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Pairings in Categories

By

Nobuyuki ODA*

Abstract

We study a categorical generalization of some of the basic results of the homotopy theory
which have been obtained in the category of topological spaces with base point. They are
some of the results of Gottlieb, Hilton, Hoo, Lim, Varadarajan, Woo and Kim and others. To
carry out categorical approach, we define pseudo-product, pseudo-coproduct and homotopy
relation in general categories. These concepts enable us to define pairings and copairings in
categories. Some of the classical results mentioned above are generalized to the categories
with product, coproduct and zero object.

Introduction

The purpose of this paper is to obtain a categorical generalization of
the definitions and the basic properties of the following objects; square lemma
for the homotopy set [A, X], cyclic map and cocyclic map, Gottlieb group,
Varadarajan set, Woo-Kim group, pairings and copairings, homotopy set of
the axes of pairings and its dual.

To generalize these concepts to other categories, we define homotopy
relations in categories. But our homotopy relations are more general than
those in algebraic homotopy theory, so we do not assume homotopy theory
in a strict sense (e.g. Baues [1]); we simply consider an equivalence relation
among morphisms, called homotopy, which are preserved by induced
morphisms. We also define pseudo-product and pseudo-coproduct, which are
not assumed to have universal property unlike usual product and coproduct in
a category.

In § 1 we define homotopy relation, homotopy preserving functor,
homotopy natural transformation, pseudo-product, pseudo-coproduct etc. in
categories. These concepts are necessary for the various categorical definitions
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in the subsequent sections, especially for the categorical definition of pairings

and copairings which are basic concepts of our categorical study.
In § 2 we define pairing and related concepts in general categories.

We study fundamental properties of perpendicular relations. We define the
homotopy set of the axes of pairings, which is a categorical generalization
of Gottlieb group [3], Varadarajan set [13] and Woo and Kim group [14]
(cf. [10,12]). Dula [2] defined cyclic maps and cocyclic maps in general
categories. Our results generalize some of the results of Dula [2].

In §3 we consider the duals of §2.
In §4 we work in categories ^ with product, coproduct and zero object.

We show that some of the basic results of Hilton, Varadarajan and others
can be generalized to other categories by proving these results in general
categories. Our first results is a categorical generalization of square lemma
(cf. Theorem 1.5 and Proposition 14.13 of Hilton [4] and Theorem 2.7 of [11]).

Theorem 4.L Let p : X D Y -» Z be a pairing and 9 : A -» H D R a
copairing in % . Let a : H -» X, $ : R -* X, y : H -» Y and d : R -» Y be
morphisms in <€ . Then the following relation holds in [A,Z]:

where + and -j- are the pairings induced by \i and 6 respectively.

The above theorem implies categorical generalization of some of the
earlier works of Gottlieb [3], Hoo [5], Lim [6,7], Varadarajan [13], Woo
and Kim [14] and others (cf. [10,11,12]).

In Theorem 4.4, we prove that: Ifg : Y -* X is a cyclic morphism, then

the image of g^ : [A,Y] -> [^4,X] is contained in the center of [A,X] for any
co-Hopf object A in ^. The dual result holds for cocyclic morphisms.

In Theorems 4.7 and 4.8 we prove the following result and its dual:
If A is a co-grouplike object in ^, then (l^)1^,^), the homotopy set of cyclic

morphisms from A to X, is an abelian subgroup which is contained in the center
of a group [A,X].

The author had useful conversations during the preparation of this
paper with Professors H.J. Baues, M. Crabb, Y. Hirashima, I.M. James,
H. Kurose, H. Maki and J.M.R. Sanjurjo. The author would like to express
his thanks to them.
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§1. Category with Homotopy Relation

Let ^ be a category [8,9]. The composite of two morphisms / : X -> Y

and g : Y —» Z is denoted by g ° f : X ->Z. An identity morphism in # is

denoted by lx : X -* X for any object X of #.

A homotopy relation in ^ is an equivalence relation / ~ g among

morphisms f,g:X-+ Y in ̂ , which satisfies the following two conditions.

(1.1) If / — g, then h of ~ /z ° g for any morphism h : Y —*• Z.

(1.2) If / — g, then / ° w ~ g o w for any morphism w : H7 -> ^T.

We denote by [/] : ^T -» Y the homotopy class containing the morphism

/ : X -» Y. We denote by [Jf, Y] the set of all the homotopy classes of

morphisms from X to Y, namely [X,Y] = {[/] : ̂  -> Y}.

