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Free Convolution and the Random
Sum of Matrices

By

Roland SPEICHER*

Abstract

We show that the spectral measure of the sum of two selfadjoint matrices is 'almost
surely' given by the free convolution (in the sense of Voiculescu) of the spectral meas-
ures of the two matrices if their size tends to infinity.

§ 1. Introduction

Assume we know the spectral measures JJLA and p.B of two nxn-matrices
4 and B. What can we say about the spectral measure of the sum of A and

B? One way to answer such a question is to average over all possibilities
which are compatible with the given information.

If we knew that the two matrices commute, then we would average over
all possibilities for choosing two diagonal matrices with the given spectral
measures. The result would then be the convolution of the measures fiA and fjLB.

But here we want to consider the case where we have no additional infor-
mation (like commutativity) about the relation between A and B. Then the
canonical procedure is to choose two fixed (e. g., diagonal) matrices A and B
with the given spectral measures and average over all spectral measures of
A + UBU* for all unitary matrices U, where the averaging measure for U is
the Haar measure on the group U(ri). The question is, how the resulting
average measure is connected with the starting measures pA and fjtB. For finite
n the connection seems to be very complicated, but in the limit where n tends
to oo it gets handable again. Indeed, it was shown by Voiculescu [Voi 3]
that in this limit the averaging procedure gives a measure which is the free
convolution of fiA and fjLB. This free convolution (and the corresponding notion
of 'free independence') has a nice algebraic characterization and was introduced
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by Voiculescu [Voi 1] in a totally different context. He also recognized that
this new kind of convolution can be treated very analogously to the usual con-
volution and he developed an analytic aparatus for free convolution comparable
to the usual Fourier transformation machinery for the usual convolution ([Voi
2], see also [Maa, Spe]). To sum it up, free convolution can be defined and
handled easily without any reference to averaging procedures for matrices.

The aim of this paper is to improve Voiculescu's result in the respect, that
the above statement is not only true for an average over all possible sums,
but also for almost all possibilities itself. Thus we shall prove (informally
spoken): If A and B are two selfadjoint infinite matrices with spectral meas-
ures pA and ftB, then the spectral measure of a typical sum A+UBU* is for
almost all unitary U given by the free convolution of p.A and fjtB. Of course,
the notion of infinite matrices and 'almost air has to be given a precise mean-
ing by approximating A, B and U by finite-dimensional nXn-matrices An, Bn

and Un.
The problem of a direct, more appealing, formulation in terms of operators

on an infinite-dimensional Hilbert space M suffers from the absence of a ca-
nonical measure on the group of all unitary operators on M.

For technical reasons, we shall only deal with the case where pA and fjLB

have compact support, because we can then restrict to the consideration of
moments. However, we believe that the result is also true in the non-compact
case, see [Maa] for an elegant treatment of free convolution in this case.

We hope that our result supports our philosophy that it is not too bad to
model two (or more) operators, the relation among which is obscured to us be-
cause of initial lack of knowledge or because of a complex dynamics, by
operators which are freely independent.

The paper is organized as follows. In the next chapter we shall recall the
definition and some basic facts about free independence and free convolution
and fix our notations for later use. The third chapter contains the formulation
and the proof of our main theorem.

§2. Some Facts about Free Independence and Fixing of Notations

The following definitions of 'free independence' and 'free convolution' are
essentially taken from [Voi3].

Let C be a unital *-algebra and <p a state on C, i.e. a positive linear func-
tional with <p(l)=l. A family of subalgebras ClaC (z'e/) with le£* is called
a free family of subalgebras (or Cl are called freely independent} in (C, <p) if
y(al ••• an)=0 whenever we have alf ••• , an such that aj

f^Cl^ with *(/)=£z(/+l)
for all 1^/^n-l and <p(ak)=Q for all l^k^n.

Given pairs (Ck, <pk) (k'=J) of unital *-algebras Ck and states cpk on Ck,
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there exists a state <p on the free product algebra C : — * Ck (with identification
&€E</

of the units) such that (p\Ck—ipk and such that the subalgebras (Ck)k&J form a
free family of subalgebras in (C, <p). The state <p is uniquely determined by
these conditions and is called the free product of the states <pk.

