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Filtering Problems for Conditionally Linear
Systems with Non-Gaussian Initial Conditions
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Shigeomi HARA*

Abstract

We solve the filtering problems for conditionally linear systems, that is, stochastic,
partially observable systems which are linear in unobservable processes and nonlinear in
observable processes, with non-Gaussian initial conditions. We assume that all coefficients
of given SDEs are Lipshitz continuous in the observable processes, and that certain
quantities concerning the diffusion coefficients of given SDEs are uniformly nonsingular.
But we assume nothing about the initial distribution and allow that a part of the co-
efficients of the given SDEs are of linear growth order in the observable processes.

Introduction

The filtering problems for stochastic, partially observable linear systems
with Gaussian initial conditions are solved by Kalman and Bucy [4]. Here
"solve" means obtaining the formula to compute the optimal mean square
estimate of the present value of the unobservable processes, using the finite
dimensional statistics, when we have the data of the past and present obser-
vation. In Liptser and Shiryayev [7], they solve the filtering problems for
stochastic, partially observable systems that are linear in unobservable processes,
and nonlinear in observable processes, that is, conditionally linear systems, with
Gaussian initial conditions. On the other hand, in Makowski [8], they solve
the filtering problems for stochastic, partially observable linear systems with
non-Gaussian initial conditions.

In this paper, we join above two methods in [7] and [8], and solve the
filtering problems for conditionally linear systems with non-Gaussian initial
conditions. Namely, we consider the following system of stochastic differential
equations :

dXt=\a0(t, n+fliCt Y)Xt}dt+b1(tt Y)

dYt=\A0(t, Y)+At(t, YWJdt+Btf, YldW^+Btf, Y)dWz(t),
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where Xt is an unobservable process, Yt is an observable process, and Wlf Wz

are mutually independent standard Brownian motions. XQ is an arbitrary So-
measurable random variable, and YQ=Q. We assume that all coefficients of
above SDEs are Lipshitz continuous in the observable processes, and that certain
quantities concerning the diffusion coefficients of above SDEs are uniformly
nonsingular. In [5], Kolodziej and Mohler study the same problem. They
assume the only certain integrabilities for the coefficients of given SDEs. But
they also assume a certain integrability of the initial distribution, while we
assume nothing about the initial distribution. In [2], Haussman and Pardoux
study more general problem that contains also "Benes problem", which is non-
linear in unobservable processes. There they assume only boundedness of the
coefficients of given SDEs, while we allow that a part of coefficients are of
linear growth order in the observable processes.

In section 1, we give the precise formulation of the problem and the as-
sumptions, and consider the reduction of the problem to the case &2^0. In
section 2, we prove the main theorem under the assumptions in section 1. In
section 3, we prove the proposition used in section 1.

§ 1. Problem Formulation and Assumptions

Let (.0, £F, P) be a probability space. In order to guarantee the existence
of the regular conditional probability used below, we assume that (Q, <3) is a
standard measurable space (see e.g. [3]). Let (fJ^teno.n (T>0) be a right con-
tinuous increasing family of sub a -fields of £F.

The unobservable process Xt and the observable process Yt are M and N
dimensional 2>adapted continuous processes, respectively, which satisfy the
following stochastic differential equations:

(1.1) Xt=X0 + \ {aQ(s, y) + fl!(s, Y)X,}ds + \ &i(s, Y)dW,(s)
Jo Jo

+ Tws, Y)dWi(s),
Jo

(i.2) yt=r{^0(s, 7)+.41(s, yyQds+f^o
Jo Jo

s, 7)rfW2(s),

where W^t) and Wz(t) are mutually independent M and N dimensional standard
^t-Brownian motions, respectively. a0, fli, &i, bz, A0, Alf Bl} and Bz are pro-
gressively measurable mappings from [0, T]xC([0, T] ; RN) to RM, RMxM, RM>M,
RM*N, RN, RNxM, RN>~M, and RNxN, respectively. XQ is an RM valued £F0-
measurable random variable which is generally non-Gaussian distributed.

We denote by ^ the ^-algebra generated by { Y s : s^t}. It is well known
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that if E\_\Xt !
2]< + °°, then the optimal mean square estimation of Xt from

the observation data Qjt is

We aim at computing this using the solutions of finite dimensional stochastic
differential equations.

