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Filtering Problems for Conditionally Linear
Systems with Non-Gaussian Initial Conditions

By

Shigeomi HARA*

Abstract

We solve the filtering problems for conditionally linear systems, that is, stochastic,
partially observable systems which are linear in unobservable processes and nonlinear in
observable processes, with non-Gaussian initial conditions. We assume that all coefficients
of given SDEs are Lipshitz continuous in the observable processes, and that certain
quantities concerning the diffusion coefficients of given SDEs are uniformly nonsingular.
But we assume nothing about the initial distribution and allow that a part of the co-
cfficients of the given SDEs are of linear growth order in the observable processes.

Introduction

The filtering problems for stochastic, partially observable linear systems
with Gaussian initial conditions are solved by Kalman and Bucy [4]. Here
“solve” means obtaining the formula to compute the optimal mean square
estimate of the present value of the unobservable processes, using the finite
dimensional statistics, when we have the data of the past and present obser-
vation. In Liptser and Shiryayev [7], they solve the filtering problems for
stochastic, partially observable systems that are linear in unobservable processes,
and nonlinear in observable processes, that is, condilionally linear sysiems, with
Gaussian initial conditions. On the other hand, in Makowski [8], they solve
the filtering problems for stochastic, partially observable linear systems with
non-Gaussian initial conditions.

In this paper, we join above two methods in [7] and [8], and solve the
filtering problems for conditionally linear systems with non-Gaussian initial
conditions. Namely, we consider the following system of stochastic differential
equations :

dX,={aot, Y)+a.(t, Y)X}dit+b,(t, Y)AW.(H)+bo(t, Y)W (1),
dY :={At, Y)+ 4. V)X i} di+B(t, Y)AW()+Bo(t, Y)dW,(1),
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where X, is an unobservable process, 1", is an observable process, and W, W,
are mutually independent standard Brownian motions. X, is an arbitrary &,-
measurable random variable, and Y,=0. We assume that all coefficients of
above SDEs are Lipshitz continuous in the observable processes, and that certain
quantities concerning the diffusion coefficients of above SDEs are uniformly
nonsingular. In [5], Kolodziej and Mohler study the same problem. They
assume the only certain integrabilities for the coefficients of given SDEs. But
they also assume a certain integrability of the initial distribution, while we
assume nothing about the initial distribution. In [2], Haussman and Pardoux
study more general problem that contains also “Bene$ problem”, which is non-
linear in unobservable processes. There they assume only boundedness of the
coefficients of given SDEs, while we allow that a part of coefficients are of
linear growth order in the observable processes.

In section 1, we give the precise formulation of the problem and the as-
sumptions, and consider the reduction of the problem to the case b,=0. In
section 2, we prove the main theorem under the assumptions in section 1. In
section 3, we prove the proposition used in section 1.

§1. Problem Formulation and Assumptions

Let (2, 4, P) be a probability space. In order to guarantee the existence
of the regular conditional probability used below, we assume that (2, &) is a
standard measurable space (see e.g. [3]). Let (F:)iero.r1 (T>0) be a right con-
tinuous increasing family of sub o-fields of &.

The unobservable process X; and the observable process ¥V, are M and N
dimensional &,-adapted continuous processes, respectively, which satisfy the
following stochastic differential equations:

(L) X,:XO+S:{ao(s, V)t as, }')Xs}ds—l-S:bl(s, Y)dW(s)

+ [ buts, aw s,

(1.2) vo={ 14, )+ A5, VX ds+| Buts, V)aw(s)

t
0
+S:Bz(s, Y)dWa(s), te[0, T],

where W (t) and W(i) are mutually independent M and N dimensional standard
4,-Brownian motions, respectively. a,, a,, b,, b,, A,, A, B,, and B, are pro-
gressively measurable mappings from [0, T]x C([0, T]; RY) to R®, R®*¥ RM>M,
RY*N RN RV*M RN>M  and RY*Y, respectively. X, is an RY valued %,-
measurable random variable which is generally non-Gaussian distributed.

We denote by 4, the ¢-algebra generated by {}Y;:s<{. It is well known
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that if E[|X.|*]<-+oo, then the optimal mean square estimation of X, from
the observation data , is

E[X:19.].

We aim at computing this using the solutions of finite dimensional stochastic
differential equations.

