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Asymptotic Behaviour of Time-Inhomogeneous
Evolutions on von Neumann Algebras5"

By

Alberto FRIGERIO* and Gabriele GRILLO*

Abstract

We consider a sequence rn of dynamical maps of a von Neumann algebra ^M into itself,
each of which has a fai thful normal invariant state ajn, and we investigate conditions
under which the time-evolved <pn=(pQoT1>- OTn of an arbitrary normal initial state <pQ is
such that limn_oo II ̂ r a—o)n \ \ =0. This is proved under conditions on the spectral gap of r7i

extended to a contraction on the GNS space of (,M/, ojn), and on the difference (in a sense
to be made precise below) between ojn and wn-\', we do not require detailed balance of
rn w. r. t. wn. We also give conditions on the sequence of relative Hamiltonians hn be-
tween atn and o)n-i ensuring that the result holds. Finally, we prove that the techniques
of the present paper do not admit a simple generalization to C*-algebras and non-normal
states.

§ 1. Introduction

By "time-inhomogeneous evolution" on a von Neumann algebra M we mean
a sequence [rn: n = l, 2, • • • } of completely positive weakly* continuous linear
maps of Jtt into itself, with r„(!)=! (dynamical maps in the sequel). To help
intuition, rn may be regarded as the map describing evolution of the observa-
bles of a physical system from times tn.^ to time tn, where 0=£0<*i< ••• <tn—

>0°-
We assume that each rn has a unique (faithful normal) invariant state a)n, and
we investigate under which conditions, for any initial normal state cpQ on JM,
the time-evolved state (pn=<po0?i ••• °rn becomes indistinguishable from wn in the
limit as n—>°o.

Several results exist in the literature for the case when all rn are the same
map with a faithful normal invariant state, or rn=exp \_(tn — fn_i)-£], X being
the generator of a dynamical semigroup (asymptotic behaviour of dynamical
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semigroups with a faithful normal invariant state) [1-7].
Our generalization is primarily motivated by such problems as simulated

annealing [8-10], where a time-inhomogeneous evolution of a (fictitious classical)
physical system is used to minimize a nonnegative function U on a space X
(interpreted as the energy function of the system); then the instantaneous in-
variant states a)n are Gibbs states with energy function U and inverse tempera-
tures J3n diverging to +00. More complicated situations where also U depends
on "time" n have been considered in connection with adaptive algorithms [11].
Some noncommutative generalizations of the above results have been studied in
[12, 13]. As compared with our previous work on the same subject [12, 13],
the class of evolutions for which this asymptotic indistinguishability holds is
extended to cover situations in which the maps rn need not be symmetric with
respect to their invariant states a)n. In order to prove our results, we need
two kinds of assumptions:

i) an estimate on the spectral gap of rn extended to a contraction operator
on the GNS space of (M, o)n);

ii) an estimate on the difference (in a suitable sense to be defined in § 3)
between a)n and w n _ i .

In particular, we need o)n-^Ana)n for suitable constants /U>0 for all n.
We do not address ourselves to the question /), and we just remind the

reader that results have been obtained in [10, 14] for finite classical systems,
in [12] for finite quantum systems, in [15] for some infinite quantum systems
and in [16, 17] for a class of infinite classical systems. Concerning n) we give
sufficient conditions on the sequence of relative Hamiltonians hn between a)n

and o)n-i ensuring that the above mentioned difference is small enough to allow
application of our general argument.

The paper is organized as follows. In § 2 we collect some preliminary
results on von Neumann algebras and on dynamical maps which we require in
the following. The general argument is outlined in § 3. In § 4 we investigate
conditions on the relative Hamiltonians under which the arguments of § 3 can
be applied. In § 5 we explore the possibility of generalizing the arguments in
§ 3; we show that there is no simple generalization to the case where the wn

are disjoint states on a C*-algebra J.. However, we show that, at the price
of some complication in the statement of the conditions, the assumption that
<*)n-i^n<i>n can be relaxed.

