
Publ. RIMS, Kyoto Univ.
29 (1993), 869-884

Scattering Theory for Af-Particle Systems
with Stark Effect: Asymptotic Completeness

By

Hideo TAMURA*

§ 1. Introduction

The present paper is a continuation to the work [15] where we have
proved the non-existence of bound states and the principle of limiting absorp-
tion for /V-particle Stark Hamiltonians. We here study the problem of asymp-
totic completeness of wave operators. The asymptotic completeness for N-
particle quantum systems without uniform electric fields was first proved by
Sigal-Soffer [12] and after that remarkable work, alternative proofs have also
been given by several authors [2, 7, 13, 17]. We use the local commutator
method initiated by Mourre [9] to prove the asymptotic completeness for N-
particle systems with uniform electric fields. The proof is, in principle, based
on the same idea as developed in the above works [2, 7, 12, 13, 17] for the case
without electric fields. We analyse the propagation properties in the configura-
tion space for solutions to the Schrodinger equation. But the phase space
analysis is not required, because charged particles are scattered along only one
direction (direction of a given uniform electric field).

We shall formulate the problem precisely, fixing several basic notations
employed in many-particle scattering theory. We consider a system of /Y-
particles moving in a constant electric field £e/23, <?^0. We denote by in.,, e-,
and r^e/23, 1^/^A/, the mass, charge and position vector of the /-th particle,
respectively. Then, for such a system, the total energy Hamiltonian takes the
following form:

where the notation <-, •> denotes the usual scalar product in the Euclidean
space and the potential V is given as the sum of pair potentials

V= S
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For notational brevity, we fix the values of masses throughout as

but we regard the values of charges as real parameters. As usual, the above
operator is considered in the cent er-of -mass frame. We define the configuration
space X as

X={r=(rL, .»

and the vector E as

£=:projection onto X of (e^, ••• , eNG).

We write x for a generic point in X. Then, for the system with identical
masses nij=l, the energy Hamiltonian H (Schrodinger operator) takes the fol-
lowing form in the center-of-mass frame and acts on the space L2(X) :

H=-d/2-<E, xy + V on L2(X).

We assume that |£|^0, which means that the charges QJ do not take an
identical value for all /. All the pair potentials VJk are assumed to fulfill the
following assumption :

(V) Vjk(y)^Cz(R^ is a C2-smooth real function with decay properties
\ + \rVJk(y)\=0(\y\-°), \?rv,k(y)\=0(l) for some p>l/2.

Throughout the entire discussion, the constant p is used with the meaning
ascribed above. This assumption on pair potentials enables H formally defined
above to admit a unique self-adjoint realization in LZ(X) with its natural domain.
We use the same notation H to denote this self-adjoint realization. In the
previous work [15], we have proved the non-existence of bound states and the
principle of limiting absorption for the operator H under assumption (V).

The problem of asymptotic completeness is to determine completely the
asymptotic states as time Z-*±°o of solutions <f>(t)=exp (— itH)<f) to the Schrod-
inger equation for all initial states </>^Lz(X). The asymptotic behavior of
solutions depends on the values of charges e}. Charged particles go to infinity
along the direction of electric field in classical mechanics. For example, the
j-th particle behaves like 6j<Sf/2 as £-»±°o in /2s. We now define the direction
a) at a)=E/\E\. Then the N particles under consideration goto infinity along
direction o) in the configuration space X. If all the charges ej take different
values, then the pair potentials VJk all decay along direction o> in X ', V jk(r3—
Th)— >0 as r\o)—>oo. Hence the solution <p(f) can be expected to behave like the
free motion exp (itH0)^ with some </>^Lz(X) as £->oo, where H0 denotes the
free Hamiltonian
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On the other hand, if, for example, two charges e, and ek take the same value
for some pair (/, &). 1^/<&^V, then the j-th and k-th particles may form a
bound state at some energy and go to infinity as t—*oof so that the solution
<]}(t) has scattering channels associated with such bound states as asymptotic
states. Thus the asymptotic behavior of solutions is different according to the
values of charges.

We shall discuss the matter more precisely. To do this, we require several
basic notations in many-particle scattering theory.

