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High-Energy Behavior of Total Scattering Cross
Sections for 3-body Quantum Systems
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Hiroshi T. ITO*

§ 1. Introduction

In this paper, we investigate the high-energy behavior of total scattering
cross sections with 2-body initial states for a 3-body system.

A 3-body Schrodinger operator is given by

(1-1) H=- S (2771,)-^,+ 2 V^(rt-r,) in L\R>»).
lgj'^3 lg lO=a3

Here 771, >0 and r,^RK (A^3) are the mass and the position of the j'-th particle,
respectively, and VtJ is the interaction between the z'-th particle and the /-th
particle. All V13 are real-valued functions and satisfy the following condition
for some e^N^>{0} or e=3/2 (N={1, 2, • • • } ) :

(V), K^\;)eC2<+2(/^) and there exists a

such that

(1.2) \d^VlJ(x)\^C^yd

for all multi-indices 7- with | f |^2£+2, where <*> := (1-4- 1 x \*)L<\

Let H be the Schrodinger operator obtained by separating the kinetic energy
of the center of mass from H. H acts in M :~LZ(RZN), and its explicit form
depends on the coordinates of R2N. We adopt the Jacobi coordinates. A parti-
tion of the set {1, 2, 3} into nonempty disjoint subsets is called a cluster decom-
position. We call {(1), (2), (3)} (resp. {(i, /), k} , i<j) a 3-cluster decomposition
(resp. a 2-cluster decomposition). We denote by Az the set of all 2-cluster de-
compositions. For a^A2 with a={(i, j), k] , we define the Jacobi coordinates

(*a, yJ by

n ON mlrl+mjrj(1.3) x,=r,-r,, 3,0=r» — — -—
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Let b^A2. Then xb, yb are linear combinations of xa, ya. By the coordinates,
H is expressed as

(1.4) H=

where V= S Vpq and Vpq=Vpq(rp—rq). Note that rp— rq is expressed as a
lgP<Q^3

linear combination of xa, ya. ma and na are the reduced masses defined by
ma~

1:=ml~
1-}-mf1

t na~
l :— mk'

l-}-(ml
Jrm3Y

l, respectively.
Under assumption (V)0, H is self -adjoint with domain D(H)—HZ(R2N)} the

Sobolev space of order 2.
For a^A2 with a={(i, ;), k} , the cluster Hamiltonian //a is defined by

(1.5) Ha :=

Ha is expressed as Ha = ha®[d-\-ld®Ta according to the decomposition M —
Lz(R»a)®Lz(R%a), where ha : = -(2ma)-

l^a + VlJ and Ta := -(2na)-1Jtffl are
self-adjoint in L\RN

X(J) with D(ha)=H\RN
Xa) and in L2(/2£a) with D(Ta)=

H\RN
ya), respectively.

Let da be the number of strictly negative bound state energies (counting
multiplicity) of ha. It is known that under assumption (V)0, da is finite (cf.
[RS] IV, XIII. 3). We set the set of the 2-body channels with negative bound
states energies :

(1.6) rz:= \a=(a, k); a^A2, l^k<da, k^N],

and write D(a)=a for a— (a, k)^F2. For each 2-body channel a— (a, k)^Fz

we denote by /U«0) the k-th negative eigenvalue of ha and by (pa the eigen-
function of ha with eigenvalue Xa such that {<pa} (a^Fz, D(a)=a) is an ortho-
normal system for each a^A2. For each a— (a, k)^F2 the channel Hamiltonian
Ha in Lz(R*a) and the channel identification operator /aeH (L2(R£a), JC) are
defined by

(1-7) Ha = ta + Ta, JaU=4>a®U,

respectively. Here we denote by B(X, Y) the space of all bounded linear
operators from X to Y. Under assumption (V)0 the channel wave operators:

(1.8) W- := s-lim

exist (see, e. g. [RS] III, Theorem XI. 35).
We set

(1.9) r:=

where Oe/7 stands for the 3-body channel.
For the 3-body channel the channel Hamiltonian is H0 and the channel wave

operators are defined by
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(1.10) Wf} := s-lim eltue-ttn°e=BW (B(M) := B(M,
£ _ > ± 0

The existence of the channel wave operators is also known (see, e. g. [RS] III,
Theorem XI. 35).

Throughout this paper we only consider the case where the initial channel
belongs to Fz and the final channel belongs to F. The scattering operator
Sa^p for scattering a-+ft (a^Fz, ft^F) is defined by

(1.11) Sa^=WpW^,

where A* denotes the adjoint of an operator 1 Since the intertwining prop-
erty, QXp(itHp)SCL_+p=Sa_pex.p(itHeL\ holds, Sa^p is decomposable by a family
of operators {Sa-pW}, *>tpa := max(ta, ^) (cf. [AJS], 15-3). The representa-
tion formula of Ta^.p(X) := Sa-,p(A)—5pa will be given in the next section and
the Appendix, where dpa is Kronecker's delta and we set ^=0 if /3=0. Ta^p()C)
is defined for a. e. l>tpa as an operator in B(LZ(S*-1), L2(S<3)), where S>B : =SN^
(the unit sphere in RN) for /3^0 and S'3=S2N~1 for 0=0.

If ft 7^0, Ta^p(X) is well-defined as a norm continuous function of /l>0 and
is of Hilbert-Schmidt class with kernel Ta->p(A, 6, <D), and T a ^ p ( 2 , • , CD) is
L2(S*v~1)-valued strongly continuous function of ^>0 and a)^SN~l (Proposition
2.3).

To treat the case ft=Q, we need the following condition in addition of (V)0 :

(Z) For each a={(i,j), k} e.42, —1 is not an eigenvalue of the following
bounded operator on Lz(R^a) :

(1-12) VYJ
z(-(2mar^Xa-Q~iQ)-1\V

where V i
l

/
J

2 : = \ V u ( x a ) \ 1 / 2 sgn Vu(xa) and the existence of the norm limit is
known (cf. [GM], Proposition 3.1)).

Assumption (Z) implies the absence of zero eigenvalue of ha (cf. [GM],
Proposition (3.4)), and assumption (V)0 implies the absence of positive eigen-
values (cf. [RS], XIII. 13). Therefore, it follows that the set of all eigenvalues
of ha coincides with the set [la ; a^F2, D(a}=a\ under assumptions (Z), (V)0.

Under assumptions (V)0 and (Z), Ta_>0(/(), is of Hilbert-Schmidt class with
kernel Ta_0(^, 0, o>) for all large A>0 and the integral

(1-13) ( 9V lj s ^ iV ~i

is continuous in /1>1 and o)^SN l (Proposition 2.4).
Now we give the following definition (see [AJS], p. 627):
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Definition. The total scattering cross section aa^p(A, cw) for scattering
a— >fi (a^Fz, fi^F) at energy ^>1 and incident direction (D^S*''1 is deimed by

(1.14) ffa_ft(t, a)):= W-WnaV-taW1-*'"* Ta^(l, 0,

under assumption (V)0 for ^8^0 and under assumptions (V)0 and (Z) for £=0.
The total scattering csoss section for an initial channel a at energy X>1 and
incident direction o)^SN~l is defined by

(1-15) (jay, o)) := S 0a-.p(A, o>)
^er

under assumptions (V)0 and (Z).

