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Subcoercive and Subelliptic Operators
on Lie Groups: Variable Coefficients

By

A.F.M. ter ELsT*" and Derek W. ROBINSON*

Abstract

Let a;, ---, ag- be an algebraic basis of rank# in a Lie algebra g of a connected Lie
group G and let A, be the left differential operator in the direction a; on the Lp-spaces
with respect to the left, or right, Haar measure, where p&[1, co]. We consider m-th
order operators

H= 73 c,A®

with complex variable bounded coefficients ¢, which are subcoercive of step 7, i.ec., for
all g&G the form obtained by fixing the ¢, at g is subcoercive of step 7 and the ellipticity
constant is bounded from below uniformly by a positive constant. If the principal co-
efficients are m-times differentiable in L. in the directions of a,, ---, ag- we prove that
the closure of H generates a consistent interpolation semigroup S which has a kernel.
We show that S is holomorphic on a non-empty p-independent sector and if H is formally
self-adjoint then the holomorphy angle is =/2. We also derive ‘Gaussian’ type bounds
for the kernel and its derivatives up to order m—1.

§1. Introduction

Several recent papers have been devoted to the development of a theory
of second-order subelliptic differential operators with real coefficients acting
on functions over a Lie group (see [1],[47,[31,[18],[191,[22],[23]). The
subelliptic theory extends the theory of strongly elliptic operators described at
length in [20] and the purpose of this paper is to further extend the theory
in two different directions. First we generalize the theory to higher-order
operators characterized by a condition of coercivity. Secondly, we allow com-
plex-valued coefficients. The subsequent results then extend our earlier work,
and that of Hebisch [13], [14], on subcoercive operators with constant coef-
ficients to the setting of variable coefficients.
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In the sequel we adopt the general notation used in [20] and [10]. In
particular, G is a Lie group with left Haar measure dg and right Haar measure
dg, but now the representation U is identified with the left regular representa-
tion L on the L,-spaces, p&[1, ], with respect to the left, or right, Haar
measure, L, = L,(G; dg) or L;= L,G; dg), respectively. We denote the
norm on L, by |-, and the norm on L; by |-|;. We assume throughout
that G is connected, but G need not be unimodular. The modular function is
denoted by A. Let a,, -, as be an algebraic basis for the Lie algebra g of
G, i.e., a finite sequence of linearly independent elements of g which generate
g. Thus there is an integer » such that a,, ---, a, together with all com-
mutators (ad a,,) - (ad a,,_,Xa, ), ¢, =1, ---, d’, where n<r, span the vector
space g. The smallest integer » with this property is referred to as the rank
of the subbasis and a vector space basis is defined to have rank one. Moreover,
the algebraic basis determines in a canonical fashion (see, [20] Section IV.4c)
a modulus function g—|g’ on the group. This function in turn determines a
unique local dimension D’ such that the ball B,={geG: |g|’<p} has Haar
measure |B;| satisfying bounds ¢,p? <|B,i <c,0? for all pe<0, 1].

Next for all i {1, ---, d’} let 4, be the infinitesimal generator of the one
parameter group #— L(exp(ta,)) from R into L, or L;. It will clear from the
context on which space A, acts. We also denote by 4,0 the pointwise left
derivative in the direction a, of a function ¢: G—C. We use multi-index
notation for products of the generators A. For neN let

Indn= 2 {1, -, d'}*.

If a=(@i,, -, i€ {l, -, d’}*, we define |a|=Fk and .1°=4,---4,,. Let j(d’)
=\U5-.Jx(d’). Then for each meN we denote the subspace Nues,, @ >D(AY)
in L, or L, by Ly, m or L}, respectively. We define a norm and a semi-
norm on Lj;, by setting

‘ISD“;); m— Sup “Al“(/’Hp, /\lzg;m(@): sup “/“@Hp;
aed ped’) laj=m
for each o= Ly, and analogously we define |-[|5;» and Nj,, on L/ . Let

Lp,0=MNm-1 Lp;n and define Lj.. similarly. We also adopt the corresponding
notation Cg;» for the subspaces Naes,, ' D(A®) associated with the generators
of left translations on C,=C,(G).

An m-th order form is a function C: J,(d’)—>C such that C(a)+0 for some
ac],(d’y with |a!=m. The principal part P of C is the form with P(a)=
C(a) if |a|=m and P(a)=0 if la|<m. The formal adjoint C!' of C is the
function Ct: J,.(d")—C defined by CHa)=(—1)'*'Clay) where asx=(i,, -, i)
whenever a=(z,, -+, 7,).

Next we want to introduce the concept of subcoercive form of step s, with

seN. Let g(d’, s) denote the nilpotent Lie algebra with d’ generators which
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is free of step s, i.e., the quotient of the free Lie algebra with d’ generators
@, -+, @4 by the ideal generated by the commutators of order at least s1.
Further let 6:G(d’, s) be the connected simply connected Lie group with Lie
algebra g(d’, s). Let A, be the infinitesimal generator of left translations Lg
in LQ(G~; dg) corresponding to @,. We define

L3 C)= 3 Cla)As

acd pd’)

as the operator in Lg(é; dg) with domain L, (G; dg). We say that C is an
m-th order subcoercive form of step s if m is even and there exists p¢>0 such
that

Re(@L3(P)p, ©)= p(N b5 msa())?

for all p= Lz;w(é; dg). The largest such p is called the ellipticity constant
of C.

Now we introduce some new definitions. We want to study operators with
variable coefficients, so we have to introduce forms which depend on the points
of G. Let m&N be even and let C: J,(d)XG—C. For all a=],(d’) define
Cat G—>C by ci(g)=C(a, g) and for g=G define C,: Ju(d’) > C by C la)=
C(a, g). We refer to the ¢, as the coefficients of C. Now we call C an m-th
order form if ¢,& L. for all a=/J,(d’) and, moreover, for all g&G there exists
acsJn(d’) such that C(a, g)#0 and |aj=m. If c,€L& 0 for all as ] ,(d’)
we define the formal adjoint C' of C by

C'r, 9= = 3 (=1L)(ART)e),
aEJ p(d') BEJS p(d")
(8, 1VELb(a)

where Lb(a) is the set of all (8, 1)/ n(d’)* such that B is a multi-index ob-
tained from « by omission of some indices and 7 is the multi-index formed by
the omitted indices, i.e., the (8, 7) occurring are the pairs of multi-indices in
the Leibniz formula for the multi-derivative .1* of a product. If s&N we call
C a subcoercive form of step s if there exists £>0 such that for all g&G the
form C, is a subcoercive form of step s and the ellipticity constant for C, is
larger than or equal to #. The maximum of all possible g is called the ellip-
ticity constant for C. For g=G let P, be the principal part of C, and with
G=G(d’, s) let

v=sup{|Im @ La(P,)p, )|/ (Nt ma(@))?: ¢ Lyl G 5 d), 920, gEG}.

Then set fc=arctan(uyv )0, x/2].
If the form C is subcoercive of step », where 7 is the rank of the algebraic
basis a,, ---, a4, we study the affiliated subcoercive operator
H=dL(C)= 3 c.A4°

acd ped)

on the L,-, or L;-, spaces, with domain D(H)=Lp;» or D(H)=L}; , respec-
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tively. If the formal adjoint C! is defined we also define H'=d L(C") to be the

subcoercive operator affiliated with C*. The main result of this paper is that

if c,&Lp,m for all @ with {a|=m then the closure H of H generates a con-

tinuous semigroup S which interpolates consistently between the L,-, and Ljz-,

spaces and which is holomorphic on each of these spaces in a sector with angle

larger or equal to ;. Moreover, the action of S is determined by an integral

kernel which satisfies appropriate Gaussian bounds and the smoothness prop-
erties typical of elliptic regularity.

In the important case m=2 our results cover operators of the form

@

H=— X

NE

1

@
ci; A A+ 12=1 ciAi+co

1

with ¢;;& L%;s, ¢i, ¢o€ L. and with the real part of the matrix C=(c,;) uniformly
strictly positive-definite, i.e., there is a p>0, the ellipticity constant, such that
27 (C+C*=pl, in the sense of matrices, uniformly over the group. Then the
corresponding semigroup S has a kernel K satisfying bounds

|Ki(g; b <atP/2gutetasn o

for all g, heG, t>0. Moreover, if v[=(2:)"(C—C*)=—yI then S, on each of
the L,-, and Ljz-, spaces, is holomorphic in a sector with angle larger or equal
to arctan(uy™'). In particular, if the matrix of principal coefficients is hermitian
then S is holomorphic in the open right half-plane.

§2. Smooth Coefficients

In this section we consider m-th order subcoercive operators H=d L(C),
associated with an m-th order subcoercive form C of step r and coefficients
2= Ch,=, acting on the L,-, and L;-, spaces and examine the heat semigroups
generated by their closures. We prove the existence of these semigroups and
establish that each such semigroup is determined by an integral kernel. By
this we mean that for each >0 there exists a function K,=C,(G xG) which
is rapidly decreasing as |gh~'|’—c and

(Sip)g)=| dekigs mp(h)

for all gL, or p& L;. Our approach is to first construct a suitable kernel
t—K, as a function over GXG by a parametrix expansion and then use it to
prove the existence of the semigroup. In the course of the analysis we obtain
pointwise bounds on K, and its left derivatives. These bounds are largely
independent of the smoothness of the ¢,; they only involve the m-th order
subelliptic left derivatives of the principal coefficients. Subsequently these
bounds can be used to extend the semigroup results to operators with weaker
smoothness of the coefficients and in particular to operators for which the only
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smoothness hypotheses are on the principal coefficients.

Let K;(g; h) denote the values of K. The kernel should satisfy the gene-
ralized heat equation

(@:+H)K)(g; h)=dt)d(gh™ (1)

on RXGXG with measure dtxXdgXd ﬁ, where 0,=0/0t, the differential operator
H acts on the variable g and 0 denotes both the point measure at the origin
of R and at the identity of G. Moreover, one should have K;(g; h)=0 for
t<0. Now we aim to construct A with these properties by successive approxi-
mations. Let P be the principal part of the form C. The zero order approxi-
mation K of K is defined in terms of the kernel K¢ of the semigroup S%
generated by the closure of the principal part HY=d L(P,) of the subcoercive
operator H, = d L(C,) obtained by fixing the coefficients ¢, of H with their
values at the point g, i.e.,

H,= 3 cugA

acd p(d’)

and the corresponding principal part is given by
Hi= 3 cal@)A"
(see [10] Theorem 5.4 and ASection 7). Thus (¢, h)—K§(h) is a distribution over
RXG, with measure dtXdh, satisfying the differential equation
(@:+HYK£)(h)y=0)3(h).

In addition one has Af=0 for t<0 and Kf{<Cy(G) for ¢>0. Further we
define K#=0 if t=0.
Now the zero-order approximation K ® of K is introduced by setting
K (g; h)=Kf(gh™).

Formally it then follows that as distribution on RXG X G, with measure diXx
dgXx dh,
(@ +H)K{®)g; hy=0)o(gh )+ Li(g; h) (2)

where L, is given by

Lig; h= X > ca(gAPTTK E) gh™) (3)

aEJ p (d") (B, NELb(a)
181#=m

with A the left derivatives of K¢ and 0 the left derivatives with respect to
the exponent variable. Therefore the solution of (1) is formally expressed by
the expansion

K=K (4)

with the K™ defined recursively by
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K{M=—(K™P&L), (5)

and the convolution product % given by
(RN ; Iz):SRdngdégo;_s(g; Byl s ).

Note that K{¥=0=L, for t<0. Thus one automatically has K{™ =0 for ¢<0.
Now using the estimates and arguments of [4] and {10] we will establish that
K is well defined by this series expansion and satisfies ‘Gaussian’ bounds.
This is then used to prove that the closure of H generates a continuous semi-
group S with K as kernel.

Theorem 2.1. Let C be an m-th order subcoercive form of step r with
coefficients ¢, <=Cp,, H=dAL(C) and H'=d L(C") the operator associated with the
formal adjoint on the dual space.

I. H is closable on each of the L,-, and Lj-, spaces, H=(H"*, and the
closures H generate a consistent interpolating semigroup S.

II. S s holomorphic in a sector Ap=1{z=C : larg z| <0} with 6=0,.

III. The action of S, is determined by an integral kernel K,cCyGXG)
and t—K,(g; h) is analytic from K0, o> into C for all g, heG.

IV. The closure of the formal adjoint H' of H generates a consistent in-
terpolating semigroup St dual to S with a kernel K' such that

Ki(g; hy=A(g) '"A(WK(h; g)

for all g, heG and t<R.

V. For each n&N the derivative 01 K,, with t>0 fixed, is (m—1)-times L.-
(left-)differentiable in both variables and the derivatives with respect to one
variable are (m—1)times differentiable with respect to the other.

VI. There exist a, b, c>0 and w=0 such that

[(AGRK(g; b S acnn Lm0 180 mgutgmbcgn =11 ma=ty) /mon

for all nEN, t>0, g, heG and all multi-indices a with |a|<m where the A
are the left derivatives with respect to the first variable. The values of a, b, c
and @ depend on the coefficients c, through the ellipticity constant p and the
parameter

ICln= 3 llealizmt+ =2 lcalw.

ajlai=m aCJ - 1(d")
VII. For each pell, ], t>0 one has S;L,S Lp;m-1, StL3 S Ly;m-1, there
exist a>0 and w=0, depending on the coefficients c, through p and |Cln, such
that
“A“S;Hp_,pé(lrlﬂ”mem, HA“S;”,;_.ﬁéal‘_m”mé‘”

and A*K. is the kernel of A°S,, for all as ] _.(d").
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Proof. Since H is densely defined and H' is densely defined on the dual space
it follows that H is closable. The rest of the proof is now based on analysis of
the parametrix expansion defined formally by (4) and (5) following the general
reasoning of [4] and [10] combined with various general techniques of semi-
group theory.

The first aim is to prove that the recursion relation (5) is well defined and
that the series (4) is convergent on the weighted spaces L%, p=0, consisting
of the measurable functions ¢ over GXG for which the norm

lplle=ess sup e £» " |p(g; N)l
g. heG

is finite. This requires estimates on the associated L,-spaces, L4 and .L¢,
with norms

llgﬁJJ’i:esgsEséupSGdﬁe“S”L“”'i¢(g 2 Nl
and
12z =ess sup(_dger' 1 (g b))

respectively. The recursion relations (5) then formally give the coupled in-
tegral inequalities

e Ie < ds I8l LA K 2181 Lale)
0
and
¢
e 1e < dsii 218 Lkt (7)

Therefore to bound the /¥ one needs suitable bounds on [|/K{™[4. |K{”|%,
I L%, IL.0% and [ L9, It will then follow from these bounds that the recur-
sion relation (5) is well defined and that the coupled integral inequalities (6)
and (7) can be solved.

The necessary bounds on K{» and L, follow from the pointwise Gaussian
bounds on K#(h) and its derivatives with respect to g and 4. The bounds on
the derivatives with respect to i are obtained in [10] Theorem 7.1.IV. Ex-
plicitly, for all neJ(d’) there exist a, b, >0 such that

[(ASKE)R)| Sat- @ Hianimgutg=oCininme=1,1/Gn=1 (8)

for all heG and t>0. But since the constants a, b and o depend continuously
on the ellipticity constant for the form C, and on the C, () with |8]=m, we
may assume that the estimates (8) are uniform in g. Note that A°Kf< L,NC,,
so convolution products of these kinds of functions are elements of L,N\C,.
We also need estimates for derivatives of 1°K# with respect to g. For t>0
and k=N let
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2:)=A{(uy, -, up)e0, Dk uy+ - +u,=t}

and let df2 denote Lebesgue measure on this surface.

