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The Strong Bernstein-Gelfand-Gelfand
Resolution for Generalized

Kac-Moody Algebras, I
— The Existence of the Resolution —

By

Satoshi NAITO*'**

§ 1. Introduction

The purpose of this series of works is to show the existence of the
strong Bernstein-Gelfand-Gelfand resolution (cf. [1]) of the irreducible highest
weight module L(A) with dominant integral highest weight A over a
symmetrizable generalized Kac-Moody algebra ( = GKM algebra). Here,
GKM algebras are a class of contragredient Lie algebras Q(A) over C (see
[4], [8], or [7, Chapter 1]) associated to a real square matrix A = (aij)ijel

indexed by a finite set / which satisfies the conditions:

(Cl) either au = 2 or a£l-<0;
(C2) atj<0 if iVj, and atJeZ if aH = 2;
(C3) fly—O implies o^ = 0.

(We call such a matrix a GGCM in this paper.)
These Lie algebras were introduced as a natural generalization of Kac-Moody
algebras, and have been studied by Borcherds ([2] and [3]).

In the present paper, we prove the existence of the weak Bernstein-
Gelfand-Gelfand ( = BGG) resolution by homological methods, following the
general lines of [5] and [17, Sections 7—9]. To be more precise, we prove the
existence of the following g(^4)-module resolution of L(A):
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where Cp(A) = £0 Vm(w(A + p - @) - p) is the direct sum of

generalized Verma modules Vm(w(A + p — p) — p) with highest weight w(A + p
— /?) — p canonically induced by the irreducible highest weight module
Lm(w(A + p — /?) — p) over the maximal reductive part m of a finite type
parabolic subalgebra p of §(A) (see Sections 1.1, 2.1, and 2.2).

Then, using this BGG resolution, we obtain a vanishing theorem for
the Lie algebra homology Hj(Q(A)y L(A)) of g(^4) with coefficients in L(A),
generalizing a result of Kumar [9, Theorem (1.7)] to symmetrizable GKM
algebras.

As another consequence of the BGG resolution, we prove the
generalization of Bott's "strange equality", which is due to Lepowsky ([11,
Corollary 6.7]) in the case where Q(A) is a symmetrizable Kac-Moody
algebra. This determines the dimension of the 5-th relative Lie algebra
homology HS(Q(A), m, L(0)) of §(A) with respect to m with coefficients in
the trivial one-dimensional module L(0) (s>0).

In the succeeding paper [15], we shall describe an explicit construction
of the strong BGG resolution, which is equivalent to the above weak BGG
resolution, developing the theory of Verma module embeddings.

This paper is organized as follows. In Section 2, after [14], we fix
notation and review the notion of the category (9j corresponding to a certain
subset J of /. In Section 3, we briefly sketch the construction of the
"weaker" BGG resolution for symmetrizable GKM algebras. That is, a
resolution (#) of L(A) in which the modules Cp(A) (/>>0) have a g(^4)-module
filtration:

(**) Cp(A) =

such that MJMi + 1 * Vm(w(A + p-^-p) (weW(J), /»6^(A),
i = 0, 1,..., k.
This construction is carried out basically in the same way as in [5], except
for the determination of the highest weights appearing in the modules Cp(A)
(p>Q). A necessary condition of the highest weights is obtained by imitating
the proof of the Weyl-Kac-Borcherds character formula for L(A) (cf. [2] or
[7, Chapter 11]). On the other hand, we can prove as in [5] that the weights
in this necessary condition actually appear as highest weights of successive
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quotients Mt/Mi + l (0<z<A;). Combining these results, we complete the

construction of the "weaker" BGG resolution.

In Section 4, we show a vanishing result about the relative Ext bifunctor,

which asserts that Cp(A)(p>0) is actually the direct sum of generalized

Verma modules Vm(w(\ + p - p) - p) (we W(J), j8e^(A), £(w) + ht(jS) = p).

Thus we finally obtain the weak BGG resolution.

In Section 5, as applications of the BGG resolution (and its proof), we

get some results on Lie algebra homology of GKM algebras.

§2. Preliminaries and Notation

We generally follow the notation of [7]. For detailed accounts of GKM

algebras, see [2] and [7, Chapter 11].

2.1. GKM algebras and parabolic subalgebras. Let §(A) be a

GKM algebra, over the complex number field C, associated to a GGCM

A = (aij)ijel9 with Cartan subalgebra I), simple roots Il = {aI-}fe/, and simple

coroots IIV = {oc^}iel. Let us fix an element p of l)* = Homc(l), C) such that

<p,a,v> = (l/2)-aH (ieJT).

As is well-known, we have a triangular decomposition: g(^4) = n~©I)©n +

with n±=^^A± ga, where ga is the root space attached to a root

aeA = A + u A ~ . Let I"6 (resp. fm) be the subset {i'e/| au = 2 (resp. ati<®)}

of the indexing set I. For a subset J of /re, we put Ajf": = A + n (^iej^>oai)>

and then A + (J) : = A + \ Aj!". Now, we define the following Lie subalgebras

of Q(A):

We call p = m©il+ a parabolic subalgebra of g(^4), and then m the maximal

reductive part of p.