For a={(i, /), k\^A2 we define the intercluster potential Ia by

(1-16) /„(*«, ya) = V-VtJ(Xa)

and set

(1.17; Wa(xa ; a>, >?) := f 7 t t(xa jj /j

for weS^-1 and ^e77w:= {feH^v ; f .ft>=^0} . (•, -)a and | |- | |a denote the L2-
scalar product and the L2-norm in L2(R^a), respectively.

Now we state our main results.

Theorem 1.1. Let a^F2 (a=D(a)) and fl^F, and let the notations be as
above.

(i) Assume (V)c with £eJW;{0} and /3eF2 with D(fl)=£a. Then

(1.18) (Ta->ti((l/2>)nav
z-}-/(a, cvJ^Otv-21-*)

uniformly in a)^SN~1 as y—>-{-oo.

(ii) Assume (V)0 and /3eF2 with D(fi=a. Then

(1.19) a

uniformly in a)^SN~l as v—> + oo.

(iii) Assume (V)0, (Z) and /3=0.

(1.20) a,

(1.21) ffaCa/^TZ^+yi^ 0))=v \\Wa(- } 0), Ij^^dl) +o(V ~
j n (jj

uniformly in coeS^"1 as v— » + °o, where Pc(ha] is the orthogonal projection onto

the continuity subspace of Lz(R^a) with respect to ha.
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Theorem 1.2. // we replace assumption (V)0 by assumption (F)3/2 in (ii),
(iii) of the above theorem, all the remainder terms o(u~2) in (1.19), (1.20), (1.21)
can be replaced by

There are several literature on 3-body total cross sections ([APS], [ES],
[AJS], [AS], [I], [IT]). In particular, bounds on the total cross sections at
high energies for many-body systems are discussed in [APS], but the asymptotic
behavior are not discussed in it. In [APS] and [ES] the approach to study the
total cross sections is the time-dependent one, while our approach is the time-
independent one and is based on the representation formula of the scattering
matrix and some resolvent estimates, which is proved by using multiple com-
mutator methods ([JMP]). A similar approach is carried out in [I]. In [Ha]
the convergence of Born series for (2-cluster)->(2-cluster) T-matrix for w(5j4)-
body systems at high energies is proved.

The organization of this paper is as follows. In Section 2 and in the Appen-
dix, we shall review some properties of Ta^p(A, 6, w) and prove the optical
theorem (Theorem 2.5). The proof of Theorems 1.1 and 1.2 will be given in
Section 3. A proof of Proposition 3.1, which is crucial for a proof of Theorem
1.1, will be given in Section 5 by using the abstract commutator methods (Theo-
rem 4.2) in Section 4.

§ 2. Representation Formula of Ta^p(JL, 0, o)

In this section we will give the representation formula of Ta^p(A, 6, <o) for
aejT2 (a=D(a)) and ]8eF, and will prove the optical theorem.

We first consider the case ^^Fz with b=D(f)). The next lemmas are
crucial for our representation formula of Ta^p(A, 6, a)). We write R(z) =

(H-z)-1 for

Lemma 2.1 ([M], [PSS]). Assume (F)0 and s>l/2. Then the norm limits

(2.1) R(JL±ib) := lim R(X±ie)

exist in B(L\(RZN), L-S(R
2N)) for ^>0, and the convergence is uniform on each

compact subset in (0, °o), where Lz
t(R

ZN) (t^R) is the weighted Lz-space :

where <xa ; yay := (1+ \xa |
2+ ya

 2)1/2. (Since ma\xa\* + na ya\* = mb\xb\* +

Kb I Jb I2 for any b^Az, the definition of the space L\(RZN) is independent of the
choice of

Lemma 2.2. Assume (V),. Then for any s>0 and any multi-index ? with
fo satisfies »rb<j)^L\(R»b\
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For the proof of Lemma 2.1, see [PSS]. Lemma 2.1 (called the limiting
absorption principle) holds for rc(^2)-body systems under milder conditions on
the potentials ([M], [PSS], [ABG], [T]). Lemma 2.2 is known as the ex-
ponential decay of eigenf unctions. For the proof, see [Ag] (see also [RS] IV,
XIII. 11). Now we give the spectral representation of Hp (cf. [AJS], 16-2).

For X>*p we define a map Zp(Z)e=B(Ll(R%b), L2^-1)), s>l/2, by

(2.2)

where a)^SN~1 and

(2.3)

Then the map Z p, defined by

(2.3)'

can be extended to a unitary operator from L2(RN
yb) to L\(l$, oo) ;

and

in LZ(SN~1) for a. e. ^>/^ if f^D(Hp). Za is defined in the same way.
We define G^U, a))=Gpa(X, <w; ;y6) by

(2.4) G,,aa aO

where K(X)=-Ia-\-IbR(li+ityIa, and

From (V)0 and Lemmas 2.1, 2.2, it follows that G^W, fi>) is Ll(Ef&)
strongly continuous function of (^, cw)e(0, ^xS^-1 if l/2<s<5— (TV/2).

Proposition 2.3. Let a, jQe A awrf assume (V)0. T/?e?7 Z^S^^ZJ fs decom-
posable by a family of operators {S

(2.5) (ZpSa^Z*hM)=Sa^(X)h(fi in

for a. e. 2>Q, where /2^L2((0, oo) ; L2(SAr~1)), which is considered to be embedded
in L\(Xa, oo) ; L2(SJV-1)) &3> regarding /i(^) = 0 /or ^e(^a, 0]. Furthermore,
Ta^^:=Sa^p(2}-da^B(L\SN-1)) is continuous in 2>Q with respect to the
Hilbert-Schmidt norm and its kernel T a^p(X, 6, co), ^, weS^'1, s's ̂ 'ven ^

(2.6) T^^U, », a>)-27TfCaU)(Z^W)G^y, oi))(tf) .

/n particular, Ta^U, •, cw) /s Lz(SN~l}-valued continuous function of (2, o>) an^
(Re T a^a(X}}(d , a)) of (l/2)(Ta^aW) + Ta^a(;)*) « continuous in (1, 6, o>).

Proof. The first half of this proposition and (2.6) can be proved in almost
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the same way as in the 2-body case. For the proof of the first half, see, for
example, Proposition 2.4 of [1]. (2.6) yields

(2.6/ (Re TM(^))(», (w)=^iCflW)a((/?W+iO)-/?W-iO))/aeflW, a>\ Iaea(l, 6 ) ) .