Lemma 2.2. Let P be a pure m-th order subcoercive formm of step r with
coefficients c,=Cy(G) and let HP=dL(P). Further let a,€Jn_(d"), k{2, -,
m+1} and as, -, a,=J(d’) with the constraint |a,| +k—1<m. For g&G let
K¢ be the kernel of the semigroup S¥ generated by the closure of the subcoercive
operator HE=dL(P,) associated with the subcoercive form P,.

I. There exist a, b, w>0 such that for all heG, all t>0 and all gy, -,
g:€G

[, 400, =, wI(A“K gy A EH(R))
2

éat—(D’*'all)/mewte—b((lhl')"‘t—l)l/(m‘” .

II. Fix geG and t>0. For BE ] e (d") define Fg: G—C by

Uug

Fa(h)={, 40, - w)(APK g6 A% e A ().
R(D

Then FﬁECé;mﬂ-[ﬂ] and ArFﬂ:Fq,ﬂ) fOT’ all TE]ga11_1ﬂ|(d/).
1L
lim SQ AR, e, (AN ek ATK E1(R)
k

g1 Bp8
:g Ay, -, U ADKE e x ACRK £ )(R)
Qpt)

for all g=G uniformly for heG.
IV. The function (g, h)—KE(h) is continuous from G XG into C for all t>0.

Remark. The main difficulty in handling the integrals in the lemma arises
because one can have |a;|=m for any /{2, ---, k}. Then the integral over
u, has a singularity u#7?'/™~*. The contribution u7;2/™ is effectively cancelled
by the convolution integral but the u7* remains and is non-integrable at u,=0.
This problem is exacerbated if one has several multi-indices with [a,|=m.
But these difficulties can be circumvented by integrating by parts and effectively
passing the derivatives to the left. This is the basic technique that we use in
the proof. Note, however, that a simple counting argument indicates that this
technique is only applicable under the condition |a;|+k2—1<m. Non-integrable
singularities are unavoidable if this condition is violated.

Proof. First, let u,, u,, b>0 and let ¢ and ¢ be measurable functions
which satisfy bounds
lp(g)! <uiPimebccigrymuTH /(oD

Hb(g)| éu;D,/me_b(“g|,)mugl)1/(m—1)
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for all g&G. Then we argue that there exist ¢, >0, depending only on b,
such that

|<¢*¢)(g)| gc(ul+u2)'D’/7"e—b'<<|gx'>’"(u1+uz>‘1)”("“”ew(uﬁug)

for all geG, where §/=2"1"™/(m=bp,
The proof is based on the observation that for all >0 there exist ¢, >0,
depending only on b such that

t_DI/mS dge_b((lglr)n15—-1)1/(7n~1)Scewl
¢ =

for all >0.
There are two cases to consider. First, assume that u,<u,. Then

(pr)e)={ dho(mg(h-g).
But [g|’< h|/+|h™*g]’ and therefore
(| hig| "y Z2-mI b(] g | ym/meb (| p|ymmeb
Hence
((TRIDMuH =D ([ At g 1) mug )=
=27 mD(([ g |)Mug YU T (LR )M D (D — gy gt o)
Z 27D ((] g | )™My Fu,) T
Consequently
(prd)) | Sur? Mg et (D D gty D
Scugl imet (a1 Miurtug ~H/m=D pouy
§2D'/mc(ul—i—ug)‘l"/’“e""“‘g")’"“‘1“‘2)'l>”(’"")e"‘(“1+"2’, (9)

where ¢ and o depend only on b.
Secondly, suppose that u,<u,; and remark that

(pro)g)= dhpahig(n).

Using
(‘ gh | /)m/(m—l)_>_:2-m/(m—l)(|g’l)m/(m—1)_( [ h F,>m/(m-l>

one then obtains
(( i gh l I)mu-II)I/(m—-l)_}__((' h ! /)mu—z-l)ll(m—l)zz—m/(m—l)((lg | I)m(u1+u2)-1)1/(m—l)

and estimate (9) follows by a similar calculation.
Now we turn to the estimation of the first integral in the lemma. We
begin by fixing a, b, >0 such that for all asJ,(d’)



754 A.F.M. 1ER ELsT axD DEREK W. RoBINsON

t(A«Kie)(h”gat—(D'+|a])/mewte—b((lhl')"’L‘l)”(”l‘l)
(10

I(Azx[(,tg.t*)(/l)’ éat—(D'ﬂal)/memte—b((.nw>"1z—1\1/<"1~1)

for all t>0 and geG. Here K¢ is the kernel of the semigroup S# T generated

by the closure of the subcoercive operator dL((P,)') associated with the form

(Pg)t. Note that the constants a, b and @ depend only on the [c.)le, With |a|

=m and the ellipticity constant g, in particular this is the case for K#''.
Next we use the equality

Quty=J Ay, -+, 0D, 5wk o Fup=t, 0,z k7Y
j=

to estimate the integral.

Let t>0 and g, -+, g:=G. Further let j& {1, ---, &} and u,, ---, u, =<0, ).
Suppose that u,>k'tand u,+---+u,=1. Forall [£{2, -, k} let a;, a/e].(d")
be such that a,=<aj, a/> and

lar|=(m—|a,|—I{+ 1A |a] ) _
Loif 1<j+1,
o | =(ar| —m+ e | +—1)\v0 |
|| =(m—|a,| —I+2)\ |a] 1 . .
if Izj+1.
oy | =(|as| —m-+ @y +—2)V0 |
Furthermore define the operation ¢—¢™ on functions over G by
P (8)=Ag) "plg ")
for all g&G. Then
A E e e 0B EE
= A"SE1A"SEz - A%eSEE K £y
= A%1SE1,( A" SEY* A% Stz p( ACE " SEy L) - AR SER K £k
= AMK gy px(ACD K B A K 82,50 A8 K §25) % - # AR Kk
So by the previous observation, there exist ¢, b’, w’ >0, depending only on b
and w, such that

[(AK §1x oo AR K £2)(R)]|
_<_azk—lct—D'/m(z—lul)—ﬂn1|*In’z|)/m(2—1u2)-(m§1+|n’3|)/m
...(2—1uk_1)—(l05§_1|*m;2|>/mu;m;;[/me-b'm/z|’)mz-1>1r’(’"-1)ew'c (11)
for all h&G. Note that |a,|+|az|<m—1, -, |a) | +|a)|<m—1, @]+ |},

<m, a4 ]aje <m—1, -, |ay|<m—1, with obvious meodifications if j=1
or j=Fk. So, with the hat denoting omission of the integral, one obtains
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duty-dity iy |(AOK g o ARICER ()|

—

. Lok-1

@Pl-lpp Dl imyk=1p o ag+ Flag/mpk=1=(lagi+lag|+ -+w/;U/me—b’((lhl')"‘l‘l)”(’"“)ew’t

A

iA

2kazlz—lct—D'/rne(k—l)t’nk—lkt—qulx/nze—b'((ul|')”lc-l)ll(lll-Ue/u't (12)

‘This proves Statement I.
Next we prove Statement 1. S‘nce the estimates (11) are valid uniformly

in A and
eAI;'(([rl|')IILE41)lr(Ill—l)§l

it follows from the Lebesgue dominated convergence theorem that F,, is con-
tinuous, hence F, =C,. Similarly Fs=C, for all B/ a,:(d’).

Now let 8=/ 4, 1-i(d") and ;= {1, ---, d’}. Then for all heG and sek,
s =0 one has

sTH(Iglexp (—sa, ) —Fg(h))
:S ) dQu, -+, up)(s™H(L(exp (sa,-))~[)‘1'9](ﬁl)=1:~1“2/\'§?* o LG (R,
Dty =

Now by the mean value theorem there exist a, b, >0 such that for all s&
<0, 1]. h=G and u,>0 there exists s’<=<0, s> such that

Is7H(Lexpsa)—1). 17K § )(h)|
<Sauit SIthImpwiy p-b((ieNp(=sta 1ML ! G
So arguing as above one obtains
1x'£1}sflkF,g'\exp<—sa,)/l)—l*‘,s(/l))zFJ,M/I)
pointwise in /i. But also

sup sup|s i Fg{lexp.—sa,)i)—Fg(hN| <o,

$=<0. 11 neG

So Fj is differentiable in the L.-sense by [2] Proposition 3.1.23. Hence Fj is
differentiable in the C,-sense. This proves Statement II.
Next let g=G and t>0. Then for all p= L, one has

(AP — AP K Prrp= A8Shp— A8Stg

=—| duAPSUHE-HDSt g

== 3 (Cul@—C@)| dud?StAStug

ajlaj=

== 5 (eath—cat@)(| du AP K ix A K £ Yo,
slaj=m 0

a

for all heG where we have used Statement I and Fubini’s theorem in the last
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equality. Therefore

AKP—APKE=— 3 (ca(h)—ca(g))giduAﬁKﬁ*A“Kf’_u. (13)

a,lar=m

By Statement I there exists an a>0 such that

HS:duAﬂKZ*A“Kf_u <a
q
for all heG and g1, «]. So
lim APK}=APK¢ (14)

h—g
in L, and in L.. But since A#K?»<C,, the limit (14) is valid even in C,.
Now we prove Statement III. For all I€{l, -, k} let a;, a/EJn_(d’) be
such that a;=<a;, a?>. Then for all u,, -+, u;..>0

Hm  ANK Gk AT RK §E
81 88

= Hm (1) AT e A K ) R AR K
10 8

(A K iy o« A K g

—-_—g lll'él g(_l)la'2|+.. +laj, 'A‘“K51/2*(1‘1(“’2)**}(5’1}2)'"*‘4“,2/ }(52/2*
1 8 g

(ACPICEL) ™ - %A% KE,

in C,. So Statement IIl follows by the uniform estimate of (11) and the
Lebesgue dominated convergence theorem.

Finally we prove the joint continuity of (g, h)—K#(h) for all t>0. Fix
t>0. For all g,, h,, g, hEG one has

| KE(h)—K§o(ho) | = [KE(h)—KE(h) |+ K§o(h)—Kf(ho)]
SIKE—KEollwt [KEo(h)—KE(ho)l.

Now K¢° is uniformly continuous and lim,., |K§{—K§.=0 by (14). So (g, h)
— K £(h) is continuous. 0

Proposition 2.3. .4ssume the conditions and notation of Lemma 2.2. More-
over, suppose c,=Cy. n for all a with |a|=m.

I. For all t>0, k{0, ---, m—1} and [0, ---, m} such that k-+I[=m the
function (g, hy—KE(h) is k-times pointwise lefi-differentiable in g and l-times
left-differentiable in h, in any order, the derivatives are (jointly) continuous and
the derivatives with respect to g commute with those with respect to h.

II. Let B n-i(d’) and =] u(d") and suppose that |B|+1rl <m. Then
there exist a, b, >0 such that

I(Aﬂafth)(h)l §at—(D'+Iﬂl)/mewte—b((lhl')’"t‘l)”(""‘n
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Sor all t>0 and g, heG. The values of a, b and w depend on the coefficienls
Ca through the ellipticity constant and the parameter Xa;iai=nllCallo; i71-

Proof. Fix B&]nm-i(d’). First we prove that for all heG the function
g—(APKE)(h) is (m—|B|)-times differentiable and that for all y=/Jn-i5(d"),
710, all k{2, -, [rI+1} and a,, -+, @ EJw(d’) there exist ckf...,=Cs,
polynomials of degree 2—1 in the A’c, with 6/ ;(d’), such that

@AKH="S S chta(g)
k=2 ag.",ap

(g 4R, = W NAPKE AT B e 5 AL )R) (15)
Lrt)

for all £>0 and g, heG. The proof is by induction on |7].
Let 7{l1, ---, d’}, t>0 and g, heG and for s€R set g,=exp(—sa,)g.
Then by (13) one has for s=0

sTHAPK gs— 1PK §)(h)
== B sealg)—ca@)) |, dQ, w) A AT END).

aj;laj=m

Since the integral is a continuous function of s, by Lemma 2.2.1I, the case
|71=1 follows.

Now let y&/,_151-1(d"), |71=1 and suppose (15) is valid. Let i={l, ---, d’}.
Then for all t>0 and g, h=G, with g;—=exp(—sa,)g for all s€R, one has
for s=0

sTH@TAPK £s)(h)—(©@ APK §)(h))
17141

= k:z agvz:’aks_l(cg; ':ﬂk(gs)_'clrizli"'-“k(g))

-SQ L AQG, e wAVIC s A s A £ R)
k(8
17l+1
+ oy @s7, QG e, )
k

=2 g, g Qpct)

(AP gsx A K fgx - 2 A2 K 88 )W) —(APK§ % A% K E %% A%R K § )(h)).
Now the integral in the first term is a continuous function of s by Lemma
2.2.1Il.  So by taking the limit s—0 we obtain the derivative of ¢;%...,. The
subterms in the second sum need more care. Let a,, -, a, =] (d’) with |as|
=..=|a,|=m. For I€{2, -, k} let a}, a/= ] ._(d’) be such that a;=<a;], af
and

lai|=m—|Bl—I+1,
laf|=|Bl+I—-1.

This is possible since 2</<k<m—|B]. Then in C\(G)
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S_ISO md'o(“l, oy W APK Ee A G x A K 55/1—“‘"‘1‘31\.51*‘4021{52*"'*AakK’%/z
2

_____s—l(___l)xa’2|+ +|rl}zlg dQ(ul, - uk)_
L)

AP K g8 AR K o0y A% IC B i 40 K i)™ oo AR g8

— VIO (LR E B o) A I By A G s LI

:Q—l)‘“'Z"‘ +|t\;‘.lg dQ(uh e Uy) (]6)
Qpt)
H(STHAPK B AP KR o) A0 g 1) s AT I o (AR K By fo) s oo AR ICE,
k=1 ” I3
+ 2 AP GOy e ks TRy — AT o)t e ARG
n=

P K LRI [ gd) ™ e s T AR 8 — ARG )

k
+ 25 Aok (ACET I )
s (AR IR ) =AY R ) ) e 5 AT ICE)
To estimate the term in the last sum one deduces by the argument used in the

proof of equality (13), but with g and & interchanged, that

L *K(“gs‘ y__‘_l(a’n)*](ﬁ' . S (( pga)T(a’)—U g)T((I))SvduA(a'n)’[\, & T:k,—l“](g_s'u‘ .
aslaj=m ’
So
(A ICE T — (A K )

=— 3 (—=1)'“Yc, L(gs)—cm(g))gzdu( A K (L g T

a,la|=m

Therefore
s, dQu, e W) APK g A )
Qr)

(AR KR ) (A K g p) ke s AR,

Up-1

:—S dQ(u,, -, 1) AEK £33 A Eoy 1) -
Qpct) ! !

sl 3 (D) (gs)— Canl )

ajlai=m

(0 A gy o AR R E s e AR KC,
Now Lemma 2.2.1 and a repeated use of (9) and (10) allows one to use Fubini’s
theorem and obtain
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s*(—l)(%l*"ﬂ%lg A0y, -, w) AP s AR I 1)

Qpct)

e (AR g | — (AR K ! x AR K,

Upy-1/2

:_Sg dQ(ul,--nuk?S du 3 (=Dierrtegpteetiagisi(e, () —Cal(Q))
)

0 ajlaj=m
FAPK (AR I R e s AN B (AT By Y RACRTRC )

*:l“,h[(fln,z* x40k,
Up-1/2

=——S dQ(uln--,uk)j du X s7Hcalgs)—Cad )
Qpty 0 a: =m

laj

CAPK g LK S w10 s ACK B ARG ko kAN S

The other three terms in (16) can be handled in a similar, but slightly easier,
manner and one obtains

g up

s‘lgo dQCuy, -, N APK s A2 K foiee ok AN 83 — APRE s A% ICE s AR K §
J2pct) )

Uy k
:—S dQu,, -, uk)S du > X sTHCadgs)—CaQ)
Qpct) 0

n=2a;lal=m
AR e AN B o w A0n-1 K Es x4 K ExAMKE x- x ACRNE

A new application of Lemma 2.2 establishes that the limit s—0 exists and the
induction step follows.