Recall that the Weyl group W of a GKM algebra §(A) is by definition

the subgroup of GL(I)*) generated by fundamental reflections ri (ielre). For

weW, we put <5w: = A + nw(A~). Note that the number of elements of the

set <PW is equal to the length £(w) of w ([13, Proposition 1.2]). Corresponding

to a subset J of Ire 'y we define Wj to be the subgroup of W generated by

the rr.'s (leJ), and put W(J) : = {WE W \ ®w c: A + (J)}.

2.2. Category (9j, From now throughout this paper, we will assume

that the GGCM A is symmetrizable. Let J be a subset of Ire. In [14,
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Section 2], following [12], we defined Oj to be the category of all m-modules
M satisfying:

(Jl) Viewed as an f)-module, M is f)-diagonalizable with finite-
dimensional weight spaces;

(J2) there exist a finite number of elements /^-el)* (l<i<s) such that
), where 0>(M) is the set of all weights of M and

(J3) Viewed as an m-module, M is a direct sum of irreducible highest
weight m-modules Lm(X) with highest weight lePji = {fj,el)* \ </x, a£

v>

Recall that the category Gj is closed under the operations of taking submodules,
quotients, finite direct sums, and tensor products.

Remark. The category 0 defined in [7, Chapter 9] is nothing but the
category of all g(^4)-modules satisfying (Jl) and (J2).

The following proposition plays a crucial role in the construction of the
"weaker" BGG resolution in Section 3.

Proposition 2.1 ([14, Proposition 2.1]). Let AeP+: = {Aef)* | <A, a,v>
> 0(f el), and </ l ,a £

v>eZ> 0 if ait = 2}. Fix a subset J of Ire. Then, L(A)
and (/y u~)(X)c L(A) (j>0) are in the category Oj, where /\j U~ is the exterior

algebra of degree j over it~, and is an m-module under the adjoint action
since [m, u~]cu~.

Remark. In [5], the above proposition was proved in the case where
A is a symmetrizable GCM and the subset J is of finite type (i.e., the

submatrix Aj '- = (aij)ijej of A is a classical Cartan matrix of finite type). In
[12], Liu pointed out that, in the case where A is a symmetrizable GCM,
the condition that J is of finite type can be removed by using Kac's complete
reducibility theorem ([7, Theorem 10.7]). Also to the case where A is a
symmetrizable GGCM, Liu's proof is applicable since the Chevalley
generators eh f{ (iElre) act locally nilpotently on §(A) and L(A).

Now, for later use, we recall the notion of the algebra $ introduced in
[7, Chapter 9], which contains "formal ^-characters" of f)-modules in the
category 6j for the case J = 0. (Note that in [7, Chapter 9] formal characters
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are defined only for g(^4)-rnodules in the category Q.) The elements of $
are series of the form ^Aefj* cAe(^)> where c^eC and cA = 0 for A outside a
finite union of sets of the form D([i) (juef)*). Here, the elements e(A)
are called formal exponentials. They are linearly independent and are in
one-to-one correspondence with the elements /lei)*. The multiplication in $
is denned by: e(lj-e(l2) = e(^ + ̂ 2} (/11,A26^*).

For an l)-module M in the category @0, we define the formal ^-character
ch^ M to be ^Aej)!ll(dimc.MA)e(A)E^', where MA is the weight space of M
corresponding to A.

§3. Construction of the "Weaker" BGG Resolution

We fix a subset J of Ire = {i€l \au = 2}.

3.1. Construction of a generalized Verma composition series.

For AeP/, we define the generalized Verma module Vm(X) with highest
weight A as follows: I/n(A)= C7(g(^4))(X)t7(p)Lm(A), where u + (c=p) acts trivially
on the irreducible highest weight m-module Lm(A) with highest weight
A. Here, for a Lie algebra a, U(a) denotes the universal enveloping algebra
of a. Note that when J is an empty set 0, the module Vm(h) is just the
Verma module F(A) with highest weight A el)*, so that ^(A) is a quotient
of F(A).

Definition. Let ^P = (A1, A2, ...) be a sequence, possibly finite, of
elements of Pj. A g(y2)-module V in the category (9 (see the remark before
Proposition 2.1) is said to have a generalized Verma composition series ( = GVCS)
of type *¥ if Fhas a strictly increasing (possibly finite) g(^4)-module filtration:

such that V={Ji>0Vi and the sequence V^/V^ V2/Vl,... coincides up to
rearrangement with the sequence of generalized Verma modules ^(Aj),

Now, let (• | •) be a standard invariant form on §(A) corresponding to
the decomposition A = DB, where D = (eA^ J€T is a diagonal matrix with
e f >0 (ieJ), and B is a real symmetric matrix (see [7, Chapter 2]). This
induces (through a linear isomorphism v: I) ->F)*) a nondegenerate, PF-invariant,
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symmetric bilinear form, which is again denoted by (• | •). We fix one such
(• | - ) - Note that for aeA + , we have 2(p | a) > (a | a) with quality if and only
if aen (see [7, Chapter 11]).