We fix s with l/2<s<d-(N/2). Then, by (V)0 and Lemma 2.2, Iaea(l, <w) is
LiGR2Ar)-valued strongly continuous function of (^, o>). Thus, the last half of
the proposition follows from (2.6)' and Lemma 2.1. •

We next consider the case /3=0. To give the spectral representation of
//0, we define a unitary operator U on M by

(2.7)

and define an operator Z0(^^B(L2
S(R

ZN)) L^S2^'1)), ^>0, s>l/2, by

(2.8)

where tfeS2*-1, *=(*a, ya\ dX=dxadya and

Then the map Z0, defined by

can be extended to a unitary operator from j^ to L2((0, oo) ; LZ(SZN~1)) and give
the spectral representation of HQ : For each f

(2.9) (Z0#o/)tt -)=^(Z0/)W, 0 in

for a. e.

Proposition 2.4. Assume (V)0, (Z) and fver2, ^8=0. Then, ZQSa^QZa* is
decomposable by a family of operators {7\_»0Wh ^>0. Ta^(}()^B(Lz(SN-1\
LZ(SZN~1)) is continuous in ^>1 with respect to the Hilbert-Schmidt norm. Let
Ta^oW, 0, a>), OeS8^-1, weS^-1, 6e z7s integral kernel. Then, Ta^(X, •, a>) fs
Lz(SZN~1)-ualued continuous function of

Most of these results are obtained in [AS]. In [AS], it is shown that
Ta^p(X) can be defined for all ^>0 but a closed null set, while the boundedness
of this set is not proved in it. Thus, for completeness, we give a proof of
Proposition 2.4 in the Appendix.

Owing to the following theorem, we need not study directly the asymptotic
behavior of <7f t_*oU, &>) as A—>oo.

Theorem 2.5. Assume (V)0, (Z) and a^F2. Then, for each /1>1 and
^"1, the following relation holds'.
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(2.11) (jrty, co)=-2(2^yy-1(2naU-4))(1-iV

(1.15)).

Proof. Under assumption (V)0, it is known that for a~£f$ (a, fi^F), Ran
W« is orthogonal to Ran Wj (Ran=Range) and the asymptotic completeness
holds (see (1.8), (1.10)). Moreover, if we assume (Z) as well, we have

where Mac(H) denotes the absolute continuity subspace of M with respect to
H (cf. [E]). This yields

(2.12) SSaVSfl^=Id/ser
and so

(2.13) S T
^r

This equality holds for each ^>1 since all terms are continuous by Propositions
2.3 and 2.4. From (2.13) we have

(2.14) S f TTTCOT^OT^^ 5,
3erJs<3

This equality holds for each co, a)f^SN~1 and /£>! since both sides are con-
tinuous by Propositions 2.3 and 2.4. Hence, putting <o'=a), we get the desired
result. m

Remark. This theorem is called the optical theorem ([AJS], p. 628\ We
can show that aa(l, o>) is well-defined for a. e. (/I, o>)e(0, oo^xS^'1 and (2.11)
holds for a. e. (/I, o>)e(0, oo)xSAr"1 under assumptions (V)0 without (Z) (see
Proposition 2.3 in [IT]).

§3. Proof of Theorem 1.1

3.1. In this subsection we assume (V)j with ^eJW{0}. Let a, ^eA with
D(a)=a, D(fi}=b, a^b. We write x=xa, y=ya for simplicity. For v>0 we
define

(3.1)

If v is large, we can take z/=i/(v)>0 such that

(3.2) (l/2)7i6v /2+^=^(v).

Throughout this section, we assume r>l. By (2.4) and (2.6) we have

(3.3) Ta^(l(v\ 0, w}=
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where (/>a=(f>a(x), <f>p=</>p(x6) and

(3.4) C(v) : = i(2nrN*\nanby
N-1>'*(vv'yN-»'* .

Here notice that the R. H. S. of (3.3; is well-defined for all U, <w, 0)e(0, oo)x

For each v >1 and ajeS^"1, we define a self-adjoint operator L(i>, CD] in
c# by

(3.5) L(v, co) := i^H-^-io)-? y

By (3.5) and Lemma 2.1, the norm limit

(3.6) (L(v, (D)-iO)-1 := lim (L(v, a))
s;0

exists for s>l/2. Then Ta-*p(Z(v\ 6, o>) is written as

(3.7) T

For k, s^R we define

where cSx is the tempered distributions and J is the 2/V-dimensional Laplacian.
Instead of (V),, we assume the following condition (U),, ^eJVU{0}, to prove

the next proposition:

(U), Each Fu-(.t) U^2<y^3) is a real-valued C2e+z-f unction on RN and
satisfies

-min<"'1- < 4 - Z ) , ! r I ^

Since A^^3, it is obvious that (V), implies (U), for ^eATu{0}. The following
proposition will be proved in Section 5.

Proposition 3.1. (i) Assume (U), and let k be an integer with Q^k^t and
s a real with /?4-(l/2)<s. Then there exists a z;0>0 such that

(3.8) sup \\(L(v,a>)-ieYl\\Bk,<<x>

and the norm limit

(3.9) (L(v, <o)-iQ)-1 := lim (L(v, (o}-ie

exists in Bk,s:=B(Hk
s(R

2N), H*S(R
ZN)) uniformly in v^v, and a)^SN~1. In partic-

ular, the operator norm \\(L(v, co)— iQ)~l\\Bk s is uniformly bounded in V^VQ and
SN-1.

(ii) Assume (U),. Then
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(3.10)

uniformly in a)^SN~1 as i>-> + oo where H%=Ht(R2N),

Remark. The norm limit

(3.10)' (-jfl>.Fy-jO)-1:=
e i O

exists uniformly in (o^SN~1 and

(3.10)" ((-uwFy-iO)-1!*)^, ?+teO=i' u(x,

where r}<=IIQ}={r}<=RN ; ij-a)=Q}. Indeed, in one dimensional case,
(q>~s(—i(d/dq)—i£Yl(Q>~s, £>0* s>l/2, is an integral operator with Hilbert-
Schmidt kernel /f(e; q, t)=i(qy~s exp(s(t-q))I(t, ^)<0"f, where X(^, ̂ )=1 (resp.
=0) for £fg# (resp. q^t}, and converges to a Hilbert-Schmidt operator with
kernel K(+Q;q, t)=i<qy%(t, qXt>'s w. r. t. the Hilbert-Schmidt norm as e i 0.