We assume either following Assumptions A or Assumptions B for the co-

efficients of the SDEs (1.1)-(1.2). We define the M X (M-+N) matrix b, and the
NX(M+N) matrix B by

b=(. b)), B=(B. B).

Assumptions A. (1) Let g(¢, y) be any element of matrices a,(t, y), a.(t, ),
Aot, 3, A, 3), bilt, ), bo(t, ), Bi(t, y), and Bs(t, y). Then, for any x, y&
C([0, T7; RY) and t<[0, T], we have

(1.3) gt »IP=C{] A+ 139K ++15.09},

(1.4) (gt D—gtt, PIC{]] 5=l tdK )+ x— 317},

where C is a constant and K(s) is a nondecreasing right continuous function,
0<K(s)<1.
(2) a,, A, are bounded.
(3) 30>0 BB*(t, y)=dl for any t<[0, T], yeC([0, T]; RY), where * denotes
the transpose of a matrix.
(4) B, B, are bounded.
(5) F0>0 s.t.
(i) bb*(t, y)=dl,
(ii) B(I—b*(bb*)*b)B*(t, y)=0d1, for any t=[0, T], yC([0, T]; RY). O

Assumptions B. (1)-(3) are the same as (1)-(3) of Assumptions A.
(4) by(t, y)=0 for any t<[0, 7], y=C([0, T]; RY).
(5) There exists an RY*¥ valued bounded progressively measurable function
/711(1‘, y) which satisfies

Adt, )=Bu(t, DAL, ¥),  te[0, T1, yeC{0, T1; RY). O
Remark. When M=N=1, then (ii) of Assumptions A (5) becomes
(b3-+b5) " (B1by—b,B,)* =0 .

This means that two vectors (b, b,) and (B, B,) are not parallel. O

At first, we shall consider the reduction of problem to the case by(t, v)=0.
Under Assumption B, we have nothing to do for this reduction.
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Lemma 1.1 (Lemma 10.4, [6]). Let W(t) (0Zt<T) be an N dimensional
standard F,-Brownian motion, and B, be an R"*Y valued F.-adapted process such
that

S:tr (B.B)dt< + oo,

where * denotes transpose and tr denotes trace of square matrices. Let D, be an
R™* yalued F,-adapted process such that

D.Df¥=B,B¥ for a.e. t<[0, T] a.s..

Then, there exists a k dimensional standard F.-Brownian motion U(t) such that
for any t<[0, T,

S:Bde@):S:Dst(s) a.s. . 0

In view of this lemma, we consider the equation :

P
B, B, \bx Bf

/_.\
ml Ny
o
SN—
g
(e Sx]

*
oo e
o¥ =¥
SN—

that is,

(1.5) bb*=b,b*+byb¥=bb* ,

(1.6) Bb*=B,b¥+ B,bs=B,b*,

1.7 BB*=B,B¥+B,B¥=8,B%+B,B5=BB*.

Proposition 1.2. Let either Assumptions A or Assumptions B be fulfilled.
Then there exist R**™, RY*¥ and RY*Y valued progressively measurable func-
tions b(t, v), ﬁ,(t, y), and gz(t, y), respectively, which satisfy (1.5)-(1.7). More-
over we have the following.

(1) Let g(t, y) be any element of matrices b(t, y), BN,(t, y), and gz(t, ).
Then g(t, y) satisfies (1.3) and (1.4).

2) 36>0 BB*(t, y)=61 for any t<[0, T, yeC((0, T1; RY).

(8) There exists an RV ™ valued bounded, progressively measurable function
Au(t, y) which satisfies

A, V=DB,(t, YA, v), t[0, T1, yeC(0, T]; RY). O

We shall prove this proposition in section 3.

By Lemma 1.1 and Proposition 1.2, there exist M and N dimensional,
mutually independent, standard &,-Brownian motions J(#) and Wg(t), respectively,
and the stochastic differential equations (1.1) and (1.2) are transformed to:

(1.8) X=X+ fais, V)+ass, Y)Xs}ds+S:5<s, Y)dU(s),

t
0



FILTERING PROBLEMS 861
L~
(1.9) Vo= (s, )+ A, VX s+ Bits, Y)aU(s)

+Si§2<s, Y)dWas),  te[0, T1.