For a sequence ^P = (A1, A2, ...) of elements of P/, and an element AeP+ ,
let ¥A be the subsequence of *F consisting of those Af in ¥ such that

We can prove the next theorem, arguing basically in the same way as
in [5], by making use of Proposition 2.1 instead of [5, Proposition 6.3].
However, in its proof, we need the same additional arguments as in
[12, Section 6] concerning the filtration of Cp(A)(/>>0), since the subset J of
Fe may be arbitrary. For these additional arguments, we need only the fact
that *F^ is a finite set for each p (p > 0), which will be proved in the following
subsection (see Proposition 3.2).

Theorem 3.1. Let AeP+ . For each />eZ>0 , let TP = (A1,12,...) be

the (possibly finite) sequence of elements of Pj such that (/\p U~)(X)CL(A)
= ]T ® Lm(^i) as m-modules (such a decomposition exists uniquely by Proposition

2.1). Then, there exists an exact sequence of §(A)-homomorphisms:

0«-L(A)«-C0(A)4-C,(A)«— -*-Cp(A)«-C,+ 1(A)«— -,

where the §(A)-module Cp(A) is in the category 0, and has a GVCS of type

3»2o Determination of *F£ (p>0). Let us recall some notions
concerning roots of GKM algebras. A simple root o^ell (zel) is called real
if au = 2, and imaginary if au<0. We denote by Ylre (resp. ITW) the set of
all real (resp. imaginary) simple roots. Let <5f be the set of all sums of
distinct, pairwise perpendicular (with respect to (• | •))> imaginary simple

roots. And for each jS = ̂ ie/ &iai6C? + > we Put ^t(jS) :=^6/A:i.
As a necessary condition of *F£, we get the following, imitating the

proof of the character formula for L(A) (cf. [2] or [7, Chapter 11]).

Proposition 3.20 Let AeP+ and peZ>0. If lePj is in the sequence

¥^ in Theorem 3.1, then

(a) 1 = w(A + p — P) — p, for some (necessarily unique) weW(J) and some
(necessarily unique) jSey(A) : = {jSe^ | (jS| A) = 0} such that /
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(b) A occurs with multiplicity one in the sequence *F£.

Proof. First, we remark that since <A + p — /?, a^eZ^o (ielre),
vt^A + p-/?!) — p = w2(A + p-/?2)-p implies W1=w2 and f}1=P2 ([13, Pro-
position 1.1]).

We now work in the algebra $ in Section 2.2. Put /\* n~ : =Xf>oAJ n~ .
Then, by Proposition 1.1, we see that the f)-module (/\* n~)0cL(A) is in
the category 00, so that ch^((/\* n~)(X)cL(A)) is in the algebra <f . Clearly,
we have

ch,((/\* n-)(g)cL(A)) = chi)(A* n-) • ch6 L(A)

a))mult(a> • chj L(A),

where mult(a) : = dimc ga = dimc g_ a (aeA + ). Note that the Weyl group W
stabilizes the set ^(L(A)) of all weights of L(A) and the root system A of
Q(A) with their multiplicities, since the Chevalley generators e^ /f (i€lre) act
locally nilpotently on both of L(A) and §(A). Further, it is obvious that
r£(A + \{aJ) = A + \{aJ for all ielre. Therefore, if we define w(e(i)) : = C(W(T))
(ief)*), we have for ielre

a))mult(a) • chft L(A))

oO)mult(a) ' chj, L(A)

L(A).

Hence, in the expression e(p) • ch^((/\* n ~ ) ® c L(A)) = ^r6i,* cxe(i 4- p), we have

(K) ct = ct», if W(T + P) = T' + P for some

In particular, if we put ®: = ̂ ((/\* n~)®c L(A)), then the set p + 0
(cp + A — Q+ cil)*) is JF-invariant. So, for /le^c©, there exists some
W0€W such that <H>Q 1U + P)> ̂ v>eZ> 0 for all ze/re. We now write

0*60). Since AG¥^, we have (fi + p\fi + P) = (W

To sum up, n = A — ̂ iejkfli (^eZ>0) is a weight of (/\* n~)(g)cL(A) such
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, a /
v>eZ>0(xe/ r e) . From this, we

conclude that jU = A — j80 for some j80e^(A) and that the multiplicity of [i
in (/\* n~)®cL(A) is equal to one, by exactly the same argument that was
used in the proof of the character formula for GKM algebras ([2, Section 7]
or [7, Theorem 11.13.3]). So, using(H),we deduce that A = w0(A + p — j80) — p

and that the multiplicity of A in (/\* n~)(X)cL(A) is equal to one.
Now, it remains to show that W0£ W(J) and AWo) + ht(/?0)=£. But this

can be shown as in the proof of [14, Lemma 4.2]. G

For the converse of Proposition 3.2, we have the following.

Proposition 3.3. Let AeP+ , />eZ>0 . Put /l = w(A + p — /?) — p, where
weW(J) and /?e£%A) such that <f(w) + ht(f})=p. Then, Lm(A) occurs as

m-irreducible components of (/\p U~)0CL(A), and 1 is in the sequence *F^
in Theorem 3.1.

Proof. First, note that we have (A-hp| A + p) = (w(A + p — jS)| w(A-fp

-/D) = (A + p-plA + p-p) = (A + p|A + p) + (/n/0-2(p|/J)-2(A|/J) =(A
+ p|A + p), since jSe^(A) and 2(p | af) = (a£ | a,-) (teT).

