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A Remark on Arbitrage and Martingale Measure

Shigeo KUSUOKA*

§ 0. Introduction

In the option pricing theory, as was pointed out in Harrison-Kreps [6], the
most important fact is that the absence of arbitrage follows from the existence
of equivalent martingale measure for the price process of securities. There
are several attempts to show the converse statement that the absence of
arbitrage implies the existence of an equivalent martingale measure. In the
discrete time case, the proof for the most general case has been given by
Dalang-Morton-Willinger [2] and Schachermayer [9]. On the continuous time
case Strieker [11] gave beautiful results, and they were extended by Delbaen
[3], Schachermayer [10] and Delbaen-Schachermayer [4], [5]. In particular,
the Mackey topology is cleverly used in Delbaen [3], and his result is quite
satisfactory in the case where price processes are path-wise continuous.

In this paper, we give some remarks on Orlicz spaces, Mackey topologies,
and results by Ansel-Strieker [1] and Delbaen [3]. Then we give a certain
necessary and sufficient conditions for the existence of an equivalent martingale
measure.
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§ 1. Orlicz Spaces and Extension of Yan's Theorem

(1.1) Definition. We say that F: [0, oo)->[0, oo) is a Young function, if
( i) F is continuously differentiate,

and
(iii) F' is strictly increasing function and lim F'(f)—^.

£t°o

Remark. In some books (e.g. [8], [13]), the more general definition are
used as the definition of Young functions.

For any Young function F: [0, °o)->[0, °°), let @F : [0, °o)->[0, °°) be given

by 0F(y)=(V(F/r1(t)dtf y^Q, where (FT1 is the inverse function of F'. Then
Jo

it is easy to see that @F is also a Young function. We call @F the comple-
mentary Young function of F.

The following is well-known (see [8] for example).

(1.2) Proposition. Let F: [0, oo)—>[0, oo) be a Young function and G : [0, oo)
-»[0, oo) be its complementary Young function of F. Then

G(y)=max{xy—F(y); y^Q}, x^>Q .

Let (Q, $, P) be a probability space. Let ~ be the usual equivalence rela-
tions for random variables such that X^Y if X=Y P-a.s. For each Young
function F, we introduce

LF={£',£ is a random variable, £[F(a |£|)]<°° for any a
and

LF={%',% is a random variable, E[F(a If |)]<oo for some

Clearly LpdLF. We define a norm || \\F on LF by

The space LP is called the Orlicz space.
Then the following is known. (See Krasnosel'skii and Rutickii [8] and

Zaanen [13] for example).

(1.3) Proposition. Let F: [0, °<0— >[0, oo) be a Young function and G : [0, oo)
— >[0, oo ) be its complementary Young function. Then we have the following.
(1) LF is a Banach space with the norm | | - ! |F -
(2) LF is the closure of L°°(Q, $, P} in LF.
(3) ^[FdlfllF-1?)]^! for any
(4) £[F(||f||F-1f)] = l for any
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(5)
(6) // <p: Lp-*R is a continuous linear function, then there is a unique
such that

(7) // r]^LG, then <p : LF-*R given by <p(£)=E[_£r)'], feL^, is a continuous
linear function, and

Since LF is a Banach lattice and any positive operator in LF is a continuous
linear operator (e.g. Theorem 83.12 in [13]). So we have the following from
Proposition (1.3) (6).

(1.4) Corollary. Let F: [0, °o)-»[0, oo) be a Young function and G : [0, oo)— >
[0, oo ) be its complementary Young function. If <p: L(

F—>R is a linear operator
such that </>(£)^0 for any £eLp with f^O P-a.s., then there is an jj^LG such
that jy^O P-a.s. and ?)

(1.5) Theorem. Let K be a convex set in L°°(Q, $, P) with Oe/v. Let F: [0, oo)
-»[0, oo) be a Y oung function and G : [0, oo)— >[0, oo) be its complementary Young
function. Then the following three conditions are equivalent,
(1) // cfeL!0 and P(£>0)>0, then { c - £ ; c>Q} ̂ F=T^F. Here L^=
{7j^L°°(Q, &, P); >?^0 P-a.s.} and K—L°1F is the closure of K— L™ in L£ with
respect to \\ \\p-topology.
(2) If A<=& and P(^>0, then { c - ! A ; c>Q}£K-Lf.
(3s) There is a p^LG such that p>Q P-a.s,, E[_p~] = 1, and sup £[£/o]< oo.

feA"

Proof. The proof is exactly the same as the proof of Theorem 1 in Ansel-
Strieker [1], if we note Proposition (1.3) (6) and (7) (which imply the fact that
LG is the dual space of LF).

§ 2. A Remark on Mackey Topology

Now we introduce the following notions.

(2.1) Definition. (1) Let {$n}n=i be a sequence in LF and £eLF. We say

that £7l
F

(1) fn converges to £ in probability as n-^oo,
and
(ii) sup E[F(a\gn |)]<oo for some a>0.

