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High-Energy Behavior of Total Scattering Cross
Sections for 3-body Quantum Systems

By

Hiroshi T. I'To*

§1. Introduction

In this paper, we investigate the high-energy behavior of total scattering
cross sections with 2-body initial states for a 3-body system.

A 3-body Schrodinger operator is given by
(1.1) H=— > @my)'de + 3 Viro—r,) in LARY).

157<3 1517 23

Here m,>0 and »,=R" (N=3) are the mass and the position of the j-th particle,
respectively, and V,, is the interaction between the 7-th particle and the j-th
particle. All V,, are real-valued functions and satisfy the following condition
for some ¢=N\/ {0} or ¢=3/2 (N={1, 2, ---}):

(V), 7,,(x)eC***(RY) and there exists a 0>£-+((N+1)/2)
such that
(1.2) [0V, (%) < Cx)y~d

for all multi-indices y with || <2¢+2, where {x>:= 1+ |x%)"%

Let H be the Schrodinger operator obtained by separating the kinetic energy
of the center of mass from H. H acts in 4 :=L*R*Y), and its explicit form
depends on the coordinates of R*Y. We adopt the Jacobi coordinates. A parti-
tion of the set {I, 2, 3} into nonempty disjoint subsets is called a cluster decom-
position. We call {(1), (2), (3)} (resp. {(7, 7), k}, i1<j) a 3-cluster decomposition
(resp. a 2-cluster decomposition). We denote by A, the set of all 2-cluster de-
compositions. For a=A4, with a=/{(7, j), k}, we define the Jacobi coordinates
(Xa, Ya) by

M, +nr,
(1.3) Xa=Vi—7; L ————
i J
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Let b= A,. Then x,, y, are linear combinations of x,, y,. By the coordinates,
H is expressed as
(1.4) H=H+V=—02m,)"'4.,—(2n,)"'4,,+V,
where V———1 > Vg and V=V ,(rp—#,). Note that r,—r, is expressed as a
splgs3

linear combination of x,, y,. m, and n, are the reduced masses defined by
me ti=m, 4myY, ng Tt i=m, " 4 (m,+m,)"", respectively.

Under assumption (V),, H is self-adjoint with domain D(H)=H?*R?"), the
Sobolev space of order 2.

For a€ A, with a={(7, j), k}, the cluster Hamiltonian H, is defined by

(1.5) H,:= H,+V,,, D(H,)=H*R*).

H, is expressed as H,=h,QRId+IdQRT, according to the decomposition K=
LYRY ))Q LXRY ), where h,:=—2m,)'4;,+V,, and T,:=—(2n,)"'4,, are
self-adjoint in L*RY,) with D(h,)=H*RY,) and in L*RY)) with D(T,.)=
H*RY ), respectively.

Let d, be the number of strictly negative bound state energies (counting
multiplicity) of h,. It is known that under assumption (V),, d, is finite (cf.
[RS] IV, XIII. 3). We set the set of the 2-body channels with negative bound
states energies:

(1.6) [y:={a=(a, k); ac4d,, 1<k<d,, keN},

and write D(a)=a for a=(a, k)= ;. For each 2-body channel a={(a, k)=l
we denote by 4,(<0) the k-th negative eigenvalue of h, and by ¢, the eigen-
function of h, with eigenvalue 4, such that {¢,} (a1, D(a)=a) is an ortho-
normal system for each acA4,. For each a=(a, k)= /", the channel Hamiltonian
H, in L*RY, and the channel identification operator J,€B (L*RY,), %) are
defined by

(17) Huzxa‘i"Ta; ]au:¢a®u ’
respectively. Here we denote by B(X,Y) the space of all bounded linear
operators from X to Y. Under assumption (V), the channel wave operators :

(1.8) W= s-lim ¢'# ] se~*Hac B(LXRY,), )

t— koo

exist (see, e.g. [RS] Ill, Theorem XI. 35).
We set

(1.9) I':i=T1,0{0},

where 0= stands for the 3-body channel.
For the 3-body channel the channel Hamiltonian is H, and the channel wave
operators are defined by
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(1.10) W= s,t-lim et~ Toc B(4Yl) (B4 = B4, I4)) .
The existence of the channel wave operators is also known (see, e. g. [RS] 1II,
Theorem XI. 35).

Throughout this paper we only consider the case where the initial channel
belongs to [, and the final channel belongs to /. The scattering operator
Sa.p for scattering a—f (a=l%, f<l’) is defined by

(L.1D) Sapg=WHWy,

where .1* denotes the adjoint of an operator 1. Since the intertwining prop-
erty, exp (itHg)S,.s=S..ze€xp (itH,), holds, S..s is decomposable by a family
of operators {S..g(d)}, A>25, 1= max (4., 4p) (cf. [AJS], 15-3). The representa-
tion formula of T,.p(2):= S,.s(A)—0s. Will be given in the next section and
the Appendix, where 03, is Kronecker’s delta and we set A3=0 if f=0. T._(2)
is defined for a.e. 2>2g, as an operator in B(L*(S¥™!), L¥S?)), where S#f:=S%"!
(the unit sphere in RY) for 80 and S*=S*¥-! for 8=0.

If 8#0, Ta.p(2) is well-defined as a norm continuous function of 2>0 and
is of Hilbert-Schmidt class with kernel T,.s(2, 0, ), and T..5(4, -, ®) is
L*SY-Y)-valued strongly continuous function of 2>0 and w=S5¥""' (Proposition
2.3).

I'o treat the case 8=0, we need the following condition in addition of (V),:

(Z) For each a=/{(, j), k}=4,, —1 is not an eigenvalue of the following
bounded operator on L*RY ):

(1.12) ViA(—@2ma) 4z, —0—i0)7H |V, |12,

(:=1lm V32— (2my) 4., —0—ie) |V, [17%),
€L0

where V2= |V (x,)1"*sgnV,,(x,) and the existence of the norm limit is
known (cf. [GM], Proposition 3.1)).

Assumption (Z) implies the absence of zero eigenvalue of h, (cf. [GM],
Proposition (3.4)), and assumption (V), implies the absence of positive eigen-
values (cf. [RS], XIII. 13). Therefore, it follows that the set of all eigenvalues
of h, coincides with the set {i,; a=[%, D(a)=a} under assumptions (Z), (V).

Under assumptions (V), and (Z), Ta..(4), is of Hilbert-Schmidt class with
kernel T,..(4, 0. ) for all large 2>0 and the integral

(1.13) [ o2 Ta@ 0, 0)1%d0

is continuous in 4»1 and w=S¥~! (Proposition 2.4).
Now we give the following definition (see [AJS], p. 627):
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Definition. The total scattering cross section g..s(4, ) for scattering
a—fB (asly, B=I) at energy A>1 and incident direction w=SY* is delined by

Q1) oansld @)i= @012, 2100 1T s, 0, 01740,

under assumption (V), for f+#0 and under assumptions (V), and (Z) for §=0.
The total scattering csoss section for an initial channel « at energy A>1 and
incident direction weSY ! is defined by

(1.15) 0o(4, @)= 2 0a-5(4, ®)
3el’
under assumptions (V), and (Z).

For a={(s, 7). k} =4, we define the intercluster potential [, by

(116) [a(xay ya)IV—V,](-\fa)
and set
(1.17) Waltes w, 7) = Skla(xa, tw-+n)dt

for =S and yell,:= {é=RY; £-:w=0}. (-, ), and |-}, denote the L*-
scalar product and the L®norm in L*RY ), respectively.
Now we state our main results.