If we express j? = X!T=iaifc3 where m = ht(jS), a,fc6lII'l"(l <k<m), and
s'r/z'f (1 <r^t<m), then we have A = w(A + p-j3)-p = w(-j?) + w(p)-p + w(A)

= Z?=iw(-aik) + Z«6fl>w(-a) + w(A), since w(p)-p= -X«6owa. Now, we
take nonzero root vectors £"fceg_w(ai } (1 <k<m), £'aeg_a(ae$w), and a
nonzero weight vector ^eL(A)w(A) with weight w(A). Then, it is clear that
v0: = (E1 A ••• AEm) A(/\(XE®wE(X)(g)ve(/\p u~)(g)cL(A) is a nonzero weight
vector with weight A.

Further, we have the following claim:

Claim. We have ei(v0) = Q for all ieJ, when regarding (/\p U~)(X)CL(A)
as the tensor product of modules over m.

Proof of the claim. It is sufficient to show that A + a,- (i'Gj) is not a
weight of (/\p U")®CL(A). Suppose that A + a£ is a weight of (/\p ii~ )(><)£
L(A). Then, by exactly the same argument as in the proof of Proposition 3.2,
we see that there exists some w0eW such that (w^1(A-|-aI--hp)|
for all lelre. We write H = WQ 1(A + a i-f-p) — p. So, we have ^ = A —
(WfcGZ^i ) since p + ̂ ((/\* n~)®cL(A)) is PF-invariant.

Now, since M = A — ̂ fcwfcafe, we have
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= (A + p| A + p) - GU + p\p + p) = ( A + p|Xfc nkock) + (JJL + p|£fc Wfcafc)

Here, (A|a,)>0 for all /e/, since AeP+ .
For JGlre, we have

For J€Pm with njeZ>li we have

|a7-) = (A -

a^) 4- (1 - nfixfa) > 0.

Therefore, we get

On the other hand, we have

ai|ai) (since

Here, note that w~1(a i)e A + n ^6/r. Za^, since ieJaT6 and
= {w£W7|M~1(A/)c:A + }. Therefore, we get (/l + ai + p|A + a£ + p)
+ p)>0. This is a contradiction. Thus, we have proved the claim.

Let us recall that the m-module (f\p ii~)(X)cL(A) is in the category 03

(p>0) from Proposition 2.1. Hence, we can easily deduce from the above
claim that the m-submodule of (/\p U~)®CL(A) generated by the vector v0

is m-module isomorphic to Lm(A) (p>0). Q

By Theorem 3.1, Propositions 3.2 and 3.3, we have the following
theorem, extending a result of Liu [12].

Theorem 3.4 ("weaker" BGG resolution). Let Q(A) be a GKM algebra

associated to a symmetrizable GGCM A = (aij)ijel, and let J be a subset of
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Fe = {iel\au = 2}. Then, for the irreducible highest weight §(A)-module L(A)
with highest weight AeP+ , there exists an exact sequence of $(A)-modules and
§(A)-homomorphisms:

where C,(A) O>0) has a GVCS of type (w(A + p~B)-p) . Here,
weJT(/),/?€^(A)
«?(w) + ht(/J) = p

each weight w(A + p — f}) — p occurs with multiplicity one in this sequence.

§ 40 Existence ©f the Weak BGG Resolution

In this section, we assume that the subset J of Ire is of finite type (i.e.,
m is a finite-dimensional reductive Lie algebra). Define ^(g(^4), m) to
be the category of all g(^4)-modules V satisfying (J3) in Section 2.2. That
is, ^(Q(A), m) is the category of all g(^4)-modules which are finitely semi-simple
as an m-module. Note that the category ^(g(^), m) is closed under the
operations of taking submodules, direct sums, and tensor products, and that
^(g(^4), m) has enough projectives. Therefore, in the category ^(g(^4), m),
the usual relative Ext bifunctor Ext|g(yl)m) is defined (j>Q) (see [11, Part I]).

Here, we prove that the g(^4)-module Cp(A) (in Theorem 3.4) is actually
the direct sum of generalized Verma modules Vm(w(A + p — /?) — p) (we W(J)y

)?e^(A), ^(H>) + ht(/3)=/>) for p>0, by showing Ext^^V^w^A+p-^)
-P)> Fm(w2(A + p-jS2)-p)) = 0 if w^w2 or /? l94/?2, where wteW(J),

In [17], Rocha-Caridi and Wallach dealt with a certain wide class of

graded Lie algebras, that is more general than symmetrizable GKM

algebras. So, we can use their results freely. Our main tool is the following.

Lemma 4.1 ([17, Lemma 7.1])8 Let M=MQ^>Ml => ••• =3MS=)MS+1

= 0 be a filtration of Me^(g(^4), m) by submodules, such that Mt/Mi + 1

^Vt(0<i<s) as $(A)-modules. If Ext^)im)(Pf, Vj) = 0 for all 0<i£j<s,

then M ^ X®<i<« ^ as $(A)-modules .

So, we have to prove the following Ext vanishing result.

Proposition 4.2, Let AeP+ , wteW(J), and j8fe^(A) (f = l,2). //
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CFJw^A + P-0J- p), Vm(w2(A + p-p2) - p)) * 0, then S(Wl) +

t(w2) + ht(j82).