71

(2) Let {|rt}"=1 is a sequence in L£ and feLjk We say that f?i->
if
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(1) %n converges to f in probability as n-»oo,
and
(ii) supF[F(a|£?i |)]<oo for all a>0.

n

(3) For any subset A in LF> ClF(A)—{^LF; there is a sequence {qn\n=i

ci.4 such that £n-^ £, n->oo}.

Then we have the following.

(2.2) Proposition. // f, £t, £2, ••• eLF and fn-^<? *w II !!F, then qn^q.

(2) // f, £x, £2, ••• eL£ and ?„->£ m || ||F, f/iew f„ -> f.

Proof. Suppose that fw—»? in LF. Then by Proposition (1.3) (3), we see
that for any a>0, there is an n0^l such that F[F(a | f—f n | ) ] ^ l , n^n 0 . Then
we have F( | f—£J >s)^F(ae)~1, n^n0 . Combining them, we have our asser-
tion.

Remark. The converse of Proposition (2.2) (1) or (2) is not true. Let F(#)
= z2, and let {|,Jn=i be a sequence of ramdom variables such that P(%n=n)

= n~2 and P(£n=Q)=l-n-z, n = l, 2, • • - . Then we have f„ ^> 0, but {£„};=! does
not converge to 0 in LF=L$>=L2(Q, 3), P).

(2.3) Definition. Let Fl: [0, °°)->[0, oo), /=i, 2, be Young functions. We
say that F!<F2, if lim (F2(x)/F1(ax))=oo for all a>0.

X-»oo

(2.4) Remark. Let F: [0, oo)—>[Q, oo) be a Young function. Let F(x)=
F(x2 + l)~F(l)-2F'(l)x, ^e[0, oo). Then F: [0, oo)->[0, oo) is also a Young
function and F<F. So for any Young function F: [0, °°)—>[0, oo), there always
exists a Young function F: [0, °o)->[0, °°) with F<F.

C2.5) Proposition. Lef Fl\ [0, °o)->[0, oo), f=rl , 2, ^?g Young functions with
F!<F2. T/?en w;g /zave ^/ig following.

(2) // £, $n^LF2, n = l, 2, • • - , and £n 5 £, n->co

Note that

for any a, 6, %>0 and f e LFZ. So we have our assertion.

Let <y denote the set of all Young functions. Then we have the following.
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(2.6) Proposition. (1) L°°(Q, ®, P)= O LF.
F^'t

(2) For any Young function F: [0, oo)->[0, oo), [he set (£^LF\ H f l U ^ l } is a
uniformly integrable subset of Ll(Q, <B, P).
(3) For any uniformly integrable subset A of Ll(Q, &, F), there is a Young
function F: [0, °o)->[0, oo) such that Aa{^LF'} ||fi|F^l}.

(4) L\Q, <B, F)= U LF.
.Fe<y

Remark. The assertions (2) and (3) are known as "de la Vallee-Poussin's
theorem."

Proof. (1) If ?£L%Q, ®, P), we see that there is a C^function G : [0, oo)
->[0, oo) such that £[G(|f |)] = oo with G'(0)=0. Let /(jc)=^'+ max \ G ' ( y ) \ ,

yeco, x]

-r^O, and F(x)=(*f(y)dy, x^Q. Then F is a Young function and £[f(|£|)]
Jo "

= 00, and so ^Lp. Then by Remark (2.4) and Proposition (2.5), we have the
assertion (1).

The assertion (2) is obvious from the fact that {<JeLF;
^1} and li

(3) Let c=sup£[|£|]. Since s u p £ [ | < J , £ ^n]—>0, w->co, there are l<i

«i<7z2< ••• such that supE[ | f | , | f | ^ w A ] ^ 2 ~ * , k = l , 2 , - - - . Let n0=0, and

/: [0, °o)-»[0, oo) be given by f(x)=k — l-\-(nk — n k - i ) ~ l ( x — n k - 1 ) f , v e [ w f t _ i , n/e),

yfe = l, 2, • • - . Also let JF(-r) = (c + l)-1f'r/(3;)d3;, x^O. Then F is a Young func-
J o

tion and

; [Az f c - i , wj]

for any feA So y4ci{|eLF; !!<f!|F^l} and the assertion (3) is proved.
The assertion (4) is a consequence of the assertions (2; and (3).

(2.7) Lemma. Let T=T(L°°(Q, &, F), Lx(fl, ^, F)) ^?e ^/ze Mackey topology of
LC°=L°°(Q, &, F). Let F: [0, oo)->[0, oo) be a Young function and let c'. Lm->LF

be the inclusion map. Then L°°, r —> LF, \\ \\F is continuous.

Proof. Let G : [0, «0->[0, oo) be the complementary Young function of F.
Then by Proposition (1.3) (7), we see that

By Proposition (2.6) (2), {^eL G ; l l ^ l l e ^ l } is a relatively compact convex set
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in L1. So we have our assertion.