Two objects X and Y are said to have the same homotopy type when

there exist morphisms / : X -> Y and g : Y -» ^T such that g o / ~ lx and

f ° g - l y
Let F : ^ -> ̂  be a functor between categories with homotopy

relation. We call ^P : ^ —> ^ a homotopy preserving functor when f ~ g : X

-> Y implies F(/) - F(g) : F(X) -> F(Y).

Let F, G : ^ -> ^ be homotopy preserving functors between categories

with homotopy relation. A homotopy natural transformation i : F A- G is a

family of morphisms

{T(JO : F(X) -+ G(X) \ X e ^}

which satisfies G(/) o i(X) ~ i(Y) o F(/) for each objects X, Y and each

morphism / : X —* Y in ^. In this situation we call the morphism

t = i(X) :F(X)-+G(X) a homotopy natural morphism.

For contravariant functors, we define homotopy preserving functors and

homotopy natural transformations similarly.

If J2/ and $ are categories with homotopy relation, then the product

category si x $ [9] has a homotopy relation induced by those of ja/ and

^. There are homotopy preserving functors

P! : j/ x J1 -» j/ and P2 : ja/ x ^ -^ J1

which are defined by P^(A,E) = ^4 and P2(A,B) = B.

A pseudo-product is a homotopy preserving functor |~~| •" ^ x ^ —*• ^ (we
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write n (X,Y) = X |~1 F) with homotopy natural transformations i1 :

P! -* n and i2 : PI -» H . Therefore we have a homotopy commutative

diagram

f n g

for any objects X,Y,Z,W and any morphisms / : X -> Z, g : F -> W \J\ (€.
A pseudo-coproduct is a homotopy preserving functor U : # x ^ -» ^ (we

write LJ (A,B) = A LJ B) with homotopy natural transformations q± : LJ -*

P! and g2 • LJ -^ P2-

Remarks 1.3. (1) Since 1^ [~~| IF = ^XnY (resp. 1^- LJ ly = I^UY) h°lcls
for any objects X and F, the homotopy type of X D F (resp. X LJ V)
depends only on the homotopy types of X and F.
(2) (Y. Hirashima) The conditions (1.1) and (1.2) are equivalent to the
condition that the quotient category ^/^ is well-defined (cf. §8 of Chapter
II of Mac Lane [9]). A homotopy relation in a category V can be defined
by a functor F from ^ to any category Q) by defining / ~ g : X -» F if
and only if F(f) = F(g) : F(X) -» F(F). Moreover, any homotopy relation
is obtained in this manner using a quotient functor F : # — » ^( = ^7^).

Then a homotopy preserving functor F : # -> ^ is characterized by a
functor .F : ^"/^ — » ^/c± between quotient categories. A homotopy natural

transformation T : F A G is characterized by a natural transformation f :

F -^ G between the induced functors F,G : <&/~ ~> @/~.

§20 Pseudo-product and Pairing

We call a morphism fi : X \~\ Y -» Z a pairing with a,res f : X -* Z
and g : F -> Z if the relations JLL ° i1 ^ f and ]U ° i2 — g hold in ^, where
il : X -^ X \~] Y and i"2 : F — » X n F are the homotopy natural morphisms
for pseudo-product.

Let us fix a pseudo-product n throughout the rest of this section. We
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write fLg (and say that / is perpendicular or orthogonal to g) when there

exists a pairing jn:XnY->Z with axes f'.X^Z and g:Y-+Z in <$. If

/0 ~/x : X-^Zandgo^gjL : F-»Z, then we see that /0-Lgo if and only if/!_]_# j.

We call a morphism g: F-»Z a cyclic morphism in ^ when l z_Lg.

We call an object X a Hopf object in ^ when 1^_L 1^-

Theorem 2.1. If f-Lg for morphisms f:X-+Z and g:Y-+Z, then the

following results hold.

(1) (f o /) 1 (g o £') /or flwj; morphisms f:X'-+X and g': Y -» F.

(2) (w o /) _[_ (zt; og) for any morphism w : Z -> PF.

Proof. Since /_Lg, there is a pairing [i'.XriY —>Z with axes /

and g. Then ju°(/'["]#') and w o ju are pairings for (f ° f) l-(g ° g') and

(zu o /) JL (2^0 ^) respectively.

Proposition 2.2. (1) /f ^: Y -* Z is a cyclic morphism, then g ° g': Yr -»• Z

is a cyclic morphism for any g': Y' —*• Y.