Before proving Proposition 4.2, we prepare some basic results for real
roots and imaginary roots of GKM algebras. Let Are : = W'IFe, Aim : = A \ Are,
K: = {a = ̂ ieIkiaieQ+ \{0}<a,a/><0 (jelre), and supp(a) is connected} \
Uj>2 y'nim, where supp(a) is the subdiagram of the Dynkin diagram of
A = (aij)ijel corresponding to the subset {fe/ |fcj>0} of /. Then, we know
that A I - m nA + = yweW.w(X) ([7, Chapter 11]). Moreover, we have

Lemma 4.3. For aeA, the following are equivalent:
(1) aeAre;
(2) (a|a)>0.

Proof. (1) obviously implies (2), since (aja,-) = 2/et > 0 (i'e/re) and (•(•)
is FF-invariant. We will show aeA i m implies (a|a)<0. Since A i m n A +

= (JyveWw(K), we may assume that a = ̂ -e/ kff,j E K. Then, we have

(a|a) =Sje/^j(alaj)- Note tnat for »e/, (a|a£) = e i~
1 • <a,a f

v>, where ec>0. If
fe/ rc, <a ,a £

v ><0 since aeK. And if iefm, <a,a i
v>=X/Ejfc/aJ.,a i

v>
:j^<0 since «K<0. So, we have (a|a)<0. D

For a e Are, we define a reflection ra with respect to a by: ra(/l) = 1 — <A, a v >a
(Aef)*), where av =2v~1(a)/(a|a) is the dual real root of a. Note that if
a = w(oti) (weWy a^eir*), then ra = wr iw~1eTF. Then, generalizing [17,
Lemma 8.2], we have

Lemma 4.4. Let /xeP+ , weW, and /?eA + . Then, the following are

equivalent:

(1) 2<w(^ + p), v-1(j5)> = m(jS|j?) /or som* meZ^i ,
(2) we have either of the following two cases:

(a) /JeA re

(b) w9

Proof. We can show that (2) implies (1) in exactly the same way as
in the proof of [17, Lemma 8.2]. So, we only show that (1) implies
(2). Now, suppose that j?£Are, so that j3eA'mn A + . Then, by Lemma 4.3,
we have (jB|/?)<0. On the other hand, from the assumption we have

SinceA''mn A+ is PF-invariant, we get
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w~ 1( j8)6A'mnA + . Put aL: = w~l(ft). Then, we have

m(a|a) = m(ff\p) = 2Qi + p|a) = 2(rfa) + 2(p|a)

so that (ra — l)(a|a)>2(/j|a) with equality only if aell. Here,

since ]j,eP+ and asA + . Therefore, we deduce w~1(jS) = ae!lim and

(H\w~l(p)) = 0, since (a|«) = (/J|/0^0.
Hence, we may assume that /?eAre. But, in this case, we can show

that £(rpw)>J'(w) in the same way as in the proof of [17, Lemma 8.2]. Q

Proof of Proposition 4.2. Put f i i : = wi(A + p — pi) — p (z = l,2). We have

te(^).m)(Kn(Mi)* Kn(^2))^° bY assumption. Then, by [17, Theorem 7.5],

there exists an element jueP/ (/i^^i) such that [Vm(fJ,2) : L(ii)]'[Vm(n) : L^^]

7^0. Here, for g(,4)-modules Ve@ and L(t) (ret)*), [F:L(t)] is the

multiplicity of L(T) in F (see [4, Definition 3.5]). So, we have

[V(l*2) : L(n)]-[V(iJ,) : LdiJ] ^0. Therefore, we have only to show the

following claim:

Claim. Let /? be an element of the set £j6j<m Z ' >§&„ and let weW. If,

for some pel)* (^^w(A + p-p)-p), [V(w(A+p-p)-p):L(p)]^Q, then /x =

w0(A + p — j80) — /? for some w06PF and some /?oe]Ciei'™^>oai such that

Proof of the claim. Since [F(zu(A + p-j5)-p) :L(/i)]^0, by [8, Theorem

2], there are a sequence y j,..., yk of positive roots and a sequence m l5...,

mk of positive integers such that

and

Clearly, we may assume that A; = l. That is, we may assume that there exist

a positive root y and a positive number m such that

2<w(A + p-j8), v"1(y)> = ^(?l7) and w(A + p — jS) — p — y, = my.

Then, by Lemma 4.4, we have either of the following two cases:

(a) ye&re and ^(ryw)>^(w);
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(b) w-l(y)eUim and

In Case (a), we have (r

, with t(r

In Case (b), by putting a: = w~1(y)eHim
y we have /x = H>(A-|-p — /?) — my — p =

)-p, with ht(/? + wa)>ht(j?).

Thus, the claim has been proved. Q

By Theorem 3.4, Lemma 4.1, and Proposition 4.2, we have the following
main theorem.