§2. Main Theorem
Following the idea of Makowski [8], we shall introduce the process x,
which satisfies an ordinary differential equation :

dx,
dt

that is, letting @(t, Y) be the fundamental matrix with @0, Y)=I,

(2.1)

:al(t: Y)xt ’ xOZXO ’

x, =0 Y)X,.
We denote

XL:XI—XL,

then we can rewrite (1.8)-(1.9) to:

2.2) )?,:S:{ao(s, V)t+ais, V)Xo ds —I—S:E(s, Y)dU(s)

2.3) v o= tAus, V4 A, MZdds+| Bits, 1)U
t t ~ ~
+50Al(s, Y)xsds—i-SuBz(s, Y)dWas), te[0, T1.
Noting (3) of Proposition 1.2, we set

@2.4) V,:S:le(s, Y)xods+Walt)

ZSZF(S, Y)Xods+Wa(t),
where,
(2.5) F@t, y)=At, )0, 3).
In order to apply Girsanov’s theorem to (2.4), if we set
2.6) Atzexp[——g:{F(s, Y)Xo}*sz(s)—%S:iF(s, Y)X.,]zds], tel0, T1,
then we get the

Lemma 2.1. EfA:]=1. O
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Proof. Here we follow essentially the argument of Example 2.2 in [2].
Let p(x, dw) be the regular conditional probability given X,=x. Since X, is
g ,-measurable, Wg(t) is still an &,-Brownian motion under the probability meas-
ure p(x, -) for PXea e. xeR¥. From (2) of Assumptions A or B and (3) of
Proposition 1.2, F is bounded, so for any x<R¥,

oo {5017, Y@yritdt px, day< oo

_Q 2 0 ) 3 .

Hence, by Novikov’s theorem (see e.g. Theorem II-5.3 in [3]), we have
SQAT(w)p(x, dw)=1, for P¥oa.e. x&R”.

Integrating this equation over R¥ by P¥o(dx), we obtain Lemma 2.1. O

By Lemma 2.1, using Girsanov’s theorem, we see that V, is an &,-Brownian
motion under the probability measure P, where

@7 ﬁ(A):SAAT(w)P(dw), A .

Lemma 2.2. On the probability space (2, &, ﬁ),
(i) Xo, U, and V are mutually independent ;
(ii) PXo=P%o on (R¥ K a").

Proof. (i) By Girsanov’s theorem, (U(#), V(#)) is an M+ N dimensional F,-
Brownian motion under the probability P. Thus (i) is clear.
(i) Since A, is a martingale with respect to () under the probability P, for
any A< 8% we have

E[14(X0)]=E[1a(Xo)A7r]=E[14Xo)A]=E[14(X)] . O
Now, we have the stochastic differential equations:

28) X={ tas, Va5, V)X ds+{ Bs, V)au(s)

2.9) YFS:{AO@, Y)+ A, Y)Xs}ds+g Bi(s, Y)dU(s)

t
0
—|—S:§2(s, Y)dv(s), te[0, T1,

on the probability space (2, &, 13). By (1), (2) of Assumptions A or B and (1)
of Proposition 1.2, the SDEs (2.8)-(2.9) have a unique strong solution, so we
have

(2.10) (X, Yi; 0<s<t)ca(U(s), V(s); 0<s<?)

For any ¢: R¥—R, bounded Borel measurable mapping, we have the Kal-
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lianpur-Striebel formula :

@10 A
tl el

, tel[0, 7],

where £ denotes the expectation under the probability P and Z,=A7, ie.
Zi=exp [ Xt Fis, YyraV(s)— 5 X[ (F*FXs, V)Xods .

We set

2.12) /z¢:S:F(s, Y)*dV(s),

e
mL:E[ )
h,

Proposition 2.3. Let either Assumptions A or Assumptions B be fulfilled,
and {Q, 4, 13) be a probability space. Then, for any t<[0, T], (X:, h:) is Gaus-
sitan with mean vector m,(w) and covariance matrix . (w) under the regular condi-
tional probability given 4, ﬁn,t(w, A) (A€9), for P-ae. . Moreover,

and

Lz}t], mQ:E[X, ly,], rc:E[((Xt)—711L><(j_(t>—m,>* 1 Q;,].

h, 1.

a,+a,m; 5B*% A% La
(2.13) dm, = a1 )+ n( }(BBH
0 \FB¥ 0
XAdY . —(A,+Aymyp)dt}, m,=0,
(a0 at 0\ (bb* 0\ (bB%
(2.14) 7= )n+n + )—{ 3 )
0 0 0 0 0 FF* FB¥
AN\ o (0BY Y\ )+
+7L )J(BB*)_Iﬁ ~ )+7[ J s 7020 O
0 \\FB% 0
Proof. By assumptions, we can apply Theorem 12.7 of [7] to equations
(2.8), (2.9) and (2.12). O
We set

gtzé—XﬁSZ(FF*Xs, Y)Xods .