Note that the above characterization of free independence allows to express
all moments <p(bi~-bn) whenever ^-e6\0) as polynomials in moments of the
form <p(bkl-~bkr) with i(kj=i(k2)= ••• =t(kr\ i.e. bkl ••• b k r < = C l ( k l } . In partic-
ular, we have stochastic independence between the different subalgebras in
the sense (p(a^a2}=(p(a^<p(a^ whenever al^Cl(1), a 2 <=C l ( 2 ) and i(l)^i(2). But
note also that the polynomial can be quite complicated for other moments, e. g.
for aeCi, b^Cz we have

(p(abab)—(p(a)ip(a}(p(bb)-\-(p(aa){p(b)(p(b)—<p(a)<p(a)<p(b)(p(b).

By C<Zi, • • • , Xsy we denote the free algebra with the s generators Xlf •••, Xs,
i. e. all polynomials in s non-commuting indeterminants. Let now two pro-
bability measures ^ and //2 on R (with compact support) be given. Then JJLI

can be regarded as the distribution of the random variable X^X* on
i- e. (pl is determined by

) for all k^NQ.

Now consider the free product <£>i*<p2 on C<Xi>*C<X2>=C<Xi, Z2>. The
random variables ZL and Z2 (i.e. the *-algebras generated by them) are freely
independent in (C(Xit Z2>, ^i*^2) and we denote by ^iffl / /2 the distribution of

with respect to ^i*^2, i.e. /^iB3^2 is determined by

) for all k<=N0.

The probability measure ^iff l^2 is called the free convolution of /^ and fjtz. By
the above remark, the moments of ^iEB//2 are polynomials in the moments of
fjL: and //2- It is clear that /*i5Bj«2 also has compact support. Free convolution
can also be defined without problems when the support of ^ or ^2 is not com-
pact, cf. [Maa].

Free independence and free convolution behave in some respects quite an-
alogous to the usual independence and convolution (cf. [Voil, 2, Spe]), but one
should note that the free product is a completely non-commutative concept. An
unusual feature of free convolution is the fact that ffl is not distributive, i. e.
in general ^ffi(^i+(l—AM ^/^ffli^+CL—^)^B3^2 .

In the rest of this chapter we shall fix our notations for the following.
We shall use the following probability spaces: Let Qn be the probability

space of all nxn-matrices, where all entries are independent, complex-valued,
Gaussian distributed random variables with mean zero and variance l/n. By
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-Ggauss we denote the product space of all Qn (equipped with the canonical
product measure), i. e.

"*gauss • — yy i" n *

In a similar way, we denote by fiunitary the product space of random sequences
of unitary matrices

aunitary •— Y_y «« n ?
n=l

where <Q^nitary is the group U(n) of unitary nxn-matrices equipped with the
normalized Haar measure.

If ^ (/eJV) and p are probability measures on R, then we denote by

fjtn ^> fjt the weak convergence of /^ to p. We recall that in the case where p
has compact support it is determined by its moments and it is sufficient to
check the convergence of all moments (cf. [Bil, Theorem 30.2]).

By Mn we denote the complex *-algebra of raXrc-matrices, equipped with
the normalized trace trn given by

1 «
trn(.4):= — S f l t l for A=(aJk)j,k=l,...,n^Mn .

The adjoint of a matrix .4 is denoted by A*. By \A\ := (A*A)l/* we denote
the absolute value of _4eM7l. The expression n?=i 4t means the product
Al"- An in the 'right' order.

For some self adjoint R^Mn we denote by pR the spectral measure of R
with respect to the trace trn, i.e. JJLR is determined by

trn(R
k)=^xkdpR(x) for all

In connection with central limit theorems for the free independence it was seen
[Voil, Spe] that the limiting states can be described as free Gaussian states on
some C(Xlf ••• , Zs> in the following way: Let CV= [Vlf ••• , Vp} be a partition
of the set {1, ••• , r] , i.e. the V, are ordered and disjoint sets and {1, ••• , r]
= \Jt=iVl. Then cy is called non crossing [Kre], if for all i, j=l, ••• , p with
Vl=(vl, ••• , vn} (vi< ••• <vn] and V,=(wlf ••• , wm) (wt< ••• <wm) we have