Theorem 1.1. Let a<l’, (a=D(a)) and B, and let the notations be as

above.
(i) Assume (V) with teNU{0} and B, with D(B)+a. Then

(1.18) G p((1/2) 10+ 4a, @)=0@™ ")

uniformly in @wcSY"! as y—-+oo.
(i) Assume (V), and Bel’, with D(B)=a. Then

(119 o s(1/2n0 e, @=0] Vol 5 0, e Ga)al*dn+o0™)

uniformly in @w=S¥! as v—+co,
(iii) Assume (V),, (Z) and B=0. Then

(120) dm,ﬂ((l/Z)nuvZ—l—la, a)):U_ZSH ”Pc(ha)u/u(' s @, 7])¢n”u2d7]+0(vkz);

(1.21) 0a((1/2)n,0*+2a, w)=v‘zgﬂ Wa(5 @, alla®dn+o@™),

uniformly in @€S¥"' as v—+oo, where P°(h,) is the orthogonal projection onio
the continuity subspace of L*RY)) with respect to h,.
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Theorem 1.2. [If we replace assumption (V), by assumption (V) in (ii),
(iii) of the above theorem, all the remainder terms o(v™%) in (1.19), (1.20), (1.21)
can be replaced by O(v3).

There are several literature on 3-body total cross sections ([APS], [ES],
FAJS], [AS], [I3, [IT]). In particular, bounds on the total cross sections at
high energies for many-body systems are discussed in [APS], but the asymptotic
behavior are not discussed in it. In TAPS] and [ES] the approach to study the
total cross sections is the time-dependent one, while our approach is the time-
independent one and is based on the representation formula of the scattering
matrix and some resolvent estimates, which is proved by using multiple com-
mutator methods ([JMP]). A similar approach is carried out in [I]. In [Ha]
the convergence of Born series for (2-cluster)—(2-cluster) T-matrix for n(<4)-
body systems at high energies is proved.

The organization of this paper is as follows. In Section 2 and in the Appen-
dix, we shall review some properties of T,.s(4, 0, w) and prove the optical
theorem (Theorem 2.5). The proof of Theorems 1.1 and 1.2 will be given in
Section 3. A proof of Proposition 3.1, which is crucial for a proof of Theorem
1.1, will be given in Section 5 by using the abstract commutator methods (Theo-
rem 4.2) in Section 4.

§2. Representation Formula of 7',.3(4, 6, »)

In this section we will give the representation formula of T,..s(4, 6, w) for
acly, (a=D(a)) and B, and will prove the optical theorem.

We first consider the case B</ with b=D(B8). The next lemmas are
crucial for our representation formula of T,..3(4, 0, w). We write R(z)=
(H—2z)™* for Im z=+0.

Lemma 2.1 ((M], [PSS]). .lssume (V), and s>1/2. Then the norm limits
(2.1) R(A+40):= linol R(A+ie)
el

exist in B(L3(R*Y), L2{(R*™)) for 2>0, and the convergence is uniform on each
compact subset in (0, ), where LYR* ) (t€R) is the weighted L*-space:

LYR*Y) 1= L¥(R* ;{x4; Vo>¥dx,dya),

where <xq; Yoy := (141212132 (Since mg|xo|>+ 04| Yo > =my| 5,1+
ny| ¥s1% for any bE A,, the definition of the space L}(R*™) is independent of the
choice of a<A,.)

Lemma 2.2, Assume (V),. Then for any s>0 and any multi-index 7 with
|71<2¢+4, g satisfies 0%, ps= LARY,).
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For the proof of Lemma 2.1, see [PSS]. Lemma 2.1 (called the limiting
absorption principle) holds for n(=2)-body systems under milder conditions on
the potentials (TM1, [PSS], {ABG], [T]). Lemma 2.2 is known as the ex-
ponential decay of eigenfunctions. For the proof, see [Ag] (see also [RS] IV,
XIII. 11). Now we give the spectral representation of Hy (cf. [AJS], 16-2).

For 1> we define a map Zg(A)B(LARY,), LA(SY™), s>1/2, by
(2.2) (Zﬁ(])f)(a))zcﬁ(x)Se—i(znb(l—Zﬁ))1/2m.ybf(yb)dyb’
where weSY ! and
2.3) Co(D)=(2m)" ¥ 1*ny/%(2ny(A—2Ag) V211 .

Then the map Z;, defined by
2.3y (Zsf)A, @)=(Z (D) Nw),

can be extended to a unitary operator from L*R%)) to L*((2p, oo); L¥(S¥~1)
and
(ZgHpf)A, )=AZpf)4, *)

in LXS¥-') for a.e. 2>2p if feD(Hg). Z. is defined in the same way.
We define Ggo(d, ©)=Gga(d, ®@; ¥,) by
2.4 G pald, @)= |FEKDe iy )5, 1), ,

where K(A)=—1,+I,R(A+10)I,, and
eald, ®)=a(x,)e et~ 1 2 va

From (V), and Lemmas 2.1, 2.2, it follows that Gga(2, ) is LARY )-valued

Yo

strongly continuous function of (2, w)E(0, o)X SY if 1/2<s<d—(N/2).
Proposition 2.3. Let a, B, and assume (V),. Then ZsSa.pZ% is decom-

posable by a family of operators {S,.p(A)}, 2>0:

(2.5) (Z5Sa-p ZERYD=Saup(Wh(2)  in LHSY)

for a.e. 2>0, where he L¥(0, o) ; L¥S¥Y)), which is considered to be embedded
in L¥(Aq, 0); LAS¥7Y)) by regarding h(A)=0 for 2 (Aa, 0]. Furthermore,
Toasp(A) 1= Sa.p(A)—0.5B(L*SV™) is continuous in 2>0 with respect to the
Hilbert-Schmidt norm and its kernel T,.5(2, 0, ®), 0, o=SV™, is given by

(2.6) Tas(2, 0, ©)=27iC o(A)Z 5(D)G pa(A, ®))(0).

In particular, T..gk, -, ®) is L*SY ')-valued continuous function of (1, ) and
the kernel (Re T 4.o(A))0, @) of (1/2)(T aeaD)+T azalA)*) is continuous in (2, 6, w).

Proof. The first half of this proposition and (2.6) can be proved in almost
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the same way as in the 2-body case. For the proof of the first half, see, for
example, Proposition 2.4 of [[]. (2.6) yields
(2.6  (Re Taal )0, 0)=miCo(A((R(A+10)— R(A—1i0))1se4(Z, ), Ioea(4, 0)).

We fix s with 1/2<s<0—(N/2). Then, by (V), and Lemma 2.2, [,e,(2, ) is
L% R*¥)-valued strongly continuous function of (2, ). Thus, the last half of
the proposition follows from (2.6) and Lemma 2.1. n

We next consider the case §=0. To give the spectral representation of
H,, we define a unitary operator U on 4 by
@7 (U (xa, ya)=2ma)V*2na) N f(2ma) X a, (216)7Y,)
and define an operator Z ()= B(L%R?Y), L¥S*¥-1), >0, s>1/2, by

28) (ZoDFXO=CoDe 3" XU XX,

where =S5V, X=(x,, v.), dX=dx.,dy, and
Co(R)=2"Y122m)-N¥(22) W12
Then the map Z,, defined by

(Zof XA, O)=(Zo(D)fX0),

can be extended to a unitary operator from 4 to L*(0, c); L%S?*¥-')) and give
the spectral representation of H,: For each feD(H,),

(2.9 (ZoHof X4, )=AZof)4, -) in LX(S*M)
for a.e. 1>0.

Proposition 2.4. Assume (V),, (Z) and oIy, B=0. Then, Z,SanZ* is
decomposable by a family of operators {Ta.o(A)}, A>0. T o(DESB(L¥SY™1),
L¥(S?Y-1)) is continuous in A>1 with respect to the Hilbert-Schmidt normn. Let
Taw(d, 0, w), 0S*Y 7, @=SV"!, be its integral kernel. Then, T, (2, -, w) is
L3(S?Y-Y-palued continuous function of 1>1 and wsSY1.

Most of these results are obtained in [AS]. In [AS], it is shown that
T..p(4) can be defined for all 2>0 but a closed null set, while the boundedness
of this set is not proved in it. Thus, for completeness, we give a proof of
Proposition 2.4 in the Appendix.

Owing to the following theorem, we need not study directly the asymptotic
behavior of ¢..,(4, ) as A—oco.

