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Ample Vector Bundles on Open Algebraic Varieties

By

Shigeharu TAKAYAMA *

§ 1. Introduction

Let X be a smooth projective variety over the complex number field. Let D
— X ,D | be an effective, reduced divisor on X with only simple normal crossings,
DI denoting its irreducible components. A vector bundle E defined on X is said
to be ample modulo D, if for every torsion free sheaf J^ on X9 there exists an
integer m0>0 such that J^(x)Sm(E) \ X_D is generated by H°(X, J*(8)Sm(£)) for
m>m 0 . A line bundle L is very ample modulo D, by definition, if the rational
map 0\Li attached to the linear system |L| on X gives an embedding of X—D
into some projective space.

There are many question in which we come across line bundles which are
not ample but ample modulo D for suitable D. For instans, let X be a toroidal
compactification of a locally symmetric space of rank one of non-compact type
and take D to be the boundary. In this case K x + D is nef and ample modulo D,
but it is not ample in general (e. g. X is a ball-quotient surface with ellipitic
curves as the cusps).

The principle aim of the present article is to generalize a theorem of
Demailly on ample line bundles (i. e. the case D=Q) '.

Theorem 1. There exists a function C(ri) in n^N with the following pro-
perty: Let X and D be as above. Let L be a nef line bundle on X which is ample
modulo D. Then 2(KX+D) + mL is very ample modulo D for any m> C(dim X).

In case D=0, this theorem was proved in [De 2] with aid of an analytic
method such as Hormander's L2 estimates for the operator 3, Lelong number
theory and Aubin-Yau's solution of the Calabi conjecture. Our proof of
Theorem 1 proceeds in a similar way with necessary modifications.
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As a consequence of the proof of Theorem 1, we get

Theorem 2. Under the notation above, assume that Kx+D(.resp. — (
is nef on an n-fold X and ample modulo D. Then there exists a function C(ri)'
in n^N such that, if m is greater than C(«),' m(Kx+D) (resp. — m{Kx+D)} is
very ample modulo D.

Theorem 2 is essential for the construction of the moduli space of open
algebraic varieties of general type. Indeed consider a smooth family of open
varieties with nice boundaries. If the logarithmic canonical divisors are nef and
ample modulo D, then m-th logarithmic pluricanonical system defines a simul-
taneous embedding of the open varieties in a fixed projective space, so that the
moduli space of such varieties will be obtained as a quotient of some Hilbert
scheme.

I would like to express my gratitude to Professor Hajime Tsuji for suggest-
ing to me this field of reseach, as well as for encouragement and many valuable
discussions. I also would like to express my thanks to the referee for many nice
advices.

§ 2. Criteria for Ampleness

In this section, we give some criteria for a vector bundle to be ample
modulo D, a divisor with simple normal crossings.

Proposition 2.1 ([Ha 1]). Consider the following two conditions on a vector
bundle E on Y, a scheme of finite type over an algebraically closed field k:
(i) For every coherent sheaf 3? on Y, there is an integer m0>0 such that for m
>m0 and z>0

H'(Y, #-®SmCEf))=0.

(ii) E is ample.
Then (2. 1. 1) (i) implies (ii).
(2. 1. 2) When Y is proper, (ii) implies (i).
(2. 1. 3) Let Y be proper, and let

0 >El >E2 >E3 >0

be a short exact sequence of vector bundles on Y, with El and E3 ample. Then E2

is ample. D
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In general, if Y is not proper over k, (ii) does not imply (i) and it is un-
known whether (2. 1. 3) remains true ([Ha 1]). If we prove the coverse of (2.
1. 2) for our situation Y=X— D, an analogous assertion to (2. 1. 3) will follow
(Corollary 2. 10 below). The proofs are based on vanishing theorems on com-
plete Kahler manifolds.

For this, we shall review some analytic tools. Let X be an n-dimensional
complex projective manifold and let L be a holomorphic line bundle over X with
a hermitian metric h. we denote the Chern curvature form of h by c(L) = c(L,

which is a J-closed real (1, l)-form representing the first
Chern class CI(L) ^H2(X, Z). It is well known than L is ample if and only if L
has a smooth hermitian metric such that c(L) is positive definite at every point.
We also use singular metrics. By definition, a singular metric on L is a metric
which is given in any trivialization r : L y-^^UX C by II f II = r© |e~^(x) for
x^ U, £^LX, where (p^L^lf) is a weight function. Then the curvature of L
is given by the (1, l)-current c(L) =^jp^dd(p on U. For example, to any
divisor A— 1C A ^4/ with coefficients A ,GEZ is associated with the invertible sheaf 0
(A) of meromorphic functions /such that div (/)+^4>0; we can provide the
bundle with the singular metric defind by || /|| = | f\. If gt is a generator of the
ideal of At on an open set UdX then r(/) =/Qg/1' defines a trivialization of 0
(A) over U, and thus our singular metric has the weight function 0> = SAf log

gj . By the Lelong-Poincare equation (cf. [G-H]), we find

(2.2)

where [4] =SA /D4J denotes the current of integration over A. In what fol-
lows, a singular metric for the line bundle attached to an effective divisor is sup-
posed to have positive curvature in the sence of current (cf . [Le] ) , i.e. the
weight function cp is plurisubharmonic.