Proof of Theorem 1.1 (i). Since a^b, y is written as y=mxb
j
rnyb for

some constants m^O, n^O. Thus, by (3.7), we have

(3.11) Ta^(l(v\ 0, co)

= C(v)\e{-in*v'e+in*vna>'v*dyb\e
tn*vn°^^^

where

fl = fl(Xb, y*)=—$(Xb)Ia<>a(x),
(3.12)

By (V)0 Lemma 2.2 and Proposition 3.1, the following estimates can be verified :

(3.13)
sup i|3a3%/,iUi(ji«^)<oo,

w>i,oie5^-i

(sup ••• := sup ••• for some large vj.
V>1 V£Vi

Hence, by integration by part in xb, we can write

(3.14) Ta^(l(v\ 6, co^CMv-^Fy^Xn

where (Fybg)(%) is the Fourier transform of

(3.15) g(yb)=^ein^M'^h(v9 co ; xb,

where

In the same way as (3.13), we have
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(3.16) sup ||Oc»>*<y»>A(
i»i,<ue5'v-i

Thus, by (1.14), (3.14), we have

(3.17) aa^(X(v), <o)=(2n)N-\na

x( \
J l £ l = n & t > '

where dS^ is the Lebesgue measure on the sphere {£ ̂ RN ; \g\=nbv'}. On the
other hand, by the trace theorem ([GM], Proposition 2.1) we get

(3.18) \ \
J \£\=ni)V'

where we have used the Schwarz inequality in the last step. Therefore, by
(3.4), (3.16) and (3.17), we obtain (1.18). •

3.2. In this subsection we assume (V)0. We begin with the following
lemma.

Lemma 3.2. Let a, /3er2 with D(a)=a, D($)=b. Then, for each Jl>0 and
each (&^SN~l, aa->p(%, CD) can be represented as

(3.19) aa^(l, o>)=2(27r)^CaU)"(2nflW-ia))(

where

»*<*-**»1/*»"', and E^J^ (see (1.7)).

Remark. I(A, CD) is well-defined by Lemma 2.1 and the following:

for some s>l/2, which follow from (V)0 and Lemma 2.2.

Proof. We first note that

(3.20) Ta^(l, 0, w)=2niCa(X)(Zp(X)Jp*K(Z)

where K(fi:= -Ia.+I*R(l+iG)Ia (see (2.4), (2.6)). Thus we have
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Here we regard Zf}(V*EEB(L2(SN~1), Ll,(/2^)), s>l/2, by regarding Li. as
(LI)*. Therefore we get

(3.21) tf«^W, ®)=

where <R6W±iO)=(ft-W±iO))-1 := lim (ft-y±js))~1 (see (1.5), Lemma 2.1) is a
e i O

bounded operator from L2
S(R

ZN) to L*S(R
2N\ s>l/2, and we have used the fol-

lowing two relations in the last step :

(3.22)

Furthermore, the resolvent equation Rb(z)IbR(z]—Rb(z)—R(z} yields the follow-
ing:

Thus, by this together with /?6(>l+x'0)£j3 = £j8/?6(>l+i'()), we can get the follow-
ing relation :

(3.23)

where K(X)*:= -/a+/0/?W-/0)/6. This relation together with (3.21) implies
the desired result. m

Proof of Theorem 1.1 (ii). Let a=b. Then, by Lemma 3.2, we have

(3.24) a«^(l(v\ co)=(2/vz) Im (Ep(L(v, a>)-mrlla<t>a, /»#«)

where we have used -fc"^ exp(/72avo>-3;)=exp(/wai;a)' iy)jE^, which follows from
a=^ and the definition of Ep. By Proposition 3.1 (i) with k=Q and (3.19)7 the
second term is 0(v~2) uniformly in co^SN~1 as v— >4-°°. Next we will show
that

(3.25) \\((L(v, (o)~iQr1-(-i(0'!/y--iQrl)Ia^\\o.-s

uniformly for a)^SN~1 as v-^ + °o for s>l/2. By the resolvent equation we



S-BODY QUANTUM SYSTEM 815

have

(L(v, <o)-ier1Ia<f>a-(-io>'Fy-ier1Ia<f>a

= -v-\L(v, u}~izTl<H~Xa}(H,-iTl'(-iv'Vy-izY\H,-i)Ia<l)a

for each £>0, and this yields

(3.26) \\((L(v, <ti-ie)-l-(-iv-Fv-ier1)Ia</>a\\^C(e)v-1

for each £>0. We write

\\((L(v, <ti-toYl-(-i(o-Vv-iQ)-l)Ia<I>a\\*t-*

+ \\((L(v, a>}-izTl-(-ia>'\7y-izYl)Ia<I>a\\ •

Then (3.25) follows from (3.26), (3.10)' and Proposition 3.1 (i). Thus by (3.19)'
and (3.25) the first term of the R. H. S. of (3.24) is

(3.27) (2/vz)l

uniformly in a)^SN~1 as v-» + oo. Hence,

(3.28) 0a^(l(v), o)}^(2/vz)lm(E^(-ia)'Vy-i^-lIa^a,

uniformly in o)^SN~1 as v— >-j-oo. Since

(3.29) ((-^-Fy-fOr1/^)^', 7]+t<o)=i<pa(x)F(x,

where ^e/7^, t^R and

S i
Fa(x,

we have

= j i '

= . \(Wa(-;a>, r))<f>a, <!>?
J H &

This completes the proof. •

3.3.

Proof of Theorem 1.1 (iii). We assume (V)0 and (Z). Theorem 2.5 yields



816 HIROSHI T. ITO

(3.30) tfaWfr), fl))= -2(2K}N-\nav}l-N(Re Ta.a(

—2z;~2Im((L(i;, (a)—ity-lla$a, /a^a)-

Thus, by (3.25), we have

||PFa(- ; o), yWallld-n+o^-2) (see (3.29))

uniformly in cy^S^"1 as 2;-^ + °°. This proves (1.21). Under assumptions (V)0

and (Z), the set {Aa ; aeA, D(a)=a} coincides with the set of all eigenvalues
of ha. Thus, by (1.15), (3.31), (1.18), (1.19), we obtain

uniformly in cweS^""1 as v->oo. This completes the proof. H

3.4.

Pro0/ o/ Theorem 1.2. We assume (7)3/a. Then, Ia(pa^H2
2(R

2N) and (^)L

is satisfied. Thus, by replacing (3.25) by (3.10) in the above proofs, we get
the desired results. ®

§4. Abstract Theory for Resolvent Estimates

In this section we give an abstract theorem for the proof of Proposition
3.1. This theorem is a slight extension of Theorem 2.2 of [JMP] (see also
[J]> [I])- Throughout this section we work on an abstract Hilbert space H
and denote by || | the operator norm of bounded operators on H.

Definition 4.1. (I) Let A be a self-adjoint operator in H and d^N. We
denote by S d ( A ) the set of all self-adjoint operators K in H satisfying the fol-
lowing properties (A-i)~(A-iv).

(A-i) D(K)r\D(A) is a core for K.
(A-ii) exp(z'L4) leaves D(K) invariant, and for each f^D(K)

(A-iii) Let KW=K. There are self-adjoint operators iKa\ ••• , i*K<*>
satisfying the following :

(; = 1, -, d),

the form i[_is-lK(j-l\ A] defined on D(K)r\D(A) is bounded from below and
closable, and the self-adjoint operator associated with its closure is ijKU) (j=
l , - » , d ) . Here, [,] means the commutator: ([5, C]/, g) = (C f , B*g)-
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(Bf, C*g).
(A-iv) The form [A'(d), .4], defined on D(K)r\D(A), extends to a bounded

operator from H+z to /f_2, which is denoted by \_K(d}, A]0, where H+z is the
domain D(K) with the graph norm \\f\\+2:= \\(K+i)f\\ and H.z is the dual of
fl+2 obtained via the inner product in H.

