iai(x,tq)d
i. We call the pair A'(x',tq) = A(x,tq)

"linked" by the transformation x =®>(xytq). We denote by P>k the "linked"
projection operator P'>k(^ibi(x\tq)d'l) = ̂ i>kb'i(x',t'q)d'\ related to the powers of

the new symbol d' .

With these notions it was shown in Ref. [24] that the three integrable
hierarchies are related in the following way:

Theorem 1.

i) (gauge k = Q-*k = l)

d
Let Leg satisfy the hierarchy of Lax equations — L = [P>0(L

€),L]. Let
dtq

be an eigenfunction of this hierarchy. Then L = ̂ ~iL^ satisfies the
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hierarchy — L = [P>1(L
€),L]. // *F is a further eigenfunction for L, then

dtq

^f = ®-lW is an eigenfunction for L, that is, ^tq = P^^(Lq)^ .

ii) (link k = l->k = 2)

Let L = L(x,tq) satisfy — L=[P^i(Lq),L], Let &(x,tq), *»^0, be an
dtq

eigenfunction of this hierarchy. Then L'(x')t'q) = L(x)tq)i linked by the
d

transformation x' = $>(x,tq), t'q = tq, satisfies the hierarchy — L' = [P'>2(L'q),Lr].
dt'q

If *¥(x,tq) is a further eigenfunction for L, then *¥'(x',t'q) = l¥(x,tq) is an
eigenfunction for L ', that is, T;>=P'>2 (!/«)¥'.

It was shown in Ref. [24] that these transformations on the Lax operators
encode the well known Miura transformation between the KP equation (4.8)
and the modified KP equation (4.14) as well as the reciprocal link connecting
solutions of the modified KP equation and the 2 + 1 -dimensional Dym
equation (4.19). Here we are interested in the reductions of the general
hierarchies to Lax operators associated with 1 -\-\ -dimensional integrable
equations. In particular, we consider Lax operators of the form

(5.3)

= 2: L' =

each of which is spanned by N—2 dynamical fields (z/jy_2, ..,%)> (vN^li..)vi)
and (z%,..,w2), respectively. Here A,Ai ) 2

 are to De constant parameters.
First considering the transformations from k = 0 to k = 1 , one performs the

gauge transformation L-»L = €>~1L€> with an eigenfunction <I> satisfying
L<P = /WD. The transformed operator will be of the form

(5.4)

The zero order coefficient v0 of L = ^]I-?;£3
I is of the form v0 = $> 1(L^) = A,

because we have assumed $ to be a proper eigenfunction of L. Identifying
L<I> vN_2 = uN_2 + -N(N— I)®"1®xx,.., v0 = A, the operator L is

2
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of the form (5.3, k = l). If L satisfies the k = Q hierarchy, then L satisfies
the k=l hierarchy according to Theorem l.i) and we have a relation between
the isospectral hierarchies associated with L and L in terms of an eigenfunction
$ of L. Using the additional constraint ZXD = AO on the eigenfunction 4>,
one can eliminate €> from the transformation and obtains a Miura
transformation between the fields (uN_2>->uo) and (vN_l)..3vi).

We demonstrate this procedure for the simplest case N=2, where one
starts with the Schrodinger operator L = d2 + u giving rise to the KdV
hierarchy. The gauge transformed operator is calculated as L = <I>~1L<I> =
d + 2Q)~lQ>xd + k, giving rise to the hierarchy of the modified KdV equation
(2.37) for the field v = ®~~l®x. Hence, the spatial part of the celebrated
Miura transformation is encoded in the transformation

v=—9 9xx + u9 = A9. (5.5)

Indeed, eliminating <5 from this transformation one finds u = A — vx + v2, i.e.
the Miura relation (2.39) mapping solutions v of the modified KdV (2.37)
to solutions u of the KdV (2.34).