(In [Spe] we used the term 'admissible' instead of 'non crossing'.) We will
denote the set of all partitions of {1, ••• , r} by 5>(1, ••• , r) and the set of all
non crossing partitions by 5>,vc(l, ••• , r}. We can reformulate the definition of
'non crossing' in a recursive way: The partition cv= {Vlf ••• , Vp] is non
crossing if at least one of the Vl is a segment of (1, • • • , r), i.e. it has the
form VT=(k, k + 1, k+2, • • - , k+m) and {Vlf • • - , V^l9 Vl+l, ••• , Vp} is a non



RANDOM SuMb OF* MATRICES 735

crossing partition of {1, • • - , r\\Vt (interpreted in a canonical way). We shall
especially have to consider non crossing partitions ^= {Vi, ••• , Vp\ where each
Vj. contains exactly two elements. We shall write Vl=(el, zl) with el<zl.
The set of all such partitions will be denoted by &*vc(l> '" , rf> where of course
r has to be of the form r—2m.

A state <p on C(Xlt ••• , Xsy is called a free Gaussian state, if we have for
a l l remand k(T), • • • , &(r)e{l, • • - , s }

D •" X k ( r ) )

0, r odd

e } X k ( 2 , } • • • < ( X k ( e ) X k ( t > ) , r=2m.

The matrix ( ( A ^ A ; ) ^ . ! , ,s is called the co variance matrix of

§ 3. Statement and Proof of the Main Theorem

Theorem. Let JL=(An)n^y and ^B — (B1L)n^N be two sequences of self adjoint
nXn-matrices An and B,L suck that

w w
—>^i and fiB —

for some probability mesures p^i and p® on 11. If /.u and /jlfi have compact sup-
port, then

for almost all random sequences of unitary matrices cU=(Un

The rough idea of the proof is the same as in [Voi3], we only have to
adapt some arguments to the 'almost sure' situation.

The idea is the following : One first shows that infinitely large random
matrices 3fej0gauss and non-random diagonal matrices are freely independent,
which implies also the free independence between polynomials in 3C and di-
agonal matrices. Then one notices that the phase CU := 3fC2£*3f)~1/2 of a random
matrix 3C<=Qsauss gives an element T7efiUnitary (under respectation of the
measure) and tries to approximate °U by polynomials in 3£. In this way one
also gets the free independence between random unitary matrices ^U^^unitar-
and diagonal matrices. But free independence between {JZ, <B\ and {CU, C67*}
implies free independence between J. and CU^CU*.

The crucial observation made by Voiculescu is that not only n X 72-matrices
with independent entries become freely independent in the limit n— >oo, but that
one can also include non-random diagonal matrices in this argument. This
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allows to start in our theorem with arbitrary spectral measures and not only
with free Gaussian measures. To say it in another way, large matrices do not
only give an interpretation of Wigner's semi-circle distribution, but much more
generally for the concept of 'free independence'.

We shall now start with proving the free independence between random
matrices in Qsauss and non-random diagonal matrices.

Lemma. For almost all 2£=(Xn)n&N^Qgauss we have:
i) Let P be a polynomial in Lwo non-commuting indeterminants. Then

lim trB(P(*B, X$))=(p(P(X, **)),
n-»oo

where <p is a free Gaussian state on C(X, X*y with the covariance matrix ( V

ii) Let 2)l = (D^)n&N, ••• , £)s=(Ds
n)n<EN be s sequences of diagonal nXn-

matrices D3
n such that

limtrB(P(0B, .~,D'n))=p(P(D\ • • - , £s))
7l-»oo

for all polynomials P in s indeterminants, where p is a state on CCD1, ••• , Dsy.
Then

limtrn(P(Xn, Dl, ••• , Ds
n, X*»=p*<p(P(X, D\ ••• , Ds,

for all polynomials P in (s+2) non-commuting indeterminants, where p*<p is the
free product of p and (p on C(X, D1, ••• , Ds, X*y.

Remarks.
1) Clearly, i) is contained in ii). The main aim of the first part is to

introduce the state <p.
2) One should note that (p restricted to C<Z*JY> gives the 'square' of

Wigner's semi-circle distribution (cf. [Voil, 3, Spej), i. e.

lim

Proof of Lemma. It is sufficient to consider the monomials X
for all choices of r^N and i ( k ) ^ { Q , 1, • • - , s, s-fl}, where

X°n:=Xn

Let in the following r and *'(!), ••• , i(r) be fixed and consider the random variable
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«» -AT )

S **"(*!, ktW(kt, kt)-X^\kr, A l ) ,
/2 *!. , A r =i

where Xl
n

{J\k, /) is the (£, /)-entry in the matrix Xl
n
J).