First we denote by letter a or b a partition a— {Cl} ••• , Cm\ of the total
set {1, • • - , N} into non-empty disjoint subsets (clusters) C,-. Such a partition
is called a cluster decomposition. We also denote by fr(a) the number of
clusters in a. The one-cluster decomposition a={l, 2, ••• , JV}, #(a)=l, is not
used throughout the whole exposition. We further write a for pair (/, k) with
!<;;/< &<LY and Va for pair potential V j k . The relations acia and agio, mean,
respectively, that ; and k are in the same cluster in a and that they are in
different clusters in a. The pair cx=(j, k) is sometimes identified with the
N—l cluster decomposition {(/, k\ (1), ••• , (;), ••• , (£), ••• , (N)} . If b is obtained
as a refinement of a, then we use the same notation c= to denote this relation
as baa. We note that aaa is regarded as a refinement of a itself.

We define the two subspaces Xa and Xa of X as

Xa={r^X: Sr;-=0 for all clusters C in a},
j&C

Xa—{r^X: ra=rj—rk=Q for all pairs ac.a}.

These spaces are mutually orthogonal and span the total space X~XaQ)Xa, so
that L\X) is decomposed as the tensor product Lz(X) = L2(Xa)®L2(Xa). We
also denote by na : X— >Xa and 7ta : X-^Xa the orthogonal projections onto Xa

and Xa, respectively, and write xa=nax and xa—xax for a generic point
The cluster Hamiltonian Ha is defined by

on L\X)

as an operator acting on LZ(X), where

(1.1) Va(r)=^Va(r«), ra=rj-rk.
aca

Let Ea=naE and Ea=xaE. Then the operator Ha is decomposed into

on L2(X

Here Ha is the subsystem Hamiltonian defined by

a on

and Ta is the free Hamiltonian defined by

on L
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Finally we define the set P as

(1.2) P= {a : Ea=Q, 2^

If all the charges e3 take different values, then P=0 becomes empty and the
converse is also true.

We now return to the problem on the asymptotic behavior of solution <p(f).
If a^P, then the subsystem operator Ha = — d/2-J

rV
a has no electric field, so

that it may have bound states in Lz(Xa). We denote by Pa : L2(Xa)-*L2(Xa)
the eigenprojection associated with Ha. What we want to prove is that for
any initial state <p^Lz(X), there exist ^ and 0|, a^P, such that the solution
(f)(t)=txp(—itH)<p behaves like

(1.3) 0(0=exp(-rt#0)0o + Sexp(-/^a)CPfl(g)/rf)^+o(l), £->±°o,
ae/1

where the notation 0(1) stands for terms converging to zero in LZ(X). The
first term on the right side denotes the free channel and the second one denotes
the scattering channel associated with bound states. If, in particular, P—0,
then the solution behaves like the free motion.

We define the wave operators Wl : LZ(X)->L2(X) by

(1.4) Wz=s- limexptftf/) exp(-*tf/a)(Pfl(g)/</)

for a^P. We further write WQ= Wa, #(a)=N, for the wave operators with
Af-cluster decomposition ^(a)=Nt which is defined by the relation above with
zero eigenprojection Pa = 0. If the wave operators exist, it can be easily
verified that the ranges of wave operators are all closed and mutually orthogonal

Range Wl _L Range Wf, a^b.

The problem of asymptotic completeness is now formulated as

Problem (asymptotic completeness).

L2yQ=Range Wt® 2 Range Wl .
aer

In order to answer this question, we add the following assumption to (V).

(VS) V a ( y ) = 0(\y\-*), d>l, is short-range for aaa with a^P.

We are now in a position to state the main theorem obtained in this work.

Theorem 1.1. Let the notations be as above. Assume that (V) and (VS) are
fulfilled. Then the wave operators Wl and Wa, a^P, exist and are asymptoti-
cally complete.

The proof of the theorem uses the asymptotic completeness for Ha with
. For such a cluster decomposition a, the subsystem operator Ha does
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not have a uniform electric field and hence this result has been obtained by
[12] under assumption (VS). For this reason, (VS) is assumed.