(II) Let A be a self-adjoint operator in H and d^N. We denote by Bd(A)
the set of all bounded operators W on H satisfying the following property
(A-v).

(A-v) Let W™=W. There are bounded operators W(1), • • • , W(d> on H
satisfying the following properties:

The form \_W(j~l}, A], defined on D(A), extends to the bounded operator
W<» (7=1, -, d).

For K^Sd(A] and W^Bd(A), we set

(4.1)

(4-2)

To state our main results in this section, we prepare some notations. Let
/ be a compact interval in R and I± :— {zeCjRe^e/ , Q<±lmz<l}. We fix
a smooth function 1(t} on R such that O^X^Jl, 1(t}—l on / and suppX (supp=
support) is contained in a small neighborhood of /.

Theorem 4.2. Let I, 1 be as above, and A a self-adjoint operator in H,
d^N, and Klf •••, Kd^Sd(A). Furthermore, if d^2, let Wl}

Assume Kj satisfies:

(4.3) KIQiKfKKj^C^Kjy , 7 = 1, •- , d ,

for some C0>0. We define D(z\ z^C\R, by

for d = l,

for d^2, where s is a real with s>d-(l/2) and <A>:= (1-r- ,4|2)1/2. Then, the
following (i), (ii) and (iii) hold.

(i)

(4.4) sup \\D(z)\\^C<oo
ze/±

(ii)

(4.5) \\D(z)
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for 2, Z'EL!±, where dQ=(l+(sd/(s-
(iii) The norm limits D(A±ity := lim D(^is) exist in B(H) uniformly in

Moreover, if A, Kl} ••• , Kd (and Wl} ••• , Wd-1 if d^2) depend on a param-
eter v such that I, I and C0 can be taken independently of v and that \\\Kj\\\sd(A>
(/=!, • • • , d) (and \\\Wj\\\Bdu> (/=!, "• , d — 1) if d^2) remain bounded in v, then
C can be taken independently of u.

For 0< e <1 the operator

(4-6) QM:=£-^KF>, 7 = 1, - , d,
m = l/n I

is /^-bounded with A"rbound<l by (A-iii). Thus Kj-\-Qj(s) is a closed operator
with D(Kj+Qj(e))=D(Kj).

Lemma 4.3 ([JMP], Lemma 3.1). There exists a e^Q such that the follow-
ing properties hold for Q<±s<s1} z^I±, j=l, ••• , d:

(i) Kj+Qj(e)—z has a bounded inverse GJiZ(e)<=B(H)
(ii) Gy.j(e) satisfies the following estimates:

(4-7)

(4-8)

(4.9)

where C is independent of ±ee(0, ej, ze/±, 7 — 1, ••• , rf.
(iii) The form [.4, GJ iZ(s)], defined on D(A), extends to a bounded operator

[A, Gj iZ(e)]0 o^ fT. G,.a(e) ma^s J9(^) ̂ ^ D(A)r^D(K3).
(iv) For eac/z ^e/+ (resp. /_), G.7,,(s)eC1((0, ^\B(H)) (resp. C\(-slt 0);

(4.10) -G, . , (s)=[G, . , (e) , A^+Gj.MlK^ A^GJtZ(^.

Moreover, if A, Klt • • • , Kd depends on a parameter v such that I, I and C0

can be taken independently of i/ and that |||/Glllsdu) (7=1» •" . d) remain bounded
in u, then slf C can be taken independently of v.

For properties (i)~(iv) of the lemma it suffices to prove them for each 7".
For the proof, see [JMP]. The last part can be shown by carefully checking
the estimates carried out in [JMP] (see also [M], [PSS]).

Lemma 4.4 ([I], Lemma 3.5). Let /*(s)= logs for k=Q and fk(^=£~k

for k^N. Assume that a B(H)-valued Cl-function X(e), 0<£<£! (£i>0),
satis lies :
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(4-11)

(4.12)

where p, q, r, d, C2 are constants satisfying 0^/Kl, 0^<?<1, r^O, Ci, C2>0.
Then X(e) satisfies the following estimates :

(4.13) ||^e)|| = C-e -* + 1 when k^2 ,

(4.14) |l^(e)||^C log e | when k = l,

(4.15) 11^(6)11^0 when k=Q ,

where C = C(Clt C2, £1? /?, ry, r)>0. Furthermore, when fc=0, J/z0 #07-7/1

For the proof, see [I].
For the proof of Theorem 4.2 for the case d = l, see [M], [PSS]. We can

also prove this theorem for d^2 in the same way as in Theorem 3.3 in [I].
The proof is a slight modification of the proof of Theorem 2.2 in [JMP]. But,
for the sake of completeness, we give the proof of Theorem 4.2 for d^2.

Proof of Theorem 4.2. We give only the proof for the case z(=I+.
(i) For multi-indices of nonnegative integers a—(al, ••• , a r f_i) , /3 = (/3i, ••• ,

j8d-i) we write \a =ai
j
r ••• +«d-i, and a^fi if and only if a.j<>fij for all ;.

Let Ma be a family of all multi-indices ft with a^fi, \f)\ = \a\-\-l. Namely
implies that a.j—fij—1 for some j and ^l = al for iV/. We set

for 2G/+, £>0, a=(«i, • • - , a d_i) with |
By Lemma 4.3 (iv), we have for a

(4.16) ~
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First we estimate /2(e). Since s>l and Wja^ (/=!, ••• , d-1), (Kn-\-iY
l\_K{*\

A]Q(Kn + iYl (n — l, • • • , d) are bounded by (A-v), (A-iv), we have

(4.17) ||/2(£)|| ̂ C • £d • e-1'2- s-^1- e-1/a^C

by Lemma 4.3 (ii).
Next we estimate /^e). Noting that G n , g (e) maps £>(,4) into #04) and

T^ja^ maps D(A) into £(-4), as follows from (A-v) and Lemma 4.3 (iii), we
have, by elementary computation,

(4.18) /i(e)=[F?(e), A]-
,Se3/a

Since ||<^>'Ff(e)||, HFfCeX^'II^C-e-*-""^ by Lemma 4.3 (ii) and

by interpolation, we have

II [Ff (e), /4] || ̂  j| Ff (

Thus we get

(4.19) i l / i
^e

Therefore F?(e) satisfies by (4.16), (4.17) and (4.19)

(4.20)
d

Ff(e)de

for all multi-indices a with a ^d — 1 where m=(d—(l/2))/s.
Furthermore, it follows from Lemma 4.3 (ii) that