§ 2. Preliminaries

Let M be a von Neumann algebra of operators on a separable Hilbert space
M, with a cyclic and separating vector Q. Denote by CD and by <*/ the faithful
normal states on 3i and on the commutant M respectively defined by
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(2.1)

(2.2)

Let Jfl and / be the modular operator and the modular involution canonically
associated with the pair (JM, S3) by the Tomita-Takesaki theory, and let V=
Al^M+Q be the natural positive cone. For each normal state <p on <3tt there
exists a unique vector 0 in V such that

(2.3)

The relative modular operator A®,Q is defined by

(2.4)

where

S0,QdQ=a*0: a^M. (2.5)

Denote by S(M} the set of all normal states on M and by Sm(3t) the set of
those normal states on M which are majorized by a scalar multiple of <y.

Lemma 2.1. For any (p<=S(M) the following conditions are equivalent:
i) (p^S^Jtt);
ii) there exist a (unique) element x = x9 of M+ such that

(2.6)

iii) the Connes cocycle {(D(p : D^t—dlt,®^1 : t<=R} ^M extends to an analytic
function on the strip zeC : — l/2<Imz<0, continuous on the boundaries, with
values in JH.

Moreover, one has

(2.7)

/zJ . (2.8)

An immediate consequence of the equivalence i)s=$n) is the following

Corollary 2.2. S^JM) is norm-dense in

Let h — h*(=<3tt. Then the expression

(2.9)

is well-defined, and h is said to be the relative Hamiltonian between the state
(Dh given by
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and a). Note that we have adopted the same conventions concerning sign and
normalization as in Donald [18], which are different from those of Araki [19].

Given w and h, the perturbed state o)h is the unique faithful state in S(^)
maximizing the function

<p ' — > <0, log A0.*®>-(pW , (2-11)

where <$, log Jfl.<pCP>^0 is known as the relative entropy of (p with respect
to o) (the opposite sign convention is also used in the literature). This varia-
tional characterization of a)h makes sense also for self-adjoint operators h
affiliated with 3i which are bounded from below but unbounded from above
and may possibly have +00 as an eigenvalue (see Donald [18]). With this
extended notion of Q)h, for each (p in Sm(Jli) there exists a unique h such
that <p=a)h. However, given CD and h, the state coh need not be in S^M) ; a
sufficient condition for wh^Sa)(^i} is that AbhAtf^JH for all fe[0, 1/2] (cf.
Lemma 4.1 below).

Definition 2.3. A dynamical map r on M is a completely positive weakly*-
continuous linear map of M into itself with r(l)= 1.

Lemma 2.4. [1, 20] Let r be a dynamical map on <3&, leaving w invariant.
Then there exists a dynamical map r' on M , leaving a)' invariant, such that

<r'(fl')fi, aQy=<a'Q, r(a)£>: ae^, a' ̂ M . (2.12)

Proof (Sketch). If (p is in Sw(<3tt) and r leaves (o invariant, then (p°T is in
Sm(<3£). Define rf by linear extension of

T'(X^Kyor\ tp^S^M). (2.13)

Then r' is a positive weakly*-continuous linear map of M into itself, satisfy-
ing (2.12), and r'(l)=l since

and ft/°r'=ft/ since

Complete positivity is shown as follows: let alt ... , an^M, xlf ...,
Since r is completely positive, one has

= 23 <*?*tfl, T(fl?ay)fl>

= 23 ^(xjxjfl, a*ajQy= 23 <fl»fl , r'(*t
i,j=i i,y=i

Since ^S is dense in ^f, also r7 is completely positive.
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Lemma 2.5. [21, 22] Let T be a dynamical map on M, leaving QJ invariant.
Then there exists a contraction T on M such that

T(aQ}=r(a)Q: a^M , (2.14)

T*(fl'fl)=r'(fl')fl . a'^M . (2.15)

Proof (Sketch). By the Kadison-Schwarz inequality r(a*a}
we have

Then the linear operator T defined on <JttQ by (2.14) extends to a contraction
on M. For a^JA, a'^M we have

so that (2.15) holds.