Clearly we have
2.15)  E[6(X)Z. |94 ]=E[E[¢(X,+x.) exp {X5h,—g.} |9,V a(Xo)1|4.] .

We denote by 150 the regular conditional probability given 4j,\V ¢(X,) on the
probability space (2, ¢, P). Since x,, X,, and g, are 4,V ¢(X,)-measurable, by
the property of the conditional expectation we have
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2.16)  E[¢(X.+x.)exp {XEhi—gi} |9,V o(Xo)](@)
=SQ¢(Xt(5)+x,(w)> exp {X3()h,(@)—g(@)} Pi(w, da), for Pae. o.

By (2.10) and (2.12), we have

0(Xs, Vi, hy; 0<s<Ha(U(s), V(s); 0<s<t).
Hence, from Lemma 2.2 (i),
(2.17) (X, Y, h) and X, are mutually independent under P

Therefore we can see that, under the conditional probability ﬁo(w, 9, (X., h)
is Gaussian with mean vector m,(®w) and covariance matrix 7.(w) for Pae. o.
We denote by u(dx; m, 7) the Gaussian distribution over R*” with mean vector
m and covariance matrix y. Thus, from (2.16) we have

(2.18) E[¢(X.+x) exp{Xth,—gi} |4,V a(Xo) ()

:Sngﬁ(x’—l—x,(w)) exp {X§(w)x”— g ()} p(dx ; m(w), 7/(w)),

xl

for P-a.e. w, where x:( ), x’, x”<RY. Hence, by (2.15) and (2.18) we have

xl/

2.19)  E[¢X)Z.19.]

=E~[S o(x'+x,)exp{Xix"—guldx ; my, 1) Y. ], Pa.s.

R2M

Since X, and 4, are mutually independent and m., 7, are 4j,-measurable, we
have

2.200  E[¢X)Z.|U. ()

= B[] 8000, X exp{Xex” — X[ (FFWGs, 3)Xeds)

wdx ;m, r)]

y
y=Y(w), m=my(w). y=y¢(w)

1 3
:Snngzﬂl¢(x,+(p(t’ y)z) exp{z*x”_ -Z—Z*SO(FF*)(S, y)zds }
ﬂ(dx ym, T)PXo(dz> ] y=Y(w), m=m(@),]=T; (@) s

for Pa.e. . Here we have used Lemma 2.2 (ii).

Theorem 2.4. Let either Assumptions A or Assumptions B be fulfilled.
Then for any ¢ : R*—>R, bounded Borel measurable, the optimal mean square
estimation E[$(X,)|Y,] satisfies Kallianpur-Striebel formula (2.11), and we have
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El¢X)Z. |19 )(@)
1 t
:SRMSRZqu(xurq)(t, y)z)exp{z*x”—fz*go(FF s, y)zds}

uldx;m, T)Pxo(dz)|y=Y((u),m=mt(cu).T=7;(w): for Pa.e. 0,

’

where x:(i”) x', x”<R™. Further, m,(w) and 7, (w) satisfy the stochastic dif-
ferential equations (2.13) and (2.14). O

§3. Proof of Proposition 1.2
Under Assumptions B, if we set
5:‘—b1, ElzBly Ez:Bz,

then the conclusion of Proposition 1.2 holds clearly.
Next, we prove the conclusion of Proposition 1.2 under Assumptions A. If
we set

3.1) b, y)=(bb*)"'%(t, y);
3.2) By(t, y)=Bb*(bb*)"VX1, y);
(3.3)  But, y)={BU—b*bb*)0)B*} (1, v), 1[0, T1, yeC([0, T1; RY),

then (1.5)-(1.7) are satisfied. By (i) of Assumptions A (5), (bb*)~' is well de-
fined. (2) of Proposition 1.2 clearly holds by (3) of Assumptions A and (1.7).
For (3) of Proposition 1.2, we set

3.4) At, »=B7'A, v).
By (ii) of Assumptions A (5), B3' is well defined, and
|B3'(t, )| <Co12.