Theorem 2.5. Assume (V),, (Z) and acly. Then, for each 2>1 and we
SV-1, the following relation holds:
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(2.11) 042, ©)=—221)" 1 (2n(A—2)" "V A(Re T oa(d) 0, @)
(see (1.15)).
Proof. Under assumption (V),, it is known that for a+#8 (a, <I’), Ran

Wg is orthogonal to Ran Wj; (Ran=Range) and the asymptotic completeness
holds (see (1.8), (1.10)). Moreover, if we assume (Z) as well, we have

2 B RanWi=4,.(H),
acl’

where 4,.(H) denotes the absolute continuity subspace of # with respect to
H (cf. [E]). This yields

(2.12) 3 Sep*Sa.p=Id
pel’
and so
(2.13) DT p(A*T 0 3A==T 1 a(D)—T ol D)F.
sel’

This equality holds for each A1 since all terms are continuous by Propositions
2.3 and 2.4. From (2.13) we have

(2.14) ) Ssﬁ"r,, 3G, 0, 0T w54, 0, 0)df=—2Re T (D)o, w).

sel’

This equality holds for each ®, o' =S¥ and A>1 since both sides are con-
tinuous by Propositions 2.3 and 2.4. Hence, putting o’=w, we get the desired
result. "

Remark. 'This theorem is called the optical theorem ([AJS], p. 628). We
can show that ¢.(4, o) is well-defined for a.e. (1, w)=(0, «YXS¥-! and (2.11)
holds for a.e. (4, ®)&(0, ©)XS¥"! under assumptions (V), without (Z) (see
Proposition 2.3 in [IT]).

§3. Proof of Theorem 1.1

3.1. In this subsection we assume (V), with eeNU{0}. Let a, f= I, with
D(a)y=a, D(B)=b, a=b. We write x=x,, y=y, for simplicity. For »>0 we
define

(3.1) W) :=(1/2)n0°+ 44 .

If v is large, we can take »’=v'(v)>0 such that

(3.2) (1/2)nw*+25=20).

Throughout this section, we assume ¢>1. By (2.4) and (2.6) we have

(3.3) Tap(AW), 0, @)=CW)[— I+, R(QA+i0)I,](Paetm v V), Pgetmnov' 0 vo),
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where ¢.=¢.(x), ¢g=¢s(x;) and
(3.4) C):=1Q2m)y ¥ * Y ngnpy) N1 2pv’ )N -202

Here notice that the R.H.S. of (3.3) is well-defined for all (4, w, 8)(0, o)X
S¥-1%S¥-! by (V), and a+#b.

For each v>1 and weS¥~!, we define a self-adjoint operator L(v, @) in
K by

(3.5) Lw, @) := v (H—2,)—iw-V ,=e e vy~ (H—A(v))eimav ¥
By (3.5) and Lemma 2.1, the norm limit

(3.6) (L@, 0)—i0)"':= Hfrol (L, w)—ie) '€ B(LAR), L:(R*Y))

exists for s>1/2. Then T..p(AWw), 6, w) is written as
37 Tes(iw), 0, 0)
=CNL—Latv Iy(L(v, @)—i0)" o] gha, Ppetmav 0 v-tnarery),

For k, seR we define
HY{RY)={f €S (R*); [ flle.s :=11<x 5 3>(—A+1)*" fl| o mem< oo},

where S’ is the tempered distributions and 4 is the 2N-dimensional Laplacian.
Instead of (V),, we assume the following condition (U),, £& N {0}, to prove
the next proposition :

(U), Each V,jx) (1=£i<j<3) is a real-valued C?¥**function on R¥* and
satisfies

[ DLV (%) SCxy-mindr e l71<2¢+2.

Since N=3, it is obvious that (V), implies (U), for ¢eNU{0}. The following
proposition will be proved in Section 5.

Proposition 3.1. (1) Assume (U), and let k be an integer with 0<k<¢ and
s a real with k-+(1/2)<s. Then there exists a v,>0 such that
(3.8) sup  [|(L(v, @)—ie) g, <o

0<e<1, V2
weSN-1

and the norm limit
(3.9) (L(v, @)—i0)™':= 1?3 (L(v, @)—ig)™?

exists in B, s : =B (H{R?Y), H:(R*™)) uniformly in v=v, and wS¥'. In partic-
ular, the operator norm [(L(v, ®)—i0) g, , is uniformly bounded in v=v, and
weSVL,

(il) Assume (U),. Then
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(3.10) I(L{v, @)=i0)'—(—iw-V ,—i0) | gy, 12, >=00™")

uniformly in @=S¥"! as v—-+oo where Hi=HiR*), L2,=L2,(R*)

Remark. The norm limit

(3.10) (—iwF ,—i0) 1= lim (—iw-F ) —ie)*€Boy  5>1/2,

exists uniformly in w=S?Y-! and

(3.10)" (—iw-V ,—i0)*u)(x, 77+ta))=z'gt_wu(x, 7+ sw)ds,

where nell,={neR”; 5 -0=0}. Indeed, in one dimensional -case,

{p~(—i(d/dg)—ie)"Kg>™%, ¢>0, s>1/2, is an integral operator with Hilbert-
Schmidt kernel K(e; q, £)=i{g)>~* exp (e(t—q))X(t, q)<{t>~¢, where X(t, ¢)=1 (resp.
=0) for t<q (resp. ¢<t), and converges to a Hilbert-Schmidt operator with
kernel K(+0; g, )=1{g>~*X(¢, ¢)<¢t)~* w.r.t. the Hilbert-Schmidt norm as ¢ | 0.

Proof of Theorem 1.1 (). Since a#+b, y is written as y=mx,+ny, for
some constants m==0, n#0. Thus, by (3.7), we have

(3.11) T o-p(A), 0, @)
'—“C(‘U)Se(—inb”'g”"“vnw)'ybdybgeinavm""r”(fl+v_1f2)dxb ,

where
flzfl(xb; yb):—éﬁ(xb)lagba(x):
fo=falxs, YA)IS/;ﬁ(xb)([Ib(L(v, w)—io)'lfa](/)a)(xa, Vb)) -

By (V),, Lemma 2.2 and Proposition 3.1, the following estimates can be verified :

3.12)

agba?z’/zbfleLI(RzN)y ITI!_I_iTZl §Z+l s
(3.13)
sup (07407 fsl L1 gen, < oo, [l +Ir1=¢,
v>1, weSN -1
(sup -+ :=sup -- for some large v,).
v>1 020

Hence, by integration by part in x,, we can write

(3.14) T a-p(AW), 0, @)=C "t (Fy,8)(nw' 0 —nvnw),
where (F,,g)(&) is the Fourier transform of

(3.15) g(y)={ e b, @3 2, 3%y,
where

h=QRa)N 2 {(i/nam) @V ) fL+/nom)(@-F 2,) f} .

In the same way as (3.13), we have
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(3.16) sup_ [[Kxd¥<yp> b, @5 -, ey, <oo.

v>1, weSN -1

Thus, by (1.14), (3.14), we have

(3.17) 0 az8(AW), @)=2m)Y Y nwv’ )" ¥Cv)v~2 2

£— 2
XS|5|=RDD,[(Fuag)(§ nwnw)|®dS;,

where dS;¢ is the Lebesgue measure on the sphere {E€RY; |&|=nw’}. On the
other hand, by the trace theorem ([GM], Proposition 2.1) we get

(3.18) SIGI:W |(Fyy @) —navnw)|*dSe < C[[(Fy,8)(- —navno) i e,
=Cligllzs; )

SCIKxDY yoph(v, ©; -, N ieren),

where we have used the Schwarz inequality in the last step. Therefore, by
(3.4), (3.16) and (3.17), we obtain (1.18). ]

3.2. In this subsection we assume (V),. We begin with the following
lemma.

Lemma 3.2. Let o, B, with D(a)=a, D(B)=b. Then, for each >0 and
each w=S"!, 6,..5(2, ®) can be represented as