(2) Let t: Z -+ W be a morphism with a right homotopy inverse, that is, there

exists a morphism i:W—>Z such that t°i^lw. If g:Y—*Z is a cyclic

morphism, them t°g\Y-*Wisa cyclic morphism.

(3) If g:Y—*Z is a cyclic morphism, then fl-g for any morphism

f'.X-^Z.

Proof. (1) If lzLg, then we have lzL(g ° g') by Theorem 2.1(1).

(2) If lz J_£, then (t o lz o i) l_(t°g) by Theorem 2.1(1)(2) or \w 1 (t o g).

(3) Since \zLg, we have (lz o/) J_g by Theorem 2.1(1) orfLg. q.e.d.

Let v : V -> Z be a fixed morphism in ^. We call a morphism g: Y —> Z

a v-cyclic morphism when vLg. We define the homotopy set of ^-cyclic

morphisms by

vL(Y,Z) = {[g] : Y ^ Z | v±g} c [Y,Z].

The set vJ~(Y,Z) is homotopy invariant, that is, it depends only on

homotopy types of V, Y, Z and the homotopy class of v.

Proposition 2.3. (1) If vLg for morphisms v. F->Z awJ g: Y-»Z,

then Imfe : [^, F] -> [^,Z]) c ^1(^[,Z) /or any A in %.
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(2) v1( y,Z) c (v o d)1 ( Y,Z) for any movphisms v:V-»Z and d:D-+V.

Proof. (1) The relation v Lg implies v±.(g°oc) for any morphism

a\A -» Y by Theorem 2.1(1). It follows that &([«]) = [g o ct]ev*-(A,Z).

(2) Let a e ?/( F,Z). Then we have vJLtx, and hence (v o d) 1 a by Theorem

2.1(1). Then we have xe(v o

Theorem 2.4. An object Z is a Hopf object in <$ if and only if
vL(Y,Z) = [y,Z] for any morphism v:V-*Z and any object Y.

Proof. If Z is a Hopf object, then the relation 1ZJ_1Z holds. Let

a: Y— * Z be any morphism. Then we have (lz ° v) J_(l z ° ft) by Theorem

2.1(1) and hence vLu. It follows that [a}evL(Y,Z).

Conversely, if vL(Y,Z) = [Y,Z] for any morphism z;:F-»Z and any

object y, then we have (1Z)1(Z,Z) = [Z,Z]. It follows that 1ZJ_1Z .

Example 2.5. (Category of graded J^-algebras) We note that Proposi-

tion 4.1 (p. 181) of Mac Lane [8] gives a condition for morphisms to be

perpendicular in this category (We consider the equality " = " as a homotopy

relation and the tensor product A (X) £ as a pseudo-product): I f f i A -»Q and

g : IL, -» O are homomorphisms of graded K-algebras such that always

there is a unique homomorphism h : A (X) £ -> O of graded algebras with

Remarks 2.6. (1) Proposition 2.2 (1) and (2) are categorical generalization

of Lemmas 1.3 and 1.4 of Varadarajan [13]. Theorem 2.4 is a categorical

generalization of Proposition 3.3 of Lim [6]. cf. Proposition 1.9 of Varadarajan

[13]. For other results, see [10,11,12].

(2) Special cases of the homotopy set vL(Y,Z) were defined and studied

in the category of topological spaces with base point by the following authors;

(\X)L(S\X} = Gn(X) by Gottlieb [3]; (lx)
L(Y,X) = G(Y,X) by Varadarajan

[13]; fL(Sn,X) = G*(X,A9*) for any map f:A-*X by Woo and Kim

[14]. Cyclic maps in the category of topological spaces were studied by

Hoo [5] and Lim [6] and the other mathematicians.
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§3o Pseudo-coproduct and Copairing

We now consider the duals of the results in §2. The proofs are

omittedhere, since they are given by dualizing the corresponding proofs in § 2.

We call a morphism 0 : A — * H LJ R a copairing with coaxes h:A-*H and

r : A -> R if the relations q1 o 0 ~ h and q2 ° 0 — r hold in ^, where

q1:HL\R-^H and q2:HUR—*R are homotopy natural morphisms for

pseudo-coproduct.

Let us fix a pseudo-coproduct LJ throughout the rest of this section. We

write h~\~r (and say that h is coperpendicular or co-orthogonal to r) when

there exists a copairing 6:A-*H[_\R with coaxes h:A->H and r : A -> .R

in ^. If hQ ^ hv\A-^ H and r0 ~ j^ : >4 -» jR, then we see that h0~Tr0 if

and only if h^Tr^.