(4.21) \\Fr
z(^\\^Ce-d+1

for all multi-indices f with \ f \ ^ d .
Let \a\=d-l. Then we have by (4.20) and (4.21)

d

Applying Lemma 4.4 (/>=!— (1/s), ^=m ; p, #e[0, 1) by s>d— (1/2)), we have

(4.22) !|

Next let a|=d-2. Then j8|=d — 1 for /3eEMa. Thus we obtain by
(4.20)
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Applying Lemma 4.4, we have

Continuing, we have for |a|=0

(4.23)
d £ 2 V

Thus we have the following estimate, by Lemma 4.4,

(4.24) sup ||F2(£)||^C<oo,
2e/_ r , o<e<i

where Fz(e):—F?(e) for |a|=0.
We set Rn(z)=(Kn-zYl. Since lim \\Qn(e)Rn(z)\\=Q for each z^C\R by

£ 4 . 0

(A-iii), l + Qn(e)Rn(z) has a bounded inverse, and so

holds for each z^C\R when £>0 is small. Therefore we get

\imGn.t(e)=Rn(z) (n = l, ••• , d)
SiO

in the norm of B(H} for each z^C\R, and so we have by (4.24)

(ii) By (4.23), (4.24) we obtain

d__
de

Integrating this, we have, by noting 0<m<l,

(4.25)

On the other hand G, t ,2(s) is differentiable in z^I+ for each £>0 by Lemma
4.3. We have the following estimate by Lemma 4.3 (ii) :

which implies

(4.26)

for z, 2'e/x, £>0. Let e=|2-^|3i, ^=(1— m)-1^ (see (4.5) for d0). Then by
(4.25), (4.26) we have
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-^^
z-z'\'°.

Thus we have proved (ii). (iii) follows from (ii).
The uniformity of the choice of C can be obtained if one takes into con-

sideration the last part of Lemma 4.3 and the proof carried out above. ®

§ 5. Proof of Proposition 3.1

In this section we will prove Proposition 3.1 by applying Theorem 4.2.
Throughout this section we assume (U), and fix an integer k with 0^&^#.
Furthermore we define a set Q := {(v, <H) ; v>u^, <weS-v~ ]} for r0>0. Let .40 be
the generator of dilations on R2N :

(5.1) A0=(l/2i)(x-Fx+Fx-x + yFy+Fy-y),

which is self -adjoint in M with a core S—S(RZN), the Schwartz space of rapidly
decreasing functions. Thus, the operator A(r], T—(V, <y)e£?, defined by

(5.2) A(T)\=(navrlA*+u-y

= (nav)~l exp (—inava)-y)AQ exp (inava)'y} ,

is self-adjoint in M with a core S. For notational brevity we write L(r)=
L(v, a)) for T=(V, w)^Q. Then, a simple calculation yields

(5.3) j[L(r)

on s, where i[V, ^40] is an operator of multiplication :

(5.4)

where

(5.5)

Lemma 5.1. (i) L(r)e5^i(/l(r)) for each r^Q (see Definition 4.1) and

(5.6) supl||L(r)|||^+1ucr))<^.

(ii) Fix a smooth function I(t) on R with I— I on [ — 1/2, 1/2] and supple:
[-1,1]. Then,

(5.7) Z(L(r)>IL(rX.4(r)]Z(L(r))^(l/2)Z(L(r))2

for all refi // ?'0>1.

Proof, (i) Since S is a common core for L(r) and ,4(r), (A-i) follows.
(A-ii) can be easily verified by (5.2). By (5.3), (5.4), (5.5) and (U), we see that
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the H-th (0^w5^+2) commutator

(5.8) iB[[-[L(r), A(T}-], -..]

on cS can be uniquely extended to a self-adjoint operator i n L ( n } ( r ) with domain
HZ(RZN). Thus, taking account of the fact that S is a common core for L(r)
and /l(r), we can verify (A-iii), (A-iv). Therefore, we see that
for each r^Q. (5.6) can be verified by using (5.3).

(ii) For v0>l, we get, by (5.3),

This completes the proof. m

For re£ and z^C\R, we write #(r, z)=(L(r)— z)'1. It is not difficult to
check, by using VR(r, i)=R(r, %W — R(r, i)v-l(PV)R(r, i] and (U),, the following
estimate :

(5.9) sup ||/?(r, «)| |H(//TO //^)<co

re.Q

for 0^m^2^+2, where Hm=Hf(RZN).

Lemma 5.2. Let m be an integer with 0^ra<^+2. Then

(5.10) sup^H^r, Ol lB(H m .H m + 1 )< 0 0 •

. Let L0(T):=v-l(H0—Jtn)—ia)-Pv for T=(v,<o)^Q. Then, by (5.9),
(£7), and the resolvent equation

it suffices to show that

(5.11) SUP ^"1l |(L0(r)-2)-1lU ( / /m>/ /m + i ) <co ,
T=(V, (0)^Q

which is, by the Fourier transform, reduced to the following estimate :

(5.12) sup y - i ( | f | + |7 +1)
T=(V, (

Taking account of ^a<0 and 2ab^aZjrbz for a, b^R, we have

|£| + |i?|+l^irK(l/2ma)£8+(^

which yields (5.12). This completes the proof. •
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Proof of Proposition 3.1 (i).
Case &=0. We first consider the case k=Q. For the proof, it sufficies to

show that

(5.13) sup \\X,R(r, ie)X,\\ < oo ,
reP, 0<e<l

(5.14) lim sup||A,[/?(r, *s)-/?(r, i
S, £' 40 TG/2

where Xt:=(l+\x 8 + | ;y | 8 )~* / 2 and l/2<s^l. By the resolvent equation we
have

(5.15) R(r, ie)=R(

Thus, we have only to prove the following estimates :

(5.16) sup ||04(r)>-'#(r, js)</l(r)>-'K oo ,
re#, 0<£<1

(5.17) lim sup||04(r)>"[/?(rf ie)-/?(r, iV)]<^(r)>-||=0,
£, £ ' 4 0 T^Q

(5.18) sup \\X,R(r, ±/)</l(r)>s||<oo .
-&Q

(5.16) and (5.17) follow from Theorem 4.2 and Lemma 5.1. By interpolation, it
suffices to prove (5.18) for s = l. We have

(5.19) Xrffr, ±i)A(T)=X1A(T)R(r, ±i}-XlR(r, ±i}[_L(r\ A(r)]R(T, ±i)

on S. By (5.3) the operator norm of the second term in the R. H. S. is uni-
formly bounded in re Q, and the norm of the first term is also uniformly
bounded in re£? by Lemma 5.2 with ?n=0 because

(5.20) A(T)=(navtrl(x.Fx + y'Py+N)+w>y, T=(V,

Thus we have proved Proposition 3.1 (i) for &=0.