Lemma 2.6. In the situation of Lemma 2.5, the following are equivalent (for
real ?->0):

i)

\\T(d)Q\\^e-r\\aQ\ for all a in M with <o(a)=Q; (2.16)
ii)

\\TW\\<e~r\\W\\ for all W in M with <£, ?F>=0; (2.17)
iii)

| |r'(fl')fl||^0-rlia'0|l for all a' in M with o>'(a')=Q', (2.18)
iv)

||T*0||^e-1|0l| for all 0 in M with (Q, 0>=0; (2.19)
v)

\\T*T@\\^e-Zr\\@\\ for all 0 in M with <Q, 0>=0; (2.20)
vi)

\\TT*0\\^e-*r \\Q\\ for all 0 in M with <fi, 0>=0 . (2.21)

Proof. Let JC be the orthogonal complement of Q in M. Since TQ—T^Q
=Q, T and T* map J< into itself, and (T\tK)*=T*\Jc. Then ii), iv), v) and vi)
are equivalent. Clearly i) is a special case of ii) and iii) is a special case of
iv). Conversely, T & is the closure of the map aQ*->r(a}Q with o>(a)=<fl, a£?>
=0, so that i) implies ii), and r*U is the closure of the map afQ^>r'(a'}Q
with <o'(a'}—(Q, a/Q>=0, so that ii) implies iv).

In the following, we shall refer to the equivalent conditions of Lemma 2.6
with 7>0 as to the spectral gap condition. Indeed, if one takes the largest 7
for which the above conditions hold, l—e'zr is the gap between the eigenvalue
^=l of the positive self -adjoint contraction T*T and the rest of its spectrum.
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The same holds for TT*. Obviously, when the contraction T is self-adjoint,
e~r is the spectral radius of its restriction to K.

In the commutative case, there is a considerable amount of literature con-
cerning estimation of e~r for self-adjoint T [10, 14], which has been extended
to the non self-adjoint case by Fill [23]. Conditions v), vi) above are essentially
a generalization of the multiplicative reversiblization of Fill.

Remark. The equivalent conditions of Lemma 2.6 imply that

l imy>or*(f l )=a>(f l ) Vae^, ^eS(JK) . (2.22)
A?-»oo

The converse implication is not true in general.

§ 3. Main Result

Let <3& be a von Neumann algebra of operators on a separable Hilbert space
M, and let {rn : n = l, 2, ...} be a sequence of dynamical maps on M. Assume
that each rn has an invariant faithful normal state wn with representative
vector Qn^.M which is cyclic and separating for Jftt. Thus, by Lemma 2.4,
there exists a sequence {rf

n : n = l, 2, ...} of dynamical maps on Mf such that

<r;(fl')0», aQny=<a'Qn,Tn(a)Qny: a^M, a'^M. (3.1)

Assume that each rn has a spectral gap, in the sense that there exist strictly
positive constants fn : n = l, 2, ... such that, for all n=l, 2, ... ,

\\Tn(a)Qn\\^e-r»\\aQn\\ for all a in M with <w n (a)=0. (3.2)

By Lemma 2.6, a similar spectral gap holds also for r'n.
Assume also that there exists a sequence Rn : n = l, 2, ... of elements of M'

such that

RnQn=Qn-i: n=2, 3, .... (3.3)

Equivalently (see Lemma 2.1), for n=2, 3, ... , <w n _i is majorized by a scalar
multiple AnQ>n of o)n, and Rn^Mr is such that

(3-4)

where xmn_lin is the unique positive element of M such that

(3.5)

Our problem is to find conditions on \^n\ and on {Rn} ensuring that, for any
initial state ^0eS(e^), letting <pn

=<pn-i°Tn' n=l, 2, ..., one has

Urn j|pn-<wn ||=0. (3.6)

By Corollary 2.2, it suffices to prove (3.6) for (pQ in the dense set SQ^JH). Then
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(3.7)

for a suitable positive element .^,0il of M , and

(3.8)

where
(3-9)

Lemma 3.1. Lg£ ^ &g gst>0/2 £3; (3.8), (3.9). Under the above conditions,
for each n—2, 3, • • • , <pn is a normal state on M (actually, (pn^SWn(M)), which
can be represented in the form

<pn(CL) = <XnQn, flflw> = <?r
ll, flOn> I fl<Ej«, (3.10)

n-i • (3.11)

Proof. Since (3.10) holds for w = l, it suffices to prove that it holds for n
if it holds for n — 1. Indeed, for all a<=M, we have

with f?l given by (3.11). However, ?TB_1=*/i_1fi7 l_1=:A'n_i#, t 'Gw , so that also

with %7i given by (3.11), since /?„ and % „ _ ! are in c3/x.