Theorem 4.5 (weak BGG resolution). Let AeP+ and let J (dFe) be a
subset of finite type. Then, for the irreducible highest weight module L(A) with
highest weight A over a symmetrizable GKM algebra Q(A)y there exists an exact

sequence of §(A)-modules and Q(A)-homomorphisms:

where Cp(A) = £® Vm(w(A + p — /?) - p) is the direct sum of gen-
weW(J),pe^(\)
«f(w) + ht(/3) = p

eralized Verma modules Vm( w( A + p — j3) — p) with highest weight w(\ + p — j8)

-P-

§5. Applications

5.1. Extension of Kostant's homology theorem. In [14], we derived
Kostant's homology theorem from the Weyl-Kac-Borcherds character formula

xs.

for L(A) over a symmetrizable GKM algebra §(A) under the condition (Cl)

on the GGCM A = (aij)ijel that ati = 2 or au = 0 (IE I). Here, we extend
Kostant's homology theorem to arbitrary symmetrizable GKM algebras.
This completely determines the Lie algebra homology H"p(tl~,L(A)) (/>>0)
of u~ with coefficients in L(A) as an m-module. Note that in this subsection,
we assume only that J is a subset of Ire (not necessarily of finite type).

First, we recall the following.

Proposition 5.1 ([14, Proposition 3.2]). Let AeP+ andpeZ>0. Then,
the m-module £Tp(u~,L(A)) is in the category 0j, and every m-irreducible
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component of Hp(u~,L(A)) is of the form Lm(fj) ( f i e P j ) with

Remark. The above proposition was proved by Liu [1 2] in the case where
A is a symmetrizable GCM. The proof needs no modifications also in the
case where A is a symmetrizable GGCM.

Now, we can easily deduce the following proposition from Propositions
3.2, 3.3, and 5.1 by the well-known Euler-Poincare principle (cf. the proof of
[14, Proposition 4.2]).

Proposition 5.2. Let AeP+ , peZ>0. We put 1 = w(A + p — P) — p,
where we W(J) and fie^A) such that ^(w) + ht(P)=p. Then, Lm(A) occurs as

m-irreducible components of Hp(u~,L(A)).

By Proposition 5.1 together with Proposition 3.2, and by Proposition
5.2, we obtain the following theorem, which generalizes Kostant's famous
theorem on Lie algebra homology to arbitrary symmetrizable GKM algebras.

Theorem 5-3= Let AeP+ and let J be a subset of Ire. Then, as m-

modules (/>>0),

Hp(u-,L(A)) * X0

Here, the above sum is a direct sum of inequivalent irreducible highest weight
m-modules.

Remark. In [14], we proved the above theorem under the condition (Cl)
on the GGCM A = (aij)ijel that for each z'e/, either ait = 2 or au = 0 (see [14,
Theorem 4.1]). And then, using it, we got [14, Theorem 5.1]. However, in
the proof of [14, Theorem 5.1], we required the condition (Cl) only to ensure
the validity of [14, Theorem 4.1]. So, since we have proved Theorem 5.3
(without any condition on the symmetrizable GGCM ^4), [14, Theorem 5.1]

now holds without the condition (Cl) on the GGCM A.

5.2, Homology vanishing theorem,, From now till the end of this
paper, we will assume that the subset J of Ire is of finite type. As in Section
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4, let ^(g(.4), m) be the category of all g(^4)-modules which are finitely

semi-simple as an m-module. Note that under the adjoint action, the GKM

algebra g(^4) itself is in ^(g(^4), m) since m is a finite-dimensional reductive

Lie algebra. In this subsection, we use the notation of [11, Part I]. Let b

be a Lie algebra, and a a Lie subalgebra such that b is a finitely semi-simple

d-module under the adjoint action. Then, for (left) b-modules Vl and V2

which are both finitely semi-simple as an a-module, Torjb'a)( V± , V2) is defined

as in [11, Part I] (/>0)> where V{ denotes the right b-module associated to V1

in a natural way by using the unique anti-automorphism of U(b) which is — 1

on b.
Here, we obtain a vanishing theorem for the Lie algebra homology

H%(Q(A)y L(A)) of Q(A) with coefficients in L(A). Our dependence on the

ideas in the papers [9,10] of Kumar will be clear to any informed reader.

Recall that for an f)-diagonalizable module M=^i®l)* Mr with finite-

dimensional weight spaces MT, we put Mf : = £®j,* M*, where Mf =

Homc(Mt,C) (see [14, Section 5]).

Theorem 5.4. Let AeP+ , /jeP/, and let L*(A) = {L(A)}C* be the

irreducible lowest weight §(A)-module with lowest weight —A el)*. We assume

that J is a subset of Ire of finite type. Then, as C-vector spaces:

(a) // fj, / w(A 4- p — j8) — p for any w 6 W( J) and /? e ^(A), we have for all

n>Q

= 0.

(b) If // = w0(A + p — /?o) — p for some (necessarily unique) w0EW(J) and

), we have for all n>0

Torf*>(L*(A)<, Fm(M)) * LJO)(x)cHn_(,(wo)+ht(/?o))(m,Lm(0)).