(3.19) G-, @)=221)YCo(A(2noa(A—22) "V 1(4, W),
where
I, 0):=Im (EgR(A+i0)Iseq, Ioea)+Im (Egl,R(A+10)I,e,, R(A+i0)],e,),
Ca i = Qu(x)et AP0y and Eg=[g]% (see (1.7)).
Remark. I(2, w) is well-defined by Lemma 2.1 and the following:
x5 ) ze,e LARY),
(3.19y x5 7 Eglx; y>*eB(LAR™)),
x5 9'Eplx; y)*€B(LXRM™)),
for some s>1/2, which follow from (V), and Lemma 2.2.
Proof. We first note that
(3.20) Ta-p(2, 0, @)=27iC(A(Z s(A)] *K(A)ea)0),

where K(A):= —I,+1,R(A+10)I, (see (2.4), (2.6)). Thus we have
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a-p(A, @)=2m)N1C ((DP2na(A—RA) V1
X(Z g(*Z p(DJEK (Dea, JEK (Dea) -

Here we regard Zg()*B(L¥S"Y), L:(RY)), s>1/2, by regarding L%, as
(L%*. Therefore we get

(3.21) Oap(A, ©)=—12m)N Co(2P(2na(A—2a)) V12
X(LRy(A+10)— Ry(A—10)]Eg K (Q)eq, K()ea),
where Ry(A+i0)=(H,—(A+:0))!:= 18131 (Hy—(A+1e))™* (see (1.5), Lemma 2.1) is a

bounded operator from L% R*Y) to L2,(R*¥), s>1/2, and we have used the fol-
lowing two relations in the last step:

(3.22) Z s(D*Z s(D)=(275) " {(Hp— (A+10)) "' —(Hs— (A—i0))"} ,
T s(Hs—(A+i0))" = Ry(2+£i0)] 5 .

Furthermore, the resolvent equation R,(z)I,R(z)=R,(z)— R(z) yields the follow-

ing:
Ry(A+i0)E s K (D)=—E s R(A+i0)], .

Thus, by this together with R,(1+i0)Fs=LEpR,(41+70), we can get the follow-
ing relation:

(3.23) K(A)*[ Ry(A410)— Ry(A—i0)1Es K (2)
=I1,EgR(A+i0)I,— I, R(A—i0)Eg],
—I,R(A—i0)[,EgR(2+10)I,
+1, R(A—10)E g, R(24:0)], ,
where K(A)*:= —I,+1,R(A—i0)I,. This relation together with (3.21) implies
the desired result. |
Proof of Theorem 1.1 (ii). Let a=b. Then, by Lemma 3.2, we have
(3.24)  04.p(AW), @)=2/v*) Im (E5(L(v, @)—10)" [s¢a, Ioha)
+@/) Im (Egly( L, ©)—i0)" ¢, (Lv, @)—70)"*I,¢a),

where we have used Ejexp (in,v0-y)=exp (in,vo-y)Es, which follows from
a=>b and the definition of Ez. By Proposition 3.1 (i) with 2=0 and (3.19)" the
second term is O(v~®) uniformly in w&SV-! as y—-4oco. Next we will show
that

(3.25) (L@, @)—=i0)"~(—iw-V ,—i0) ") oalls, -s=0(1)

uniformly for weS¥-*! as v—-+o for s>1/2. By the resolvent equation we
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have
(L(v, w)—z’e)“‘[,lgbu—(——z’w-Vy—-z'e)“Iagba

=—v" (L, ®)—ie) - (H—2.)(Hoy—1) - (—iw-V ,—ie) (Hy— i)l o¢a
for each >0, and this yields
(3.26) 1(Lw, w)—ie) '—(—iw-V ,—ie)™ ). | < Ce
for each ¢>0. We write
(L, @)—i0)' —(—i@-F ,—i0)") u¢alls, -s
SICL@, @)—=i0)' —(Lv, @)—ie) ) aPallo, -s
+Hl((—iw-V ,—i0) —(—iw-V ,—ie) ™) ahallo, -s
HI(Lw, @—ie) ' —(—iw-V,—ie) ™) oall -

Then (3.25) follows from (3.26), (3.10) and Proposition 3.1 (i). Thus by (3.19)
and (3.25) the first term of the R.H.S. of (3.24) is

(3.27) 2w Im (Eg(—iw-V ,—i0) o, [oa)+0072)
uniformly in weSY-! as v—+o. Hence,
(3.28) Ga.5AW), @)=2/v*) Im(Eg(—iw-V ,—i0)"  Ja, Ioda)+0ov™?),
uniformly in @w€S¥"! as v—+o0. Since
(3.29) (—iw-V ,—i0)" U e )(x, p+tw)=ig.(x)F(x, n+iw),
where p<ll,, teR and

F(x, 7]+ta))=gt_m[a(x, p+swyds,

we have
2{Im (E/g(—l.w'Vy‘_l.O)—l-[agbny 1a¢u)

:igﬂwdnggba(x)gbﬂ(x)dxSmsb,@(X')dx’
) d )
XS_WE(F(X: 7+ F(x’, n+tw))dt
'—‘iS”wI&Wa(. ; 0, N)a, Pplal®dy .

This completes the proof. [ ]

3.3.

Proof of Theorem 1.1 (iii). We assume (V), and (Z). Theorem 2.5 yields
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(3.30) 0.(Av), @)=—202r)" " (nw)""(Re T o.a(A0))@, ®)
=22 Im (L@, ©)—i0)" Lopa, Ioa).

Thus, by (3.25), we have

(3.31) 04(AW), @)=2v""Im ((—iw-V ,—10)" [o@a, Laha)+0v™?)

=0 IWal5 0, pgalidy+oe)  (see (3.29)

uniformly in w=S¥-! as v—-+o0. This proves (1.21). Under assumptions (V),
and (Z), the set {1,; a=[%, D(a)=a} coincides with the set of all eigenvalues
of h,. Thus, by (1.15), (3.31), (1.18), (1.19), we obtain

Gasd®), @=0| IPCRIW (-5 0, 1alltdy-+ow)
uniformly in w=SY-! as v—oo. This completes the proof. |

3.4.

Proof of Theorem 1.2. We assume (V)s,. Then, I.¢.€HYR*¥) and (U),
is satisfied. Thus, by replacing (3.25) by (3.10) in the above proofs, we get
the desired results. ]

§4. Abstract Theory for Resolvent Estimates

In this section we give an abstract theorem for the proof of Proposition
3.1. This theorem is a slight extension of Theorem 2.2 of [JMP] (see also
[J1, [1]). Throughout this section we work on an abstract Hilbert space H
and denote by | || the operator norm of bounded operators on H.

Definition 4.1. (I) Let 4 be a self-adjoint operator in H and d=N. We
denote by Sa(A) the set of all self-adjoint operators K in H satisfying the fol-
lowing properties (A-i)~(A-iv).

(A-i) D(K)N\D(A) is a core for K.

(A-ii) exp (itA) leaves D(K) invariant, and for each fD(K)

sup I K exp (itA4) fl| <oo .
1tls
(A-iii) Let K®@=K. There are self-adjoint operators iV, ... ¢K®
satisfying the following :
D@K)>DK) (=1, -, d),

the form :[#'KYY A] defined on D(K)ND(A) is bounded from below and
closable, and the self-adjoint operator associated with its closure is #K% (j=
1, -, d). Here, [,] means the commutator: ([B, Clf, g)=(Cf, B¥g)—
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(Bf, C*g).

(A-iv) The form [K®, A], defined on D(K)"\D(A), extends to a bounded
operator from H,, to H_,, which is denoted by [K‘®, A],, where H,, is the
domain D(K) with the graph norm | f|.,,:=|(K-+7)f| and H_, is the dual of
H_, obtained via the inner product in H.

(II) Let A be a self-adjoint operator in H and d=N. We denote by B(A4)
the set of all bounded operators W on H satisfying the following property
(A-v).

(A-v) Let W®=W. There are bounded operators W&, --- W on H
satisfying the following properties :

The form [WY-Y A7, defined on D(A), extends to the bounded operator
W (=1, -, d).