We assume either following Assumptions A or Assumptions B for the co-
efficients of the SDEs (1. !)-(!. 2). We define the Mx(M+N) matrix b, and the
/Vx(M+iV) matrix B by

b=(b, 6a), B=(B, BO-

Assumptions A. (1) Let g(t, y) be any element of matrices a0(t, y\ a^(t, y),
AQ(t, y\ Atf, y\ btf, y), bz(t, y), B&, y), and B2(t, y). Then, for any x, y^
C([0, T] ; RN) and te[0, T], we have

(1.3) \g(t, y)\*£Cl+ y

(1.4) \g(t, x)-g(t,

where C is a constant and K(s) is a nondecreasing right continuous function,

(2) al} _4i are bounded.
(3) 35>0 BB*(t, y^dl for any ?e[0, T], 3>eC([0, T] ; U^), where * denotes
the transpose of a matrix.
(4) Bl9 Bz are bounded.
(5) 3<5>0 s.t.

(i) bb*(t, y)^dl,
(ii) B(I-b*(bb*Ylb)B*(t, yT^dl, for any fe[0, T], 3^^C([0, T] ; B^). n

Assumptions B. (l)-(3) are the same as (l)-(3) of Assumptions A.
(4) bz(t, y)=Q for any fe[0, T], 3^eC([0, T] ; 72^).
(5) There exists an JK

ArxM valued bounded progressively measurable function
Ai(t, y) which satisfies

A,(t, y)=Bz(t, y)Ai(t, y), te[0, T], y^C([_Q, T] ; RN). D

Remark. When M=^V=1, then (ii) of Assumptions A (5) becomes

(bl-rbir^B^-hB^d .

This means that two vectors (bl bz) and (B{ Bz) are not parallel. D

At first, we shall consider the reduction of problem to the case bz(t, v)=0.
Under Assumption B, we have nothing to do for this reduction.
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Lemma 1.1 (Lemma 10.4, [6]). Let W(f) (O^f^T) be an N dimensional
standard <St-Brownian motion, and Bt be an RnxN valued ^t-adapted process such
that

where * denotes transpose and tr denotes trace of square matrices. Let Dt be an
Rnxk valued 3t-adapted process such that

DtDf=BtB* for a.e. fe=[0, T] a.s. .

Then, there exists a k dimensional standard 3t-Brownian motion U(t) such that
for any fe[0, T],

a.s. . D

In view of this lemma, we consider the equation:

/&! M/fr? B?\ (b 0\/5*

Ui flJW at/ Ui aj\0 flf4

that is,

(1.5) 6ft*=

(1-6)

(1.7)

Proposition 1.2. Let either Assumptions A or Assumptions B be fulfilled.
Then there exist RMxM, RNxM, and RNxN valued progressively measurable func-
tions b(t, y), BJf, y}, and B2(t, y), respectively, which satisfy (1.5)-(1.7). More-
over we have the following.

(1) Let g(t, y} be any element of matrices b(t, y), B^t, y), and B2(t, y).
Then g(t, y) satisfies (1.3) and (1.4).

(2) 3<5>0 BB*(t, y)^dl for any fe[0, T], yeC([0, T] ; RN).
(3) There exists an RNxM valued bounded, progressively measurable function

Ai(t, y) which satisfies

Atf, y)=Bz(t, yJA^t, y), fe[0, T], yeC([0, T]; RN). D

We shall prove this proposition in section 3.
By Lemma 1.1 and Proposition 1.2, there exist M and N dimensional,

mutually independent, standard EFrBrownian motions U(t) and Wz(t), respectively,
and the stochastic differential equations (1.1) and (1.2) are transformed to:

(1.8) Xt=X0-t- [aa(s, Y)+ai(s, Y)Xs}ds + b(s, Y)dU(s],
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(1.9) y,= (At(s, Y)+A1(s, YWJds + BAs, Y)dU(s)
Jo Jo

, T].

§2. Main Theorem

Following the idea of Makowski [8], we shall introduce the process xt

which satisfies an ordinary differential equation :

(2.1) - = *i(t,Y)xt, *0=*o,

that is, letting 0(t, Y) be the fundamental matrix with 0(0, Y)=I,

xt = 0(t,Y)X,.
We denote

Xt—Xt — xt >

then we can rewrite (1.8)-(1.9) to :

(2.2) *, = ('{flo(s, Y)+ai(sf Y)Xs}ds+{tb(s) Y)dU(s)

(2.3) r,
o

' ' 0, T] .
Jo Jo

Noting (3) of Proposition 1.2, we set

(2.4) Vt

=F(S,
o

where,

(2.5) F(t, y}=A,(t, y)0(t, y} .