In case &/ n-s(d’), yEeSuld), ic{l, ---, d’} and [Bl+|7]<m—1 it follows
from (15) and Lemma 2.2.I1 that h— (@ ASK#)(h) is differentiable and
(4,07 APK ) R)=(0"A, AP K E)h). So the derivatives with respect to g and A
commute.

Finally, the continuity of (g, i)—~K Z(h) follows as in the proof of Lemma
2.2.1V, using (15) and Lemmas 2.2.1I and 2.2.IlI. 'This proves the proposition.

|

Now we are prepared to give the proof of Theorem 2.1. Recall, we have
a subcoercive form C, possibly with lower order coefficients, P is the principal
part of C, H=dL(C), H'=dL(C"'), H,=dL(C,) and K{ is the kernel of the
semigroup S{ generated by the closure of the operator HY=d L(P,), the prin-
cipal part of H,. The proof is divided in several steps.

Step 1. It follows from Proposition 2.3 that there exist a, b, >0 such
that

[(ABF K E)(gh™)| SatP F130 /mgutpobcign=tinmemh Hn=n

for all B n_i(d), r=]n(d’) and t>0 such that |8+ [y|<m. So one can define
the function L,, =R by (3). Note that for <0 the definition of L, obviously
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makes sense since K§f=0 for ¢<0, in particular for {=0. For all <R and
heG fixed the function ¢ on G defined by ¢(g)=K#(gh™*) is m-times pointwise
differentiable and

(H)g)=(HEK ) gh™)+Li(g; h)

for all g&G. Here the operator H in H¢ is the pointwise defined differential
operator and the operator HY in (HEK#)gh™') is the principal part of the
operator H, acting on the function K£=Cy(G). So for all p=CFRXGXG)
one obtains by the substitution ¢(, g, h)=¢(t, g, h~'g) and partial integration

SndtSGdﬁSGdg<<~at+H*>go><t, g ME®(g; b

t, 4kl dg@pt. g, mKEgh™)

i, daptt, g DWHEK EXgh™+Lig; b))
SRdlSGthGdg(6¢¢)(t, g, h)l(f(h)-l-gkdtggdhgaa’gsl'(f, g, WHEKF)(h)
[t dh( deott, & mLig; 1

=, ael 2l an—a+mz w0, g, mKER

+SkdtSGdﬁSGdgw(t, g WLg; h

i

dgd0, g, e)+S S dﬁgadgw(t, g, hLig; h)

G

I

)
SGdg‘P(O g, g)-l—S S d/:l\gcdggo(t, g, ML g; h)
=

L1, 4R] dgott, g, MO+ Li(g; h)

where HE ™ denotes the operator H% acting on the h-variable. So the dif-
ferential equation (2) is valid as distribution on RxG X G, with measure d¢X
dgX dh. Furthermore, one obtains the pointwise estimates

ch"”(g; h)]gat‘D'/"‘e""e"’“'“’”"’"“1’”(7"_”

| Lg; h) <@t Dimpmmebimgwt,-b((gh =l M= Hm=D

valid for all t>0 and g, heG, with redefined a, b, w. Hence, by increasing a
and w if necessary, one establishes bounds

IK@ S aenase™: [ Li¢sat o imenazem:
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|K e arimerare™: | Lyjasar? /mpmonimguieme
“ Ltllei éar(m—l)/mew(lﬁ-pm)t

for all p=0 and >0 and with e and w independent of p and t.

Now arguing as in the proof of the proposition in the appendix of [4] and
Theorem 7.1 in [10] we conclude that indeed the definition (5) of K {™ makes
sense, the function K {™ is continuous for all >0 and n<N,, the series (4) for
K, converges in .£{ and .£%, the function A, is continuous for all >0 and K,
satisfies the bounds of Statement VI of Theorem 2.1 if |a|=n=0. In the
derivation of these properties we have only used the m-th order derivatives of
the ¢, with |@|=m and the bounds only depend on the ellipticity constant and
the parameter [C],,. It then follows by construction that K satifies the heat
equation (1) and K,=0 for ¢<0. One can deduce even more. The function
t—K, on {t€R: t>0} has an extension to a sector Ay with §=>6,. This follows
because each of the operators Hy=e"H, |6 | <0, is subcoercive and hence the
foregoing construction applied to Hy yields a solution K? of the corresponding
heat equation. But then the extension of K is defined by Kelgt:K‘t’ for t>0.

This construction of the kernel for complex ¢ also implies that the “Gaus-
sian” bounds on K extend to the interior of the sector Ay o~ The bounds on
|K,| with z=e'%t, t>0, follow by consideration of the operator H, if |0|<6.
But the bounds can be chosen uniform in 6 if |0 <¢p<6f,. Specifically, there
are a, b>0 and w=0 such that

K (g; h)|<a ’Z[—D'/mewme—bmm'>m|z|-1>1/<"'—1> (17)

for all g, h&G and all non-zero zeA, with <@, where a, b and @ again
depend on the coefficients only through the ellipticity constant and the para-
meter ||C|ln.

At this point we have constructed /K as a solution of the appropriate heat
equation and if {>0 the corresponding function is an obvious candidate for the
semigroup kernel. Nevertheless we have not established that K is a semigroup
under convolution and it does not seem that the parametrix expansion is parti-
cularly suited to the proof of algebraic properties. Therefore we adopt a
different tactic and use K¢ to establish that the closures of H generate in-
terpolating semigroups on the L,-, and L;-, spaces. Then we exploit this
information to prove that the K, with >0 is a convolution semigroup.

Step 2. Since K¢ satisfies ‘Gaussian’ bounds one may define the kernel
szg:dte‘“](f

for all 2eC with Re A>w and introduce the corresponding operator i on the
L,-, or Ljz-, spaces by
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(ri”p)Ng)=(R{x¢)(g). (18

But the ‘Gaussian’ bounds on K ¥ are uniform in g and hence the operator
r{® satisfies the bounds

17590 pop=<c(Re )71, 17821 -5 <c(Re )~

for a suitable ¢>0 and all 2eC with Re A>w and w sufficiently large. The
values of ¢ and @ depend continuously on the ellipticity constant g and |calle
with |a|=m.

Next we prove that 7{” maps CZG) into Lp;nN\L% . if Rel is large
enough. Let ae/.(d’) and p=C¥(G). Then with 4* denoting the pointwise
derivatives one obtains for all g&G by (15) and the bounds of Lemma 2.2

(Arfe)g)= Tt dhe @ KPR L))

(,9.7>eLb<a)So

- = rdtg dhe-"@FK E)(h){ L) A L(h)e) h~g)
(3. 7)ELb(a) )0 G
where the sum is over all pairs of multi-indices Lb(a) arising from the Leibniz
formula for the multi-derivative A* of the product. There exist A, ¢ =0, and
for each re/,(d’) and e/, .(d’) there exists ¢, .=C>(G), such that for all
heG
Lh") AV L= 3 ¢.(h)L°
AT

with |¢ ()| <Me°'*"" where r is the rank of the algebraic basis a,, -, @, .
Then

Ndz‘Spdhe‘“(aﬁl(,g)(h)c;,5(11)(A590)(/2“g).

Z g
(8. 1)ELb(a) sSJ, p(aNJo

(1"rf2)(g)=

So
1ol =l > rdtg dh|e @K E)(h)e,. o(h
“ 1 SPHp_HSDHp,mr(‘;”)ZemmEEJ\;({I,) 0 ¢ l ( [)( ) z.s( )\
<aMiglpmr 3 2 el anemirimentgscmmnriny g
- P (B€Lbay sed o )6

<cRe D)@l p;mr< o0

for some ¢>0 and Re A sufficiently large. Moreover, A%r{”¢ is continuous for
all ae/.(d’). So ri%¢pe Ly, ». Since A(g) grows at most exponentially in |g|,
it follows similarly that »{¥¢p& L}, .

Now let ¢=C7(G), 2=C and suppose Re 4 is sufficiently large. For NeN
let Xy =CZ(R) satisfy 0<Xy<1, Xy(t)=1 if t<[0, N], suppAyE[—N", N+1]
and Ay(N+8)=X,(1+2%) for all t<[0, 1]. Moreover, let e;(t)=e *t. Then for
all ¢=C7(G)
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(¢, A +H)r®)=(QI+H", ri¥¢)

:Scdggadﬁgjdt(mﬂw YO @ea I Egh (k)

— lim Spdgggd/;S:odt((II—I—HT)gb)(g)éz(t)XN(t)go(h)Kf(gh“)

Nooo JG

= tim | del dh| (o THNGRIR e )Ne, b, DK Hgh™)

Vo0

+ lim gcdggadﬁgjdz<¢®¢®<e;x5v>><g, n, DK Egh™)

N o0

= tim [ del ah| axg@eR(eity)e, h, DE®IEh )+ Ligs )

N oo
=(¢, p)+¢, Q.i¢), (19)

where for all p= L, we have defined Q,p=L, by

Qo= dh| dte 2t Lig; Wgh).

But since L, satisfies ‘Gaussian’ bounds, the operator @; is continuous on L,
and
1Q:llpp=<c(Re )~*/™

for some ¢>0 and all AeC with Re 2 sufficiently large. So
(@, AL +H)r¥ )=, @)+, Q:¢) (20)

for all ¢, ¢=CT(G). Since CP(G) is o(L,, Lp)-dense in L, the equation (20)
is valid for all ¢=L, and ¢=C?(G). But since the right hand side of (20)
depends (L ,, L,)-continuously on ¢, it follows that r}“’gpeD(H) for all p=L,
and

AI+HrPe=p+Q ;¢

for all ¢=L,. In particular, if Re 1 is so large that |Q,],-,<1, the operator
I +Q; is invertible, and the range R(Al +H) of the operator Al +H is L,.
Similarly one may construct operators ri”'' and @} starting from H' and
one finds
AL+ 1=1+Q;
on L, So
(r AL +H ™= +(Q)"e

for all p=D(AI+H'™). But H™ is an extension of H, so
1O 0% ol +Hepll o= (1= 11Q* D @l »
=2 ellp

if Re A is sufficiently large. Consequently one has bounds
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for all 2 C with Rei>=w, with @, sufficiently large, since [|(r{ )|l pep=
(7 1 gug=c’(Re )" if Re A=w,. But if H is replaced by ¢*’H with [6|<0c
one can reason similarly and finally deduce as in the proof of [10] Theorem
5.2 that H generates a holomorphic semigroup on L, with holomorphy angle
at least 6. Similarly, the L;-closure of the operator H in L, generates a
holomorphic semigroup with holomorphy angle at least as large as fc.

It follows as above that H' also generates a holomorphic semigroup S'.
Then H™ generates a holomorphic semigroup S™. But A SH'™ and since a
generator cannot have a strict extension it follows that H=H".

Step 3. Next we prove Statement III. The idea is to identify the kernel
of the semigroup with the distribution K constructed by the parametrix ex-
pansion. First we use K to define a family of bounded operators. For =0
and o= L, define T,p by

(TpXe)=] dhKig; Wph).

Then by the ‘Gaussian’ bounds on K, we see that 7, maps L, continuously
into L, and L. continuously into L., so by interpolation 7', maps L, con-
tinuously into L,. Moreover, [T/ ,., satisfies bounds |[|T;],.,<ae®® for some
a, w>0. Since K satisfies ‘Gaussian’ bounds one may define the kernel R; by

Ra(g; m=| dte**Ki(g; h)

for all 2eC with Re 2 large enough and introduce the corresponding operator
r: by

(roX@)=| dhRi(g; hp(h).

Then 7; is continuous and by a calculation similar to that used to deduce (19)
one proves that

(@QI+HY, r20)=(¢, @) (21)

for all ¢, ¢=C(G). Since CF(G) is a(L,, Ly)-dense in L,, where ¢ is dual to
p, it follows that (21) is valid for all p= L, and ¢=CZ(G).

At this stage we need a lemma which can be stated in a much wider
context.

Lemma 2.4. Let (X, G, U) be a strongly, or weakly*, continuous representa-
tion and further let a,, ---, aqs be an algebraic basis in the Lie algebra g of G.
Let meN. Then for all x =X, there exists a sequence x,, X, ---EX. such that
for all compact K =%, the dual or predual, of X, and all ac],(d’)
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lim(f, A%xn)=(f, A%x),

uniformly for all f€K. In particular if the representation is strongly continuous
then X. is norm dense in Xr,.

Proof. Let 7, 7, -~ be the bounded approximation of the identity as
defined before Lemma 3.21 in [10]. Also, for ¢=C¥(G) and a=(, -, iy)E
J(d") let M,p=CP(G) be defined as before Lemma 3.20 in [10]. Then by [10]
Lemma 3.20

UM p)x =(ad A)*(U(p))x
=[Ae, [Ay, [, [dsy, Ul@)] 112

for all xeX;, where

U= ded(eig)

for all ¢ = CP(G). The important fact is that there exists ¢>0 such that
[Mar,lli<c for all ac=],(d’) and neN and \U,cy Suppr, is compact (see [10]
Lemma 3.21).

Let ae Jn(d’), |a|=0 and write a=(i, -+, é;). Then for all x&X 4.,
one has

lim| U(M,7,)x || =lim|(ad A)*(U(r,)x]|
=lim|/(ad A)*(V(z.)x[=0,

where V is the strongly continuous representation obtained by restricting U to
the C'*'-elements of the strongly continuous component of U and a full vector
space basis of g. But since ||UM.t,)l|Zc'| M7, 1 Zcc’ for all neN, with ¢/=
sup{|U(@) : g&€\Unen suppr,} <oo and X,,,, is dense in X with repect to the
topology of uniform convergence on compact subsets of & (see [8], proof of
Assertion 2) it follows that for all x&X and compact K &

lim (f, UMyr,)x)=0,

uniformly for feK.
Now let a=J (d’) and x=¥/. Then
AUt )x= X UMgz,)APx

(B.nELb(a)
where the sum is again over the multi-indices occurring in the Leibniz formula
for the multi-derivative A% of a product. So for all compact K <9 one has
lim(f, A*U(z)x)=lim(f, Ut,)A%x)+ X lUm(f, UM,t,)Afx)

n-oo n (B.7VELb(a) n>oo
*a

5
=(f, A®x)
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uniformly for feK.
If the representation is strongly continuous all limits are uniform in f and
X is norm dense in X,. OdJ

We continue with the proof of Statement IIl of Theorem 2.1. By Lemma 2.4
it follows that (21) is valid for all p L, and ¢=Lgn. So n(pED((ﬁI—FHT)*)
and (A +H™)r,p=¢. But H'"=H, so if Rel is large enough one has r;=
(A +H)™'. Then for all ¢, =C3(G) and Re 2 large enough

Sfdtw“«b, Sp)=(¢, (Al +H) )
:Scdﬁgjdte—“@@lﬁ(g; R)p(h)

—_—g?dte'“(gll, T:p).