Lemma 3.2. Under the above assumptions, let

an=Tn-log \\Rn\\ , (3.12)

pn=e-r»\\(R$Rn-UQn\ . (3.13)

Then, for all n=2, 3, ... ,

. (3.14)

Proof. By the preceding Lemma, and by the remarks following Lemma
2.4, we have

In addition, since
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=<pn-i(l)—<on(l)=Q,

the spectral gap assumption and Lemma 2.6 imply that

l\Wn- Qn^e-m\\R*Wn^-Qn\\.
Finally, note that

Theorem 3.3. Under the above assumptions, suppose also that there exist
real constants o?>0, /3^0, 1><5>£^0 such that

1, ft^ftn8'1 ; n = l, 2, ... . (3.15)

Then there ^s a constant C (depending on <p0), such that

\yn(a)-a)n(a)\^C\\a\\n*-5 — >0 as n->oo . (3.16)

Proof. See [13], Proposition 2.4.

Remark. The results of the present section have been proved in [13]
under the additional assumption that, for each n — l, 2, ... , one has

o)n(aTn(b))=a)n(Tn(a)b): a, b^M (detailed balance). ',3.17)

In that situation, one simply has

where Jn is the modular involution associated with the pair (JM, Q „) in M (it
may be the case that Jn is independent of n, as happens when the Qn are in
the same natural positive cone). The new result here, contained in Lemmas
3.1, 3.2, is that detailed balance is not really needed (cf. [9] for the case of
the algebra of functions on a finite space), provided one can prove a spectral
gap condition without it (for instance, using the reversiblization argument of
Fill [23]).

§ 4. Relative Hamiltonians

Here we assume that the sequence of states {a)n : n = l, 2, ...} is constructed
starting from a)L and from a sequence {hn : n=2, 3, ...} of relative Hamiltonians
in such a way that

a>B=(a>»-i) f t» : n=2, 3, ... , (4.1)

in the sense of eq. (2.10), and we estimate the quantities \\Rn\\ and \\(R%Rn—l)Qn\\
in terms of hn: n—2, 3, ....
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We restrict to bounded hn=h%^JM, although a)h can be defined also for
self-adjoint h which is only bounded from below, since we need Q)n--L^S(0n(^')
in order to have the operators Rn^M on which our analysis is based, and
this in turn implies that —hn is bounded from below, so that hn is bounded.

We are able to prove that Wn^^S^^M) under the assumption that the
function t^>a(tn~l\hn}—AlQn_lhnA~Q^l extends to an analytic function on the strip
{z^C : — l/2<Imz<0}, continuous on the boundaries, with values in M; we
believe that this is only a sufficient condition. In order to avoid excessive nota-
tional burdens, we give a proof of the following statement:

Lemma 4.1. Let a) be a faithful normal state in M, with ty(a)=<fl, afi> :
a^M, and with associated modular automorphism group a't —AQ • AQU : t^R. Let
h—h^^.M be such that the function t^>at(h} extends to an analytic function on
the strip {z^C : — l/2<Iiri2<0}, continuous on the boundaries, with values in M,
and let cojl be defined by eq. (2.10). Denote by 0 the normalized vector Q(h)/
\\Q(h)\\. Then there exists a unique R in Mf such that

Q = R0; (4.2)

R is invertible, and
\\R\\, lltf-^expCPHI], (4.3)

where

Proof. Consider the differential equations

i r VJ/ ' V O / w -isw . vy—20^ ods 2 (4>4)

K(0)=l

and

d ~ ~ 1
^s S ^"IS >S ' = S ^2 (4_5)

Both equations have unique solutions in 31 satisfying the bounds

Moreover, V(s)=V(sr
1 for all se[0, 1/2]. Indeed,

so that F(s)F(s)=l for all s ; and in addition the constant 1 solves the differ-
ential equation for V\s)F(s), which reads
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f?(0)7(0)=l .

By the uniform boundedness of a-is(h) on [0, 1/2], the solution to the latter
equation is unique, so that ^(s)7(s)=l for all s.