We conclude the section by making a brief comment on the results related
to the main theorem. The asymptotic completeness for Stark Hamiltonians has
been already studied by many authors [1, 3, 4, 5, 10, 16, 18] for one or two-
particle systems, including the case of scattering by long-range potentials. On
the other hand, there are only a few works dealing with the scattering prob-
lem for many-particle systems. In his work [8], Korotyaev first proved the
completeness of wave operators for three-particle systems. The proof is based
on the Faddeev equation method. The restrictive smoothness condition on pair
potentials as in (V) is not assumed there. But some additional assumption is
imposed. The assumption is stated in terms of the notations here as follows :
V a satisfies (VS) with d>2 for ac:a, a^F, a being a two-cluster decomposition,
and the two-particle subsystem operator Ha — — d/2+Va acting on L2(R3) does
not have a resonance state at zero energy. After Korotyaev's work [8], the
author [14] has given an alternative proof based on the local commutator
method without assuming the resonance condition as above.

§ 2. Existence of Wave Operators

In this section, we prove the existence of wave operators WQ and Wa, a^
F, defined by (1.4). The proof uses only the decay property of pair potentials
V a but does not require the other decay properties of derivatives.

Proposition 2.1. Assume that (V) and (VS) are satisfied. Then the wave
operators W% and Wa, a^P, exist and their ranges are all dosed and mutually
orthogonal.

Proof. We prove only the existence of wave operator Wt with a^F. A
similar argument applies to the other operators and the properties (closedness
and orthogonality) of ranges can be also easily verified.

We denote by | | - | | 0 the L2 norm in LZ(X). To prove the proposition, it
suffices by the Cook-Kuroda method to show that

(2.1) /(0=ll^«(rfl)exp(-i^a)^||0eL1((l, °o)), a£a,

as a function of t>l for <f> in a fundamental set of L2(X). We define the set
3) as

where <S(Xa) is the Schwartz space over Xa, §a is the Fourier transform of
Oa^S(Xa) and X'a denotes the space dual to Xa. Then it is easily seen that
S) becomes a fundamental set of L2(X) and also we have
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for
For brevity, we now fix a^F as a= {Clt C2, ••• , CJ, 2^/<^V— I, and

assume that /eCi and &eC 2 for pair a=(j, k). We denote by G^J^3 the
intercluster coordinates with normalization between clusters C\ and C2 and
write C=(Co, CO=(Co, Ci. "• » Cz-z) for the normalized Jacobi coordinate system
over Za. Let #(C) be the number of particles in cluster C. We also choose
c=(£i, •", Cm), w=#(Ci)+#(C2)— 2, as coordinates within clusters Cl and C2.
Then the relative coordinates ra are represented as a linear combination of
the form

(2.2) r^ = c0Co+ S di£i, Co^O,
Igigm

and Ea has the representation Ea=(FQ, F')=(P0, F1} ••• , F^_2) in terms of the
coordinate system C over Xa.

We define T0 by T0=— J/2 as an operator acting on Lz(Xa) and set

We now use Proposition 19.1 of [10] which gives the relation between the
propagators exp(— itTa) and exp(— itT0). According to this relation, we have

\Oat(xa-Eaf/2)\=

Hence we make a change of variables to obtain that

where ra is represented as in (2.2) and

If ad b for some b<=F, then FQ=Q and also Va is a short-range potential by
assumption (VS). In this case, we can prove (2.1) in exactly the same way
as in the proof of Theorem XL 34 in [11]. Thus we assume that a<f.b for
any b&F, so that F0^0 never vanishes.

Lemma 2.2. Let Of be as above. Let e>0 be fixed arbitrarily but small
enough. Then

for some p>l.

We complete the proof of the proposition, accepting the lemma above as
proved. Since 6a^C™(X'a) is supported in {pa<=X'a: pa <R\ for some
it follows that
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(2.3) \Oat(xa

for \xa\>2Rt. Thus we decompose J(t)2 into the three integrals;

\xa\>2Rt

By (2.3) and Lemma 2.2, the first two terms on the right side are of order
O(rau) as £-^oo for some v>l. If x=(xa, xa) is in the integral domain of the
third term, then it follows that

for £>1 large enough, so that

Va(r
a+c0Fo?)\*=0(t-'f>), t — > oo,

by assumption (V). This proves (2.1) and completes the proof. D

Proof of Lemma 2.2. The lemma is easy to prove. We first note that
Ha —— A/2+Va does not have a uniform electric field by assumption
We can easily show that

<za>-2il=0(f), t — > oo,

as an operator from Lz(Xa) into itself, where <^>=(1+ x \ z ) 1 / z . This proves
the lemma with v— 2. D