For K&S,(A) and WeB(A), we set

(4.1) Il your 2= 2 IE DU+ i)+ K, AT+,
j=1
“.2) W lls i := 33 WD
=1

To state our main results in this section, we prepare some notations. Let
I be a compact interval in B and [.:= {z€C ; Rezel, 0< £Imz<1}. We fix
a smooth function (¢) on R such that 0<X<1, X(¢)=1 on I and suppX (supp=
support) is contained in a small neighborhood of I.

Theorem 4.2, Let I, X be as above, and A a self-adjoint operator in H,
deN, and K,, -, Ko=S4(A). Furthermore, if d=2, let Wy, -, Wy_€By(4).
Assume K; satisfies:

(4.3) YIGNK YUK )= CUKy)?,  j=1, -, d,
for some Cy>0. We define D(z), zeC\R, by
D(z):= <A (K —2)7KA>™*

for d=1,
D(z):= AT (K —2) W(Ky—2)! - Wy (Kg—2)"(A4A>*

for d=2, where s is a real with s>d—(1/2) and {A):= (1—+|A|®Y% Then, the
Jollowing (1), (ii) and (iii) hold.
(i)

4.4) sup 1D@)|£C< oo
(ii)
(4.5) |D(z)—D(z")| <C|z—2"|%,
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for z, Z€1., where 6,=(1+(sd/(s—d+1/2))"".

(iii) The norm limits D(A+:0):=lim D(A~ie) exist in B(H) uniformly in
iel. e

Moreover, if A, K, ---, Ky (and W, ---, Wy_, if d=2) depend on a param-
eter v such that I, X and C, can be taken independently of v and that ||Klls
(J=1, -, d) (and [Wills,r (G=1, -+, d—1) if d=2) remain bounded in v, then
C can be taken independently of v.

For 0<|e|«1 the operator

4.6) Qie)i= 31 =

> K(Jm) , _/:1, e d ,

is K;-bounded with A,-bound<1 by (A-iii). Thus K,+Q,(¢) is a closed operator
with D(K;4+Q(e))=D(K;).

Lemma 4.3 ([JMP], Lemma 3.1). There exists a &,>0 such that the follow-
ing properties hold for 0< +e<e,, z€l., j=1, -, d:

(i) K;4+Q(e)—z has a bounded inverse G, (¢)=B(H)

(i) Gy .(e) satisfies the following estimates:

4.7 1Gse)|=Clel™,
(4.3) I +0)G . (&l +1Gj (XK +D) [ =Clel 7,
(4.9) I(Ki+0G 5, (e)AD T HIKA TG, () K+ =Cle 77,

where C is independent of +e<(0, ¢y), z€l., j=1, -+, d.

(iii)y The form [ A, G, (e)], defined on D(A), exiends to a bounded operator
L[4, G;,{e)ly on H. G, (&) maps D(A) into D(A)ND(K}).

(iv) For each z<1, (resp. 1), G, .(e)=C* (0, &,); B(H)) (resp. CH(—e, 0);
B(H)) and

d . ¢ .,
(4.10) - Go kD=6, 40), AL+ 7 Gouel S, ALG,. e).

Moreover, if A, K,, .-, K, depends on a parameter v such that I, X and C,
can be taken independently of v and that |Kls, .y (=1, -+, d) remain bounded
in v, then &, C can be taken independently of v.

For properties (i)~(iv) of the lemma it suffices to prove them for each j.
For the proof, see [JMP]. The last part can be shown by carefully checking
the estimates carried out in [JMP] (see also [M], [PSS]).

Lemma 4.4 ([1], Lemma 3.5). Let f.(e)=|loge| for k=0 and f.(e)=e*
for keN. Assume that a B(H)-valued C*'-function X(e), 0<e<e, (&,>0),
satisfies:
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(4.11) [(d/de)X(e)| = Cu(I X(&)f- 7+ f1(e)+1),
(4.12) IX(=Coe™",

where p, q, v, Cy, C, are constants satisfying 0< p<1, 0<¢g<1, =0, C,, C,>0.
Then X(e) satisfies the following estimates :

(4.13) [ Xe)|=C-e#*t when k=2,
(4.14) [X(e)|<Clloge| when k=1,
(4.15) | X(e)<C when k=0,

where C=C(C,, Cy, &, p, q, r)>0. Furthermore, when k=0, the norm limit
X(0):=lim X(¢) exists in B(H).
sl 0

For the proof, see [1].

For the proof of Theorem 4.2 for the case d=1, see {M], [PSS]. We can
also prove this theorem for d>=2 in the same way as in Theorem 3.3 in [I].
The proof is a slight modification of the proof of Theorem 2.2 in [JMP]. But,
for the sake of completeness, we give the proof of Theorem 4.2 for d=2.

Proof of Theorem 4.2. We give only the proof for the case z=/..

(i) For multi-indices of nonnegative integers a=(a;, ---, a¢-), B=(B:, -,
Ba-1) we write |a|=a,+ - +aq-,, and a<f if and only if a,<g8, for all ;.
Let M, be a family of all multi-indices 8 with a<p, [B|=|al+1. Namely
B=M, implies that @,=8;—1 for some ; and 8,=a, for i=;. We set

Fa(e):= A G, (W EVG, (&) - WS VG, (e)XA)°
for zel,, ¢>0, a=(a,, -+, as_,) With |al<d.

By Lemma 4.3 (iv), we have for |a|<d—1.

d ag-
@16 LFHO= (L GG, (&) WELG (XA

£

d -8
TG a o)

=D THIG L L8), AW WG, (e) - WG VG y (e)

+ o DTG (WG o) - W (

o G L(EWW G, (e) - WEEV[G g (), AT} <A
a
2D G LK, AL 8) — WES G o)

F o G (W - WEETPG Yy (LK, ALiGa, ()} CA>S
=1(e)+1:(e).
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First we estimate [,(¢). Since s>1 and W» (j=1, ---, d—1), (K, +i) '[K®,
Al(K,+49)t (n=1, ---, d) are bounded by (A-v), (A-iv), we have

(4.17) (o) SCret-gt/Pegm?mte™2<C

by Lemma 4.3 (ii).

Next we estimate I,(¢). Noting that G, ,(¢) maps D(A4) into D(A) and
W§*» maps D(A) into D(A4), as follows from (A-v) and Lemma 4.3 (iii), we
have, by elementary computation,

(4.18) I(e)=[F(e), A1— 3 Fi(e).

LT
Since [[<AY'FE(e)l, | F2(e)XAY=C-e "/ by Lemma 4.3 (ii) and
IF2(eA SN FE@I | F(e)X AT,
[CAYF2() <[ Fe(e) '~ WP KA FE (el
by interpolation, we have
ILF2(e), ATISIFEKAN+IKAYF2(el

§C . ”F?(e)”1—(1/3)8(—41"(1/2))/3 .

Thus we get
(4.19) Jl11(6)HéC(IIF?(E)H““’”e(‘f“‘”z”"‘-i-ﬂj./_‘; O
EMq

Therefore Fg(e) satisfies by (4.16), (4.17) and (4.19)
(4.20) 1|§—F:<e>”gcmlF:(e)nl-“me-u 3 1 F8(e)|+1)
& BEM o

for all multi-indices a with |a| <d—1 where m=(d—(1/2))/s.
Furthermore, it follows from Lemma 4.3 (ii) that
(4.21) [Fiel<Ce ¢t

for all multi-indices 7 with |r| <d.
Let |al=d—1. Then we have by (4.20) and (4.21)

[ o scaps@i-omenteeit).
Applying Lemma 4.4 (p=1—(1/s), g=m; p, ¢=[0, 1) by s>d—(1/2)), we have

4.22) [Fe(e)|=Ce?**.

Next let |a|=d—2. Then |B|=d—1 for f=M,. Thus we obtain by
(4.20)

|- P scapzen-amenteeeri,
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Applying Lemma 4.4, we have
[Fe(e)l<Ce*®.