Similarly, considering the transformations k=\— »k = 2, one starts with
an operator L of the form (5.3, k = l). Using an eigenfunction *P satisfying
L*P = /J*F, one performs the transformation %' = *¥. Using d = *¥xd

f, the linked
operator L' = L is calculated to be of the form

X)x'ff + L (5.6)

It is readily seen that the zero order term w0 of L' = £,-zo,-<3" coincides with
the zero order term of L, that is, w0 = A. The first order term Wj of L' is
calculated from u>i =(L' - A)o;' = (L-1)T = (/x -!)¥ = (// -X)x'. Identifying

K»W = <P?, wN_l=vN.l^-i+^N(N~\)^-2Vxx,..,iVl=(f^-l)X', Wo = l, the

operator L' is of the form (5.3, k = 2). If L satisfies the k = l hierarchy,
then according to Theorem l.ii) the operator L' satisfies the k = 2 hierarchy
in the coordinate x . Thus we have a reciprocal transformation from the
fields (^-ij-j^i) to the fields (wN,..,w2) satisfying the isospectral hierarchies
associated with the operators L and L'. This transformation involves the
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eigenfunction *P of L, which can be eliminated using the additional constraint

We demonstrate this for the simplest case N = 2. Starting with the
operator L = d2 + 2vd + A giving rise to modified KdV hierarchy one introduces
x' = *¥ and calculates the linked operator L' = *¥2d'2 + (iJ, — l)x' 'df 4- A. Hence,
the field w = *¥x satisfies the hierarchy of the Dym equation (2.38) in the
coordinate x', if v satisfies the modified KdV hierarchy and *F satisfies the
corresponding linear equations. The transformation is encoded in the linking
relations

*'=4>, «, = ¥„ V^ + 2J¥, = (n-W9, (5.7)

from which the eigenfunction can be eliminated. Thus, the reciprocal links
between the hierarchies of the modified KdV and the Dym equation are
found to be characterized by

P 1 '
T^ = - t'q = tq, 2v = (n-tf- -wx., (5.8)
OX W W

mapping solutions of the Dym hierarchy to solutions of the modified KdV
hierarchy. For each member of the hierarchy the transformation has to be

dx 1 dx' dx
supplemented by the condition — = --- , where — = *¥t =P>l(L

q)l¥ can
dt'q w dtq dtq

 q

be expressed in terms of the Dym solution w via (5.8). For the Dym
equation and the modified KdV equation

x'zv i
*wt. = w3wx,x.x, + l(n-tfx\l -- x-),4vt = vxxx-6v2vx + 6lvx (5.9)

W

themselves one has q = — and

3
xxx xx + -(vx +

ot 2

I x'2
= -(w2wx,x,-2ww2

x, + 6(v + Vw + Hv-b2--) (5.10)
8 w

provides the time-dependence of the transformation between these two
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equations.
We remark that a reciprocal link between the modified KdV and the

Dym equation is well known from Painleve expansions of the modified KdV
([31]). There the transformation of the independent variable is given by
jc' = O, where €* is the singularity field of the expansion satisfying the
"singularity manifold equation" (2.40). It might be surprising that here
the transformation x' = *¥ is given in terms of an eigenfunction *F of the
underlying scattering problem for the modified KdV. The explanation is

the following: One considers U¥ = jj^¥ and Y^P^IF, i.e.

(5.11)

and eliminates the field v using the eigenvalue problem. Thus, one finds
the nonlinear evolution equation

¥
S t (\JS. ..I i If., i T\ i *" /„ . 1\2I I / C -I! J\

for the eigenfunction. For ju = l this coincides with the singularity equation
(2.40), so that the eigenfunction *F can be thought of as the singularity field
in this case. We remark that the present approach using eigenfunctions of
the Lax operators yields a more general result on such reciprocal links, as
the considerations above are not restricted to the modified KdV/Dym case
associated with second order Lax operators. We will find similar results
for all hierarchies associated with scattering operators of the type (5.3, & = 1,2).