Case k^l. We next consider the case l^k^t. We may assume £+(1/2)
For the proof, it suffices to prove

(5.21) sup 1\XSD?R(T, f
TG£, o<s<i

and

(5.22) lim sup \\X9D^R(rf ie)
s, £' 4. 0 t^Q

where r <k and D :=(dx, 3y\ <D> := (- J+l)1/2. Taking account of (5.13),
(5.14) and

(5.23) X_sD?(Dy-kXs^B(M] for \r\^

and using
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(5.23)' DR(r, is)=R(r, is)D-R(r, iz)v-1(DV)R(T, is)

repeatedly, we see that the proof of (5.21) and (5.22) are reduced to the proof
of the following:

(5.24) sup \\XsR(r, is)(D^V)R(r, is) ••• (DTmV)R(r, ie)Xs\\<°o ,
re£, 0<£<1

(5.25) lim sup \\X,{R(r, ie)(D^V)R(r, is) -• (Drm>V)R(r, is)
s, e' 4,0 re£

-R(r, is')(DriV)R(T, ie') ••• (DrmV)R(r, is')}X,\\=Q,
m

where l^m^/e and S \Ti\^k- Using (5.15) repeatedly, we have
j=i

(5.26) R(r, is)= S (iz-i)mR(r, i)m+1

ogmg2& + l

+(is-i)*k+2R(T, i)k + lR(r, ie)R(r, i)k+l .

Thus, replacing R(r, is) in (5.24), (5.25) with the R. H. S. of (5.26) and taking
account of ||/?(T, 011^1, we can reduce the proof of (5.21), (5.22) to that of the
following :

(5.27) sup HXsU^r, is)U2 -. R(r, is)Um^X,\\<°o ,
T(=Q, 0<S<1

(5.28) iim sup {IX^U^Rfr, ie)U2 ••• R(T, is)
e, s' 4,0 re/3

-R(r, leOf/. ••• R(T, 2^)}Um+lXs\\=Q .

where l^m^/e+1, and each Uj=Uj(r) has the form:

(5.29) Uj=R(r, i)k+1Y, ••• Yq or l\ - YqR(r, i)k+l ,

where Yj=R(r, i) or DrV for \f\^k.
Consequently, taking account of (5.16), (5.17) in the case m=l it suffices to

prove the following:

(5.30) sup {H-Y^OlWXII + IK^WX^^-Y.IKoo ,
teJ2

(5.31) sup ||<A(r)>-J?(T, i£)U2R(r, is) ••• UmR(r, i
re^, 0<e<l

(5.32) lim sup ||<A(r)>-s{^(r, ie)UzR(r,
e, £' 4- 0 re^

-/?(r, iz')U2R(T, is') ••• £7mJ?(r,

By (U), and (5.3), we can easily see that Uj(r)^Bl+1(A(T)) and

(5.33)

for each /. Hence, (5.31), (5.32) follow from Lemma 5.1 and Theorem 4.2 with
d=m, KJ(T)=L(T) (1^/^m) and W j(r)=Uj+l(r
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Finally we prove that \\XsU^A(T)ys\\, r^Q, is uniformly bounded. The
uniform boundedness of \\(A(r)ysUm+lXs\\ can be proved similarly. We write
U1A(r)k+1=A(T)k+lU1 + lUlt .4(r)*+1] on S. A(r)k+l is written as

(5.34) s C(r ;n , r,f rOxV'&'-W1'

for T=(V, o>), where the constants C(r ; flt ?2, 7s) are uniformly bounded in
r^Q. Since Ul is written as (5.29), it follows from Lemma 5.2, (5.9) and (U),
that for \r\^

(5.35) sup || (ir1/))*!/! || <
re£

This together with (5.34) implies

(5.36)
r

Now, by induction we have

(5.37) [^ /l(r)*
.7 = 0

where the multiple commutators are (k + l—j) fold commutators, and each C;- is
independent of r^Q. By (5.3) we see that

(5.37)' supu^-^E- [f/ l f AMI A(r)l • • • ] , - lW]| |<oo,
re£

in the same way as (5.35), where I f l ^ ^ + l and the multiple commutator is
l—j) fold commutator (Q<Zj^k). Thus, by (5.34) we obtain,

(5.38) supH^^C^, ,4(r)*+1]||<oo .

Therefore, we get (5.30) by (5.36), (5.38) and interpolation. This completes the
proof of Proposition 3.1 (i). m

Proof of Proposition 3.1 (ii). We denote by T(r) the self-adjoint operator
— io)'¥y in M for each T=(V, a))^Q. Then, for each T=(V, w)^Q, we have

(5.39) i[T(r), -4(r)]=tnat;)-
1T(r) + l on

Hence, it follows that T(r)eSmG4(r)) and

(5.40) sup| |T(r)iUm U(T ))<oo,

for any integer ra^O, and that

(5.41)

for all refl, where I is the same as in Lemma 5.1. Now we set r(r, z}\—
z)-1 for Imz^O and write
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—v~lR(r,

Since ||C4(r)>2(//0 — %O)\\B(H\,L*) and \\<A(T)yz\\B(H^,L^ are uniformly bounded in
refi, for the proof of Proposition 3.1 (ii) we have only to prove the following:

(5.42) sup \\XZR(T, z£)r(r, *e)</l(r)>-2l |<oo ,
re.0, 0<e<l

(5.43) sup \\X2R(r, ie)Vr(T, 2s)C4(r)>-2||<oo .
re<2, 0<£<1

We only prove (5.43). (5.42) is proved similary. By the relation

R(T, ie)=R(r, i)+(ie-i)R(r, i)24-(ie-i)2R(T, i}zR(r, ie),

the proof of (5.43) is reduced to proving the uniform boundedness of the follow-
ing norms :

(5.44) \\X9R(T. «mC-l(T)>||||<4(r)>-1T'X.4(r)>||||</4(r)>-1Kr, isX/Kr))-1!!

for m—l, 2 and

(5.45) \\XtR(r, iY<A(T»z\\\\(A(r)y-2R(T, ie)Vr(r,

Both of the first factors in (5.44) and (5.45) are uniformly bounded in r in the
same way as (5.30). The second factor in (5.44) is uniformly bounded by (U),.
By (5.40), (5.41) and Theorem 4.2 with d = l, /fi=T(r), A=A(r) we can prove
the uniform boundedness of the last factor in (5.44), and by (5.40), (5.41), Lemma
5.1 and Theorem 4.2 with d=2, K^=L(r\ K2=T(r), W,=V and A=A(r) we
can prove the uniform boundedness of the second factor in (5.45). Hence, we
have shown that (5.44) and (5.45) are uniformly bounded. This completes the
proof of Proposition 3.1 (ii). B

Appendix

In this appendix we will prove Proposition 2.4 by supplementing the proof
of Proposition 2 in [AS]. Throughout the discussion in this appendix we
always assume (V)0 and (Z). Then K :— — max{^; ^e U 0p(hc)} is strictly

ceA2

positive, where aP(hc} denotes the point spectrum of hc. For c={(i, j), k\<=A2,
we denote by Vc the potential Vlj(xc). Fix arbitrary r0>l and let X^/l) and
X0(^) be the characteristic functions for [0, r0+(/c/4)] and /„ := [r0— (/c/4), r0 +
(/c/4)], respectively. Recall that a^Az is the 2-cluster decomposition associated
with the initial channel a^rz:D(a)=a. We put off the proof of the follow-
ing lemma.