Continuing, we have for |a|=0

d
(4.23) | Fe@|=caps@i-ome o log el +1).
Thus we have the following estimate, by Lemma 4.4,

(4.24) sup  [[Fue)£C< oo,

zel , 0<e<1

where F,(e):= F2(e) for |a|=0.
We set R,(z)=(K,—z)"'. Since liirox 1Q.(e)R,(2)]=0 for each zeC~R by

(A-iii), 1+Q.(e)R,.(2) has a bounded inverse, and so
G L)=R.(2)(1+Q () Ru(2))!

holds for each zeC~R when ¢>0 is small. Therefore we get
h?g Glt.z(s):Rn('?) (n:l, Tt d)
in the norm of B(H) for each zeC~\R, and so we have by (4.24)

sup | D(2)|=C .
el
(ii) By (4.23), (4.24) we obtain
11 d
lde

Fie)| SCe™+1).
Integrating this, we have, by noting 0<m<1,

(4.25) [F(e)—F0I<C-e"™.

On the other hand G, .(¢) is differentiable in z&/, for each ¢>0 by Lemma
4.3. We have the following estimate by Lemma 4.3 (ii):

)\j—zﬁxs) <A Gy (W - G, (A
o CAY G (W WG, (€AY
_>/_ C ‘ E_d y

which implies
(4.26) [Fe)=F(ll=C-e7?z2—2|

for z, z7<1., ¢>0. Let e=|z—2'|%, §,=(1—m) ', (see (4.5) for d,). Then by
(4.25), (4.26) we have
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[FA0)—F. (O < | F0)—F.(e)| +1I Foe)— F. ()| +1 For(e)— Fo ()i
<C-|z—z'|%.

Thus we have proved (ii). (iii) follows from (ii).
The uniformity of the choice of C can be obtained if one takes into con-
sideration the last part of Lemma 4.3 and the proof carried out above. B

§5. Proof of Proposition 3.1

In this section we will prove Proposition 3.1 by applying Theorem 4.2.
Throughout this section we assume (U), and fix an integer k with 0<k<¢.
Furthermore we define a set 2 := {(v, w); v>v,, =S¥’} for 1,>0. Let 4, be
the generator of dilations on R*":

(5.1) Ae=1/2)(x Vo4V g x+y-V 4V - 9),

which is self-adjoint in % with a core S=S(R?V), the Schwartz space of rapidly
decreasing functions. Thus, the operator .4(z), 7=(v, )£, defined by

(5.2) A@) = (ngv) Aoty
= (nqv) ' exp(—invw-y)A, exp (inww-y),

is self-adjoint in 4 with a core S. For notational brevity we write L(r)=
L(v, w) for t=(v, ). Then, a simple calculation yields

(6.3) i[L(r), A)]1=2(nqav) L(r)+(n0*) 'LV, Ag]—2V +24,)+1
on S, where [V, A,] is an operator of multiplication :
(5.4) iV, Ad=— X V5@, —r,),
151 <3
where
(5.5) Vip()=(x-F;)"V,x), neN.

Lemma 5.1. (i) L(r)eS,..(A()) for each t<Q (see Definition 4.1) and

(5.6) sup ”IL(T)I||S,+1<A<m <oo.
€

(i) Fix a smooth function X(t) on R with X=1 on [—1/2, 1/2] and supp XC
[—1,13. Then,

(6.7 X(L(@)i[ L(m), A(@)IX(L(7)=(1/2)X(L(7))*
for all t€Q if vy>1.

Proof. (i) Since S is a common core for L(r) and A7), (A-i) follows.
(A-ii) can be easily verified by (5.2). By (5.3), (56.4), (5.5) and (U), we see that
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the n-th (0<n<¢-+2) commutator
(5.8) L[ L(r), AT, ---1, Ao)]

on S can be uniquely extended to a self-adjoint operator " L™ (r) with domain
H*R*V). Thus, taking account of the fact that S is a common core for L(z)
and A(z), we can verify (A-iii), (A-iv). Therefore, we see that L(r)eS,..(A(r))
for each r=£. (5.6) can be verified by using (5.3).

(ii) For v,>1, we get, by (5.3),

X(L()il L(z), A@)IU(L(D))
2(—@/nw)—1/n )LV, AJ—2V +22.|[ -+ DX(L())?
Z(1/2X(L(7))* .
This completes the proof. [ ]
For e and zeC\R, we write R(r, z2)=(L(r)—z)"'. It is not difficult to

check, by using V' R{z, i)=R(z, i)l — R(z, i)y~ 'V )R(z, ) and (U),, the following
estimate :

(5.9) sup || R(z, Hllparm, pmy< oo
e
for 0<m<2¢+2, where H™=HT(R*Y).

Lemma 5.2. Let m be an integer with 0Em<2¢+2. Then

(5.10) Sug v R(T, Dllpam, gme1y< oo,
TE

Proof. Let Ly(t):=v Y (H,—2,)—iw-V, for =@, w)=2. Then, by (5.9),
(U), and the resolvent equation

Riz, )={L/t)—D"'—v Y Ly(t)—2)" 'V R(z, 7),
it suffices to show that

(5.11) sup v Y (Ly(r) =) Hpwm, gmiy,<co,

r=(v, w)e2

which is, by the Fourier transform, reduced to the following estimate:

(56.12) sup v H(|E[+{nl+41)

T
X (v H(1/2m)E*+(1/2n0)n* —A)+o- 7| +1D)71 <o,
Taking account of 1,<0 and 2ab<a®*+b* for a, bR, we have
[+l +1=vM1/2m) 8 +(1/2n)n" —Aa) + - p+{(ma/2)+ 20,0 +1,

which yields (5.12). This completes the proof. ]
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Proof of Proposition 3.1 (i).
Case k=0. We first consider the case #=0. For the proof, it sufficies to
show that

(5.13) sup (| XsR(z, ie)Xsl|<oo,
e, 0<e<1
(5.14) hm sup I X[ Rz, ie)— R(z, ie’)]1X||=0,
Le'y0 el

where X;:= (1+]x|*+|y[*)*% and 1/2<s<1. By the resolvent equation we
have

(5.15) R(z, ie)=R(z, i)+ (ie—i)R(z, i)*+(1e—2)*R(z, i) R(z, ie)R(z, 7).

Thus, we have only to prove the following estimates :

(5.16) sup [[KA(T)D*R(z, ie)A@))~*< oo,
e, 0<e<1

(.17 llgrl sup <A@ *[R(z, ie)— R(z, ie’) J[{A(T)>*|=0

(5.18) sup | XsR(r, =)A< oo

(5.16) and (5.17) follow from Theorem 4.2 and Lemma 5.1. By interpolation, it
suffices to prove (5.18) for s=1. We have

(6.19)  X,R(r, +)A(t)=X, A(t)R(r, +1)—X,R(r, =4[ L(z), A(r)]R(z, *1)

on S. By (5.3) the operator norm of the second term in the R.H.S. is uni-
formly bounded in 7€, and the norm of the first term is also uniformly
bounded in 7€ by Lemma 5.2 with m=0 because

(5.20) A@)y=(nwi) (x-Vi+y-V,+N)tw-y, =, ®).

Thus we have proved Proposition 3.1 (i) for £=0.