It was observed in Ref. [24] that also different types of gauge
transformations and reciprocal links may be considered for the Lax
operators. In particular, one has

i) (gauge k = Q—*k = Q)

d
Let Leg satisfy the hierarchy of Lax equations — L = [P>0(L*),L]. Let

~
be an eigenfunction of this hierarchy. Then L =

again satisfies the hierarchy — L = [P>0(L*),L], If*¥ is a further eigenfunction
dtn
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of L, then ^ = ^(H>~1^)X is an eigenf unction for L, that is, Ttg = P>0(L
9)¥.

ii) (gauge k=l-+k=l)

Let Leg satisfy the hierarchy of Lax equations — L = [P>1(L
€),L]. Let

be an eigenfunction of this hierarchy. Then L = *l)x
1®2d®

> ~~2 satisfies — L = [P>i(L
q),L]. If ¥ is a further eigenfunction for

L, then ¥ = <b~l(<tbx¥ — $9x) is an eigenfunction for L, that is,

iii) (link k = 2->k = 2)

Let L' = L'(xfJq) satisfy -^L' = [P'̂ L'*),!/]. Let <V = <V(x!JJ be an
dtq

eigenfunction of this hierarchy. Then L'(x',tq) = $7 WffW ~ lLWdf ~ 1 ®'x,®' ' 2,
linked via the transformation x=x' — ̂ T1^'} t'q

= t'q, satisfies the hierarchy

—^Lr = [F>2(L'q),L']. If *¥'(x,t'^) is a further eigenfunction for L', then
dt'q
^\xr,t'q) = ®f

x7
1(®'x,*¥'-®'*¥'x,) is an eigenfunction for L', that is, ^g = P>2

(Z/€)*F' '. Here, P'>2 and ^^2 are the projections associated with the differential

symbols of the variables x and x , respectively.

These transformations encode auto-Backlund transformations of the
isospectral equations for the Lax operators. For the 2 + 1 -equations described
by the Lax hierarchies the transformations are worked out in Ref. [24]. Here
we are mainly interested in the results for the 1 + 1 -dimensional integrable
equations associated with Lax operators of the form (5.3).

The case k = Q.

Starting with operators of the form (5.3, & = 0), we use an eigenfunction ®
satisfying L€> = A^. The gauge transformed operator is of the form

(5.13)

No integration symbols will turn up in L, because they would be generated
only by the zero order term of the operator €*~1L^. This term, however,
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is just the constant /I, as we have assumed L€* = /Uf*. Identifying L = T,uid
i,

i.e. uN_2
 = uN-2 + N ln(®)xx

 etc-> one finds a transformation from (uN_2,..,u0)
to (uN_2,..$o) in terms of the eigenfunction <X>. Using L® = A® one eliminates
<P from this transformation and obtains the spatial part of an auto-Backlund
transformation for the isospectral hierarchy associated with the Lax operator L.

As simplest example, we again look at the Schrodinger operator L = d2 + u

for the KdV hierarchy. With L = 82-\-u the gauge transformation translates to

tf = if + 2 &!($)„, 9xx + u<S> = M>. (5.14)

Eliminating O one obtains the standard auto-Backlund transformation

X-l-(D-\u-u))2 (5.15)

for the KdV hierarchy.

The case k = l.

Starting with operators of the form (5.3, k = l), we use an eigenfunction
satisfying L<6 = ^*3D. The gauge transformed operator is of the form

(5.16)

Here no integration symbols will turn up in L, because they would be
generated only by the zero order term of the operator $-1L$. This term,
however, is just the constant [i, as we have assumed L€> = jU$. Hence, the
zero order of L = lLvid

l can be calculated from the action of L on the constant
function 1. With ($x$~2)l = — (d^~l)l it is readily verified that the zero
order term of L coincides with the zero order term of L, that is, one finds

0 = A. Identifying vN_i = vN_1+N - — etc., one finds a transformation

from (^_i,..,^i) to (vN-ly..,Vi) in terms of the eigenfunction $. Using
L$ = /j$ one eliminates $ from this transformation and obtains the spatial

part of an auto-Backlund transformation for the isospectral hierarchy
associated with the Lax operator L.
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As simplest example, we consider the second order operator L = d2

+ A for the modified KdV hierarchy. With L = d2 + 2v8 + A the gauge

transformation translates to

(5.17)

Introducing a = (^ — A)~2 ln(®)x one obtains the equivalent relations

v-v = — , £ + *; = GU--;I)*( -- a). (5.18)
a a

Integration of the first equation yields the well-known auto-Backlund

transformation

(v-v)) (5.19)

shared by the modified KdV and the sink-Gordon equation.