Remark. It is known that the Mackey topology r is the weakest topology
in L°°(Q, IB, P) such that the inclusion from LOC(Q, <B, P} into (LF, II HF) is con-
tinuous for all Young function F.

(2.8) Corollary. (1) Let A be a subset of L°°(Q, &, P). Then ( H ClF(A))r\
F^i]

L°°(Q, <B, P} is a closed set in L°°, r(L°°, L1).

(2) Let A be a convex subset of L~(Q,$,P). Then ( H CLF(A))r\LM(Q9 &, P)
f^Q}

is the closure of A in L°°, r(L°°} L
1).

Proof. The assertion (1) is obvious from Proposition (2.5) and Lemma (2.7).
Therefore in order to prove the assertion (2) it is sufficient to prove that
( O ClF(A))r\L°°(Q) &, P) is contained in the closure of .4 in L°°, r(L°°, L1).
Fe<y

However, since ,4 is convex, Propositions (1.3) (3), (2.5), (2.6) and Hahn-Banach
theorem imply it.

Now we have the following Yan's type theorem.

(2.9) Theorem. Let K be a convex set in L°°(Q, <B, P) with Oeff. Then the
following three conditions are equivalent.
(1) // feZ^ and P(f>0)>0, then {c-f ; c>0} £ H ClP(K-L$.

(2) // A^^ and P(A)>0, then { c - l A ; c>Q\ £ p\ CIF(K-L°S.
F<= n

(3) There is a p^Ll(Q,$,P) such that io>0 P-a.s., ^[/o] = l, and
sup E

Proof. (1)—>(2) is obvious. The proof of (2)—>(3) is the same as that of
Theorem 1 in Ansel-Strieker [1], if we note Corollary (2.8) (2) and the fact
that the dual space of L°°, r(L°°, L1) is L1 (see the proof of Theorem 5.1 in
Delbaen [4] also;. (3)-»(l) follows from Theorem (1.5) and Propositions (2.5)
and (2.6) (4).

§3. Existence of Equivalent Martingale Measure

Let (Q, $, P) be a probability measure, T>0, and {-^heco.n be a right
continuous increasing sub-(T-algebras of $. Let \X(t); te[0, T]} be a bounded
Rd-valued .^-adapted process with right continuous paths with probability one.
We say that f: [0, T~]xQ-*Rd is elementary, if there are nt
••- <tn — T, and j ] k : Q-»Rd, k = l, •••, n, such that
(1) r]K is .$t^-measurable and bounded, k = l, •••, n ,
and
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(2) «f )=Si?*- l« t - , .«*3«) , fe[0, T].

For each elementary process f : [0, T^Q^R"-, let (£-X)(t), te[0, T], be given
by

= 2 7* •(*(fAf*)-*(fAf*-1)), fe[0, T].
ft=l

Then we see that (£-X)(T)<=L°°(Q, &, P).
Then similarly to the proof of Theorem 2 in Strieker [9], we have the

following by using Theorem (2.9).

(3.1) Theorem. Let KQ= {((• - X)(T) ', £ is an elementary process}. Then the
following two conditions are equivalent.
(1) There is a probability measure Q in (Q, <B) such that the probability
measures P and Q are mutually absolutely continuous and {X(t)m, te[0, T]} is a
martingale under the probability measure Q.
(2) LTn(n£W#0-L+))={0}.

F(=V

We say that f : [0, T^\xQ-^Rd is very simple, if there are n<=N, stopping
times TI, T2, ••• , rn, and yk : Q-*Rd, k = l, ••• , n, such that
(1) ro^O^r^r^ ••• ^rn = T P-a.s.
(2) 7]k is ^r^.j-measurable and bounded, k = l, ••• , n,
and

(3) «0=27*-l ( r i b .1 . r j b ](0, te[0, T],
*=i

For very simple process f : [0, T]x/3->/2d, let (f-^CO be given by

Then we see that (£-^)(T)eLTO(fl, .3, P).
Our second result is the following.

(3.2) Theorem. Assume that X(t), te[0, T], has continuous paths with pro-
bability one and let K= {(f-X)(T) ; f /s a very simple process}. Then the follow-
ing two conditions are equivalent.
(1) There is a probability measure Q in (Q, &) such that the probability
measures P and Q are mutually absolutely continuous and \X(t) ; £e[0, T]} is a
local martingale under the probability measure Q.
(2) L?n(H £««))= {0}.

Remark. This theorem is just a corollary to Theorem 5.1 in Delbaen [4].
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Proof. It is sufficient to prove that the assertion (2) implies
L+i^(C}ClF(K—L+))={Q}. Suppose that £=0 and feL+n( H CIF(K — L+)).

Then by the similar argument in the proof of Theorem 3 in Strieker [11] shows
that there is an 77 e n CIF(K) with f Al^^l. This contradicts the assertion

(2). So we have done it.
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