§3. Propagation Estimate I

We again denote by | | - | l o the Lz norm in LZ(X) and write (-, -)o for the
scalar product. We say that an operator B acting on LZ(X) is locally //-smooth,
if B f ( H ) : LZ(X)^LZ(X) is bounded for f^C^(R) and if

\\B^v(-itH}f(H}<j>\\ldt<Cf\\<!>\\l
o

for $(=LZ(X). In the previous work [15], we have proved the following

Theorem 3.1 (principle of limiting absorption). Assume that (V) is fulfilled.
Denote by Ll(X) = Lz(X', ( x y z v d x ) the weighted Lz space over X with weight
<*>*. Let /?(£; #)=(//— 0~S ImC^O, be the resolvent of H. Then the resolv-
ents have the boundary values to the real axis

limR(t±ie; H)=R(*±iQ; H), l^R,
£ 4 - 0

in the uniform topology as an operator from L\(X} into L^V(X) for p>l/4, where
the convergence is locally uniform in X.

From this theorem, we can obtain the following proposition as a consequence
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of the local smoothness theorem due to Kato ([6, 11]).

Proposition 3.2. Assume that (V) is satisfied. Let z=(x, o>>. Then the
three operators <xy~v, <;t>~y<2>~1/2J7 and <^>"V<^>~1FF are all locally H-smooth
for any

We here note that the smoothness property of the second and third operators
above respectively follows from the L2 boundedness of the operators

We now define the operator 7- as

(3.1) r=(0o+0?)/2, /?0=

and DI as

(3.2) D^-iP-oc)-1'8^*)-1'8* •
The aim here is to prove the following

Proposition 3.3. Assume that (V) is satisfied. Let D± be defined above.
Then the operator <^>~3/4

JD1 is locally H-smooth.

Proof. Throughout the proof, we denote by Qa the multiplication operator
by <^> f f . We also write Bsm for locally //-smooth operators and denote by Ksm

operators represented as Ksm — ^f%niteBf-m.Bsm.
Define the operator 0 as 0=Q.i/4^Q,1/4r and set

Then we have

Since 0(H+i)~l : L\X)-*LZ(X) is bounded and since

<?_3/4<£>,, D,yQ_z/4 = Q_3f4(-d~f)Q

by Proposition 3.2, it suffices to show that

(3-3) *[

for some c>0 in the form sense over LZ(X).
Let o)-=E/\E\ be again the direction of E. Then H can be rewritten as

E z+V,

so that we have

(3.4) i[H, 0]=i[
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By assumption (V), it follows from Proposition 3.2 that the third operator on
the right side takes the form i[V , 0^—Ksm. The second operator is calculated
as

f[- E z, 0]=Q_3

and hence

(3.5) i\_-\E\z,

by Proposition 3.2. Finally we calculate the first operator on the right side
of (3.4). Since

Q_1/4l[-J/2f

by Proposition 3.2, we obtain that

z[- J/2, 0]=Q-3/4(-^-

This, together with (3.5), gives

and hence (3.3) follows at once. Thus the proof is complete. D

For later use, we here mention one result obtained as an application of
Proposition 3.3. Let q^C°°(X) be a smooth real function such that q(x) is
homogeneous of degree zero for x \ >1. We may write q as q(x)=X(x)qQ(x / \ x \)
with qo^C°°(Sx\ Sx being the unit sphere in X, where I^C°°(X) vanishes in
a small neighborhood of the origin and Z=l for \x\>l/2. Then a simple cal-
culation yields that

by Proposition 3.2, where F 0 denotes the gradient over SA-. Therefore, this
relation, together with Proposition 3.3, implies the following

Corollary 3.4. Let <?eC°°(X) be as above. Then O> ly i[J, <?] is locally H-

smooth.

We end the section by noting that all the results obtained here remain true
for cluster Hamiltonians Ha under assumption (V).