Hence, noting A, is also bounded, we can see that (3) of Proposition 1.2 holds.
At last we shall prove (1) of Proposition 1.2. It is clear that

3.5) 161 =C(lbi|+1b:1),

so b satisfies (1.3).

Lemma 3.1. Let b: R—>R"™ (n<m) satisfy the following :
|b(H)—b(s)| <K |t—s|, t seR;

bb*>0.
Then if we set a=bb*, we have

la'*()—a'*(s)| =CK|t—s|, I, sER,
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where the constant C depends only on n and m. O

Proof. We follow essentially the proof of Theorem 5.2.2 in [9], i.e.,
Lemma 3.2 in this paper.

At first we consider the case b(t)eC'(R). Then clearly a(t)eC'(R). By
Lemma 6.1.1 in [1], we have also a'*(t)eCY(R). It is sufficient to prove that

(3.6) sup|(a'®’(t)| <CK .
teR
Here ’ denotes the differential in {. Let any ¢{R be fixed. We may assume

that a(?) is a diagonal matrix. Indeed, there exists an orthogonal matrix Q
such that @(f)=Qa(H)Q* is diagonal. Clearly &' *(t)=Qa"*(H)Q*. Therefore

@y ®i=Ia")yml.
So let a(f) be diagonal. Since a'*(f) is also diagonal, we have
a’(t);=(a'?) ():,a"*(®),,+ @ *(D)u(a’®) (D)., -
Here the suffix i; denotes the (7, /) component of matrices. Hence

a/(t)w’_
al/z(t)u +a I/Z(t)“ '

(a'®) (t),=
On the other hand,
HONESRONIORESONIOMS
So,
EXGMIES o RILOMERTOMIE
Since a(?) is diagonal, we have
0 (D=2l = | 30Ok -

Hence,

Kzg—l_-],“b(t)]k | + [b(l>1.k‘} <7TZK

(@ W = S 5+ v S b =

and we obtain (3.6).
When b(t)¢ CYR), it is sufficient that we approximate b(¢) by b.(f) with the
molifier. 0

By this lemma, we can directly prove that b satisfies (1.4). So we see that b
satisfies (1) of Proposition 1.2.
In view of the definition of B;, say (3.2), we set

A=(bb*)"1"h.
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Since
AA*=(bb*)"12bb*(bb*)~ 2 =1,
we have
|APP=Ci A4 £C, .
Hence

|§1l=1344*1§C2|B!'IA*\§C3|B|éca(lBll-Hle).
Therefore El is bounded, and satisfies (1.3). From (1.6), we have

B.7)  Bi(x)—By(y)=—B.(»)b(x)—b(y))b(x)*
+2 {(B.(x)— By(y)b¥(x)5-4(x)+ Bo(y)(0(x)—b5(3))6-1(x)},

for x, yC([0, T]; RY). Here we abbreviated the argument . B,, B, and B,
are bounded. Clearly b¥)-1=0%bb*)"1* (=1, 2) is bounded. By (i) of Assump-
tions A (5), 6~' is bounded. Hence from (3.7) we can see that 1§1 satisfies (1.4).
So B, satisfies (1) of Proposition 1.2.

From (1.7), using the boundedness of B,, B, and ﬁl, we can see that gz is
also bounded. So Bg satisfies (1.3). By the definition of 4, we have

Ax)— A(9)=b(y)"H{(b(x)—b(»)—(b(x)—b(y)A(x)}

By the boundedness of 6! and .4, .1 satisfies (1.4). Since B and A is bounded
and satisfy (1.4), so is B(/—A*A)B*=B%.

Lemma 3.2 (Theorem 5.2.2, [9]). Let a{t) be a symmetric matrix valued
function of t€R, which satisfies

la(—a(s)| =K|t—s)| t, seR;

30>0 a(®=06l  for any teR.
Then we have
la'*(t)—a'?(s)| <CK|t—s],

where C is a constant. O

By (ii) of Assumptions A (5), using this lemma, we can see that Bg satisfies
(1.4).
This completes the proof of Proposition 1.2. 0
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