Proof. First, we can easily show that

Tor«X)-m>(L*(A)', Vm(ji)) S Tor<f-m> (L*(A)',

as C-vector spaces by a standard argument. Now, for an m-module V, we

denote by V™ the space of m-invariants in V. Then, by [1 1, Proposition 4.1 1]

applied to the case b = p, a = nt, and c = u+, we see that Tor^'m)(L*(A)f,

Lm(ju)) is the space of m-invariants in the £-th homology of the following
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complex:

which is easily seen to be (Lm(fj)(g)cHp(u
 + , L*(A)))m. Here, by using the

Chevalley involution (i.e., the involutive automorphism a> of g(^4) such that
0}(ei)=—fit co(fi)=—ei (i£ I), co(h)=—h (/zel)), we can show that

Hp(u
 + ,L*(\))*{Hp(u-9L(\))}* as m-modules (p>Q)

(cf. the proof of [10, Lemma (2.8)]).
On the other hand, by Theorem 5.3, we have

#p(u-,L(A)) s

as m-modules (/>>0). So, since Lm(i) is finite-dimensional for ieP/ as is
well-known, we see that Hp(u~,L(A)) is finite-dimensional, so that [Hp(u~ ,
L(A))}* = {Hp(u~,L(A))}* (p>0). Therefore, by using the fact that Ff (X)c

V2 = Homc(F1} F2) as m-modules for finite-dimensional m-modules Vl and
F2, we have

Tor*'m>(I.*(A)f,Lm(Ai)) S ({Hp(u-, L(A))}* ®c

(p>0)

as C-vector spaces. Hence, again by Theorem 5.3 above, we get

in Case (a), Torf >-""(L*(A)', Fm(/i)) = 0 (p>Q),

in Case (b),

Lm(0) (p

Now, by [6, Section 6] (adapted to our situation), there exists a spectral
sequence {Er

piq} such that

m, L*(A)<8>cFm(AO)®cff,(m, LM(0))
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Note that Hp(Q(A), m, L*(A)®cFm(/i)) = Tor^>(L*(A)<, FmOi)) and that
Hp+q(Q(A), L*(A)®cFm(^) = Tor^(L*(A)t, Fm(/i)) by [11, Propositions
4.2 and 4.3]. Therefore,

in Case (a), Torf»(L*(A)<, Fm(^)) = £„ = 0,

in Case (b), Torf^L'W, FmO*)) = En = ^2
(Wo)+ht(/?oM-,(wo)-ht(/?o)

Thus, we have proved the theorem. Q

Remark. In the above proof, we have also shown that if Pj
p — (}) — p for any wePF(J) and j8ey(A), we have

Tor^)'m)(L*(A)f, Fm(^)) = 0 for all w>0.

As an application of Theorem 4.5, we obtain the following theorem, which
generalizes a result of Kumar [9, Theorem (1.7)] to arbitrary symmetrizable
GKM algebras.

Theorem 5.5. Let A1? A2eP+ . Assume that

A1-A2*^(A1)-^(A2):= {/Ji-/»2|j81e^(A1), £2e^(A2)}.

Then, we have

Tor«('4)(L*(A1)', L(A2)) = 0 /or a// n>0.

Proof. By Theorem 4.5, there exists an exact sequence of g(^4)-homo-
morphisms:

v~<ffi
where Cp(A2)=]£ Fm(w(A2+p — j8) — p) is a direct sum of gen-

weW(J),0eSr(\2)
«f(w) + ht(j3) = p

eralized Verma modules (/>>0).

On the other hand, by Theorem 5.4, we get TorJM)(L*(A1)
t, Fm(w(A2 +

P-P)-P)) = 0 for anY ^e PF(J) and jffe^A^, since A1-
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(see [13, Proposition 1.1]). So, we have Tor^)(L*(A1)
f, Cp(A2)) = 0 for all

p>0. Therefore, we see by a standard spectral sequence argument that

AO', L(A2)) = 0. D

Corollary 5.6, Let Als A2eP+ be such that A1-

Assume that J is a subset of Ire of finite type. Then,

Tor?M)'m)(L*(A1)
f, L(A2)) = 0 for all n>0.

Proof. By the remark after Theorem 5.4 and the assumption on Als A2,

we have Tor?(X)»m)(L*(A1)
t, Fm(w (A2 -h p - jS) -/?)) = 0 for any weW(J) and

j?e5^(A2). So, the corollary now follows in the same way as the above
theorem from Theorem 4.5. D

By putting Aj^O in Theorem 5.5, we get a homology vanishing
theorem.

Theorem 5.7. Let AeP+ . Assume that A^^(A)-e^ = {j81-jS2 1 j^e

we AOTC

= 0 /or a// w>0.

Remark. When g(v4) is a Kac-Moody algebra (i.e., ^4 is a GCM), &*

consists of only one element 0 6 f)*. So, the above theorem generalizes a result
of Kumar [9].

5038 Bolt's "strange equality". By putting A1 = 0 in Corollary 5.6,
we have HH(Q(A), m, L(A)) = 0 (w>0) for AeP+ such that A^^(A)-^.
However, for AE^(A) — ̂ , the relative Lie algebra homology H^(Q(A), tn,
L(A)) does not necessarily vanish. Actually, we have the following, as another
application of Theorem 4.5.

Theorem 5.8. Assume that the subset J of Ire is of finite type. Then, the
dimension of each relative Lie algebra homology space HS(§(A), m, L(0)) of $(A)
with respect to m with coefficients in the trivial one-dimensional module L(0) is

given as follows:

dimc H8(Q(A), m, L(0)) = 0 if s(>0) is odd,

dimc H2p(§(A)J m, L(0)) = the number of elements
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of the set {(w, P)EW(J)xy\S(w) + ht(/l)=p}

= the number of m-irreducible components in the p-th Lie algebra homology Hp(u~ ,
L(0)) of u~ with coefficients in L(0) (/>>0).