The case k = 2,

Starting with operators of the form (5.3, k = 2), we use an eigenfunction €>'

satisfying Z/O' = j/O'. The linked operator is of the form

L' = *;r lo>'2ffQ>'

/ ' ' , N

3' jV+--+(..)S / 2+A1£a'+A2 , (5.20)

where d' is the differential symbol associated with the new variable x =

x — $>'X71($*'. The form of the first and zero order coefficients are verified

with arguments similar to those of the case k=l. In particular, the first

order coefficient of L' is obtained by letting L' act on x. Hence, the

transformation leaves the form (5.3, k = 2) of the Lax operators invariant.

Identifying I/ = l^w-d'\ i.e. WN = WN(®'X~ 2^>'€>^)N etc-> one finds a transforma-

tion from (wN,..,w2) to (wN,..,w2) in terms of the eigenfunction €>'. Using

>' = fjfl>f one eliminates <D' from this transformation and obtains the spatial
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part of an auto-Backlund transformation for the isospectral hierarchy
associated with the Lax operator I/.

As simplest example, we consider the operator U = w2d'2 + A1#
/3/ + A2

for the Dym hierarchy. With L' = w2S'2 + Xlx'S' -\-X2 the reciprocal transfor-
mation translates to

(5.21)

Eliminating <D' one obtains the reciprocal auto-Backlund transformation for
the Dym hierarchy. In particular, for the case 11 >2 = 0 one uses ww = ju€^~ 2<I>'2

and obtains

(5-22)
w

For each equation of the Dym hierarchy the corresponding time evolution
<X^ =Pf>2(L

fq)®' of the eigenfunction yields the time dependence of the
3

transformation. For the Dym equation itself one has q = -> so that for Ax 2 = 0

-wx^) (5.23)

leads to

fig 3 $' 1 _
— = ̂ x'-—) = ii(&-w)-^iwx,x. + wx.Jfli0d) . (5.24)

As shown in Ref. [24] the auto-Backlund transformations for the cases
& = 1 and k = 2 are compositions of more "elementary" Backlund transforma-
tions, which again may be described as gauge transformations on the Lax
operators. For the case k = \ one has

Theorem 3. (gauges k = l-*k = l) Let Leg satisfy the hierarchy of

Lax equations — L = [P>1(L
€),L]. Let $ and *f be two eigenfunctions of this

dtq

hierarchy. Then
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and ii) Lii =

both satisfy the k=l hierarchy and *¥t and *FH are eigenf unctions for Lt

and Lit, respectively.

Assumptions such as <I> 7^0, (P^^O are required to perform these trans-
formations. The corresponding auto-Backlund transformations in terns of
the fields (vN_ly..,Vi) parametrizing the Lax operators (5.3, k = l) can be
extracted as described before. In particular, for L = d2 + 2vd + h, i.e. modified
KdV hierarchy, one uses an eigenfunction $ satisfying L5> = /i5> and finds

vt = v + -^,
O

(5.25)

Elimination of $ using «JXJC + 2v®x = (p — A)® leads to

) = iJL-^ (5.26)

as the spatial parts of these Backlund transformations. We note, that in
contrast to the transformation of Theorem 2, the zero-order term A in L
has changed to // in L{ and Lit. Hence, in general, a solution of the modified
KdV (2.37) with a given A will be mapped to a solution with a different
value for A. For the special choice h = {i there are the obvious solutions
vt = v and vit= — v as special cases of these transformations. As we shall
see soon, the composition of the two transformations gives rise to the
transformation (5.19).