Lemma A-l. Let c, d^A2 with d^a. Then the operator
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has the norm limits Fcd(^±fO) : — lim Fcd(A±ie) in B(&) uniformly in /le/0 (see
(1.2) for 3).

For the proof of the next lemma, see, for example, [GM] (Proposition 2.2).

Lemma A-2. The operator Z0(/i)<^c>""1, ^>0, defined on 3, extends to a
bounded operator from M to L\SZN~l) for each c^AZ) and
is strongly continuous in

Proof of Proposition 2.4. By X0(#o)Xi(Tc)=Z0(#o) for any c^Az, ZQ(Z)Z0(H0}
) and Lemmas A-l, A-2, we get the norm limit

(Al)

= lim
e iO

for ;U=70. Here we note that Ia<xa>JaZ&(X)*, <^a>25<3^a>-5+(1/2)/«^«W)* is con-
tinuous in ^e/0 w. r. t. the Hilbert-Schmidt norm. Thus, by noting that

c)'1 is strongly continuous in /( and Fcd(^-H'0) is norm continuous in

0, we see that

(A2)

is continuous in ^e/0 with respect to the Hilbert-Schmidt norm as an operator
from LZ(SN~1) to LZ(SZN~1}. Furthermore, in almost the same way as in the
2-body case, we can see that the above operator is equal to T t t_0(^)- Thus the
integral kernel of 7\_0(/0 is given by

(A3) T r t_oW, 0, ai)=2wiCf tWXZo«)/W, 01,

where

X=(^ t t, j;a). Moreover, we can also see that Ta^(l, -, col) is L2(S2^~1)-valued
continuous function in ^e/0 and (weS^"1. Thus we have proved Proposition
2.4, accepting Lemma A-l. m

Finally we prove Lemma A-l. The proof is given for the + case and
divided into several steps. From now on, c and d denote 2-cluster decomposi-
tions.

Step 1. Let us begin with introducing notations. For c^Az we denote by
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Ac, Bc and Cc the multiplication operators \ V c ( x c ) \ 1 / z , Vc(xc)\
1/zsgn Vc(xc) and

(ycy~8/4, respectively. New Hilbert spaces Ml and Mz are defined by

We associate each M in J^ with each 2-cluster decomposition. Each operator
Q on JCi is an operator valued 3x3 matrix with the c— d component Qcd (c, d
eJL2), which is an operator on &. We label two copies of 3Cl in Mz 0 and 1,
respectively, and denote by R^ (O^i, /^l) the i—j component of an operator
R on 3C2. Of course, each Rzj is an operator on M^

We introduce several operators.

J(z)=(Id,

, 0)),

Here Rc(z)\=(Hc-zY\ Ec := Pp(/ic)®Id, Pp(/ic) being the orthogonal projec-
tion onto the subspace spanned by eigenvectors of hc, and dcd is Kronecker's
delta. For each ^e(7\/2, Id+W(z) has a bounded inverse and Y(z) can be
written as ([AS], p. 1572)

(A4) Y(z)=J(zm+W(z)Y\l&-N}K (z) .

Step 2. W(z) has the following properties : (i)W(z), z<=C\R, is a compact
operator and has the norm limit W(X+iO) := \irnW (A+ie) in B(M2) uniformly

£ 4 - 0

on any compact set in (0, oo), (ii) There exists a closed null set eQ in (0, oo)
such that Id-\-W(l+i^) is invertible in /ie(0, oo)\g0.

We will show that eQ is a bounded set by proving

(A5) \\W(X+m — > 0 as ^-^oo .
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The following lemma is important for the proof of (A5).

Lemma A-3. (i) ([GM], Proposition (2.4), [Ha], Corollary 5.5) Let d>l and
RV(Z) := (HQ —z)~l. Then the norm limit

£4 .0

exists in B(&} uniformly for X in any compact set in R for any c, d and, more-
over, we have

lim i|<xc>-5/?oW+20)<xd>-5 | |=0 for
;u<x>

(ii) (cf. [AJS], Lemma 16.15) The norm limit

Be(ld-Ec)Re(l+iQ)Ae= lim Bc(ld-Ec)Rc

exists in B(JC) uniformly for 1 in R, and

sup ||5c(Id-£c)#cW+zOMc||<oo

for any c.

For the proofs, see [GM], [Ha] and [AJS].
In order to prove (A5), we will show that each j9z//£-N's), O^z, /^l, has

the norm limit A/^+z'O) in B(JCJ as e I 0 and all norms \\DQQ(JL+iQ)\\, \\D01(}t+iQ)\\
and \\Dn(A+iQ)\\ go to zero as Ji-*oo. Then the relation

yields (A5).
By the resolvent equation, we have

(A6) BeQd-Ee)

For c^d, by (V)0 Lemmas 2.2 and A-3, the R. H. S. has the norm limit in
B(&] as s^O and the norm limit goes to zero as ^->oo. This proves the ex-
istence of the norm limit Z)00(^+/0) and

(A7) lim||
^-00

To prove the existence of D01(^+fO) and

(A8) lim||

we must estimate the following operators (see (A6))

(A9) -BcEe
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for c=pd. The norm of the operator in [•••] is uniformly bounded in ee(0, 1]
and /1>1 by Lemma A-3 (ii). Furthermore, by the resolvent equation, we have

Then, the first term and the second have norm limits in B(&) and the norms
of these limits go to zero as /I— >oo by Lemma A-3 (i) and the well known fact
(cf. [GM], Proposition (2.3)):

(A10; Urn IKjy.rK-^-^-'OrX^X'INO -

The first term in (A9) has the norm limit and the norm of this limit goes to
zero as X— »°° in the same way as above. Thus we have proved (A8). By
(A10) and Ce-

1EcAdBdCd-
1Ed^BW for c±d, Cc-

lEcAdBdEdRd(X+is)Cd has
the norm limit in B(&} as e i 0 and the limit goes to zero as ^-»oo for c~£d.
This implies the existence of Dn(A-\-ity and

Thus we have proved (A5).
Step 3. Finally we prove Lemma A-l. We assume r0 — (/c/4)>sup eQ. Since

it suffices to show that

and

have norm limits in B(3C) as s I 0 uniformly in /le/0 for any c, f, g, d^A2

with d^a. By the choice of K and /0, the first has norm limit. Since

£)<*a>~5 = B8(ld—Eg)R0(^+ieXxa>~s—Bg(ld — Eg)Rg(X + is)X
>~8 and Vd(xay~d(yay

8~(1/z:> is bounded by a^d, we see that
the second has the norm limit by Lemma A-3. This completes the proof of
Lemma A-l. m
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