Now we have the iterated series

7(s)= fj (-lA'dSl(
tlds* -•• ['^dstff-i^W ••• a-^W<r-l9l(li), (4.6)

k = Q J O J O J O * 2 1

and it is clear that

where the last equality follows from the explicit expression of 7(s). Hence

or

Since 0 is cyclic and separating for JM and for M as fl is, it follows that
r is uniquely determined to be

R=\\V(l/2)Q\\JV(l/2)J . (4.7)

An obvious estimate gives

p||| exp |||/z|||-

Moreover,

We have

so that

Hence

Proposition 4.2. Suppose that the sequence {hn:n=2,3, ...} of relative
Hamiltonians is such that the functions £>— ̂ """(^n) extend to analytic functions
on the strip {z<^C : — l/2<Imz<0}, continuous on the boundaries, with values in

M\ let IH/iJU-i-supiikLVX/^JII : O^s^l/2}. Then

In.!}, (4.8)
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|L_1}"l)^2. (4.9)

Proof. (4.8) is proved in Lemma 4.1. Next,

oo

which is (4.9).

Remark. In applications where the spectral gap fn tends to 0 as /z
one needs |||/zn|||;i_1->0 faster than f,t (at least). This implies that | |<yw— <w / t_i| |-»0
as n^>oo, but by no means does it necessarily follow that (on converges to a
limit as n— >oo.

Remark. In the most classical applications (simulated annealing on a com-
pact state space X with time-independent energy function U : X->[_Q, oo) and
with a sequence j3n of inverse temperatures increasing to + °°), one has simply
hn^Pn—fin-jU^Q. The case of non-compact X and unbounded U can be
handled as in [24],

§ 5. Generalizations

In the main application of the above results, simulated annealing, the states
(on represent thermal states at different temperatures of a fictitious finite (but
large) physical system. For infinite physical systems thermal states at different
temperatures are typically disjoint states on a C*-algebra JLt meaning that for
each n there is a GNS triple (JCn, nn, Q n] associated with the pair (JLf a)n], the
cyclic vector Qn is also separating for the von Neumann algebra Kn(Jf)", but
no subrepresentation of nn is unitarily equivalent to a subrepresentation of nm

for n3=m. Unfortunately, there is no simple generalization of the above tech-
niques to this new situation, in view of the following

Lemma 5.1. Let a)1} a)z be states on a C*-algebra Jl, with GNS triples
(Mlf TCI} fij, (j^2, ̂ 2, Qz) such that Q% is also separating for the bicommutant
n^Jiy of n^J.) in jS(JCJ: i=l, 2. If the operator R: xz(jl)Q2^:3{z->J{1 defined
by

7?7T2(fl)fl2=^1(a)fl1: ac^Jt (5.1)

is closable, then nl is unitarily equivalent to a subrepresentation of n2.

Proof. Let q be the densely defined quadratic form on 7T2(J)£?2i^2 given
by
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q(n2(a}Q2)=\\7j:l(a}Qi\\
2=-\\R7i:2(a)Q2\\

2 : a^Jl . (5.2)

Since R is closable, q is closable. Let x be the positive self -ad joint operator
in ^2 associated with the closure q of q: then 7c2(JL)Q2^^)(x1/2) and

a =l | ^ i ( a ) f l i l l 2 . (5-3)

For unitary u^Jl, one has

2 HI^^^

so that xz(u)*x7z2(u)=x in the sense of quadratic forms, and the spectral pro-
jections of x commute with n2(u). Since a Banach *-algebra is generated as a
linear space by its unitary elements, x is affiliated with the commutant ni(J.y ,
and

\\7r2(a)x1/2Q2\\
2=lv1/27r2(a)Q2\\

2=\\x1(a)Ql\\
2 : aeJ. (5 A)

Let JC be the closed sqbspace of J{2 given by K2(JL)x1/2Q2; Ji is stable under
Let U be the linear operator mapping nJJfyQ^jJCi into JC defined by

Qt : a e Ji. (5.5)

By (5.4), £7 extends to an isometry of Ml into JC. Moreover, £7 is actually
unitary from MI onto Ji. Indeed, for all a, b in JI, one has

where the last two equalities follow from the fact that A- is affiliated with
7T2(jl)' and by polarization from (5.3), respectively. Hence U^n2(b)x,l'2Qz—'n:l(b}Ql

and UU*n2(b)xl/2Q2=n2(b)xl/2Q2. By density, UU*=1 on JC.
Now it is an easy exercise to prove that

Un1(a)U*=7i:i(a)\jc V a^M (5.6)

which proves that n^ is unitarily equivalent to a subrepresentation of 7T2.