Also for the case k = 2 the auto-Backlund transformations of Theorem 2
may be decomposed into a sequence of elementary Backlund transformations
given by

Theorem 4. k = 2-+k = 2) Let L' = L'(xf,tf
q) satisfy — L' =

dt'q
[P'>2(L

fq),L']. Let ^'(x'jt'q) and *¥'(xf,t'q) be two eigenfunctions of this hierarchy.
Consider the following transformations:
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Then, in all cases, L' satisfies the k = 2 hierarchy — — L' = [P>2(I/^),L'] and
dt'q

¥' is an eigenfunction of L', that is, ¥^ = P>2 (!/*)¥'.

The corresponding Backlund transformations in terms of the fields
(«;#_!,..,«; i ) parametrizing the Lax operators (5.3, k = 2) can be extracted as

described before. In particular, for L' = w2d'2 + A1^/3/ + A2s i-e- the Dym
hierarchy, one uses an eigenfunction <£' satisfying LW = /j€>' and finds

(5.27)

Hence, these transformations change the values of the constant parameters
/11>2 in L' and solutions of the Dym hierarchy with given values of the A's
are mapped to solutions with different values. As before, elimination of *P'
in the transformations i) and iii) yield reciprocal Backlund transformations
involving the fields w, wh and wm. As observed in Ref. [24], Theorem 4
encapsulates the well known invariances of the Dym equation triggered by
a Moebius transformation of the space variable. As we will see, a composition
of the three transformations i)-iii) leads to the invariance given by Theorem 2.

We summarize the various results of the theorems by introducing the
notation
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Here the fairly obvious notation -B0-»o> ^o->i etc- ^s used for the transformations
linking k = Q-+k = Q, k = Q-»k = l etc. The transformations B^, B1

2~^ are
the elementary Backlund transformations of Theorems 3 and 4.

So far we have not made any use of the fact that the theorems actually
provide additional information in the spirit of Darboux theorems. A first
eigenfunction for the Lax operator can be used to generate a new solution
of either the same equation or to the Miura- or reciprocally linked
equation. Now, if a further eigenfunction of the original Lax operator is
known, the theorems show, how this eigenfunction has to be transformed
into an eigenfunction of the transformed operator. Hence, one can start
from there to perform an additional transformation using this new
eigenfunction. It turns out that such a process leads to various connections
between these transformations. In fact, we will finally see with the diagrams
following later on that all transformations above form a very logical pattern.

We remark that the hierarchies of the cases k=\ and k = 2 have "trivial"
eigenfunctions, as the required time evolutions ®fq = P>fc(L

€)<[>, k = l,2 involve
only derivatives of first and higher orders. Namely, for k = l the constant
function 9(x,tq) = l and for k = 2 the functions 0>(x9tq) = l, ®(x,tq) = x will be
eigenfunctions, trivially.

It was claimed before that the transformations U^! and B2-+2
 are

compositions of the ' 'elementary" transformations given by Theorems 3 and 4.
Indeed, considering the case k = \y it is readily verified that

B1^1(*) = B^1(*-1)fiUi(*), (5-28)

where $-1 =SE
1_>1($)1 is the eigenfunction of the operator B\ _

originating from the trivial eigenfunction 1 of the operator L.

It was already remarked in Ref. [24] that also the auto-Backlund
transformations of the different classes are related. First, looking at the
classes k = 0 and & = 1, one easily verifies the identities

(5.29)

for arbitrary functions €* and *F. As a consequence, one also has

OF). (5-30)
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These relations are conveniently presented in a commuting diagram. In
Diagram 1 one starts with the operator L satisfying the k = Q hierarchy. If
two eigenfunctions <P and *F are given, then we use <I> to generate a further
solution L of the k = 0 hierarchy, and *F is transformed to an eigenfunction
*F for L. In this transformation the original eigenfunction <l> for L is "used
up", that is, it is mapped to the trivial eigenfunction B0_>0(<D): ®-»0 for
L. Now one uses the T's to generate solutions L and L of the k = l
hierarchy, starting from L and L, respectively. In this process, the
eigenfunctions used for the transformations trivialize to constant functions.
However, starting from L one can map the eigenfunction $ to an eigenfunction
<D for L. Using BI_»I with this eigenfunction one ends up with the operator
L already constructed from L. As Bi^l decomposes into two elementary
transformations B\^l and /?"-+i, an "intermediate" solution 7=B\^l(^)L
is generated on the way from L to L. As shown in the diagram, even this
intermediate / is directly linked to the original solution L of the k = 0 hierarchy
via the original eigenfunction O.