So (¢, Sip)=(¢, T:p) and S,=T,. Therefore S has a kernel and this kernel is
K. It follows similarly that the semigroup on L; has a kernel and that the
kernel is K.

Since K is independent of p and p, it follows automatically that S is a
consistent interpolating semigroup on the L,-, and L;-, spaces. This finishes
the proof of Statement I.

Step 4. All the foregoing arguments apply equally well to the formal
adjoint H' of H. Therefore the closures of H' generate a consistent inter-
polating semigroup S* on the L,-, and L;-, spaces. But ‘Hf=H* and hence
St is dual to S. Therefore

=§Gdg§6d/?lfz(g; h)g(&)p(h)

for all gL, and ¢ L, with p~'-+¢'=1. Consequently K and KT are related
as in Statement IV of the theorem.

Step 5. Finally we consider the analyticity of the kernel z—K,(g; h) and
the differentiability properties of K, and its derivatives 07K,. We begin with
the kernel.

We have now established that the semigroup S is holomorphic in a sector
Ay with 6=60,. Moreover, we have also shown that the kernel K is defined
in the sector As.. Now we want to prove that z—K,(g; ) is analytic on A,
for all g, h=G. Note that L,®L, is dense in L,(GXG; dgXdg). There
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exists a unique strongly continuous holomorphic semigroup 7 in L,(GXG;
dgxdg), holomorphic in Ay, such that T ,(pQ¢)=(Slp)RQ¢ for all ¢, ¢ Li(G;
dg) and z€4,,. Then T* is a holomorphic weakly* continuous holomorphic
semigroup on L.(=.L%). Moreover, for all z,, zz&Ay, one has TFK,,=K, ..,
So T% acts strongly continuous on K,, and hence the map z—K, from Ay,
into .L. is holomorphic, with the norm topology on ... In particular, there
exists K; €.Le such that

éz;"&lo — N’

z—2, “oflg

=0

oo

lim

z—-2q

for all zy=Ay,. But (z—z,)"'(K,—K,)) is a continuous function on GXG, so
K;, is also continuous and

lim B85 = Ke(g5 1)

=h;(g;
z-2g Z2—2 * “(g l>

for all g, heG and z,€4y,. Hence z—N,(g; i) is analytic in A, for all g,
heG.

Since [{{"(g; h)=K§#gh™') it follows from Proposition 2.3 that K{%, with
t>0, is (m—1)-times pointwise differentiable in the first variable and that one
has bounds

[(ACK @) (g s h)| Sat-@rianimgutg-ouign=tin b l/an-1

for all g, heG, all t>0 and all @ with |a|<m. The values of the parameters
in these bounds depend only on the coefficients ¢, with |a|=m through the
ellipticity constant and the norms |c¢,ll& ... Moreover, the same proposition
gives bounds

J LL(g; /l)l gat—z)'/mt—(m—l)/mewte—b((;ngll')’”L'J)l/(m-”

for all g, heG and all t>0. These bounds depend, however, upon all the
coefficients ¢, with a=J ., (d’) because the lower order coefficients enter in the
definition of L,. Nevertheless, it follows from Proposition 2.3 that only the
derivatives of the principal coefficients enter the bounds and in fact only those
derivatives of order less than or equal to m. Thus the a, b and @ depend on
the ellipticity constant and the parameter |C|, delined in Statement VI of the
theorem. Hence it follows from the arguments of the appendix of 4] that
K, is (m—1)-times differentiable in the first variable. It also follows from the
argument used in the proof of Theorem 7.1 of [10] that one has bounds

!(A"Kz)(g; hNéat-w'*mmmewte—bmgh—lm"lt-l)”""—l’ (22)

for all g, heG, t>0 and a with |a|<m with the values of a, b and w de-
pendent on the coefficients of H only through the ellipticity constant and the
parameter ||Clin.
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Next consider the case |@|=0 and »>0. Since z—K,(g; h) is analytic in
the sector Ay, the Cauchy representation gives

Ag; h
PR CCERD)

Cr(t) z—t

Kig; /z)z(zm)-lg

where the integral is over a circle C.(¢) centred at ¢ with radius »<tsin f¢.
Hence
K.(g; h)

Cr(t (Z—t)n”‘

@FK.)g; h)=@2xi)'n !S
for all nN. Therefore
|@FKo)(g; M) =r"sup{|K.g; h)|: z&C. (1)}
and setting r=tsin ¢ with ¢<6; one obtains bounds
|(OFK.)(g 5 h)| Sactn lt=D/m-ngutgmbcan-tinmmhian=

for all g, heG and all >0 as a corollary of the bounds (17) on |K,|.

The general bounds of Statement VI of Theorem 2.1 now follow from these
estimates and the convolution semigroup property. The semigroup property
gives the convolution relation

Kdg: = dkKg; DK ks B)
for all s=<0, ) and hence
(AGEK(g; m=( dR(AK)g; RXOHK- Xk h)

for all s=<0, ). Since each term has a ‘Gaussian’ bound, with an appropriate
singularity, and the convolution of two Gaussians is a Gaussian, the required
result follows by combination of the special cases with s=¢/2.

Next we prove Statement V. It follows from the convolution property of
the K; and the adjoint relation of Statement IV that

Kdg; W={, dkKus(g; BKunlk; 1)

={, dkKuntes AR AR B.

Therefore the derivatives A%K, with a<J,_,(d’) are (im—1)-times differentiable
with respect to the second variable and

(A*BPKo(gs W={ db(A"Kusgs DARY" 33 (ANXWATK (RS B)

d)eLb(

where the B denote left derivatives with respect to the second variable and
the sum arises from the Leibniz formula for the left derivatives Af of the
product h—A(R)K};(h; k). Similarly the BPK, with B&],-(d’) are (m—1)-
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times differentiable with respect to the first variable. Note that arguing as
before one obtains bounds

| — _ —1yrymg-1y1/Cm—-1)
[(zl“BﬁKL)(g; /l)lgat ¢/} +1ﬂ1+lﬂl)/mew£e beGrgn—lyryme-11/(m=1

but the use of the formal adjoint in this derivation means that the values of
a, b and @ depend now on the norms |/c,)%; .1 for all a=/n(d’). Hence these
bounds are not useful for the subsequent discussion of operators with lower
order coefficients which are not smooth.

Finally Statement VII follows directly from Statement VI. Let acJ,_,(d’).
Let a, b, >0 be such that

(AK)(g; W) SFi(gh™)=at ¥ a0 meuigmb@anmiiy My
for all g, heG and t>0. Then
1A%Sepll SN Fexlolll S Fillillel S a’t 1 ™e ol

for all pe[l, ] and p=L,. The argument on the Lj-spaces is similar.
O

The kernel bounds of Theorem 2.1 immediately imply that the action of
the semigroup S is smooth. For example, it follows immediately that S,C,EC,,
for t>0, and in fact S;C,SCyN\ L& n-:- These conclusions are an immediate
consequence of Statements V, VI and VII of the theorem. Moreover, it is also
an easy consequence of the ‘Gaussian’ bounds on the semigroup kernel that
SiL,=C, and S;L;SC, for all pe[l, ) and t>0. In the next sections we
derive stronger versions of all these properties.

§3. Regularity

Let C be an m-th order subcoercive form with ¢,&Cs, for all ac/,(d’).
The semigroup S constructed in the previous section is holomorphic and hence

SLLpgD%H):,QID(H")

for all p=[1, o] and all t>0. Now we utilize this observation to improve
knowledge of the regularity, or smoothness, properties of the action of S and
the kernel K. Specifically we prove that the C*-vectors for the left regular
representation on the L,-, or L;-, spaces are precisely the C>-vectors D=(H)
for the closure H of H. Therefore S;L,< L, for all pe[l, o] and all ¢>0.
The result for the C>-vectors is derived from more detailed elliptic regularity
properties of the domains D(H"). For the case p=2 these latter regularity
properties can be optimized by exploiting the unitarity of the left regular
representation on L,.

We use the same notation as in Section 2. Let n=N. For g=G and suf-
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ficiently large A>0 define R{ ¢: G\ {e} —C by
R4 =(n—1) 17 (" dte i K (h).
Then R ¢=L, and
Ry sxp=(A +HE) "¢

for all p=L,. Moreover, for all &/, .-.(d’) we have R ¢=D(4%), in the
L,-sense, and the function A— R 8(h) from G\{e} into C is infinitely differen-
tiable. For a discussion of these facts, in the strongly elliptic case, see [20]
Section III.6b. We wish to derive differentiability properties of the function
(g, h)—(AFR{ 2)(h) from G XG\{e} into C. We denote the derivatives with
respect to g in the direction @, by 9, and use multi-index notation, as before.

Lemma 3.1. Let a,&J,._(d"), k{2, -, nm+1} and «,, -, ey =] n(d’)
where |a,|+k—1<nm.
I. There exist ¢, >0 and for all 2=w there exists b;, ¢; >0 such that

Swdtl--Swdtke‘“‘l* U)K - ARRICEE ()|
0 0

b(|h|)~-Prrteam=tan——tagg=ciinl"  gf DISkham—|a,|——|a;]
<4 ba(l-+[loglh| |)e cant if D'=knm—|a|——|a;|
bae carnt’ i D'<knm—|a,|——|a]

for all h=G, h==e and all g, -, g: =G and
Sadhrdtl---gmdtke‘“‘l" LRty e ) (AN f e AR EEN ()|
0 0
gcx—(knmﬂall— ~1uk1)/m‘

II. Fix g, -, g+<€G. For B ] a,(d") and 2>w, with «>0 sufficiently
large depending only on k, define Fg: G\{e}—C by

F,g(h):rdtl---gmdtke“"““' SRy e 1) K e A B ek AR K ER)(R).
0 Jo

Then FﬂEL;;Iall—lﬂ( and AilTFIS:P‘/r_Ig) f07’ all TE](al|_;l@|(d/)- AJDT’QOUQ?’,
the function Fg is continuous.

III. There exists >0 such that for all A>w, all g, -, g, G and p&
C3(G)

ABQI+HE)™ - AL +HE,) g
:(rdtl---gmdtke‘*”l*' Rt e 1P A f ek AORK fRvg (23)
0 0

IV. For all compact K <G with ek we have
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lim S?dtx"'gmdtke‘““* LRy e tk)n—l(Aul](gl1* ek Ak [(g-'kk)(h)
0

g1 Bp—8

:rdtl---rdt,,e"“‘l* ity e )P AGK f e 10K E (D)
0 0
for all g=G, uniformly for h=K.
Proof. Although the coefficients ¢, are C* in this section, for this lemma

we only need that ¢, is continuous in Statement IV.

It follows as in the proof of (12) in Lemma 2.2.] that there exist a, b, ®>0
such that

S” dQuy, -, up)uy - u,‘.)’“ly(*l"llx’ﬁi* cew LR CERY (D)
Yt
LqpDmpkn-1-Gagi+ piagnmgolp=baiy M=/ n=n

e e

for all t>0 and he(G. Hence
K:dty--xjd[,;e’“‘l* FER(E e L) T UK f e e AN B RN |

:/e!"”(:dle““g L(l.Q(ul, Uy
o )

Q¢
Ay ) AN e xR ICER) ()

™
ék !-1/28 dte‘“at‘”' 'mtlcn—l—(yan *“‘k‘l/me““g‘b‘“’“"'"L_"U(m’” .
0

Now Statement [ follows from [20], Theorem II1.6.7, if w is large enough.
Moreover,

Suclhsodt‘---Sodt,,.e"“‘l* ORI CY ¢ TR LYY 7510 3Y
§/€ !~1/2g dhKwdte—uat—l)'/mtku—1—(|u1|+ +(u,‘.|;/mewleAbu|n]'>7”l*1>1/(’"—1/
¢ Jo

=3
ga/S dte(w’—A)LtIelL—l—(|al|+ il /m
0

gal/l—(klzyzt—(1n1\+ +lap))/m

if 2=2w’. This proves Statement I.

For the proof of Statement II it suffices to prove that for all & [ 4,i-1(d")
and /{1, ---, d’} one has Fg=D(A,), in the L,-sense, and A,Fz=F, 5. The
proof is by duality. Let p=D(4,), in the L.-sense, and then by Fubini’s theorem

(4, Fp)

:Sw(ltl...\wdtke—i(tﬁ FER(E e )T 1190’ ‘419,(?1141;1“2[{522* *A“’f[\’f"k’f)
0 Jo
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:‘Smdtx"'rdtw'“t” TR () e tk)”‘l((p, Al:lﬁKfll*A“Zng* N L ngkk)
0 0

= —(90, Fa, ﬁ>) .

So FgeD(AF*)=D(A,) and A4,Fs=F, 5. This proves Statement II, since the
continuity follows as for the kernel.

Next we prove Statement III. First consider the case 2=2. There exist
az, @3S Jpn-1(d’) such that a,=<as, a%>. Then for ¢=C(G) and large 4

(A1 +HE )" A%QI+HE,) "
=(—1)'98 (AR +(HE ) ""* A2 A+ HE,) "¢

=<—1>'“'2'(detxe‘“ltﬁ-%.w”K f;’*>~>*(detze“‘Ztal-wsz f2 o

:(S:’dt,gjdtze-i ) (11K A B Yo,

So by Statement II we obtain
AMQI+HE ) " A+ HE) "o

= An(([Tat "t v ey K g Ao 1 o)
=(An("d0] b Ko ) K e A £ g

:(go dtlgo dtye™* ”‘Hz)(tltz)"”A"‘thf*Aaszgzz>*SD :

This proves (23) if 2=2.

Now suppose that (23) is valid for some k= {2, ---, nm}. Let ay, -+, @r, E
Jan(d’). Let as, a%<J.m-1(d’) be such that a,=<as, a%>. Then it follows
from the induction hypothesis that (23) is valid if |a,;|=0 by a similar argu-
ment to the above and then again by Statement II for general a;.

Finally, the proof of Statement IV follows from (14), by the reasoning used
in the proof of Lemma 2.2.1II. 0

The next result is of the same type as Proposition 2.3.

Proposition 3.2. Suppose c.=Cho for all ac](d’).

I. There exists @>0 such that for all 2z=zw, all k{0, ---, nm—1} and all
({0, ---, nm} such that k+I<nm the function (g, h)—R{™-4(h) from GXG\{e}
is k-times pointwise left-differentiable in g and [-times left-differentiable in h, in
any order, the derivatives are (jointly) continuous and the derivatives with respect
to g commute with those with respect to h.

II. There exist ¢, >0 such that for all izw, all geG, all Bern-1(d")
and all Y€ ] wn-.p:(d’) such that |8+ 17| <nm one has estimates
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| A% Ry £, e enmei80im
and the values of ¢ and @ depend continuously on the ellipticity constant p and

“c”,nm: 12 ‘Ca“w nm,+ > lcalio -

a;laj €J m-1(a")

Proof. For kEN, acs],n(d’) and g=G define ¢, ,(g)=C in the most
obvious way such that

(HI;)k: Ca,k(g)fll‘l .

a\a|=km

So this equality is even valid in the tensor algebra over g. The ¢, , are homo-
geneous polynomials of order % in the cg with |8|=m.
Fix e /an-1(d’). Let g, g.=G, 2>0 large and ¢=C¥(G). Then

((S?dte'“t”“AlaKfl) (S dte=tr AP g Jrg

=APQI+HE ) "o— API+HE) "¢
=APQAI+HE ) ((AI+HE,)"— A+ HE )" YA+ HE) "¢

=55 3 (casgd—ca (gD AT+ HE) "I+ HE)"

ajlaj=jm

Hence by Lemma 3.1.1II

(raterisprrasicp)—(("dte- i av i pe)
=50 3, Casa—caa))

-g:dtg Aty F (1,1 AP K fax A B2 (24)

in the L,-sense, but then also pointwise on G\{e} by continuity (see Lemma
3.1.1D).