Firstly, we shall show that the expectation value E[S7i] converges to the
asserted expression. Secondly, we shall give an argument which guarantees
also the almost sure convergence.

The first part is already treated in [Voi3], we shall only add to this treat-
ment an 'explicit' formula for the limit. That p-kcp takes on the same value
in this case can also be seen easily, but we omit the proof of this since it fol-
lows from [Voi3].

We shall show that the limit for Sn has the following form: Let us call
a non crossing partition c^—\yi} ... } y p] of {1, ••• , r} valid if one of the fol-
lowing two conditions is fulfilled :

(1) We have p—l and i(v)^{l, ••- , s] for all v = l, ••• , r—'m this case we
define p + <p(CV)\ = p(Dlfl> ••• Dlfr^.

(2) The partition cv contains a segment Vlf i.e. Vl=(v,
such that

{0, s-hl}

and such that cv \{V\} is a valid partition of {1, ••• , r}\V,. In this second case
we define

p

and recursively

For example, for £[/={(!, 9), (2, 3, 7, 8), ^4, 5, 6)} (where i(l), *\9)*t {0, s + 1}) we
have

^^

If we now denote the set of all valid partitions of {1, ••• , r} by £PV(1, ••• , r),
then we shall show that almost surely

limS ? (= S p
7i-*oo ^eiiV1'- - r)

Now let us first consider the expectation value of Sn. For getting a contribu-
tion of the tuple (kl9 ••• , kr) to
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the tuple must be such that each appearing matrix element of Xn occurs at
least twice in the product (under consideration of X%(k, l)=Xn(l, &)), because
different entries of the matrices Xn are independent and have expectation zero.

Denote by / the set of the positions of the Xn and A"J, i.e.

/:= {k\i(k)<={0, s + 1}}.

Given an index-tuple (k^ ••• , k r ) , we put kr + l:= k± and call a pair (kjt kj+1)
for l^;^r a step of (klf • • - , k r ) . We shall refine this notation by calling the
pair

— a free step, if i(j)^{0, s + 1} and kj+i has not appeared before, i.e. k j + 1

*ki for all I with l^/^/.
— a null step, if z'(/)e {1, ••• , s\ and kj=kj+1.
— a repetive step, if z(/)e {0, s + 1} and kj+i has appeared before, i.e. there

is a / with 1^/^j such that kj+l=ki.
We say that two steps (k}, kj+1) and (kL, k t + l ] agree, if i(j), z(/)e {0, s + 1} and

if i(j) = i(l)

if *(/)*= *'(/)•

Now one sees as in [Wig] that we only have to consider index-tuples ( k l t ••-, kr]
which have the following properties: They contain only free, null or repetive
steps and the number of the free steps is equal to the number of the repetive
steps, namely they have no choice but to be 71/2. This implies that in such
a tuple each repetive step (k3, kj+1} has to agree with exactly one prior free
step ( k t , k t + 1 ) . Let us call such a tuple a valid one. Combinatorial arguments
show that the contribution of all non valid tuples vanishes in the limit, their
sum is at most of order 1/n (cf. [Wig]).

Now consider a valid tuple (&i , ••• , & r ) . It defines a valid partition ^V in
the following way: Let m be the smallest number such that (km, km+l) is a
repetive step. Then this step has to be equal to exactly one prior free step,
say ( k i , ki+l] with Km. This is only possible if ( k t + l , k t ) — ( k m , km+i) ( i .e . a
Xn is paired with a X% and vice versa) and if all steps between / and m are
null steps. Then we define V1:= (7 + 1, ••• . m) and take this part from kt+l to
km out of our tuple ( k l t •••, k r ) . Since kt = km+1, we get again a valid tuple
and we can repeat the above procedure. But in this way we exactly build up
in a recursive way a valid partition and it is easy to see that the summation
over all tuples resulting in the same valid partition q^ gives the contribution
p*tp(cv} to HindooE[Sre]. Since on the other hand all valid partitions can
appear, the assertion is proved.