For this reason, the only generalization running on the same lines as the
arguments of § 3 can be obtained by assuming the following : we have dynamical
maps rn : n = l, 2, ••• , all defined on the same von Neumann algebra JM, each
map with an invariant faithful normal state a)n = (Qn, -Qny, and there exist
closed operators Rn : n—2, 3, • • • , affiliated with M> such that

Qn^3)(Rn), RnQn=Qn^: n=2, 3, ... . (5.7)

Conditions equivalent to (5.7) with closed unbounded Rn are discussed in Kosaki
[25]. In particular, it is not true that, if a)n is a faithful normal state on 3/1,
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each normal state on M can be represented in this form.
In order to make sense of the formulas in Lemma 3.1 in this more general

situation, it suffices to assume that

T*-i maps M into S)(R*) Vn=2, 3, ... . (5.8)

However, something more is needed to imitate the estimates in Lemma 3.2 and
Theorem 3.3. To be specific, we assume the following.

Assumption 5.2. Each rn can be written as the product of two dynamical
maps rn and fn

Tn=Tntn (5-9)

with similar properties: i.e. TH and rn leave <DH invariant, so that they are asso-
ciated with contractions Tn and fn on 3i such that

(5.10)

moreover r,t satisfies a spectral gap condition with a constant e~'n, so that

\\f*¥\\<e-^\\¥\\ V?FeEc# with <fln, F>=0, (5.11)

and finally

f*_! maps M into 2)(Rl}\ n=2, 3, ... . (5.12)

The above conditions are rather natural if

tn-tn^j:n-] (5.13)

with tn>Q, J7?i being the generator of a semigroup of dynamical maps: one
can take

rre = eXp [(fn-fn-iXl-CnU'ii], rw = 6Xp [(^-^-JCn^n] (5.14)

with 0<Gi<l. In the case of classical Langevin diffusion on Rn (cf. [26]), in
which Xn is a differential operator of the form —A+finVU'V, a condition of
the form (5.12) follows from suitable intrinsic hypercontractivity properties of
the semigroup generated by JCn provided that U grows at infinity fast (typically,
faster than (const.) \x 2, cf. [27]).

As a consequence of (5.9), we have

T*=f*f*: n = l ,2, . . . . (5.15)

As a consequence of (5.12) and of the closed graph theorem, the operators /?*
defined by

R^Rlfl^: n=2, 3, ... (5.16)

are everywhere defined and bounded.
Now define a sequence ¥ n of vectors in j/f by
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(5.17)
^.,: n=2, 3, ... .

Then the vectors Wn such that <pn(a)=<yn, aQny\ a^M are given by

Wn=T*$'n: n = l,2, . . . . (5.18)

Lemma 5.3. Under the above assumptions, let

aB=fn-log||£»||, (5.19)

pn = e-in\\(R*&n-l)Qn\\ • (5-20)

Then, for all n=2, 3, • • - .

l l*'i»-flnll^e-d»| |*-7 4 .1-flM .1 | |+^». (5.21)

Proof. We have

Moreover, R^¥n.l—Qn is orthogonal to -Qn since

<£*?B_.1-0B, fln> = </?*f *-!?„-!, fin>-<flB,

= <yB.!, Qn-i>-<Qn, flB>=?)B-i(l)-aiB(l)=0.
Then

H^n-flB | |^e- f Bll^n-i-fi»ll -

Note that

and

Theorem 5.4. [/nrfgr ^/ie a^oye assumptions, suppose also that there exist real
constants a>0, /3^0, 1>5>£^0 SMC/I

flfn^an5-1, fin^pn8-1: n = l, 2, ... . (5.22)

T/ien if/7gre /s a constant C (depending on (pQ), such that

\ < p n ( a ) - a ) n ( a ) \ ^ C \ \ a \ \ n B - d — >0 as n->oo . (5.23)

Proof. We have

It suffices to prove that

II??* —0 n<II MS , i M T i l ) ^
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and this is accomplished exactly as in Theorem 3.3, taking advantage of
Lemma 5.3.
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