Further, it is easy to check that the Bianchi diagrams of the Backlund
transformations encoded in B0^0 and Bl_,l commute, that is, one finds the
identities

(5.31)

for arbitrary functions Ot 2> ®i 2- ^s a consequence of the relations given

*',.,(*)

Diagram 1
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Diagram 2

by Diagram 1, the Bianchi diagrams for jB0_»0 and /?!_»! can be summarized

in a single diagram. In Diagram 2 the inner rhomb refers to the k = Q

solutions and the outer rhomb refers to the k=\ solutions. The

upper left part of Diagram 2 may be identified with Diagram 1. In fact,

the Bianchi Diagram 2 is constructed from 4 copies of Diagram 1.

In this diagram one has

= B0-.i(«D12)L1,
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(5.32)

and the remaining operators and eigenfunctions are given by the exchange
of indices l<-»2. The eigenfunctions are conveniently expressed in terms of
Wronskian determinants W.

In Diagram 2 we have started with the operator L, equipped with three
eigenfunctions O1>2 and *P. Using B0_>0 the two eigenfunctions €>1>2 are
used to generate the commuting Bianchi diagram via Ll and L2 to
L12 =L21. In each stage, the eigenfunction used for the gauge transformation
is "used up" and trivializes. The third eigenfunction *F for L is carried
through the transformations and yields eigenfunctions for Lly L2 and
L12. These T's are then used with B0^^ to generate solutions L, L1? L2

and L12 of the k = l hierarchy. They form the vertices of the commuting
Bianchi diagram for the k = \ case: using Bl^l with the eigenfunctions $1<2

obtained from the original eigenfunctions O1>2 of L, one finds the same
solutions. As shown in Diagram I even the "intermediate" operators Il9

^2> ^12 anc^ ^21 generated from the elementary Backhand transformations of
the class k = l are related to the original operators satisfying the & = 0
hierarchy. Thus, Diagram 1 summarizes the connections between the various
gauge transformations related to the cases k = Q and k = l.

Similar relations can be established among the Backlund transformations
connected with k = l and k = 2. First, we observe the transformation B2_»2

decomposes into a composition of the three elementary transformations of
Theorem 4:

B2^2(9
f) = B^2(<V'l^)B^2B

l
2^2(V)9 (5.33)

where <&'" V = J82_*2B2_>2(O'X is tne eigenfunction of the operator
B2_>2jB2^2(O')L/ originating from the trivial eigenfunction x of the operator
L'. Indeed, we start with L' and the independent variable #', an eigenfunction
^F' and the trivial eigenfunction x' . Performing the first two steps one has

L',x' L;=L,*;=O' L;,=*r1LXi=*'
y,x ~* T;=»P',«' ~* »p;I.=*rlxF;.=a>'"1<p', xi~1xf=9'-1xf

(5.34)
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Using the eigenfunction <!>'" lx' for L'a, the final application of ITJUi leads to

=-'-^1«'', (5.35)

which are precisely the results of the transformation B2-+2-
For the pair k = l, k = 2 one can establish relations similar to those given

by (5.29)7(5.30). They are summarized in the commuting Diagram 3.

Here we start with the operator L satisfying the k = l hierarchy using the
space variable x. An eigenfunction $ is used to generate the new solution
L = Bl _>1($)L. Using the elementary transformations jB\_> l s B"^^ an
intermediate solution 7= B\ ^(^L is generated on the way. Using a further
eigenfunction *F one generates a solution L' of the k = 2 hierarchy. Pushing
5> through this transformation one obtains an eigenfunction O' = $ for L',

which is used to generate a further solution L' = l?2-»2(®')£' of the k = 2

Bit
2-2

«,,«-,

B ,

Diagram 3
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hierarchy. Again, intermediate solutions r = B2_>2(<D')L'', and l'ii = Bi
2_+2l'

i

are generated on the way, as B2_+2 decomposes into elementary transforma-
tions. The operator L' can also be obtained from L via Bl^2> using the
eigenfunction *F = B1_>1(<I>)*Jr. As shown in Diagram 3, also the intermediate
solutions are related via B1_>2-