It remains to prove that Sn converges also almost surely. This can be
done by showing a sufficient good estimate for the variance Var [S?l] of the
form
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where the constant c is independent of n. This is sufficient because one can
conclude

E[ S (S,,-E[S,,])2] = 2 Var [Sn]<o° ,
71 = 1 71 = 1

which implies

S(5 ; i-E[Sw])2<cx) almost surely,
71 = 1

and therefore
lim (Sn— E[S,z])=0 almost surely.
n-*ao

Thus it remains to prove (*;. We have

Var[S1
lt]=E[Si]-E[Sn]sl

For all tuples ( k l t ••• , &A ( / L , ••• , / r) where each step of ( £ l f • • • , k r] does not
agree with any step of ( / l t ••• , /r) the /^-f actors are independent of the /-factors,
hence such tuples make no contribution. Now consider on the contrary those
tuples where at least one step of ( k i t ••• , kr) agrees with one step of (/i} ••• , / r j .
There are finitely many possibilities which &-step agrees with which /-step.
We fix one of these possibilities, say we consider the set of all tuples where
( k m , km + i) agrees with (/,, /J+1) for fixed in and ; with l<^m, j<r. Of course,
we can restrict to the case that both of these pairs belong to a Xn or a A'*,
i.e. that z\mj, z'(;)e {0, s + 1}.

Consider furthermore first only such tuples with z\m)=n/;, hence ( k m , km + L)
=(lj, / ;+i). Then we can rewrite

as
V i i m i / ' / , /, \ .. V K r v f e h }Yl(1^( b b } Ynm-i)(b b "iA n \K m, K m + ]_) Are {Kr. K\)A.n \K \. KZ) A /i V « m - l . « m )

and apply our results from the first part of this proof to the 2r-tuple

(km, ••• , k r , k l t ••• , £„ ,_ ! , ^T O = /7 . / , + i , ••' , /r, / l , '" , /,-l) -

They say that all our considered tuples are not valid (since i(m)=i(j) means a
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pairing of a Xn with a Xn or a pairing of a X% with a ^*), which results in
a sum of order 1/n2 (note that the factor 1/n in our considerations on E[5n]
is now replaced by 1/n2).

Now consider the case i(ni)^i(j), which means (km, km+i)=(lj+i, (;)• In this
case our problem is equivalent to the consideration of the 2r-tuple

But again such tuples are not valid, because the steps ( k m , km+l) and (/,, / ,+i)
agree, but both are repetive steps (km+l has appeared before as first element
of the sequence and lj+l has appeared before as km), whereas in valid tuples
always repetive steps are paired with free steps. Thus again the contribution
of this case is of order 1/n2.

All in all, the sum of all tuples for which the & -factors and the /-factors
are not independent can be estimated as less than c/nz, where c is some com-
binatorial factor independent of n. This finishes the proof. O

Now we can prove our theorem.

Proof of Theorem. First, we can assume without restriction of generality
that all An and Bn are diagonal matrices: We can diagonalize An and Bn in
the form An = VnA*V* and Bn=WnB*W*. Then

and the assertion is equivalent to the assertion for JLd=(A%)ney and <Bd

(Bn)n<=N, since the map Un^V*U nW n preserves the Haar measure on U(ri).
Let

r . degauss > "^unitary

be the measurable mapping defined by

which is defined almost everywhere. Since the measure on £?Unitary is the image
measure under this mapping of the measure on £?gauss Ccf . [Voi3]), it is sufficient
to prove

w

for almost all ^f=(J7i)7i

Choose now such an 3C=(Xn)n^N^Qgauss where we can assume that Un\—
Xn(X%Xnr

1/2 is defined for all n^N. Since /:u and PQ, and hence ^jiEB/^,
have compact support, they are determined by their moments and it suffices to
show the convergence of all moments of fjLAn+vnBnu*n to the corresponding mo-
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merits of /oEBA^- This is guaranteed if we check the characterizing property
of free independence, namely: Let Plf ••• , Pzr be polynomials in one indeter-
minant such that for all i=l, ••• , r

and
\imtrn(P2l(UnBnU^=Yimt

Then we have to show

lim trn( f[ PZl-,(An)PZl(UnBnU^
7l->oo \t = l

= lim tr,,( II Ptl.l(An)UnPtl(Bn)U^)=0 .
n-»oo \ 1 = 1 /

We shall show this by approximating Un by polynomials in Xn and X%. One
knows that lim?l_>00 \\Xn\\ =2 almost surely ;cf. e.g. [Sil, Gem]), i.e. we can
assume that there exists an Afe/2, such that \\Xn\ <*M for all n^N. Choose
now for s>0 a polynomial g£ with real coefficients which is a good approxi-
mation of l/V*~in the sense that we have