Case k=1. We next consider the case 1<k<¢. We may assume k-+(1/2)
<s<k+1. For the proof, it suffices to prove

(.21 sup | XDTR(r, ie)}XD) * X[ < oo,
e, 0<e<1
and
(5.22) 11m sup | XsD'L Rz, ie)—R(z, ie’)]<D> *X,| =0,
LETL0 1€

where |7|<k and D:=(0,, d,), <D):=(—4+1)"*. Taking account of (5.13),
(5.14) and

(5.23) X_D{DY *X;eB(4) for |71k,

and using
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(5.23) DR(z, ie)=R(z, ie)D— R(z, iew {(DV)R(r, i¢c)

repeatedly, we see that the proof of (5.21) and (5.22) are reduced to the proof
of the following:

(5.24) sup || X:R(z, ie)(DNV)R(z, ic) - (D'™V)R{t, ie)X;| <o,
e, 01<e<1
(5.25) lim Sup | X {R(z, ieXD"V)R(z, ie) .- (D'™V)R(t, ie)
& €0 e

—R(z, ie’D"V)R(z, i¢’) --- (D" V)R(z, ie")} X, =0,
where 1<m<k and ,i lr;|<k. Using (5.15) repeatedly, we have

(5.26) R(r,ie)= X (fe—i)™R(r, H)™**

osms2k+1
+(fe—0)***2R(r, ))**'R(z, ie)R(t, ©)**'.
Thus, replacing R(z, 7¢) in (5.24), (5.25) with the R.H.S. of (5.26) and taking

account of |R(z, 7)||<1, we can reduce the proof of (5.21), (5.22) to that of the
following :

(5.27) sup | X U,R(z, ie)U, -+ R(z, ie)Up Xl < oo,
€0, 0<e<1
(5.28) lim sup | XU, {R(z, ie)U, -+ R(z, i¢)
e, e’i0 e

—R(z, i YUy -+ R(z, ie")} U1 Xsl|=0.
where 1<m<Fk-+1, and each U;=U,(r) has the form:
(5.29) U;j=R{z, )**'Y, Y, or Y, Y, R(z, i)**,

where Y ;=R(z, i) or D'V for |r|<k.
Consequently, taking account of (5.16), (5.17) in the case m=1 it suffices to
prove the following:

(5.30) sup {1 XU LA@ [ HIKA@D U m 1 Xs[[ < oo,
(5.31) sup [[KA(@D*R(z, ie)UsR(t, ie) - UnR(z, ie)}XA(T)H*| <0 (m=2),
e, 0<e<1
(5.32) lim sup <A@ *{R(z, ie)U.R(z, ig) -+ U, R(zt, i¢)
e 6’40 el

— R(z, 1e")U,R(z, ie’) --- UnR(z, ie")} CA(T)>~S|=0 (m=2).
By (U), and (5.3), we can easily see that Uy zr)eB,.,(A(r)) and
(6.33) sup U (tllg, 1 cace < oo

for each j. Hence, (5.31), (5.32) follow from Lemma 5.1 and Theorem 4.2 with
d=m, Kj(t)=L(r) 1<7<m) and Wizr)=U;.,(r) 1<j<m—1).
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Finally we prove that | XU, {Ax)|, 7€, is uniformly bounded. The
uniform boundedness of [|[<A(r))*Un,,Xs|| can be proved similarly. We write
U, A =AU, +[U,, A(T) "] on S. A(r)**! is written as

(5.34) S CTs 1 T 1e)x" 1y 20 D)
Ir1trgisk+1
731 Zk+1

for r=(v, w), where the constants C(z; 7y, 72, 7s) are uniformly bounded in
r=f. Since U, is written as (5.29), it follows from Lemma 5.2, (5.9) and (U),
that for [y|<k-+1,

(5.35) sup |(v™ DY U, || < oo .
e

This together with (5.34) implies
(5.36) sup [ X e AT UL [ < oo
(=

Now, by induction we have
k
(6.37) LU, Aln)**']= ]Z=OC;A(T)J'[“- LU, A@], A(©)] -1, A,

where the multiple commutators are (£+1—7) fold commutators, and each C; is
independent of . By (5.3) we see that

(6.37y sup @Dy LUy, A@)], Alx)] -], W@ <o,

e
in the same way as (5.35), where |r|<k-+1 and the multiple commutator is
(k+1—7) fold commutator (0<;<*%k). Thus, by (5.34) we obtain,

(5.38) sup [ X ei[UL, AT < o0
{3

Therefore, we get (5.30) by (5.36), (5.38) and interpolation. This completes the
proof of Proposition 3.1 (i). |

Proof of Proposition 3.1 (ii). We denote by T(z) the self-adjoint operator
—iw-V, in 4 for each t=(, w)=R. Then, for each t=(v, w)c 2, we have

(5.39) i[T(7), Ax) =) T(t)+1 on S.
Hence, it follows that T(t)<S.(A(r)) and

(5.40) Sug 1Tl cacen<oo,
e

for any integer m=0, and that
(5.41) UT ()il T(z), Al@)IUT () =1/2)U(T (z))?

for all r=£, where X is the same as in Lemma 5.1. Now we set 7(t, z):=
(T(t)—2z)"! for Im z=+0 and write
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[R(r, ie)—r(r, ie)l=—v 'R(z, ie)r(z, ie)(Hy—A4)
—v 'R(r, ie)Vr, ie).

Since H<‘4(z-)>2(H0—2,,)||B(H;,L2> and |i<.-l(z-)>2||B(H;,L2) are uniformly bounded in
=, for the proof of Proposition 3.1 (ii) we have only to prove the following:

(5.42) sup | XoR(z, ie)r(r, ie)XA(T) 2| <o,
ref, 0<e<l

(5.43) sup | XuR(t, ie)Vrir, ie)XAr)) %< oo .
e, 0ce<

We only prove (5.43). (5.42) is proved similary. By the relation
R(r, ie)=R(z, i)-+(e—i)R(z, 1) +(ie—1)?R(z, 1)*R(z, ie),

the proof of (5.43) is reduced to proving the uniform boundedness of the follow-
ing norms:

(5.44) 1 X R(z, )" CA@DICA@D TV LAEDINKAE) (T, ie)XA@) ™Y

for m=1, 2 and
(5.45) [ X R(z, i*CA@MEI<A)>R(z, ie)Vr(r, ie){A(T)7?| .

Both of the first factors in (5.44) and (5.45) are uniformly bounded in 7 in the
same way as (5.30). The second factor in (5.44) is uniformly bounded by (U),.
By (5.40), (5.41) and Theorem 4.2 with d=1, K;=T(r), A=A(r) we can prove
the uniform boundedness of the last factor in (5.44), and by (5.40), (5.41), Lemma
5.1 and Theorem 4.2 with d=2, K,=L(zr), K;=T(zr), W,=V and A=A(r) we
can prove the uniform boundedness of the second factor in (5.45). Hence, we
have shown that (5.44) and (5.45) are uniformly bounded. This completes the
proof of Proposition 3.1 (ii). -]

Appendix

In this appendix we will prove Proposition 2.4 by supplementing the proof
of Proposition 2 in [AS]. Throughout the discussion in this appendix we
always assume (V), and (Z). Then &:= —max{y; g U op(h)} is strictly

cEAg

positive, where ap(h.) denotes the point spectrum of A.. For ¢={(, 7), k} €A,
we denote by V. the potential V,;{x.). Fix arbitrary »,>1 and let X,(1) and
Xo(A) be the characteristic functions for [0, »,-+(x/4)] and [,:= [»,—(x/4), ro+
(k/4)], respectively. Recall that a= A, is the 2-cluster decomposition associated
with the initial channel a&/l,: D(a)=a. We put off the proof of the follow-
ing lemma.

Lemma A-1. Let ¢, dE A4, with d#+a. Then the operator
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Fea(2) 1= LT x>V e R(2)V o2 o> o)1

has the norm limits F,q(1+10):= ﬁf? F.4(2+ie) in B(K) uniformly in A€, (see
(1.2) for 9d).

For the proof of the next lemma, see, for example, [GM] (Proposition 2.2).

Lemma A-2. The operator Z(A)<x.>', 2>0, defined on S, extends to a
bounded operator from I to L*S*M-Y) for each c€A,, and Z,(A)<x>7'f, fE4,
is strongly continuous in 2>0.