§4. Propagation Estimate II

In this section, we establish another type of propagation estimate. We
begin by introducing several new notations required to formulate it. We first
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define the two sets A, Ac of cluster decompositions as

A=\a: Ea=7c

Ac={a: Ea=£

And we set a)a=Ea/\Ea\^Sx for a^A°. Let q^C°°(X) be again a smooth real
function such that q(x) is homogeneous of degree zero for \x >1. For such
a function, we also define

con supp q = (O^SX : q(x)=q(\x |0)=£0, \x

We further define the subset Sa, 2^#(a)^N, of Sx as

Sa={0=(6lt ••• , 0N)tESx: 6j=6k for a^a, 6j^6k for

By definition, we can easily see that {Sa} is a family of disjoint subsets and
Sx={JaSa. In particular, the distance distT(Sa, S6) over Sx between Sa and
Sb is strictly positive for different two-cluster decompositions a and b, #(a)—
#(b)=2.

The aim of the present section is to prove the following

Proposition 4.1. Let the notations be as above. Assume that (V) is fulfilled.
Let q<E.C°°(X) be a smooth real function such that q(x) is homogeneous of degree
zero for |*|>1 and that

distXcon supp q, Sa)>dQ for any a, #(a)=2,
(4.1)

distz(con supp q, a)a}>dQ for any a^Ac

with some dQ>Q. Then the operator <^>"1/4^ is locally H-smooth.

Proof. Let %<^R be fixed arbitrarily. We take a real-valued function ge
C™(R) such that g is supported in a small interval around 2. To prove the
proposition, it suffices to show that the operator (xylf*qg(H) has the H-
smoothness property. The proof is divided into several steps. Throughout the
proof, we use the notations Qa, Bsm and Ksm with the same meanings as in
the proof of Proposition 3.3.

(1) The first step toward the proof is to construct a partition of unity
{ k a } , 2<#(a)^N, over X with the following properties.

(k.l) ka^C°°(X), ka^>Q, is homogeneous of degree zero for |#|>1.
(k.2) Sa&aM2=l over X.
(k.3) con supp &0nconsupp kb^0 =$ aab or baa.
(kA) Sanconsupp kb^0 =3 aab and hence Sac=Uac& con supp kb.
(k.5) con supp kaa{d^Sx: \da <d} for 5>0 small enough.
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Here Oa=xa6 is the projection onto Xa of 6 and the choice of <5>0 depends
on the value of d0 in (4.1). Such a partition can be easily constructed by use
of the simple geometrical properties of the family {Sa}- By construction, it
follows from properties (£.3) and (£.4) that

(4.2)

for a<£a. By assumption (4.1), we can also take d so small that

con supp g/^con supp ka = 0

for any two-cluster decomposition a and hence we have

(4.3) ?W = S<7«(*)B, qa = kaq,

where the sum is taken over a with 3^j±(a)^N. By definition, the function
qa is homogeneous of degree zero for x >1.

(2) Let A, Ac and g^C™(R) be as above. If a^A, then o)=a)a and hence
2=<#, o>> = <;ca, a)ay becomes a coordinate over Xa . In the previous work [15],
we have constructed a conjugate operator Aa, a^A, with the following prop-
erties. (A.I) Aa is a differential operator acting on Xa and takes the form

where Fa denotes the gradient notation over Xa and the coefficients ca(xa)=
{caj(xa)} , l^y^3(/V— #(a)), and cS(,va) are smooth real functions obeying the
estimates

(A. 2) There exists da>Q such that

for 0^0, where the inequality is understood in the form sense over L2(Xa).
We regard Aa as an operator over X as well as over Xa . For a^yi, the
operator Ta — — A/2 does not have a uniform electric field and also we have
[Ha, Aa^[Ha, Aa^. Thus it follows that

(4.4) g(Ha}i[Ha, A^g(Ha^dag(HJz

for ae/I in the form sense over LZ(X). If a^Ac, then Ea does not vanish
and hence we can define the operator ?a by

for ae./Ic.
Let Aa and 7a be as above. We now define 0 as (2) = 01+(?)2, where
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We assert that

(4.5) g(H)ilH9 01g(H)^dg(H)Q-l/,q*Q-

for some d>Q. If this assertion can be verified, then the proposition follows
at once.

(3) Recall that H is written as

E\z+V, 2=<xtw>.