We shall prove that for all y&/,n-15(d"), |71#0, all k{2, -, 7] +1}
and all a,, -, @y ,.n(d’) there exist c%}.. .,=C(RXG), polynomials in 2 and
the Alc, Wlth 56],,,(0.’ ) and |a|=m, such that

@ AP R #)(h)

7l+1 o0 (foo
=3 8@ @ b [Taterte s g

k=2 @y ", apeESpp(d’)
(APKExA%K § - % AR CE,)(h) (25)

for all large 2>0 and g, heG with h0. Moreover, c%}..., is homogeneous
in 2 of degree (k—1)n—(|az|+~---+|a,!)/m. The proof is by induction on |7]|
and the case |r|=1 follows from (24) and Lemma 3.1.IV.

Now let Y&/ ,m-15-1(d’) and suppose (25) is valid. Let ¢ {1, ---, d’}. Then
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for all large 2>0 and geG, with gy=exp(—sa,)g for all s€R one has for
s#0 and ¢=CZ?(G), with the notation a,=f one obtains by Lemma 3.1.III

(s7H@" AP R €5 —5r AP R €))%

dl

i

1
-1

(Lt o (A, g)AMQI+HE ) " A QI+ HE ) "¢

= k=2 ag apedpp(d’) z
—cik 0 (A, @AYMQAI+HE) - A+ HE) ")
1+t
=2 > (sTHCRY o a4, 8)—CBt . a,(4, 2))

k=2 a3 ,apE€EJpprd")

CAMQIAHE ) A QI+ HE ) g

+ licr;;; ap @AMQRIHHE ) s AR+ HE ) — AV R+ HE)™)
AR QI+HE) )
171+1
= > = (S'I(CQ:,.--.ak(Z, gs)—ckgk. ,ak(x; g))

k=2 ay. ,apEJ pyu(d")

AN+ HT )" AU+ HE) g

k n n JE—
+ }] a( ]' )Zn—l Q;]azlqmcz\’glf a k(]; g)S“l(Ca.;(gs)#Ca.;(g))-‘l“‘(lf’*-Hi)"'

=17
AT+ HE) " AT+ HE) - Ak AT+ HE) ") .

Using Lemma 3.1.I1I again one obtains an equation of the form (24), valid first
in the L,-sense, but by continuity also pointwise on G-\{e}. Taking the limit
s—0 one readily establishes equality (25), using Lemma 3.1.IV again. It follows
as in the proof of Proposition 2.3 that the derivatives with respect to g and
commute, if one uses Lemma 3.1.I[ and the lemma of Du Bois-Reymond.

The proof of Statement II is easy. |

Before we can prove the main theorem of this section we need one more
technical lemma. The next lemma provides a condition which ensures that
pointwise differentiability implies L,-differentiability.

Lemma 3.3. Let heG, FEC(G\{h})NL, and suppose that F is pointwise
left-differentiable on G\{h} in the directions a,, ---. a, with pointwise deriratives
APFeC(G\{h)NL, for all i€ {l, -, d’}. Moreover, suppose that

$-0

lirns"g dg|F(g)| =0,
By ()

where By(h)={geG: |gh™|<s}. Then Fel;, and A F=APF for all i
{1, -, d’}.

Proof. Let F,: G\{e}—C be delined by F.(g)=F(gh). Since
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[, 48 @ =07 g1 F(g)
and left derivatives commute with right translations, we may as well assume
that h=e. We shall prove that (.1,¢, F)=—(¢, .IiP’F) for all ¢=C(G). It
then follows by density ([2] Corollary 3.1.7) and Lemma 2.4 that (4.¢, F)=—
(¢, APF) for all ¢=D(4,), in the L.-sense, and hence FeD(A,), in the L,-
sense, and A, F=APF.

First suppose that ¢=C7(G) and e#supp¢. Then it follows easily from
the mean value theorem that (A,¢, F)=—(¢, 4PF).

Secondly, suppose there exist a, b>0, X,, X;, ---=C¥(G) such that 0<X, <1,
| Xalle 1 <an, suppX,EB;,~t and {g=G: X, (g)=1} is a neighbourhood of e for
all neN. Using the existence of these functions it follows that for all ¢=
C?(G) the function ¢(1—X,)=C2(G) and e&supp ¢(1—X,). So

(~/ll¢'—(/'ll¢)xn_gbAlxn» F):(-ll(sb(l'_xn)), F):_(()b(l_xn), /1(1[))]:)-
Taking the limit n—oco one obtains

(A, F)—=lim (PAX,, F)=—(p, APF).

But
(@A, P SIGlol AL, dgiF(@)|Salglen] —dg|F(g)!.
bn-1 bn—1
S0 lim e (A2, F)=0 and (4,¢, F)=—(¢, APF).

It remains to establish the existence of the functions %,. X, ---. For n&N
let g, be the linear span of all commutators of a,, ---, ag of order less than
or equal to n. Then g,cg,c--=g,=g. Let d,=d’, a,;=a; and inductively for
i=1{2, -, r} let a,,, -, a.q;¢, be such that a,, -, Gyay, =+, Quy, -+, Gug; 1S

a basis for g,. The function @&, ;)=exp(Zi_, 2% &, a,,) from Ré1X--- X R
into G is an analytic diffeomorphism in a neighbourhood of 0. We may assume
that it is a diffeomorphism on at least V=1{(&,,): |&,,1<2 for all 7 and j}. The
function
r dy r  dy
V(D (r)=0"(exp( 3 X &as)exn( 3 X 7..0,5))
is analytic on a neighbourhood of (0, 0) and again we may assume that this
neighbourhood contains V2. We may also assume that the series in the Camp-
bell-Baker-Hausdorff formula is absolutely convergent on V. Now let f: R%:
XX R*—R be an infinitely differentiable function such that 0< /<1, supp f
S{(&.): 1&,1<1} and f((&,,)=1if |&,] <27 for all 7 and j. For neN define
L.: G—R by

H(n&,)) it g=0(E.)ed(V),
xn(g):

if g&dV).
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Let g=G and suppose that X,(g)#0. Then there exists (§,;)V such that g=
exp(Z,T:lZfilEija“) and |&;|<n"% for all 7 and ;. Let )?”» be the left in-
variant vector field on G which corresponds to a;;=g. If we take the path
r)=exp(Zj-1 27 t€;a:;) from e to g then f(t)zzgq25‘12'151:')?11"7'(0, so by
[17], Theorem 4, there exists b>0 such that |g|’<bn~'. Hence suppX,S Bjn-1.
Finally we prove that sup{n !X,l|l%.: nEN}<co. Let ke {l, -, d’}, neN
and g=0((¢&;,))sd(V). Let T=X%-,¥x be the series expansion of ¥ in the
Campbell-Baker-Hausdorff formula, with each ¥y homogeneous of order N.
Then

(Akxn)(g)=%Xn(eXp(—talk) exz)( 3 5 &;aw))

i=1 j=1

t=0

L (0 5T, @)

t=0

H

d o r du “
(2 B B (=1, E)lw)|

1u=19v=1

d

= 5 S Dunin 3 -G w101, )l ico-

Now suppose that (A.X.)(g)+0. Then {&;/<n™* for all 7 and j. Moreover,
¥y is a homogeneous polynomial of order N, so by the Campbell-Baker-Hausdorff
formula ([16] page 112) there exist ¢i..,.j,...1y-;.ix-, R such that

o N-1 r_‘ 4y iy -1 <
El =0 il""’%‘v__.1=1j12=1 jN§=1| Ly "LN—I'JN—1|
and
r du
2 D w‘ talk, (51;))]uvauv1t =0
di=19=1 dt ~
=2Cuaiy, '-iN—l-J'N—lsllfl'"EIN—fo—x[aHJ'U Ly
'[aiu'p [alk; [all+1jl+1’ ) I:aIN—ng—ZJ alN-le_l:l"']]]"']:I’
where the sum is over all [€{0, ---, N—1}, 7y, -, iy, {1, -, ¥} and j, =

{1, ---, d} for all we{l, -, N—1}. Now the commutator is an element of
Bistyresiy-yy SO there exist Ay v.r.y.jy. ER, |Auv.1,1p.5y |<el
for some ¢,>0 such that

WIN-LIN-1 SIN-1IN-1

[azljlv [ ’ [allju [alky [ail+1jl+lx Ty [aiN—ZjN—Z’ ai]v—ﬁ]v—;]"']]]"']]
7 dy
:ElvglZu.v,l.11,jl.»--.LN_l,jN-lauv

with 7=rA(1+4,+ - +ixy-y). Then
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(A X))
r du oo -
u
?<_uz=:1 B=1 1Duofllan NZI fg 731:"'12fN~1 Clpdpiy-1in-
e IiN-1
1t+igtetiy—12z0
'lEiU'l]"'iE"CN—lfN—xlI2“'”-lxlx-J'xv"'le—pJ'NﬂI
<TduD uwN (Tyt+ti Y AN
= n Cl,iq, 7y, i no TN =V e,
_Elvgl” u'vf”m NZ=1§ 1',1"'%1\’—1 ] Lig. iy .lN—-lv]N—ll 1
JnndN-1

1+igtetiy—12u

Now write the last sum as a sum of two contributions, one with N<»—1 and
one with N=r. The first is estimated as follows

ro du o TSN —(iy ety ) o N

BEDAGE | B eyl
J1 IN-1

1y 2

J;

”Duvf”oo 2 E 2 |Cl,11.j1,--~,zN_1.jN..llL'fv-
v=1 H wiN-1

-fN 1
1+11+ Hiy-12U

gé

In order to estimate the second one first note that 7;,+ - +iy_,=N—1. So

r dy .

n c s . n—(i1+"'+‘bN—l)cN

2 BIDwflan &5 o Ty s !
wIN-1

r du © N-
<1 3 S5 Duf et 5 g B ety lEn

l N.—
J1 ]N 1
Since
oo N-1 N
Ngr f?o 2 lcl'll'jl‘“"iN"l'jN—l|(Cln_ MW <oo
= = G-
“IN-
for all n=¢,, the lemma is proved. d

Theorem 3.4. Let C be an m-th order subcoercive form with coefficients
€a€Cho and let H=dL(C). Let p[l, o). Then

I. D(H)=Lp, e

II. For all n&N one has DIH™S Ly, nn-1 and for all ke{l, -, nm—1}
there exists ¢>0 such that

lolp; e <™ *LH @l p+ce * el

for all e=<0, 1] and goeD(ﬁ"). The constant ¢ depends continuously on the
ellipticity constant p, |Cllnn and the ||calle -vym with @& Jm_i(d").
1. If kN then S.L,S Ly, and there exists ¢, >0 such that

ISwpln e scat™ ™ol
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for all oL, and t<=<0,1]. The constant ¢, depends continuously on the
ellipticity constant p, |Clinw and the | callay n-nm With @& Jn_i(d’), where neN
18 larger than k/m.

Similar statements are also valid relative to the L s-spaces.

Proof. Let neN. For large 1>0 define r; ,: L,—L, by
(1. apX@)= AR 2(gh ().

If n=0 we define r; ,=I. By the bounds of Proposition 3.2.Il it follows that
r2.n IS a continuous operator.

Let ¢, ¢=C2(G). 1t follows as in the proof of (19) that for all large 21>0
and neN

((AI+H"), r1.2¢)
=(¢, rz.n_1¢)+(n—])!"Scdgg(;d/?g:odte“‘t"‘IJ(E)L,(g; me(h).
Now for all g, heG fixed, g+ h, one has

(n—l)!“lcdte‘“t”‘lLt(g; h)
=(n—1) !“lgjdte‘“t"“an(g)(A BorK ) (gh™1)

—(n—1) !-lzca<g)arg‘:dte-“zn-l(AﬂK,g)(gh-w
=S¢ (g)(@"APR &) (gh™?)

where the sum is over all @ with |a|=m and all (8, r)€ Lb(a) with |B|#m.
So

((M+HNP, 72,20)=(¢, 72, n-10)+(, TT'¢) (26)

where we can define the operator 7%'': L,—L, by

A ﬂ 7, -1
ﬂ,,%m(d,)cl.ﬂ.r(g>gadh<4 6T R £ gh~g(h)
igl=m

(T3 'o)g)=

because of the bounds of Proposition 3.2.I. Here ¢, 5,,=c. if (B, r)=Lb(a)
and |B8|=m, and ¢, ;=0 otherwise. Note that T%}' is continuous. Then by
density, Lemma 2.4, it follows that (26) is valid for all p=L, and ¢=Ly, ..
So 71, 20 D((AI+H"))=D(AI+H) and

(b, AI+H)r2 20)=(, 72.210)+(&, T3 '¢) 27
first for all gL, and ¢= L, , and by density for all ¢=L,. Next we prove
by induction that for all k= {2, ---, n} there exist ¢, 3.,=CyG), where B, re

Jem(d’), | Bl #km, which are polynomials in the Alc, with 0€ ] _ya(d’) and
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a<],(d’), such that if T#* is the continuous operator on L, defined by

(Tr*oXe)=, 3 crsni@)] dh(d RE (gh ™p(h)

o
then
(H'Q, T *lo)=(, Tt o) (28)

for all g= Ly, and pe=L,. Now if ¢, ¢=C7(G) then
(H'¢, T} * ')

= 5| ah| dg@G@ e 5@ A5 RY gh p(h).
Pt e ie e

For fixed heG the function
D(Q)=Cp-1. 3.1(gNAPOTRY E)(gh™)

from G\{h} into C satisfies the conditions of Lemma 3.3 because of the first
bounds in Lemma 3.1.I, equation (25) and Proposition 3.2.1 and it follows by
induction that the function @ is m-times differentiable in the L,-sense and
(H'¢, ©)=(¢, HP). From this the existence of the functions ¢, 4, including
the prescribed properties follows from the Leibniz formula. Then (28) is valid
for all ¢, ¢=C%(G) and by density for all oL, and ¢= L, . Note that

”T}L k|lp~>p§6n, kz—(nm—kmﬂ)/m

for all large A, where ¢, , >0 depends continuously on g, [|Clin and the
lcalloo; ck-1ym, Where @& J_,(d").

Next we shall prove that for all k< {l, -+, n} one has r;, ,pD((AI +H)*)
and

@, QL+ D rap=, v+ 5 R T ) 29)

for all p= L, and ¢=L, The case k=1 is just (27). Now suppose that (29)
is valid for some k<{l, ---, n—1}. Then for all p=L, and ¢= L., one has

(AI+Hp, A+H)*72.40)
=((AI+HP, 1 n-vp)+ é Jél( 5.)11—:‘((,214-117)% T3 #+t1g)
=(, 1, n-1-10)+(¢, T}l—k,l(p)

+ 3 (D), Tt i, Ty ).
i=1j=1\ 7]

So (AI+H)*r 3, wpeD((AI+H"))=D(AI+H) and (29) is valid for all ¢=L, and
¢=Lgm, and then, by density, for all ¢= L,.
By induction it follows that n,ngoeD((H—i-ﬁ)") for all p=L, and
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AI+H)"r 3, 2=1+Q"
where

n L

Qr=3 Z(j.)zl"fTi-f.