In order to apply Girsanov's theorem to (2.4), if we set

(2.6) A=exP[-(V(s, Y)Xa}*dWt(s)-^\F (s, Y)X0\
1ds] , fs[0, T] ,

L Jo L Jo J

then we get the

Lemma 2.1.
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Proof. Here we follow essentially the argument of Example 2.2 in [2].
Let p(x, dw) be the regular conditional probability given X0 = x. Since XQ is
S'o-measurable, Wz(t) is still an 3>Brownian motion under the probability meas-
ure p(x, •) for Px°-a. e. x<=RM. From (2) of Assumptions A or B and (3) of
Proposition 1.2, F is bounded, so for any x<=RM,

- | F ( f , Y ( o ) ) ) x \ 2 d t p ( x ,
v Z Jo J

Hence, by Novikov's theorem (see e.g. Theorem ffl-5.3 in [3]), we have

(x, d(o)=l, for P^-a.e. x(=RM .

Integrating this equation over RM by Px°(dx), we obtain Lemma 2.1. D

By Lemma 2.1, using Girsanov's theorem, we see that Vt is an 3>Brownian
motion under the probability measure P, where

(2.7) P(A}= AT(a))P(d(o) ,
J^

Lemma 2.2. On the probability space (Q, £F, P),
(i) XQ, U, and V are mutually independent]
(ii) P^o^p^o On (RM

} &*).

Proof, (i) By Girsanov's theorem, (U(t), V(t)} is an M+N dimensional £Fr

Brownian motion under the probability P. Thus (i) is clear.
(ii) Since At is a martingale with respect to (2^) under the probability P, for
any A<=$M we have

Now, we have the stochastic differential equations :

(2.8) X, = r{fl0(s, n+fli(s, Y)Xs}ds + \tb(s, Y)dU(s)

(2.9) Yt

, F)dF(s), fe[0,T],

on the probability space (Q, <S, P). By (1), (2) of Assumptions A or B and (1)
of Proposition 1.2, the SDKs (2.8)-(2.9) have a unique strong solution, so we
have

(2.10) a(Xs, Ys ; (Ks^0c=<7(£/(s), V(s) ; O^s^O

For any ^ : RM-^R, bounded Borel measurable mapping, we have the Kal-
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lianpur-Striebel formula :

(2.11)

where £ denotes the expectation under the probability P, and Zt—A~t
l, i.e.

We set

(2.12)

and

ml~l

Proposition 2.3. Let either Assumptions A or Assumptions B be fulfilled,
and (Q, 3, P) be a probability space. Then, for any fe[0, T], (Xt, ht) is Gaus-
sian with mean vector mt(a)} and covariance matrix ft((o) under the regular condi-
tional probability given Qjt, P^t(a), A) (A^3), for P-a.e. a). Moreover,

/a 0+fl im[\ (/bB^\ MfU _
(2.13) dmt = [ \dt+tt „ +rJ (55*)-1

\ o / A™ \ o / J

/G! o\ /at o\ /bb* o^
(2.14) rt=\ n+n +\o o/ \o o; \o FI

, 7o=o. n
0 /J {\FB%] \ 0 /J

Proof. By assumptions, we can apply Theorem 12.7 of [7] to equations
(2.8), (2.9) and (2.12). D

We set

Clearly we have

(2.15) £[0(A"c)Zc|<yc]

We denote by P0 the regular conditional probability given ytya(X0) on the
probability space (Q, 9", P). Since .rt, XQ, and ^^ are Q/tVo'(^o)-ineasurable, by
the property of the conditional expectation we have
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(2.16) E[0(*f+*t)exp {X*Qht-gt} \^t\j o(XQ)-](<o}

for P-a.e. a).

By (2.10) and (2.12), we have

a(XS) Ys, /i,;

Hence, from Lemma 2.2 (i),

(2.17) (X, Y, h} and XQ are mutually independent under P.

Therefore we can see that, under the conditional probability PQ(O), •)> (Xt, ht)
is Gaussian with mean vector mt(o>) and covariance matrix 7t(cw) for P-a.e. a).
We denote by p(dx ; m, 7) the Gaussian distribution over RZM with mean vector
m and covariance matrix 7-. Thus, from (2.16) we have

(2.18)

= \ 2^

I, jc', x"^RM. Hence, by (2.15) and (2.18) we have
**

(2.19)

Since Z0 and <yt are mutually independent and mt, Tt are ^t-measurable, we
have

(2.20)

; m, rt
Jy=F(cy) ,

„
RMJRZM

for F-a. e. a). Here we have used Lemma 2.2 (ii).