We again calculate the commutator i\_H, 0i] as

(4.6) i[_H, 0J-/C

Since fa is a differential operator acting on the space Xa, we have the relation
[Va, f a l ^ O f o r aa a. Hence the third operator on the right side of (4.6) takes
the form

(4.7) i[V, 0^=Ksm

by (4.2) and Proposition 3.2. A simple calculation gives

'!*> Tal = — \<*>a\, (Oa — naO),

so that we have

(4-8) /[H£k <Pl]= S (?- l /^a |£ak«0- l / i -
ae^c

(4) We evaluate the first operator on the right side of (4.6). Let f be
defined by (3.1). Then we have

by Proposition 3.2. We can also write

O-l/^I — J/2, qa~]TaqaQ-l

by Corollary 3.4. Since

for any s>0 small enough and since

it follows that

We now use the relation J/2=— |£ |z— //4-V to obtain that
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This, together with (4.7) and (4.8), implies that

(4.9)

for any s>0 small enough.
(5) We shall show that the number in brackets on the right side of (4.9)

can be made strictly positive for \x >1 with ;cesupp<?a, if d in (£.5) and e
are chosen small enough. By assumption (4.1), there exists c>0 such that
1— |<a)a , 0y\^c for #econ supp#a, qa

 = kaq- We now write <E, */<£» as

and take 5 so small that

for x >1 with #=;c/|;\;| econsupp ka. Thus we can make the number in
question strictly positive by choosing e small enough and hence it follows that

(4.10) £(//)*[#, 0i]*(//)^d S

for some
(6) The proof is completed in this step. We shall prove a similar form

inequality for the commutator [//, $2]. We note that

-(1/4)0-3/4^4° 4- Aar)Q-3/4^cO_3/4(^/2)(?_3/4 + ^Sm

for some c>0. Hence, by making use of the same argument as in step (4),
we obtain that

with another c>0. By Lemmas 4.4 and 4.5 of [14], the operators

Ql/z(g(H}-g(Ha)}qn, Qlf£g(Ha), q.Q^^Q,,, : L\X] — > L\X)

are bounded and also we can prove that Qnig(Ha)\_Hn, ,4 t t]Q_1 / t is bounded.
Thus it follows from (4.4) and Proposition 3.2 that

for some rfa>0. Since Ea=0 for a^A, we can show, repeating the same
argument as used in step (5), that the number in brackets on the right side
can be made strictly positive for # |>1 with xesupp<?a . This, together with
(4.10), proves (4.5) and the proof is now completed. D

We conclude the section by noting that the above proposition again remains
true for cluster Hamiltonians Ha.
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§ 5e Asymptotic Completeness

In this section, we complete the proof of the main theorem (Theorem 1.1).
Let /eC~(fl) and set

for </x^L*(X). The JV-particle system H under consideration is said to be
asymptotically clustering, if

(5.1) 0(0=2 exp(-tt#a)0* -fo(l), t — > ±00,a

for some <f>Z^L2(X), where the sum is taken over all cluster decompositions a
with

Proposition 5.1, Assume that (V) is fulfilled. Then the N-particle system
H is asymptotically clustering in the sense above.

Before going into the proof, we here introduce a partition of unity { j a \ ,
2<L#(a)<N, over X, which will be employed in the proof of the proposition.
The partition has the following properties.

(/-I) ja^C°°(X\ /a^0, is homogeneous of degree zero for \x\>l.
C/.2) 2«/a(*)=l over X.
0/.3) /a(*)7a(ra) = 0(|* ->) as

We may further assume that ja takes the value one in a conical neighborhood
of Sa for any two-cluster decomposition a and that ja takes the value one or
zero in a small conical neighborhood of wb for all b^Ac. Hence, F/a vanishes
in the regions as above. We can easily construct such a partition of unity.

Proof of Proposition 5.1. We prove the relation (5.1) for the + case only.
We now write 0(0=exp(— *£//)/(/00 as

0(0=2 exp(~
a

with the partition (ja) above and take geC"(/2) in such a way that g=l on
the support of /. As is seen from Theorem 3.1, 0(0 converges to zero weakly
in LZ(X) as f— >oo and also the operators ja(g(H}—g(Ha)} and \_g(Ha), ja] are
both compact on L\X) by construction of the partition. Hence we have

We represent the terms in brackets on the right side in the integral form. Then
the proof is reduced to proving the strong convergence as t->oo of the follow-
ing two terms :
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By property (7. 3), it follows from Proposition 3.2 that <paiW converges strongly
in LZ(X] as t-^oo. To see the strong convergence of <paz(t), we write the
operator [J/2, /0] as

with <?eC°°(^0, where we should note that q fulfills all the assumptions in
Proposition 4.1. Hence, by Corollary 3.4 and Proposition 4.1, we see that <paz(f)
also converges strongly In LZ(X) as t— >oo. Thus the system H is shown to be
asymptotically clustering and the proof is complete. D

We now prove the main theorem.