A

15=

Now
n 1 l . . no 1 l . .
1rOsn) - L, l-jy-(Im—jm+1)/m__ o/ 3-1/m
1QS Hpﬁpglgjgl(].)z T4 e 3 El(].),z i-am=i = um,
So Q%) p.p<27* for large A and the operator [+Q4 is invertible. Moreover.

AI+H) =7 (I14+Q7)™

if 1 is large enough. Now it follows as for the operators 7™ * that »; , maps
L, continuously into Ly,nm-; and [[A% allp.p<cA~»™-1eD/™ for large A and
all @& Jam_1(d’), where ¢ depends only on g, ||Cllh. and the |calla; (i-1ym With
a=]Jn_y(d"). So (AI+H)™ maps L, continuously into L, ,._, and |A*(AI+
17)‘"||pap§2cl"<”"‘"‘“"’"‘ for all large 1>0. Now the L ,-statements of the
theorem follow as in the end of the proof of Theorem 5.3 in [10]. The proof
of the L;-statements is very similar. a

Corollary 3.5. For all t>0 one has K,=Cp,(GXG).

Proof. Let L be the left regular representation of GXG in L.=L(GX
G; dgxdg). The Lie algebra of GXG can be identified with gBg and (a;, 0),
0, a;), with i={l1, ---, d’} form an algebraic basis for gbg. We denote the
corresponding infinitesimal generators by A, , and A, ,, respectively. Let T
be the holomorphic semigroup on .£,=L,(GXG; dgXdg) used in the proof of
Step 5 of the proof of Theorem 2.1. Let H, be the generator of 7. Then oQ¢e
D(H)) for all o= L;; and ¢= L,, and Hi(eQ¢P)=(H'¢)R¢. There exists 1>>0 such
that A/+H' and AJ+H, are invertible. Let nN. Then (A/+H) " is an ex-
tension of the restriction of (A/+H) "®1I to L;,«® L,. Now the map ¢ —
(Al +H"™A%p from L,,«< L, into L, is bounded by Theorem 3.4.Il. Let B, be
its unique continuous extension on L,, which exists since L, is norm dense in
L,. The map B,QI from L,®QL, into .£, extends to a unique continuous map

B.&I from £, into £,. Now let ¢,E Ly, 02€ Lo, $1& Ly and ¢ L. Then
(AL (0:Q¢y), AI+HT) ™pe®Po))=((AI+H1) " AL (0:Q¢), 0:R¢2)
=(AI+HD) " AT0)Qd1, 0:Q¢b)
=((B2QI(0:Q¢1), 02&¢p2)

=(0: ¢, (Bn®1)*(¢z®¢z)) .
So
(AL.&1, (AT+HT) "E)=(&,, (B, )*E:) (30)
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for all £,€L1.QL, and £&E L@ Lo But L& L, is dense in D(A7;), in the
L,-sense, and Lo;-Q@L. is weakly* dense in L. Therefore (30) is valid for
all £,€D(A?,) and &L, But then (AI+H*)"&,D(A},), in the L.-sense,
for all &€ Lo and (—1)"A? (AT + HY) " =(B,®1)*. But this implies that
D(H¥)")SD(A},), in the L.-sense. In particular, for all >0 and all neN
we have

K=T%:KneD(HY)")SD(AL,)

in the L.-sense.

Next we argue that K,=D(A%},) for all ¢t>0, neN and ic{l, ---, d’}. If
we have shown this, then

o
K.e QlD”(Al,l)mD“’(Az,1)=Lw;.,,(G XG; dgXdg)

by 101 Corollary 6.2 and we have proved the corollary.

It remains to prove that K,eD(A%.). For every m-th order form C let
the form C° be defined by C%(a, g)=C(a, g) for all acJ,(d") and g=G. Then
Cia, g)=(—1)'*'C*(ax, g) and since aq-, ---, a, is an algebraic basis with the
same step as a,, -+, a4, it follows that C° is subcoercive of step » if and only
if C is subcoercive of step ». Then if H¢, S¢ and K° are the corresponding
operator, semigroup and kernel it follows that H‘gozH—gB, ngo:St_q‘; and K:=K,.
We need one more transformation of subcoercive forms. For ie{l, -, d’}
one has AA,A'=4,—ad,I, with ,={4,A)(¢). We use the multi-index notation
6. For every m-th order form C let C2 be the m-th order form defined by

Cir, 9= = 3 (—D'Prea(g)df

a€/m(d") BESm(d’)
(8, PELb(a)

where 7€/ ,(d’) and g&G. The principal part of C* equals the principal part
of C, so C* is subcoercive if, and only if, C is subcoercive. If C? is sub-
coercive and H*, S and A® are the corresponding operator, semigroup and
kernel, then H2p=AHA ‘¢ for all p=C¥(G). For t>0 define M,: GXG—C by

Mi(g; mM=A(gAM) Ki(g; h).

Then M, satisfies the same kind of Gaussian bounds as K, since A(gh )=
aer'#*™1" for some a, p>0. Now let T, be the map from L,into L, asin the
proof of Step 3 of the proof of Theorem 2.1, but with M, instead of A;. So

T))=| dhnie; mgh).
Moreover, let
Ri(g; h)=§:°dte’“Mz(g; h)

and define the operator



782 A.F.M. TER ELsT axD DEREK W. RoBinsox

(rip)Xe)=| dRRig; Wk,

for large 2>0 and ¢=L,. By a calculation similar to that used to deduce (21)
one proves that

(RI+H M, rap)=(¢, ¢)

for all ¢, p=CP(G) and large 1>0. Now it follows as in the proof of Step 3
of Theorem 2.1 that S4=7, and hence K%=M,. So

Ki(g; h=AQAh) Ki(g; h).

Now we finish the proof of the corollary. Since KX is the kernel associated
with the subcoercive form C it follows from Theorem 2.1.IV and the above
that the kernel K% corresponding to the form C' satisfies

Kig; h=K**h; g)

for all g, heG. As above, K[**cD(A?},) for all n, so K,&D(A},) for all neN
and this completes the proof. O

Corollary 3.6. For all acj(d’), t>0and pE[1, ] one has A*K,e.L} and
(A=Sip)={ dRA*Ki(g; Wp(h)

for all =Ly and g=G, where g is dual to p. Moreover, there exists ¢>0 such

that
|AYK, | S et P/ mog-iwim

for all pe[l, o] and t>0.
Proof. Let t>0. Then for all p=CZ(G) we have
(SipX@)=| ,dhKi(g; Wk

for all g&G. Moreover, S, and K, are C>-functions. So

(A”Szgo)(g)zgadﬁz‘l“lﬂ(g; h)p(h) (31)
for all g&G. Then one obtains

« _ A « . 1/p
laklg=sup ([ dh (A Kgs W7

=sup sup Hadﬁfl"](t(g; h)go(h)‘

E€CG oecP(6)
=sup sup |(A*S.p)(g)]

86 vec®(6)
leligst

SHA*Stl o0 SN A%Stjollomonll Serall g = €2(8/2) 10 M ey (2/2) P <MD
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But then it follows that the left and right hand side of (31) are continuous
functions of ¢ in L; and by density (31) is valid for all peL;. |

Our next aim is to prove regularity on L, and Ls;.

Theorem 3.7. Suppose the semigroup S generated by the closure H of H=
dL(C) on L, is exponentially decreasing. Then one has the following.

I. The operator dL(C) is closed.

. If neN then Lj,=D(H"™™) and the norms |-|ls,, and o—|H" "¢l are
equivalent.

1. There exist p, >0 such that

Re(Hyp, @)= p(lels; mie)—aqlolli

for all ¢& Ly;e.

IV. For all 60, 0;) there exists w>0 such that |S.)z..Ze®'?! for all ze
C with |argz| <0.

Analogous statements are valid relative to left translations on Ls.

Proof. The proof is a minor modification of the corresponding proof for
subcoercive operators with constant coefficients, Theorem 6.3 of [10]. Only
one part of the argument requires more care. In the proof of Theorem 6.3.1
in [10] the Helffer-Nourrigat theorem [15], Theorem 2.1, is used to prove that
C!C is a subcoercive form whenever C is a subcoercive form with constant
coefficients. The Helffer-Nourrigat theorem implies that there exists a constant
¢>0 such that

10 Lo(Plplle=cN 3 m(e)

for all purely m-th order subcoercive forms P with constant coefficients and all
pe L;;,,,(é; dg). But the constant ¢ depends on P and it is not immediately
clear that ¢ depends continuously on the ¢, and the ellipticity constant of P.
We need this kind of more uniform constant.

The purely m-th order forms P (with constant coefficients) form a finite
dimensional vector space V, isomorphic with R“"”™, Let @: R“"" >V be an
isomorphism. Let M, >0 and introduce W by

W={PeV: |0 '(P)],<M and the ellipticity constant of P is =py}.

Then W is a compact set. We claim that there exists ¢>0 such that for all
PeW and all p=L;, .(G; dg) we have

10La(P)plle=cNg; u(p) -

Suppose this is not the case. Then for all n=N there exist P,eW and ¢,
Li. (G ; d§) such that
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[|aLG(Pn)§07L“2< n_ll\[é; m(SDn) . (32)
Since W is compact, the sequence P,, P,, --- has a convergent subsequence. We
may assume that P, P, --- is already convergent. Let P be its limit. By the

Helffer-Nourrigat theorem there exists ¢>0 such that
10Le(P)@la=cN 5 m(p)

for all p= Lé;m(é; dg). There exists N & N such that [0Lg(P— Puell: <
27'¢Nyn(p) for all = L, »(G). Then for all n=N

C]Vé; m((p,,)_ﬁ_ “aLG(P)QDr;”z§ ‘IaLG(Pn)SDIzI’2+2_ICAVé; m(SDn) ’
SO
Z-ICIVQ; m(SOn) = “aLG(Pn)SDH HZ .

This contradicts (32) for large 7.

It follows from this that if C is a subcoercive form with variable C>-
coefficients then (C'C)a, g)=(C;C,)a) is also a subcoercive form and the L,-
statements of the theorem follow.

The Ls-results can be deduced from the L,-results by using the observation
that if o= Ls then A~*?p= L, and [¢lis=A""*¢l,. For example, if ¢p=C? one
then has

Re(Hgo, (p>=(HAA_”2§D, A‘”Z(p)

where HA=AY2HA"'?, acting on C¥, is the subcoercive operator obtained from
H by the replacement A4, — A,—27,] with §,=(4,A)e). Therefore applving
Statement III of the theorem to H4 acting on L, one has

Re<Hg, 0> = p(|A™ 2 ¢llg; mro)*— gl A0l
zp'(lels ) —q'l ol

for suitable p’, ¢’>0. Similarly the other statements follows. 0

§4. Not-so-smooth Coeflicients

Throughout this section C denotes an m-th order subcoercive form with
principal coefficients in L., , and all other coefficients in L. and we set H=
dL(C). It is convenient to write the operator in the form

H:HO—‘_Hl
where
H,= - Bx i
’ ﬁ,TEZJ(d’) A Co.r !
1B1=171=m/2
with ¢g,rE Lo and H, is a differential operator of order m—1 with coefficients
in L.. Explicitly one factors each product 4* with |a|=m into a product

Ac=AP*Ar and sets cz.,=c,. Then H, differs from the principal part of H by
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an operator of order mm—1. Next we consider a sequence of regularizations
H® of H,.

Let 7,=C?% be the bounded approximation to the identity used in the proof
of Lemma 2.4 and define C™ and c§, by left regularizations of cg,; with 7,,
ie.,

C™M(Bx, 10, ©=cP(@)=\ dhru(h)eg,(h7'g)=(L(tx)cp.1)(g)
G

where L denotes left translations. Then it follows from the estimates in the
proof of Lemma 2.4 that one has bounds

el =klcs. sl o

for some £>0 and all /{0, 1, ---, m}. Moreover, the form C“ is subcoercive

since for all g&G and pe Lg;w(é; dg) one has

Re@Lo(PP)p, 9)=| dhzu(hRe 3 co(h™'g)A%0, ¢))
:SGdhrn(h )Re@La(P{: e, @)

Zgadhfn(h)#(i\’é; (@)

:/,!(Z‘V;, m IZ(SD))Z ’

where PV is defined with respect to C. So the ellipticity constants g of
H{» are bounded below by the ellipticity constant g of H,. Similarly

lal=

[Im(@ Ls(P§")e, (p)lzlSGthn(h)(Imm o mca(h‘lg)(ll“go, )]

éySG d hT”(/l)(lV ;; m/z(@))z

:)J(l\] é; m /2(?))2 ’
where

v=sup{|Im@Le(Py)p, o)|/(Nrin(@))*: G, 9 Ly(G ; dg), p#0}.

These latter estimates are useful for the subsequent discussion of holomorphy
sectors.

Next introduce the subcoercive operators H{* by replacing the coefficients
of H, with their regularizations, i.e.,

HPp= 3 AP Ar.
FAATALAR

It follows that the coefficients of H{” are in C,... and the results of Theorem
2.1 are valid for the sequence of operators. Let S™ denote the interpolating
semigroup generated by the closures of H{* as a consequence of Theorem 2.1
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and K the corresponding semigroup kernels. Now we consider the con-
vergence of the S™ and K as n—oo by the methods of [4], Section 11.

If S™ acts on L; then by Theorem 3.4 one has S{”L;S L}, for all {>0.
Hence one easily obtains by the Duhamel formula

@, (SP=SP)py=—{ ds<g, SPUHE—HP)S g

So‘“w e
for all p=L; and all ¢=L; where ¢ is dual to p. Here we have used A and
S™ to denote the adjoints of .1 and S with respect to right Haar measure.
Thus 1?1 =—_,+0,/ where 7, -—(—lIA)(e) and S™ is the semigroup generated by
the closure of the operator H”” obtained from the formal adjoint of H{” and

the replacement A,—>AL. Therefore

1 ~
N (SE"’—S‘;“)@[étgodliisi’é’sb!lq; il SEL0ep Ly miel ¢ — ¢l

Whele
“C ! c ”00 _lE “c.f,l (39,),”00-

But it follows from Statement VII of Theorem 2.1 that one has bounds
HSI(LTL)QMIQ; m/Zéat_l/zewtllsb“ér ”SEL)(P”ﬁ; mlzé at_llzewt”(PH n (34)

with ¢ and w uniform in /[ and n. The values of these parameters can be
chosen to depend on the coefficients of H only through the ellipticity constant
¢ and ||Clln. These estimates establish that

<@, (SI—=SEp> | = arest | da e (1=2 29l sl —c

and consequently one deduces that the sequences S{ converge uniformly as
n—oo, since the cp; are left differentiable in the subelliptic directions and
hence continuous. Therefore |¢™ —c®)l—0 as n, [—co by the argument given
in the proof of Lemma 2.4. The limits automatically form a continuous semi-
group 7. But a similar argument establishes uniform convergence of the S{™
on the L,-spaces and hence the limits 7" are a consistent interpolating semigroup.