Theorem 2.4. Let either Assumptions A or Assumptions B be fulfilled.
Then for any <j) : RM—>R, bounded Borel measurable, the optimal mean square
estimation E\_<j>(Xt)\Q}t~\ satisfies Kallianpur-Striebel formula (2.11), and we have
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p(dx;m, r)PXo(dz)\y=Y(aj),m=7nt(a>),r=rt«^> for P-a. e. a> ,

/ % ' x
=( V #', x"^RM. Further, mt(o>) and 7*£(<w) satisfy the stochastic dif-

ferential equations (2.13) and (2.14).

§3. Proof of Proposition 1.2

Under Assumptions B, if we set

then the conclusion of Proposition 1.2 holds clearly.
Next, we prove the conclusion of Proposition 1.2 under Assumptions A. If

we set

(3.1) 5ft ;y)

(3.2) B&, y)=Bb*(bb*ri/2(tf 30;

(3.3) B2(t, y)={B(I-b*(bb*Ylb)B*}l!Z(t, y] , te[0, T], yeC([0, T] ;

then (1.5)-(1.7) are satisfied. By (i) of Assumptions A (5), (bb*Yl is well de-
fined. (2) of Proposition 1.2 clearly holds by (3) of Assumptions A and (1.7).
For (3) of Proposition 1.2, we set

(3.4) A,(t, 3;)=JBiM1ft 30 -

By (ii) of Assumptions A (5), Bz1 is well defined, and

Hence, noting ,4t is also bounded, we can see that (3) of Proposition 1.2 holds.
At last we shall prove (1) of Proposition 1.2. It is clear that

(3.5) i

so b satisfies (1.3).

Lemma 3.1. Let b: R->Rn*m (n^m) satisfy the following:

\b(t)-b(s)\<K\t-s , t,

Then if we set a=bb*, we have
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where the constant C depends only on n and in. D

Proof. We follow essentially the proof of Theorem 5.2.2 in [9], i.e.,
Lemma 3.2 in this paper.

At first we consider the case b(t)^C\R). Then clearly a(f)&C\R). By
Lemma 6.1.1 in [1], we have also al'z(t}^Cl(R}. It is sufficient to prove that

(3.6) sup\(al/zY(t}\^CK .
t&R

Here ' denotes the differential in t. Let any t^R be fixed. We may assume
that a(t) is a diagonal matrix. Indeed, there exists an orthogonal matrix Q
such that a(t)=Qa(t)Q* is diagonal. Clearly 01'2tt)=Ga1/2(*X?*. Therefore

So let a(t) be diagonal. Since al/z(f) is also diagonal, we have

a /(0»y=(fl im0^a1/ '(0^+fl1/"(0«(a1/8) /(0^.

Here the suffix ij denotes the (i, /) component of matrices. Hence

On the other hand,

a'(t\,= 2 {&'(
k = l

So,

Since a(t) is diagonal, we have

Hence,

1/2y } < ^ _
1 (a } ("" - ' - '

and we obtain (3.6).
When b(t}f.Cl(R), it is sufficient that we approximate b(t) by &£(0 with the

molifier. n

By this lemma, we can directly prove that b satisfies (1.4). So we see that b
satisfies (1) of Proposition 1.2.

In view of the definition of Blf say (3.2), we set

A=(bb*)~1/zb .
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Since
AA*=(bb*)-lf*bb*(bb*)-1/2=I ,

we have

Hence
\B, = BA* ^Cz B • A* ^C3 B ^

Therefore J3i is bounded, and satisfies (1.3). From (1.6), we have

(3.7) 5l(^)-51(3;) = -

2

î i

for jc, veC([0, T] ; RN). Here we abbreviated the argument t. B1} Bz and Bl

are bounded. Clearly b*Jrl=b*(bb*)-llz (* = 1, 2) is bounded. By (i) of Assump-
tions A (5), b~l is bounded. Hence from (3.7) we can see that Bl satisfies (1.4).
So Bl satisfies (1) of Proposition 1.2.

From (1.7), using the boundedness of 5lt B2 and Bif we can see that Bz is
also bounded. So B2 satisfies (1.3). By the definition of .4, we have

By the boundedness of b~l and .4, .1 satisfies (1.4). Since B and A is bounded
and satisfy (1.4), so is B(I-A*A)B*=B\.

Lemma 3.2 (Theorem 5.2.2, [9]). Let a(t) be a symmetric matrix, valued
function of t^R, which satisfies

a(t)-a(s)\<K\t-s\ t,

3<5>0 a(f)^SI for any

Then we have

where C is a constant. D

By (ii) of Assumptions A (5), using this lemma, we can see that Bz satisfies
(1.4).

This completes the proof of Proposition 1.2. G
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