— r2(l-^(Ji'2)x)2 'Vl-(^/2)2rfjc^£ for some fixed / with 4r^2z

7C J-z

and
sup \ x g £ ( x Y \ < ^ l .

xe[-M2, j/2]

Now put
Q £ ( X H , X * ) : = X n g s ( X * X n ) .

Then we can write

where Q£(Xn, X%) is a polynomial in Xn and A"S, whose norm can be estimated
as

\\Q.(Xn, X^H^tg^XnmX^XtXn)^! ,

and Ry is an n X n-matrix, which is small in the following sense :

*XJ-1/a-^(Z*^

By the second remark after our lemma and by the fact that (p on C(X*Xy is
determined by its moments we have for all continuous, bounded / on R
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lira t
n-*oo

Since we have ||^*^Jj ^Mz for all n^N, we can even take any continuous
function / on R and thus we get

7T J-2

Since in all monomials in the polynomial Qs(Xn, X*) the number of Xn and the
number of X% is different, we can infer from our lemma that

Now we have

lim trn( fl /W ^ JUnP2l(B „)£/*)
/i->oo \ i = i /

= lim tra( II P^-iUJQ.^, Jf!f)P,,(B»)(?.(^, X*)*}
n-,<x> \i = i /

+ lim V tr»( f[ P,,_1(«4B)Sl
If

l-1'P,,(fln)S1
B

IlH),
7l-^oo \i = l

where in the first term all Un are replaced by Qs(Xn, X*) and the sum in the
second term runs over all 5n

n, ••• , S(nr)^{Q£(Xn, X?t), Rnl , where at least one
S^ is equal to #£'.

By our lemma, the first term vanishes in the limit n— >oo. (One should note
that one needs indeed a little stronger version of the lemma, because we can
not be sure that the joint distribution of An and Bn exists in the limit n-»co.
But since our Qs(Xn, X*) has the special property that it really seperates An

from Bn in the sense that in each monomial of Qe(Xn, X%) the number of Xn

is different from the number of X%, the valid partitions in the calculation of
the considered term never combine a 4n with a Bn, i .e. the joint distribution
is not really needed. For the argument that the non-valid terms do not con-
tribute it is sufficient to know that the possibly appearing joint moments of An

and Bn remain bounded as n goes to oo. But this is guaranteed by the assump-
tion of a compact support for JJLJI and ^^.)

A summand in the second term can be estimated as follows: From

\ A \ z ) t r n ( \ B \ z ) (A ,

we can deduce by induction

|trn(A •• • ^*)|2 '^trB(| A|2i) • • • trn( A k |
2 ')

for all k<L2l and Ah ••• , 4 A e A / w . This implies for our fixed / with 4r^
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^nt r^ lPa^U^I^J t r^ lPa^JI 2 ' ) - n t r n ( | S t f M 2 i ) ..7=1
CNote that trn( S;f ;"i 2 / )= : t r 7 1 ( lS (

7 f ) | 2 / ) . ) In the limit we can estimate these factors
as follows :

lim ntr?2(|P2l_1(/lJ|2^
n->co i = i 1

lim ntrB(|P,,(BB)| ' ')=n(
71-00 i = l 1 = 1 J

If S'^=Qe(Xnf XI) then we have

and for 3^=^? we get

lim tr n( | Syr i 2 /)= lim trB( | /?n
fil | 2 /)^ e .

7l->oo 7l-*oo

Since at least one of the S,/' is equal to R^' we get for eg

lim trB( f[ P,,.^. U)i/aP,,(BB)t
71-00 \l = l

Since this is valid for all s with 0<s^l and since ,V/j? and hi® are independent
of s we arrive finally at

lim tr [ P8I_1(,4I1)£7I1PBI(BI1)[7*=0 ,
Tl-oo \i = l /

which we wanted to show. <^
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