Proof of Theorem 1.1. The theorem is proved by use of the standard
inductive argument. The argument uses the asymptotic completeness for sub-
system operators Ha, a^F, as inductive assumptions (the case #(a)=N— 1 has
been already established) and the known fact ([12]) on the asymptotic com-
pleteness for Ha, a(=r, without electric fields. It should be noted that the pair
interactions of Ha, a^.F, are all short-range by assumption (VS). Let

The set 3) is dense in L2(X). Thus, to prove the theorem, it suffices to show
that

(5.2) /(#)^Range 14^0 S Range Wl ,
aeT

because the ranges of wave operators are closed.
We Hgain prove (5.2) for the + case only. We define the set Fa as

ra={b: b^F, baa}

for 2<;#(a)^A7. We note that b belongs to F, if baa for some a^F. Set
again

«&(0=exp (-«

By inductive assumptions and the known fact above, it follows that for any

as ^->oo for some (pQ and <pb in L\X). This, together with Proposition 5.1,
yields that
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t

for some </>Q and <f>a in L?(X). Hence (5.2) is obtained from Proposition 2.1 at
once and hence the proof is complete, n

References

[I] Avron, J. E. and Herbst, I. W., Spectral and scattering theory of Schrodinger
operators related to the Stark effect, Commun. Math. Phys., 52 (1977), 239-254.

[2] Graf, G. M., Asymptotic completeness for TV-body short-range quantum systems: a
new proof, Commun. Math. Phys., 132 (1990), 73-101.

[3] Herbst, I. W., Unitary equivalence of Stark effect Hamiltonians, Math. Z., 155
(1977), 55-70.

[4] Jensen, A., Asymptotic completeness for a new class of Stark effect Hamiltonians,
Commun. Math. Phys., 107 (1986), 21-28.

[5] Jensen, A. and Yajima, K., On the long range scattering for Stark Hamiltonians,
/. reine angew. Math., 420 (1991), 179-193.

[6] Kato, T., Wave operators and similarity for some nonselfadjoint operators, Math.
Ann., 162 (1966), 258-279.

[7] Kitada, H., Asymptotic completeness of TV-body wave operators I. Short-range
quantum systems, Rev. in Math. Phys., 3 (1991), 101-124.

[8] Korotyaev, E. L., On the scattering theory of several particles in an external
electric field, Math. USSR Sb., 60 (1988), 177-196.

[9] Mourre, E., Absence of singular continuous spectrum for certain self-adjoint opera-
tors, Commun. Math. Phys., 78 (1981), 391-408.

[10] Perry, P., Scattering Theory by the Enss Method, Math. Rep., 1, Harwood Aca-
demic, 1983.

[II] Reed, M. and Simon, B., Methods of Modern Mathematical Physics III, Scattering
Theory, Academic Press, 1978.

[12] Sigal, I. M. and Soffer, A., The TV-particle scattering problem: asymptotic com-
pleteness for short-range systems, Ann. of Math., 125 (1987), 35-108.

[13] Tamura, H., Asymptotic completeness for TV-body Schrodinger operators with
short-range interactions, Commun. Partial Differ. Eqs., 16 (1991), 1129-1154.

[14] Tamura, H., Spectral and scattering theory for 3-particle Hamiltonian with Stark
effect: asymptotic completeness, Osaka J. Math., 29 (1992), 135-159.

[15] Tamura, H., Spectral analysis for TV-particle systems with Stark effect: non-
existence of bound states and principle of limiting absorption, Preprint, Ibaraki
University, 1992.

[16] White, D., The Stark effect and long range scattering in two Hilbert spaces,
Indiana Univ. Math. J., 39 (1990), 517-546.

[17] Yafaev, D., Radiation conditions and scattering theory for TV-particle Hamiltonians,
Preprint, Universite de Nantes, 1992.

[18] Yajima, K., Spectral and scattering theory for Schrodinger operators with Stark-
effect, /. Fac. Sci. Univ. Tokyo, Sec. I A, 26 (1979), 377-390.