We call a morphism r:A-+R a cocyclic morphism in ^ when l^Tr.

We call an object A a co-Hopf object in ^ when l^Tl^.

Theorem 3.1. If h T r for morphisms h:A—>H and r:A-*R, then the
following results hold.
(1) (h o h) T (r' o r) for any morphisms h' : H -* Hand r':R^> R.
(2) (h ° d)~T(r o d) for any morphism d:D -+ A.

Proposition 3.2. (1) If r:A-+R is a cocyclic morphism, then
r o r : A -» R' is a cocyclic morphism for any r : R -» R.
(2) Let i : X — » A be a morphism with left homotopy inverse, that is, there
exist a morphism t\A-+X such that t°i~lx. If r:A-+R is a cocyclic
morphism, then r ° i ': X — > R is a cocyclic morphism.
(3) Ifr:A-*R is a cocyclic morphism, then h T rfor any morphism h:A^>H.

Let u:A-*Ube a fixed morphism. We call a morphism r:A-+R a

u-cocyclic morphism when uT r. We define the homotopy set of w-cocyclic

morphisms by

UT(A,R) = {[r]:A-+R\uTr}c[A,R].

This set MT(^4,^) is also a homotopy invariant.

Proposition 3.3. (1) If uTr for morphisms u:A—>U and r:A—>R,
then Im(r* : [R,X] -* \_A,X}) c ur(A,X) for any X in <€.
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(2) UT (A,X) ci (w o M)T (A,X) for any morphisms u:A->U and w:U-»W.

Theorem 3A, An object A is a co-Hopf object in <& if and only if

) = [A,R] for any niorphism u:A-*U and any object R in *$'.

Remarks 3.5 (1) (Baues; Dula [2]) Let F be a homotopy preserving

functor. If the pseudo-product is preserved by F, namely F(Xr~\Y)

= F(X)nF(Y), then fLg implies F(f)LF(g). Similar remark applies to

pseudo-coproduct and homotopy preserving contravariant functor.

(2) The relations fLg and ATr, and hence the sets vL(Y,Z) and uT(A,R),

depend on the choice of pseudo-product [~1 and pseudo-coproduct U.

(3) Professor P.J. Eccles named the relation hTr coperpendicular.

(4) Proposition 3.2(1) is a categorical generalization of Lemma 7.2 of

Varadarajan [13]. Theorem 3.4 is a categorical generalization of Proposition

3.2 of Lim [7]. For other results, see [10,11,12].

(5) In the category of topological spaces with base point, we have

(1A)T(A,C) = DG(A,C) of Varadarajan [13]. Lim [7] studied cocyclic maps

and the properties of the set DG(A,C) in this category.

(6) We have homotopy invariant families of subsets

(vL(Y,Z) | v: V->Z for all V} of [F,Z] and

(uT(A,X) | uiA -* U for all U] of [A,X\.

§4B Category with Product, Coproduct and Zero Object

In this section we prove various results on pairings and copairings for

any category which has product, coproduct and zero object.

Let ^ be a category with homotopy relation. In this section we assume

that ^ has product X x Y and coproduct X V Y and zero object (= null

object = both initial and final object, cf. Mac Lane [9]). We denote by *

the zero object. We denote also by * : X —» Y the morphism which factors

through *, namely, * : X-+ * -* Y.

A product diagram

X £- X x F -^ Y

and a coproduct diagram

X -^ X V Y *^~ Y

have universal property. Therefore the following diagrams can be uniquely
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filled in by dotted arrows so that the diagrams are strictly commutative in

the category ^ for any morphisms fi:Z-^X, f2:Z-*Y and g1:X —> Z,

We write £ = ( f i , f 2 ) and *l=<gi,g2>- We remark that

(/iX/i) o (/l5/2) = (/I °/l,/2 °/2), (/l,/2) °/ = (/I °/,/2 '/),

= <g ° gl,g °g2>

for any morphisms /J : X -» X , /2 : Y -> Y',f:A-+Z and ̂  : X' -> X,

^2 : Y' -> Y,g:Z-+ W.
Let X < — — Xx Y — ̂  Y be a product diagram. The zero object *

enables us to define "inclusion morphisms il = (lx>*) "• X -> X x Y and
i2 = (*,ly) : Y -*• Xx Y. We have pi o i1 = \Xy p2 o il = *, pl 0 i2 = *

and p2 ° ^2 = ly- Dually, we define morphisms ql = <1^,*> : X V Y — »
X and g2 = <*,ly> : X V Y -> Y. We have ^j o j\ = lXy ql 0 J2 = *,
q2 Oj\ = * and #2 o y

If the product and the coproduct are homotopy preserving, then we

can define a pseudo-product and a pseudo-coproduct by the product and

the coproduct respectively, namely

X [~1 Y = X x Y (pseudo-product = product),

X U Y = X V Y (pseudo-coproduct = coproduct).