Proof of Proposition 2.4. By X (Ho)X\(T)=X,(H,) for any c=A4,, Z,(A)X,(H,)
=X,(A)Z,(2) and Lemmas A-1, A-2, we get the norm limit

(AD ZoDL—1a+V RQA+10)]] o Za(D*
= 1515101 Z(D[—1o+VRQA+ie) 1] o Z (A)*

'_—_‘Zn(l)<xa>_l<xa>-[a,.]aZa(/2)*
+ 2 ZoA)xey™ ca(A+10)<x D¥ Y TP [ Z o (A)F

d+a
for Acl,. Here we note that I,<{x o> oZ(A)*, {x, D%y, >+ WD [ 7 (2)* is con-
tinuous in A<, w.r.t. the Hilbert-Schmidt norm. Thus, by noting that
Zo(A)Xx»~ is strongly continuous in A and F,;(4+70) is norm continuous in
lel,, we see that

(A2) 21iZ (D[ —Ia+V R(A+10)1o 1] o Z o(D)*

is continuous in A<, with respect to the Hilbert-Schmidt norm as an operator
from L*SY-!) to L*S®*¥-!). Furthermore, in almost the same way as in the
2-body case, we can see that the above operator is equal to 7T ,.,(4). Thus the
integral kernel of T,.,(1) is given by

(A3) Too(k, 8, @)=27iC(N(Z:(Df (2, @, -)XO),

where
£y @, X)=([—Io+V RA+i0),Ipettrad-dan o vay ),

X=(xg4, y.). Moreover, we can also see that T,..(4, -, w) is L%S*~")-valued
continuous function in i€/, and w=S¥-!. Thus we have proved Proposition
2.4, accepting Lemma A-1. -]

Finally we prove Lemma A-1. The proof is given for the -+ case and
divided into several steps. From now on, ¢ and d denote 2-cluster decomposi-
tions.

Step 1. Let us begin with introducing notations. For c=A4, we denote by
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4., B, and C, the multiplication operators |V (x.)|*? |V(x.)|'?sgn V. (x.) and
{ye>~%*, respectively. New Hilbert spaces 4, and 4, are defined by

K= HPADK,  Hoi= DA, .

We associate each 4 in 4, with each 2-cluster decomposition. Each operator
Q@ on 4, is an operator valued 33 matrix with the c—d component Q°¢ (c, d
= A,), which is an operator on 4. We label two copies of 4, in 4, 0 and 1,
respectively, and denote by R,; (0<:, j<1) the /—s component of an operator
R on 4, Of course, each R,; is an operator on 4% ,.

We introduce several operators.

Y()eB(4,): Y(2)*=B.R(z)C,

G)eB(%,): G(2)*=B.E:R(2)C 0.4,

J(@)=Ud, G(z)=B(4,, 4,)

K(2)='K(z), Ki(2))eB (4., I,):
Ky(2)*=B(Id—E;)R.(2)C,, K\(z)*=C.'E.C,.

Do(z)eB (%) : Dy(2)*=B(Id—E;)R(z)As(1d—0.q),

Do(2)=D0(2)G(2)EB (A1),

Dw(2)eB(4,): Dy(2)*:=CEA;(1d—0.q),

D\ (2)=D,(2)G(z)eB (4,),

D(z)eB(4,): D(z),;=D,(z).

NeB(4,): Niw=D(2), N.;=0 (@, /)=, 0)),

W(z)=(Id—N)D(z)—N)e=B(4,).

Here R.(z):= (H,—2z)!, E.:= PP(h.)QIld, P?(h.) being the orthogonal projec-
tion onto the subspace spanned by eigenvectors of h., and d., is Kronecker’s
delta. For each zeC\R, Id+W(z) has a bounded inverse and Y(z) can be
written as ([AS], p. 1572)

(Ad) Y(2)=](z2)Id+W(2))""1d—N)K (2).

Step 2. W(z) has the following properties: (i) W(z), zeC\R, is a compact
operator and has the norm limit W(1+:0):= lifrol W(A+ie) in B(4(,) uniformly

on any compact set in (0, o), (ii) There exists a closed null set ¢, in (0, o)
such that Id +W(A+i0) is invertible in 2(0, co)\e,.
We will show that ¢, is a bounded set by proving

(Ab) [W(24i0)] — 0  as A—oo.
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The following lemma is important for the proof of (A5).

Lemma A-3. (i) ((GM], Proposition (2.4), [Ha], Corollary 5.5) Let d>1 and
Ry(2):= (Hy—=z)". Then the norm limit

Cx ey O Ry(A+40){x o)~ = lim xRy (A+ie)x)~°

exists in B(%) uniformly for 2 in any compact set in R for any c, d and, more-
over, we have
lim [[{xe> P Ry(A410)<x > =0 for c#d .
(ii) (cf. [AJS], Lemma 16.15) The norm limit
B.(Id—E)R(A+i0)A.,= lifr} B.(Id—E)R.(A+ie)A.

exists in B(4) uniformly for A in R, and

?up [BId—E)R(A+i0)A.]| < oo

€R

for any c.

For the proofs, see [GM], [Ha] and [A]S].

In order to prove (A5), we will show that each D,;(A-+7¢), 0=/, j=<1, has
the norm limit D;;(1+:0) in B(4,) as ¢ | 0 and all norms || Dyo(2+20)|, || Ds:(24-20)|l
and || D,;(A4+40)]] go to zero as A2—oc. Then the relation

W(2A+i0)=Id—N)D(A4i0)—N)
yields (Ab).
By the resolvent equation, we have

(A6) B (Id—E)R(A+ie)Aq
=—B:E.R(2+ie)As+[1d—B(Id— E;)R(A+ie)Ac 1B Ro(A+ie) Aqg.

For c¢+#d, by (V), Lemmas 2.2 and A-3, the R.H.S. has the norm limit in
B(%) as €0 and the norm limit goes to zero as A—co. This proves the ex-
istence of the norm limit D,,(41+70) and

(A7) 1111'130 [[Doo(4+40)[ =0 .

To prove the existence of D,,(4+:0) and

(A8) 11111010 1D4,1(2470)|=0.

we must estimate the following operators (see (A6))

(A9) —B.E;Ry(A+ie)V 4 Ry(A+ie)E,C4
F+Id—B(Id—E)R(A+ie)Ac]Bc Ry(A+ie)V ;R (A+ie)E4Cq
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for ¢+d. The norm of the operator in [---] is uniformly bounded in e=(0, 1]
and A>»1 by Lemma A-3 (ii). Furthermore, by the resolvent equation, we have

BCRO(Z"*"Z.E)Vde(X"f—Z.E)EdCd
=BCR0(Z—H'6)E¢Cd—BcEde(l—H'e)EdCd .

Then, the first term and the second have norm limits in B(4) and the norms
of these limits go to zero as A—oco by Lemma A-3 (i) and the well known fact
(cf. [GM], Proposition (2.3)):

(A10) lim [ <ya) ™ (—4y—2—10) <y =0.

The first term in (A9) has the norm limit and the norm of this limit goes to
zero as A—oo in the same way as above. Thus we have proved (A8). By
(A10) and C, 'E A4B;Cs *E,eB(¥%) for c¢*d, C.'EcAdgBgEsR(A+ie)C, has
the norm limit in B(4) as ¢} 0 and the limit goes to zero as A—oo for c+#d.
This implies the existence of D;,(4+:0) and

llim 1D, (A4+70)[,=0.

Thus we have proved (AD).
Step 3. Finally we prove Lemma A-1. We assume r,—(x/4)>sup ¢,. Since

ch(z) = xi(Tc)<xc>iqc
X (J(2)Id+W(2)) (1d— N)K (2))°¢V 4 C g x 5> "2y >0 =42,
it suffices to show that

X1(Tc)<xc>AcG(li+z'5)0f:<Xc>VcEcx1(Tc)Rc(] +i5)cc55f
and
K(A4+ie)82V 4C 47 Kx o> 8y do-

=B,(Id—E )R (A+ie) x>V ox >y )"0,

have norm limits in B(%) as ¢ |0 uniformly in A</, for any ¢, f, g, deA,
with d=a. By the choice of ¢ and I,, the first has norm limit. Since
B, (Id—E )R (A+ie)x,>% = B,(Id— E ) Ry(A+ie)x > —B,(Id — E;)R,(A+ie)X
AgBRy(A+ie)}x,>™% and V ,{x,>7%y,>*"¥/» is bounded by a+d, we see that
the second has the norm limit by Lemma A-3. This completes the proof of
Lemma A-1. H
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