The convergence of the semigroups also has implications for the kernels.
Since the S{™ converge uniformly on L. one has

lim supS dhIKP(g; h—K(g; h)]=0 (35)

1, nooo =G

for all £>0. In addition Statement VI of Theorem 2.1 gives Gaussian bounds
on K{™ and its left derivatives with respect to the first variable which are
uniform in n. But applying similar arguments to the formal adjoint of H{
and using the symmetry relation of the kernel given by Statement IV of
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Theorem 2.1 one deduces identical bounds for the left derivatives of the kernel
with respect to the second variable. In particular one has bounds

(B K{)Ng; M =at™/™e (36)

for all t>0 and i=1, -+, d’ uniform in g, & and n. Then, however, one readily
deduces from the .£;-convergence (35) of the kernels and the uniform continuity
implied by (36) that
ll]illllwglsgg(;y’/x","(g; h)—K{™(g; h)|=0

for all t>0. Thus the sequences NI{* are .Li-, and .L.-, convergent and hence,
by interpolation, .L;-convergent for all pe[1, oo]. The limits K{ automati-
cally correspond to the semigroup kernel of the semigroup 7 and they inherit
Gaussian bounds from the approximants K {".

Next we argue that K§™ is (m—1)-times differentiable in the first variable
and that the derivatives satisfy Gaussian bounds. Define the function 2 on G
by setting #(g)=K,(g; /) and similarly define 2™ by setting 2 (g)=K{"(g; h).
Then if o= Lg .-, and ac/,-i(d’) it follows from the Gaussian bounds on
AK™ that @H(A‘“‘(p, k> is continuous uniformly m n. Hence 2 is (m—1)-
times differentiable in the subelliptic directions in the L ;-sense for all p<[1, o].
Moreover, if ¢g=1 one has bounds

N n < 7/ n (n) ?

[, A k>[=§l€1§3!\go, AR
for all ¢ Lg; n-, and by continuity for all p=L;. Now define e, for p=0 by
setting e,(g)=exp(plgh~'|’) then for X=L; with compact support one has

|[Xey, A k> <sup|Qe,, 17>
neN
and taking the supremum over X with [|X|;=1 gives

et eI (1 k)(g) | <sup sup e® EPTN (1R )(g)].
geG

nenN

But using the Gaussian bounds on (A"k™)(g)=(A*K{")(g; ) which are uni-
form in n one obtains bounds

(ASK(g; h)|ae o1en i@ sinbimgutionyy

and optimizing over p gives the required Gaussian bounds on [{4“K,)!. An
analogous argument gives bounds on the mixed derivatives |[(A%07K,)|.

The foregoing arguments are the key to the extension of Theorem 2.1 to
operators with principal coefficients in L, -

Theorem 4.1. Let C be an m-th order subcoercive form with coefficients c, =
Lo if ac]n (d’), but with ¢u =Ly if |la|=m. Lel H=dL(C).
L. H is closable on each of the L,-, and L;-. spaces and the closures H
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generate a consistent interpolating semigroup S.

II. S is holomorphic in a sector Ag={zC : |argz| <0} with 6=0c.

III. The action of S, is determined by an integral kernel K,= Cy(GXG)
and t—K,(g; h) is analytic from <0, o) into C for all g, heG.

IV. For each nEN the derivative 0t K;, with t >0 fixed, is (m—1)-times L -
(left-)differentiable in the first variable and there exist a, b, ¢c>0 and w=0 such
that

A —n (D" _ -1 ~1y1/(m=-1)
\(A“O;"Kz)(g; h)}éac"n!t np-(D'H1an/mywt, b(lgh—lyryme-1y1/(m

for all neN., t>0, g, heG and all multi-indices a with |a|<m where the . are
the left derivatives with respect to the first variable. The values of a, b, ¢ and
® depend on the coejjicients c, through the ellipticity constant p and the parameter
IClla= 2 lcaliom 2 lcaliw-
alal=m aed p-1(a2")

V. For each pe[l, o], t>0 one has SiL, S Lpjm-1, SiIL3 S L;m-1, there
exist a>0 and w=0, depending on the coefficients c, through p and |Clln, such
that

”flaslupqpé at—lal/mewt, “A“Sc“i;-»ﬁ-ﬁ at—ltu/mewt

and A“K, is the kernel of A%S,, for all asJ,_(d’).

Proof. Let T be the semigroup constructed above as the limit of the S,
The S™ are all holomorphic and it follows from the construction of the regu-
larizations that their holomorphy sector contains the common sector A,,. But
the proof of uniform convergence of the sequence n— S{® for >0 applies
equally well to S for all z£A,, because the replacement of ¢ by z=te*’ cor-
responds to the replacement of the subcoercive operator H, by the operator
¢'?H,. Now 6@ is chosen such that '’ H, remains subcoercive for |f|<0. and
the replacement H,—e¢*?H, only alters the values of the parameters such as the
ellipticity constant which enter the estimates. Therefore T is also holomorphic
in a sector containing Ag.

Next let H§ denote the generator of 7 acting on L; for some fixed pe
[1, «]. We wish to argue that H{” extends H,. First for p& L}, and ¢
Lj.mie one readily checks that

lim <, H{"p>=<p, Hop> -
Therefore for p=L};, and ¢=L; one has
{§, SHY—Ho)py=lim <¢, S{V(H—HiP)p) .
Secondly, using the estimates (34) one obtains bounds

¢, SSP(HT—HP)p> | <as™ e[ Pllglle) G nelc™ —cP e
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which are integrable at s=0. Hence an elementary calculation together with
the Lebesgue dominated convergence theorem gives

£ I=Togr—t{ ds<g, Tutlp)

=lim(+4g, (=St dscg, SCHg)

=0

and it then follows immediately that H§> extends H,.

In order to prove that H{ is in fact the closure /7, of H, it now suffices
to prove that R(AI+II,)=L; for Re A large. This we will achieve by use of
the resolvent estimates of Section 2. First it is convenient to reexpress H, in
the original form

H= > c .
acd q(d’)
Then the ¢, can be identified with the principal coefficients cg,; or their left
derivatives of order less than or equal to m/2. Similarly the regularizations
H§” can be expressed in the form
Hf)m: Z Cn,cvl{l

acd p(d’)

and the ¢, , are identifiable with left derivatives, of order less than or equal
to m/2, of the regularized coefficients c%y. Then we let r(* denote the para-
metrix approximation defined by (18) of the resolvent of the constant operator
H{™ ¢ obtained by fixing the coefficients ¢, , with their values at g. Now it
follows from the estimates of Section 2, together with (33) and the inequalities
g =p for the ellipticity constants, that one has bounds

I p=c(Re )7 37

if Re 4 is sufficiently large, with the value of ¢ independent of n and 2. Mo-
reover, if ¢eC? then rPpc L}, for Rel large enough (see Step 2 in the
proof of Theorem 2.1). Moreover, one has bounds

”rﬁn)@” pm gC(Re )\>ﬁ1H§D“ /f;; mr

with ¢ independent of n and A. Therefore one has estimates

I —r

ol p=cRe D7 llcw—cillwlils; nr

where we have now defined

ch"Csz: 2 ”cn,a_cl,a“w .
acd pd")

Consequently

[lim I(r—rE)pl 5=0
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for all p=C7 and p[l, 0l So rip=lim,..7{Pp exists for all ¢=C(G).
Since r{™ satisfies the bounds (37), it follows that |r,¢l;<c(Re )Y ¢ll; for all
¢=CZF(G). Hence r; extends to a continuous operator on L, still denoted by
71, such that [7;];.5<c(Red)”'. Next note that the formal adjoints H; and
H{™ of H, and H{" are defined on Lj,, where ¢ is dual to p and

lim || (H§"— H o))l =0

for all ¢=L},, by similar estimations. But H{"™ has C=-coefficients and hence

g;m

it follows from (19) that
KRIH+HMY, rPey=Ld, o>+, QP )

for all ¢=L;,, and p=C7 where the QY” are bounded operators satisfying

bounds
Q¢ s.5=c(Re )~ 1/™

uniform in n and A for sufficiently large Re A. The uniformity in n again
follows from (33) and the bounds g =p. Then the foregoing observations
allow one to conclude that

lim (<&, @>+<¢, Qo> =<RI+H)P, 710>

for all ¢=Lf,, and o=C?. This suffices to conclude that the Q4" converge
to a bounded operator @; satisfying bounds

1Q1ls-5=c(Re )™

for sufficiently large Re Z. Since rPp&L’; . and [r{¢lisn=cRe D)7 |@l};nr
uniformly in #n, it follows that

[<A¢, f’zg0>l=1ni£rolci<r1“¢, riPey | =c(Re D)7 Plal @il 5; e
for all ¢=L§,, and eeCFG). So ripe Ly, for all o=CT(G). Therefore
(AI+-Hy)rp=1+Q ¢
for ¢=C7 and then by closure
AI+H)rip=(I+Q )¢
for all ¢=L;. Replacing ¢ by (/+Q;)*¢ one concludes that
AI+Hyri(I4+Q ) =0

for all sufficiently large Re . Thus R(A/+H,)=L; and hence H{*=H,on L;.

The above calculations have been made relative to the L ;-spaces but similar
reasoning establishes the same conclusion, H{®=H,, on the L,-spaces. There-
fore at this point we have demonstrated that the L,-, and L;-, closures of
H, generate a consistent interpolating semigroup 7. Next we appeal to per-
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turbation theory.
First note that

(KA, Sy | <at~ v me P4l ol 5

for all acJy-(d’) and ¢=L;,,. Since the bound is uniform in » it follows
in the limit n—co that T, L3S L}; n-: and

AT Mo p S attotimeet,
for all t>0. Therefore T,L;SD(H,) and
1H\Tll3-<a’t-(m-bimgot (38)

for all >0 and a suitable a’>0. Since the right hand side is integrable at
t=0 it follows that H, is a perturbation of the generator of T in the sense of
“time-dependent” perturbation theory (see, for example, [2] Theorem 3.1.33)
on each of the Lj-spaces. But an analogous argument demonstrates that H,
is also a perturbation on the L,-spaces.
The perturbation estimates (38) on the L ;-spaces, and their analogues on
the L ,-spaces, ensure by standard perturbation theory that H=H,+H, and H
generates a continuous semigroup S on each of the spaces. The semigroups
S and T are related by the series expansion
Si=3 8™

nzo

with S®™=T, and
t
spo=—{ dsspH 0.,

The perturbation estimates ensure that the series is uniformly convergent on
each of the spaces and hence S is also a consistent interpolating semigroup.
Moreover, S is holomorphic with the same holomorphy sector as 7. In particular
the holomorphy sector of S contains Ay,,.

The semigroup T has the kernel K constructed as the limit of the ap-
proximants K and it follows from the estimates on 4A"K, with e/, _,(d’)
that

](HlK({”))(g; h)§§at‘w'*m"“”’”e“"g‘b“'g’l""’>'"""”“"‘1) (39)
for all t>0 and g, heG where the left differential operator H, acts on the

first variable of K{. Therefore estimating as in the appendix of [4] one
deduces that the perturbation series

R

0

Kt:

I

n

n

defined by setting K=K and

kgn-x 1):_(]“("(11);‘1111%(0)%
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is uniformly convergent. Moreover, the recursion relation gives

supgpdﬁe’”“‘”'lﬁi"*”(g; )|

ge6 JG

gsupg dberiet= v | Kiw(g: k)lsupg dhe? " | H KOk 3 h)|
G keG JG

gEeG

for all p=0. Therefore using the bounds (39) and solving iteratively one obtains
bounds

e""g’"l"lK,(g; h)! éat—D'/mem(HP’")t

for all p, t>0 with the values of ¢ and w independent of p and . Minimizing
over p then gives the Gaussian bounds on |K,|. Similar arguments establish
that K, is (m—1)-times differentiable in the first variable, the derivatives are
given by the sum of the derivatives of the terms of the perturbation series
and the derivatives satisfy appropriate Gaussian bounds. The bounds on the
derivatives 07K, and the mixed derivatives are then derived as in the proof of
Theorem 2.1.

The proof of the remaining properties of K and S are again a repetition
of the arguments of Section 2. O

Under slightly more stringent assumptions on the coefficients of the sub-
coercive operator one can reestablish all the results of Theorem 2.1.

Corollary 4.2. Let H be an m-th order subcoercive operator with coefficients
CaS L1y for all a=],(d’). Then all the statemenis of Theorem 2.1 are valid.

Proof. The assumptions of the corollary are sufficient to ensure that the
formal adjoint of H is defined and satisfies the hypotheses of Theorem 4.1.
Hence all the conclusions of this theorem are valid for the operator and for its
formal adjoint. But then it follows straightforwardly that the semigroup
generated by the closure of the formal adjoint has a kernel which is related
to the kernel of the semigroup generated by the closure of H by the relation
given in Statement IV of Theorem 2.1. Moreover, the extra differentiability
give by Statement V of the theorem follows by use of this adjoint relation
as in the proof of Theorem 2.1. O

Next we aim to establish improved smoothness properties of S and K by
the derivation of more precise regularity properties of H. These are defined
in terms of Lipschitz spaces which interpolate between the L. ,-spaces. In
particular if (¥,, &,) is an interpolation pair of Banach spaces, y=<0, 1> and
g1, o] we use (X, X3)..qx to denote the interpolation space constructed by
Peetre’s K-method (see [5], Definition 3.2.4).

Theorem 4.3. Let H be an m-th order subcoercive operator with coefficients
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€ Loy m for all acs[,(d") with |a|=m. Let y=<0, 1> and g1, oo]. Then
DU)S(Liymor, Lo wdrigs
and there exists ¢>0 such that
[ @lloo; w157 0; &k S €77 ™| Hpllw - cE™ M1 ™ o]

for all goeD(ﬁ) and =<0, 1] where the norm on the left denotes the norm on
the interpolation space. Moreover, if S is the corresponding semigroup then

StLpg(L;o;m—b Léo, m)r,q;[(; StLﬁg(Léo;m—h L;O;m)r.q;K
for all ps[1, ] and t>0.

Proof. First we need some general observations on the interpolation spaces.
For brevity let

Lr,q:([‘w' L;O;l)i‘,q;lx’, Lm—l;].q:(L;G;’m—-ly Léc;m)r.q; K -

Now the action of the generators A,, 7=1, ---, d’ can be defined by restriction
on these spaces and we let L;,;, denote the subspace MNgaes, @ D(A") on Ly q.
Then it follows from [9], Theorem 2.1 Statements [ and III, that

’ —
Lrvq; m—l—Lm—l;T.q

with equivalent norms. Next let Ly,(L) denote the p< L. such that

[,22(12177 (111U~ LigNglar< o

where 2 is some bounded open neighbourhood of the identity e=G. Then
Ly.o(L) is a Banach space with respect to the norm
1/q
i e=lgla+ (| datlg1D 7 g1 71— Lighglx) .

These definitions have an obvious modification if g=co. Moreover, L;,(L)=
L;.,, with equivalent norms, by [9], Theorem 3.2, for all y=<0, 1) and ¢g&
{1, o]. Now we aim to prove that if goeD(ﬁ) then A%pe Ly (L) for all ac
Jn-(d"). Therefore D(H)S L} ¢m-1=Ln_1,7.4 by the previous identifications.

We begin by assuming that g=co and that all coefficients are in C,.. and
then prove

I(T—= LGN A QI+H)  pla=c(l k| 2= =10 /m g, (40)

for all keBi, ac[n-1(d"), <0, 1), all large 2>0 and all p= L., with some
constant ¢>0 which depends on the coefficients of H only through ||C||;, and
the ellipticity constant g. Subsequently we use an approximation argument to
establish a similar conclusion for the general case with not-so-smooth coeffi-
cients. Finally we use the reiteration theorem to remove the condition on g.
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Once we have established (40) in general the desired conclusion follows im-
mediately. Moreover, the inequalities of the theorem are also a consequence
of these bounds and the equivalence of the norms of the spaces L;.g -1 and
Lo-i;1.9:

Let 7; be the operator which we denoted by »$ in (18) and by r;,, in the
proof of Theorem 3.4. Then (A/+H) '=r,(I+Q;)* for large A>0, with Q,
a continuous operator with norm less than or equal to 27!. So it is enough to
prove (40) with the operator (A/+H) ! replaced by r;, i.e., to prove

[(I— LD A%r 2l w<c(| R |)A= 71D IM ]l

under the above restrictions.