In the rest of this section we assume that the category ^ has product,

coproduct and zero object and that the pseudo-product is given by the

product and the pseudo-coproduct is given by the coproduct. (So the product and

coproduct must be homotopy preserving ones.)

A pairing ILL : X l~l Y -> Z defines a pairing of homotopy sets



676 NOBUYUKI ODA

f :[A,X]x[A,Y]-+[A,Z]

by the formula a-j- j9 = \JL ° (a, /?) : A -> Z for any rnorphisms a : ^4 -* X and

/? : ^4 -» F in <^. We have a 4- * = /^(a) and * 4- jg = #„,(/?) for any morphisms

a : A -» X and fi : A -» F, since (a, *) = ^ o a and (*, /?) = i'2 o /?.

A copairing 9 : A —> H LI R defines a pairing of homotopy sets

+ : [H,Z] x [R,Z] -* [^,Z]

by the formula a -j- j8 = < a,/? > o 0 ; A -* Z for any morphisms a : H — » Z

and /? : .R -» Z in <€ . We have a + * = h*(u) and * -j- ft = r*(/J) for any morphisms

a : H -» Z and j8 : .R -» Z, since <a,*> =« o gj and <*,/?> =^ o g2.

Theorem 4.1. Le£ ̂ : ^ n F - ^ Z 6 e a pairing and 0 : A -+ H UR

a copairing inV. Let a : H -» X, j8 : ,R -> X, y : H -> F and 5 : R -» F 6e

morphisms in <€ . Then the following relation holds in [A,Z]:

Proof. (We actually show that the equation holds as morphisms in ^.)

Define a map ¥ : H L J J R - » J m F b y

where <a}j8> : H U R -> X, <7,^> : H U J? -* Fs (a,y) : H -> ̂  n Fand

(/?,(5) : ^ -»• ^T PI F. We see that two definitions of the above *F coincide

by universality of product and coproduct (cf. Lemma 14.12 of Hilton [4]

and p. 74 of Mac Lane [9]). We have

(E) ju o (¥ o 6) = (fi o ¥) o 0.

The left hand side of the equation (E) is

The right hand side of the equation (E) is

Therefore the result follows.
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Theorem 4.2. Let ^ : X Fl Y -> Z be a pairing with axes f : X -» Z

andg : Y -+ Zin%?. Let 9 : A -> H LJ R be a copair ing with coaxes h : A — > H

and r : A -* R in *$. Then we have the following relations in [A,Z] for any

morphisms a : H -> X, j8 : R -» X, y : H -* Y and 6 : R -> Y in %.

(1) /z*(a) f r*(6) = /*(a) + g*(6)

(2) r*(p) + h*(y) = g+(y) + /*(£)

Proof. By Theorem 4.1 (set /3 = y = * for (1) and a = c5 = * for (2)).

Proposition 4.3. Let \JL : X fl Y -+ Z be a pairing with axes f : X -+ Z

and g : Y —» Z and 9 : A -> H LJ R a copairing with coaxes h : A -> H and

r : A -> R in <€ .

(1) If X=Y andf~g, then

A*(a) + r*(/J) = r*(/J) + A*(a)

m [A,Z] for any morphisms 01 : H -+ X and ft : R -» X.

(2) If H=R and h~r, then

/*(/») +*,tf) = A(5) 4-./,(/0

m [^4,Z] for any morphisms fl : H -> X and d : H -> Y m ^.

Proof. These are direct consequences of Theorem 4.2. q.e.d

The homotopy set [^4,^] has a binary operation -j- when A is a

co-Hopf object and it has a binary operation -f when X is a Hopf object.

If ^4 is a co-Hopf object and X is a Hopf object, then the two binary

operations -f- and + in [^4,^] coincide and these binary operations are

abelian by Theorem 4.2 (set h ~ r ~ \A and/ c± g ~ lj). Moreover, it is

associative (set /? = * in Theorem 4.1).