It is proven in Ref. [24] that the Bianchi diagram for the class k = 2
commutes, that is, in addition to (5.31) one has

S2.2(fi2.2(a>'1)0'2)S2^2($'1) = fi2^2(JB2^2(^)<D'1)B2^2(a>'2) (5.36)

for arbitrary functions <D' l j2- Because of the relations given by Diagram 3
we can think of the Bianchi diagram for Bl^i as sitting inside the Bianchi
diagram for B2_>2. Using the independent variable x, we start with an
operator L, now equipped with three eigenfunctions $1>2 and *F. As before,
one uses $lj2 to construct Ll9 L2 and, finally, L12=L21. Now, as one has
an additional eigenfunction *Fof L, this eigenfunction is carried through the
transformations yielding eigenfunctions *Fj^ for L1} *F2 for Z/2, and, finally,
^F12 = ^F21 for L12. Each of- these *F's can now be used via B1_2 to generate
solutions of the k = 2 hierarchy, i.e., one has L' with the space variable
x' = *f, L'i with x'i=*flt L'2 with x'2 = ̂ 2, and, finally, L'l2=L'2i with
x'i2 = J^fi2- ^n each transformation the <l>'s are converted to new eigenfunc-
tions of the class k = 2 using the corresponding transformation. The operators
L', LI, Z/2 and Z/12 form the vertices of the commuting Bianchi Diagram
for the k = 2 class, when we regard L' to be equipped with the eigenfunctions
cpj and <D2 originating from the original eigenfunctions ^i and <t2 for
L. Hence, we may summarize the Bianchi diagrams for the classes k = l
and k = 2 in a single picture given by Diagram 4. The outer rhomb refers
to the k = 2 solutions, whereas the k = l solutions form the rhomb sitting
inside. Identifying the left upper quarter of this diagram with Diagram 3,
one sees that the whole diagram really is built out of 4 copies of Diagram
3. Diagram 2 may be thought of a sitting inside this diagram, this is
indicated by the innermost rhomb related to the & = 0 case.

In this diagram one has
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L'12=B2
iL2(4)'r2^'1)/'1"2=B2^2($'12)L'1=fi^2('P12)I12) (5.37)

and the remaining operators are given by the exchange of indices l<->2. The
space variables and eigenfunctions can be traced from the original
eigenfunctions 5>ls <52

 an(^ *P for L using the corresponding transformations
on the operators:

(5.38)

The final Diagram 4 clearly indicates, how intimately the three integrable
hierarchies of KP, modified KP and Dym equations are related. Although
a large number of different gauge transformations and reciprocal links were
found for these hierarchies, Diagram 4 shows the amazing and simple pattern

Diagram 4
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formed by these relations. The main transformations are given by the
connecting links ^0->i an<^ ^i-»2» which are supplemented by the
auto-Backlund relations B0_>0, B l _ ^ l y and B2_>2- In addition, it was found
that some of these links decompose into a sequence of more elementary
transformation, which still form a simple and beautiful pattern according to
Diagram 4.

These considerations are applicable to the general hierarchies of KP,
modified KP and Dym equations as well as to the 1 4-1-dimensional reductions
connected with scattering problems of the type (5.3). Hence, Diagram 4
is valid for a large number of integrable hierarchies, some of which were
discussed in Section 3. We point out, however, that these general results
cannot be applied to all equations of Section 3. In particular, the gauge
transformations and reciprocal links discussed here will not leave the
Kupershmidt constraints of Section 3.3 invariant. It turns out that for
constrained equations further gauge transformations may be considered,
which are compatible with such constraints.