Step 1. Suppose ¢.&Cy for all a= ] ,(d’) and g=co.
Let k=Bl ac/,-.(d’) and p L. Further, let R4 be asin Step 2 of the
proof of Theorem 2.1. Then

((I—=L(k) 1°7200)(g)

= gr d h(APGTRE)()p(h~1g)— (10" Ry #)(h)p(h ™'k~ g)

(3. NELb(a) )G

= 3 Spdh(‘1'3871?%)(11)93(/1‘lg)—(.’15671?’j“‘g)(le‘lh)go(/z“g)

(B.VELb(a)J)G

—_ 18 __(AB3 -1 -1

<,9’Y§E;Lb(a)gcdh((‘ll3TR§)(h) (AP5TRE) R h))p(h~'g)
+((APGTRE) (k" h)— (APSTRY ) B~ h))g(h 1 g)

for g almost everywhere in G. Therefore if [|¢j-=<1 then

II—= LN Ariples= = 2 Suggadh [(I— L(k))-APo"RE)(h)|

(3. 1)ELb(a) g€
> Supg dh | (A% REY ) — (ST RE'2) ()] .
(3. 7,ELb(a) geG )G

We consider the two terms separately. The second term is the easiest. Let
(B, ’eLb(a). Then

supg d 1| (APTRE) h)—(APST RE'#)(h))|
geG JG
gg d h sup| (6" R&)(h)—(APor RA'#)(h))|
G g6

<2d’|k|" max Sdhsup](r’lﬁ&aTRg[)(h)l
ic(l,: ,d"}JG g'eG
<2cd’ |k |/ - m-1d0/m

where the last inequality follows by the equalities in the proof of Proposition
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3.2 and the independence from g of the bounds in Lemma 2.2.I. The constant
¢ depends continuously on g and ||C|n.
The first term is more difficult. Let (8, r)eLb(a). By (25) we can write
(67 A8 R4 )(h)_ ) nz(b)g dtl...gwdtle—,?(t1+ )
1=2 ag,, a]EJ(d") 0

lagl=layi=m

-(Asz%l*A“?Kfz*-- x A2t KE)(h)

where cb, ..o, are polynomials in the A’c. with d</,;(d’) and e=j(d’) with
le|=m. So we have to estimate

supg dh”wdtl---rdtle‘““*' SO((I— LR APK s A% K £ -+ x ATKE)(R) |
geG)G [] L]

=sup sup gd/lg dtl...\‘ dt,e"““*'*“’
8E6 peePy1VE Jo Jo
loloo<1

((T— LU AP K E A2t - *_411111\'5,)(11)99(11)'

=Ssupsup sup
g€G hel 0ECT(®)
1p'co=1

((I— L) APK f A K £ oo % A“UKE *gp)(h)’

Swdtl---gwdt,e"““*""”
0 0

=sup sup [(I— L(k)) AP+ HE) A% AT+ HE) - AW+ HE) ' g|.ry

€C vecP©®
Hgaﬂoosl
for all [€{2, -, [7]+1} and all a,, -+, evc{l, -+, d’}™, where ¢(h)=¢(h™?).

The last equality is by Lemma 3.1.III. Therefore we have effectively reduced
the problem to a comparable problem for operators with constant coefficients.
Now for j={2, ---, I} let a’, a”<=]_(d’) be such that a=<a’, a”) and
lar|=l—j+1,
la? | =m—I+j5—1.
Then for all ¢e=<0, 1—7)> we have
sup sup I(I—L(R)APQAI+HE) " Ax(QI+HE) ™ - A+ HE) '¢|w

G vecP®
tI(pllocsl

<Sup|[(7— LIDWARQI+HE) 14120/ | A QI (HEY) 4107

l- _— X i
. ]1}; “‘4«'}(21_1_111;)—(m—t+;—1+z—l)/m“w_m, ,r=[3 HA(“'j)*(lf—{—H?)*)‘”““”2'])’"‘H1_,1

NN AT AT+HE) | oo .
But

IA*AI+HE) oo <A™ mem120
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for all |a|<ma<m and all A large enough, for some constant ¢>0 independent
of g. A similar estimate is valid on the dual space. Moreover,

[(I— L(R) ABQAI+HE)- (m-t1-aym)
= sup [|(/— L(k)APQAI+HE) m-iri-oimgp)|,
\'ﬁﬂ“g’i
<c(| k") sup [[(AI+HE) m-t+1=0mp| g1
¢ELoo

plloo=1

Sc(|k 1Y sup I(m—l+1—)| dt tnt+171034) S 1.

H¢Hm§3
<cc/(1| P Tm—141—) | dt roivi-emimitpasienm
0
<c¢(| b | /)rz(—m+l—1+e+lﬂl+7)/m

for some ¢>0 which depends only on 7y and m, and some ¢’ >0, which is uni-
form for g&G because it is obtained from interpolation of the bounds on
|SE)| zeonreo ANA || SFl Lot Combining these estimates we obtain the bounds

[(I—L(E)AripllaZc(| kYA~ Mmtai=DIM ],
for all keBj and ¢& L.

Step 2. Let co= Lo, for all asj(d’) with |a|=m.

In this step we remove the restriction of the C>-differentiability of the
coefficients. Let H,, H,, »{¥, r, and Q; be as in the proof of Theorem 4.1. Let
acs ], (d’) and k=B;. By Step 1 there exists ¢>0, independent of n and 2
such that

(= L(RDA“rPple=c(| k|- 1D 0],
and
[ AP Polle<cd™ ™10 I™ i,

for all p= L., neN and large 1>0. Now let o= L.. Then for all ¢ Li;n_,
and a=J,_,(d’) we have

1(A%¢, rag) | =lim[(A%Q, riPg)| <ca” ™ 1P ™ ]l

for all large 2>0. So r;p& L n-.. Moreover, for all keB] and ¢=CF(G)
one has
[(A*(I— L(R))¢, ”9’”:?51](‘4“([— L(k), ri¢) |

Sc(ik|yra- eI gl ol
for all large 2>0. So

I(I—=L(RNAr @] -Zc([RiI7 A~ M1e1=DIM o], .
Hence
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(= LN AR+ H) gl =c(| k| /YA m10iDim g

since (AI+H)r;=I+Q,; and Q; is a bounded operator with norm less than 27!
for large 2.

Now we return to the operator H. By (38) the operator H, is a small
perturbation of the operator M, so by the proof of Theorem 3.5 in [6] we
have that H,(A/-~H,)"! is a bounded operator with norm less than 2! for large
A and

(AI+H) =1+ Hy) *(I— Hy(A I+ Hy) ™)™

for all large 2. So (AI+H)'¢& Ll », and
I(I=LUGNA*AI+H)  pla<c(| k|2 1017 o]
for all «a=J,_,(d’), k=B] and large 4. This proves (40) and
[RIAH) 0] oy, g S A 1S1D I ] (1)

Step 3. Suppose ¢,& Le;n for all aej(d’) with |a|=m and ¢€[1, oo].
It follows by interpolation from (41) that

l|(11+1'_1)_190||w, m-1;7.4q; Kgcz—(m_lm_n/m“w”w

for all large 4, ¢ € La, 2 € Jn1(d’) and 7&<0, 1>. Hence D(H)S(Liym_y,
Lo m)r.qx and

”90“»0; m-17,q; KgS1—r/m”ﬁgo’lw_*_cs—(m—1*7)/m”§0“w
for all £>0.

Finally note that since S is holomorphic on each of the L,-spaces it follows
that S.L,SD(H) for all £>0. Therefore S,L,S(Liym-1, Lim)r.qx. A similar
conclusion is valid for L. O

If one applies the foregoing arguments to the subcoercive operator H acting
on C, instead of on the L,-spaces then one draws an analogous conclusion
D(H)E(Cé;m—h C(I), m)T,q;K .

But S;L,EC, for pe[l, > as a consequence of the ‘Gaussian’ bounds on the
semigroup kernel. Hence SbL,,gSmCogD(ﬁ ). Thus we can improve the last
statement of Theorem 2.1.

Corollary 4.4. Let H be an m-th order subcoercive operator with coefficients
S Loy m for all acJ(d’) with |a|=m and S the corresponding interpolating
semigroup. Then

StLpg(C(/);m—x; Cé;m)]‘,q;K; StLﬁg(C(,);m—l, C(,);m)T,Q;K
for all t>0, p=[1, >, 10, 1) and g=[1, oo].
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The estimates (40) also give bounds on ‘Lipschitz derivatives’ of L.-func-
tions and the semigroup kernel.

Corollary 4.5. Let H be an m-th order subcoercive operator acting on L.
with coefficients ¢o€ Lo for all acsJ(d’') with |al=m. Then for y<<0, 1)
there exist ¢>0 such that

I(I—L(EN A= (| k| V(= 21P/™| Hpllwt-cem1*17P ™ ] |.,)

for all keB], ac ] ,_(d"), goED(ﬁ) and £=<0, 17. Consequently the correspond-
ing semigroup kernel K satisfies bounds

(= L(E)DAK)(g; h)i Sc(| k]t Prriarsniment

for all keB}, ac ] ,-(d"), t>0 and uniformly for all g, heG.

Proof. The L.-inequalities are a reexpression of the estimates (40) with
e=21"1. The kernel bounds for small ¢ then follow from the observation that

[(I— L(ENAK)(g ;5 M <[(I—L(RDA*S 1
SR (e 0PI HS i mt-ce™ 0TI S0

together with the kernel bounds of Theorem 4.1 and the choice e=¢. The
bounds for large ¢ follow by use of the semigroup property from the small ¢
bounds. O

§5. Conclusion

Although the foregoing results provide a fairly satisfactory basis for the
theory of subcoercive operators with variable coefficients they do leave open a
number of obvious questions concerning regularity properties. First, we have
shown that the semigroup kernels associated with m-th order operators with
smooth coefficients are themselves smooth but we have only obtained “Gaussian”
bounds on derivatives of order less than or equal to m—1. Naturally one ex-
pects such bounds in general. Secondly, we have established that if the principal
coefficients of the m-th order operator are m-times diflerentiable then the range
of the corresponding semigroup S consists of functions which are “almost” m-
times differentiable. But if the lower order coefficients are also sufficiently dif-
ferentiable then one might expect the range of S to consist of functions which
are more than m-times differentiable, i.e., one would expect the action of S to
be smoother than the principal coefficients. Properties of the latter type have
been established in the special case of second-order operators with real coeffi-
cients in [4]. Thirdly, it would be ideal if one could completely relate smoo-
thness of the coefficients and the action of the semigroup. For example, if the
leading coefficients are n-times differentiable and the lower order ones (n—m)-
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times, with n>m, does S map into functions which are ‘almost’ (n4m)-times
differentiable? In this respect it is worth noting that Theorem 3.6 of [1] gives
conditions under which the semigroup S associated with a strongly elliptic
second-order operator maps into the (n-+1)-times differentiable functions in L,.

We conclude with some remarks on the simplest and most significant case
of second-order operators. In particular we compare and contrast our results
in this case with the complementary results obtained earlier in [4]. Note that
each second-order operator H can be expressed in the form

da’ [
H=— > Cu-'lwl;‘i" > cz"lz_"cn
521 i1

and subcoercivity corresponds to uniform strict positive-definiteness of the real
part of the matrix C=(c,,) of principal coefficients, i.e., there is a £>0, the
ellipticity constant, such that 2°(C+C*)=pl, in the sense of matrices, uni-
formly over the group (see [10] Proposition 6.7).

The principal result, Theorem 1.1, of [4] imposes the two additional re-
strictions

a. the c,, are real-valued and ¢,,=c,,,

b. the ¢,,€ L,
and concludes that

1. H has a family of closed extensions H on the L,-, and L;-, spaces
which generate a consistent interpolating semigroup S,

2. S is holomorphic on each of the spaces L, or Lj,

3. the range of each S, t>0, consists of functions which are ‘almost’
twice left-differentiable in the subelliptic directions.

By the last statement we mean that the functions are once left-differentiable
in the subelliptic directions and the derivatives are Lipschitz continuous with
exponent, measured relative to the subelliptic directions, arbitrarily close to one.

In contrast Theorem 4.1, with m=2, states that if

a’. the c¢,, are complex-valued,

b’. the ¢,,& L3,
then

1’. the closures of H generate a consistent interpolating semigroup S,

2. if vIZ2(2)(C—C*)=—»I and fc=arctan p/y then S is holomorphic on
each L,-, and L;-, space in a sector with angle 6>=6.,

3’. the range of each S,, t>0, consists of functions which are ‘almost’
twice left-differentiable in the subelliptic directions.

Thus our current assumption a’. is less restrictive than the assumption a.
of (4] but b’. is more restrictive than b. The current conclusions 1’. and 2’.
are, however, stronger than the comparable conclusions 1. and 2. of [4] whilst
3. and 3'. are identical. It is remarkable that under the assumptions a. and b.
of [4] the action of the semigroup S is smoother than the principal coefficients
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and it is this phenomenon of increased smoothing that needs to be better un-
derstood.

There are also several other similar implications contained in [4] and the
foregoing sections. For example, the identification H=H is established on L.,
in [4] for real-valued c,;€ L&, but much greater smoothness is required both
of the principal coefficients and the lower order coefficients to obtain a similar
result on the L ,-spaces with p< oo, and in this respect Theorem 4.1 is a distinct
improvement. In addition both Theorem 1.1 of [4] and Theorem 4.1 give
existence of a semigroup kernel with Gaussian bounds etc.

It is possible to improve both the above results by combination of the
techniques used in their proofs. The strong points of the [4] result are based
on approximation arguments, similar to those used in Section 4, which involve
a priori inequalities for subelliptic operators with smooth real-valued coefficients.
There are three types of a priori inequality used, the L,-, and L.-, bounds of
Proposition 3.1 and 3.2 of [4] and the Gaussian bounds on the semigroup kernel
in Proposition 10.1 of [4]. The important feature of all these bounds is they
only involve first derivatives of the ¢,, in the subelliptic directions. But the
L,-bounds can easily be established for second-order operators with complex
coefficients by repetition of the arguments of [4]. Positive-definiteness of the
matrix (c,;) is replaced by positive-definiteness of its real part. The proof of
appropriate L.-bounds is slightly more delicate. The proof in [4] relies on
some basic L s-bounds for operators with constant coefficients given by Rothschild
and Stein [21] and repetition of the arguments of [4] requires an extension of
the Rothschild-Stein bounds to complex-valued operators. In fact the Rothschild-
Stein proof of their inequalities does not require reality of the operators but
also applies to operators for which the matrix of principal coefficients is her-
mitian. But the general case is a consequence of Folland’s inequalities, [127,
Theorem 6.1, for stratified groups and the Rothschild-Stein lifting technique.
Finally the derivation of kernel bounds which are only weakly dependent on
the smoothness of the coefficients can be achieved by modification of the deriva-
tion given in {4] for the real-valued operators. This argument is based on the
adaptation by Fabes and Stroock [11] of a technique of Davies [7]. The
Davies method uses L,-positivity techniques on the L,-spaces with p=2 com-
bined with Nash inequalities to bound the norm of S as an operator from L;
to L.. This approach can be adapted to operators with complex coefficients
and this will be discussed in a later paper.
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