Let S be a set with a binary operation •. We define the center of S by

{# 6 *S | Z'X = X'Z for any x e S} c: S.

Theorem 4.4. (1) Let X be a Hopf object in <g. Ifr:A-+R is a

cocyclic morphism, then the image of r* : [jR,^T] — » [^4,>X^] is contained

in the center of [A,X].

(2) Let A be a co-Hopf object in *$. If g : Y -» X is a cyclic morphism,
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then the image of g* : [A,Y] — » [^4,^T] is contained in the center of

[A9X].

Proof. (1) By Proposition 4.3(1) (set/~g~lx and h~lA).
(2) By Proposition 4. 3(2) (set h~r~ 1A and/~lx). q.e.d.

We have a "canonical" morphism j : X U Y — > X i~1 Y which is defined

byj = <iiJ2> f°r tne inclusion morphisms il : X -* X H Y and i'2 : Y -»
x n F.

Theorem 4.5. L^/ : X -> Z, u : V -+ Z,g : Y -» Vandw : W -» Vbe
morphisms and 9 : A -* X U Y a copairing in % '. Then fLv and gLw implies

Proof. Let ^ : X H V -» Z and ^2 : Y H W -^ V be pairings for fLv
and gLw respectively. Then the composition of morphisms

MI ° (1* n Ai2) ° s ° 0' n V)

is a pairing for {/+ (f ° g)} J_ (^ ° w), where

s : (xn Y)nw^ xn (Y n w)

is the natural isomorphism of products. q.e.d.

Dually we have the following results.

Theorem 4.6, Let h : A -> U, r : A -> R, u : H -* U and d : H -» D
be morphisms and \i : D f~I R -> Z a pairing in *% . Then u~Td and h~^~r implies

(u o A)T{(rf o h) + r}.

We call a co-Hopf object A with a comultiplication 0 : A — » ^4 u A a
homotopy associative co-Hopf object when

(QU\A)°Q ^(\AUQ)°B\A-+ A\JAL\A.

We call an object A a co-grouplike object in ^ when A is a homotopy
associative co-Hopf object in ^ with an inverse v : A -* A, namely,
l^-j-v — *~ v-j-1^. If ^4 is a co-grouplike object, then [^,^T] is a group for
any object X in ^ (cf. Chapter 14 of Hilton [4]).
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Theorem 4.7. // A is a co-grouplike object in % ', then (l^)1^,^) «
an abelian subgroup which is contained in the center of a group [AyX].

Proof. We remark that fLg if and only if g_L/ for any morphisms
/ : X -» Z and g : Y —> Z in our category, since we can define ' 'switching
morphism" T : X x Y —* Y x X by the universality of product and
coproduct. Then we can use Theorem 4.5 for the proof of this theorem.

Now, by Theorem 4.5 (set v = w = lx and f,g:A^>X), we see that the
subset (lx)

L(A,X) is closed under the operation -f induced by the co-Hopf
structure of A. Moreover, (l^)1^,^) is contained in the center of [A,X]
by Theorem 4.4(2).

Let [a] be an element of (lx)
L(A,X). Then we have a_Ll^ and hence

(a o v)J_lx for the inverse v : A —> A by Theorem 2.1(1). Therefore we
have -[a] = [a o v] e (l*)1^,^). q.e.d

By a dual argument we have the following results.
We call a Hopf object Z with a multiplication \JL : Z f~1 Z -> Z a homotopy

associative Hopf object when

\JL o (fi n iz) ^ n o (iz n n) : z n z n z -» z.

We call an object Z a grouplike object in ^ when Z is a homotopy
associative Hopf object in ^ with an inverse v : Z— »Z, namely, lz -f v±^*^
v -f lz. If Z is a grouplike object, then [A,Z] is a group for any object
A in #.

Theorem 4.8. Let Z be a grouplike object and A any object in % '. Then
(lz)

T(A,Z) is an abelian subgroup which is contained in the center of a group

Finally we list eight categories as examples to which our categorical
results apply; (i) category of equivariant topological spaces with base point, (ii)
category of topological spaces with a homotopy relation induced by a functor,
(iii) category of metric spaces with uniform homotopy, (iv) category of
uniform spaces, (v) category of topological spaces with 0-continuous maps,
(vi) category of fibrewise pointed topological spaces over B, (vii) category
of simplicial sets, (viii) model category with zero object.

All the results in this section hold in the above categories with their
own homotopy relations, since these categories have product, coproduct and
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zero object.
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