§60 Conclusions

We have considered three classes of integrable Lax equations on the
algebra of pseudo-differential symbols, which are connected to three different
Lie algebra decompositions. For the first class this construction is a
meanwhile classical approach covering the KP hierarchy as well as
1 + 1-dimensional reductions associated with Gelfand-Dikii spectral problems.
The extension to the two additional "non-standard" cases is in principle a
straightforward generalization of the techniques used in the original KP
context. On a general level, the new systems are identified as the modified
KP hierarchy and the Dym hierarchy. As in the KP case, various reductions
of the nonstandard hierarchies lead to a large number of integrable
1 -h 1 -dimensional equations. This approach turns out to be very rich: a
surprising variety of the "classical" soliton systems such as the KdV equation,
the modified KdV equation, the Dym equation and many others is covered
by this construction. In addition, many novel integrable equations are
discovered on the way.

Using the r-matrix approach one has a general scheme to obtain the
multi-Hamiltonian formulations for these equations. In fact, it was
demonstrated that most of the "classical" bi-Hamiltonian formulations for
the well-known equations covered by this approach may be explained via



NONSTANDARD INTEGRABLE EQUATIONS 663

the general Poisson brackets associated with r-matrices. For the novel
equations reveiled in this construction the calculation of the multi-Hamiltonian
structure thus has become a straightforward exercise. Nevertheless, certain
problems concerning the Hamiltonian approach still seem to be open. Thus,
the general quadratic bracket is not a Poisson bracket for the nonstandard
cases, but still leads to Hamiltonian formulations using suitable reduction
techniques. Further, sometimes certain technical difficulties are faced in
the reductions. For instance, Kupershmidt found three local Poisson
structures for the Kaup-Broer system which is the simplest realization of
the nonstandard class k=l. Here, only the first of these formulations is
identified with the linear bracket of the corresponding r-matrix. The
reductions for the higher brackets are technically involved in this case and
it remains open, whether Kupershmidt's additional Hamiltonian operators
are hidden in the higher brackets.

The maybe most surprising part of this approach is the general and
compact picture on (reciprocal) Backlund and auto-Backlund transformations
linking the equations. The classical Darboux transformations connected to
the KP class are generalized, a total of ten different transformations was
found in Section 5. Surprisingly all these transformations fall into a simple
pattern, culminating in the Bianchi Diagram 4. The generality of the
underlying theorems gives a unified approach to the Backlund transformations
for the nonlinear equations covered by the general hierarchies of KP, modified
KP and Dym. Thus, it now is a fairly straightforward exercise to calculate
the links for the novel equations reveiled. In particular, using the new
Darboux transformations iteratively, it is possible to derive Wronskian solution
formulas for the Dym type equations of the class k = 2, both in 1 +1 as well
as in 2 + 1 dimensions. This will be investigated in detail elsewhere.

Finally, a straightforward generalization of the present approach is
suggested by considering Lax operators of the form L = E ut(x)dl, where the
ut are not just scalar functions any more but take values in some finite
dimensional algebra. The standard decomposition into differential operators
versus integration symbols then leads to the multi-component KP
hierarchy. It was recently shown ([37]) that further ''classical" soliton
systems such as the nonlinear Schrodinger equation and the Davey-
Stewartson equation can be described this way. A corresponding "non-
standard" class of equations is obtained from a modified Lie algebra
decomposition, in which the zero order terms of the pseudo-differential
symbols are interpreted as part of the integration operators ("& = 1"). This
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class encapsulates 2 + 1-dimensional equations such as the Ishimori
hierarchy. The picture on relating gauge transformations as developed here
applies to this non-abelian case without major modifications. In this context,
the Ishimori hierarchy is identified as the modification of the Davey-
Stewartson hierarchy in a very natural way. In the non-abelian case it is
more convenient to consider the dynamics of dressing operators instead of
Lax operators. The Darboux theorems for the Lax operators considered
here translate to analogous results for the dressing operators. Details on
this approach are discussed in [38]. We finally remark that in this
generalization to non-abelian coefficients of the differential symbols the class
k = 2 will not be present, as the underlying Lie algebra decomposition will
not work for non-commuting coefficients. However, a rich structure is
obtained when additional decompositions are considered which involve the

finite dimensional algebra from which the coefficients are chosen.
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