Proof. This follows from exactly the same argument as for [11, Corollary
6.7], in which we use Theorem 4.5 instead of [11, Theorem 5.1]. D

LIST OF NOTATION

Z = the set of integers

C = the set of complex numbers

GGCM = a real square matrix A = (a.^.^j satisfying (C1)-(C3) (see §1)

t/(a) = the universal enveloping algebra of a Lie algebra a
Q(A) = the generalized Kac-Moody algebra associated to a GGCM A = («„). J6/

f) = the Cartan subalgebra of Q(A)

V* = Homc(F,C) = the dual of a finite-dimensional vector space V over C

<•,•) = a pairing between a finite-dimensional vector space V and its dual V*

n = the set of simple roots of Q(A)
IIV = the set of simple coroots of Q(A)
p = an element of fy* such that </?,a.v) = (l/2)-aH (it I)

Q+-Zw*««.
supp(a) (a = £.g/ &ja,-6Q+) = the subdiagram of the Dynkin diagram of A = (a^iJBl correspond-

ing to the subset {i"e/|fcj>0} of /

ht(«) (a = £,6J kM e Q+) = S,.e/ ^

A = the set of roots of g(^4)

A+ = the set of positive roots of §(A)

A~ = the set of negative roots of Q(A)

ga (a 6 A) = the root space attached to a root a

mult(a) (a e A) = dimc ga

e,-, /,- (ie/) = the Chevalley generators of $(A)

co = the involutive automorphism of g(^4) such that ($(e^=—fi, o)(fi)=—ei (*€/), co(h)=—h

rm = {iel\aii<0}

A;(Jc/'") = A + n

A+(J) (JC/-) = A
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"*=!!. g*.
U*=IL*M)9±.

/V n± 0^0) = the exterior algebra of degree j over n*

A*«-=L?,oAJ'«-

/\J u* (/>0) = the exterior algebra of degree 7 over u*

P+ = {Aerj* | <A,a. v>>0 (IE 7), and a,a.v

P; (Jc7") = {Mef,* | <M ,a .v>6Z>0 (teJ)}

L(A) (A el)*) = the irreducible highest weight g(^f)-module with highest weight A

Lm(A) (AeP*) = the irreducible highest weight m-module with highest weight A

(AeP*) = the generalized Verma module with highest weight A (see §3.1)

(Aer)*) = the Verma module with highest weight A (see §3.1)

the set of weights of an I)-module M

0 = the category of all g(yJ)-modules V satisfying (Jl) and (J2) (see §2.2)

GVCS: see the Definition in §3.1.

[F:L(i)] (rel)*) = the multiplicity of L(T) in a g(^4)-module V in the category 0 (see [4,
Definition 3.5])

Qj (Jc/re) = the category of all m-modules M satisfying (J1)-(J3) (see §2.2)

f: see §2.2.

ch^M: see §2.2.

r{ (t'67re) = the fundamental reflection with respect to a,- determined by r,-(A) = A — <A,a.v>a,-
(A el,*)

= the Weyl group of g(^) generated by the r,'s (z

/(w)(w e PF) = the length of w

<DW

nre = {a,-en I ielre} = the set of real simple roots of Q(A)

nim = {a.-ell | iElim} = the set of imaginary simple roots of Q(A)

Are = W'Ure = the set of real roots of $(A)

A"" = A \ Are = the set of imaginary roots of $(A)

K= {a = I,-e/ M^Q+\{0}|<a,a;><0 O'er6), and supp(a) is connected} \ (j.^2 j-U
i
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a v (a e Are) = the dual real root of a (see § 4)

ra (a 6 Are) = the reflection with respect to a determined by ra(A) = A — < A, a v >a (A e I)*) (see § 4)

(• | •) = a standard invariant form on I)* (see §3.1)

v = the linear isomorphism from 1) onto I)* determined by <v(^i)> ^2) = (^il^i) (^i» ̂ 2 eW

= the set of all sums of distinct, pairwise perpendicular (with respect to (•]')), imaginary
simple roots

(/>>0) = the sequence of elements A,- of P+ such that (/\* u")®cL(A) S X? Lm(>W as
m-modules

(/>>0, AeP+) =the subsequence of ¥p consisting of those A, in *FP such that (Af + p|Af + p) =

, m) = the category of all g(^4)-modules which are direct sums of Lm(A)'s (AeP*) as an

m-module (see §4)

Ext(s(A) m) ^ - 0) = tne relative Ext bifunctor defined in the category ^(g(^), m) (see [1 1 , Part I])

V* = the right b-module associated to a left b-module V in a natural way (see §5.2)

Torf*'0* 0'^°) = tne relative Tor bifunctor defined in the category #(b, a) (see [11, Part I])

M* = £®^ Homc(Mt, C), where M — £® * Mr is an r^-diagonalizable module with finite-

dimensional weight spaces Mr (re I)*)

L*(A) (A 6 P+) = (L(A)}* = the irreducible lowest weight g(^)-module with lowest weight —A

J7"1 = {ve V | m(t;) = 0 for all mem} = the space of m-invariants in an m-module V
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