Consider the real Neron-Severi spaces NSR(X) = (#2(X, Z) H H1' '00) ®R
of algebraic cohomology classes of degree 2, and let F+dNSR(X) (resp. Fad
7\) be the closed convex cone generated by cohomology classes of effective
(resp. ample) divisors D; denote by F+ (resp. 7"a°) the interior of 7"+(resp. F^.
Then, if a) is a Kahler metric on X and e>0, we have the following equiva-
lences :

Ci(L) £EF+ 4=^> L has a singular metric with c(L) >0,
c i (L) GE JT+ <^> 3e, L has a singular metric with c(L) >eco <^> /c (L) = «,
Ci(L) e.Ta <=^> Ve, L has a smooth metric with c(L) > — eco <^> L is nef,
Ci(L) £/^° 4=^> 3e, L has a smooth metric with c(L) >£O) <^> L is ample.

The notation /c(L) stands for the Kodaira dimension of L([Ii]). The following
vanishing theorem is a key lemma for citeria for ampleness.

Proposition 2. 3 (Hormander's L2 vanishing theorem, [Ho], [De 1], [Oh]).
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Let M be a complex manifold with a complete Kdhler metric a), L be a line
bundle on M and let E be a vector bundle on M. Assume that L is equipped with a
singular hermitian metric such that c(L)>£0) for some £>0. Then the L2-
cohomology groups Hfo(M, 0(K^) ® jB®L®m) =0 for all large enough m>0 and

D

Let X, D= S £>i be in § 1 and let E be a vector bundle on X. Let Fbe an
ample line bundle on X with a hermitian metric hF of positive curvature. Then
we can take

(2.4) a)x-D: = c(F, /*F)-£0/^£ddlog(-log||aJ 2)2 2

for 0<£0^1 as a complete Kahler metric on X—D, where a,- is a holomorphic
section of 0(D/) which vanishes to first order on Di9 and || ar || f is the norm
form a smooth hermitian metric on (9(D^) such that || a/ 1| /< 1. Let 3F be a
coherent sheaf on X. Since X is projective, ^ can be written as a quotient of
locally free sheaf (of finite rank) 3? on X. For any hermitian metric hy on j^?

we can construct a metric h^ on ^ associated with the following norm

(2. 5) || f\\ : = min { || g || hjp ; gG jf such that the image of g=/} for f^P.

With these symbols in mind, we have

Proposition 2, 6. Assume the following condition :
(ill) For every torsion free sheaf ^ on X, there exists a hermitian metric hE on E
and there exists an integer m0>0 such that for m>m 0 and i>0.

Then E is ample modulo D.

Proof. In order for E to be ample modulo D it is sufficient that for every
torsion free sheaf 3F ', and for every closed point x^X— D, there be an integer
m0>0 such that for every m>m 0 the global sections of the sheaf J^(8)^m(£)
generate its stalk at the point x([Ha 1, Proposition 2. !])„ If we apply (iii) to

x, where Ix is the sheaf of ideals of x,

for all large enough m. So we have surjection
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Thanks to the L2 estimate, holomorphic sections of ^®Sm(E) on X-D extend
to holomorphic sections on X. Now we are done. D

Next we give a sufficient condition for (iii). Let TTE: P (E) - >X be the
projective space bundle and its natural projection associated with E, and let G) E
(1) be the tautological line bundle on it.

Proposition 2. 1. Let X, D and E be as above. Assume the condition :
Th

such that,
(iv) There exist a hermitian metric hG m on <9 E(\) and a positive constant c

E

Then (iii) in Proposition 2. 6 holds.

Proof. Given a torsion free sheaf J^ on X, we can write J* as a quotient of
locally free sheaf (of finite rank) <& on X. Let Jf be the kernel,

0 - > Jf - > & - > & - K).

Then Jf" is also torsion free. For any metric on £?, we use the induced metric
on J^ as in (2. 5) and on JT as a subsheaf of J&f. We get the following exact
sequence

By desending induction on /, it is sufficient to show (iii) for every vector bundle
JSfonJT.

We can take

a) '•=7rE^x-D~-c(

as a complete Kahler metric on P(JE) —7t~l(D) for appropriate hermitian metric
hP(g)/x on ^P(£)/^J note that 7T~l(D) is also a divisor with only simple normal
crossings on P(E). Since

the Leray spectral sequence
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EF=Hk (X-D, R *n

induces an isomorphism

for every m. In general, consider the cohomology group

where M is a locally free sheaf on P(-E). Since there exists a positive constant
7] i such that

there is a positive constant 77 2 such that

In this situation, by Proposition 2. 3, we have

so that

for />0 and for all large enough m. Thus the proof is complete. D

Remark 2. 8. Proposition 2. 7 means that the degeneration of ampleness of
E near the boundary D is not too fast, then E has a good cohomological pro-
perty (iii) in Proposition 2. 6. I do not know whether the converses of Proposi-
tion 2. 6 and Proposition 2. 7 are true.

But we can easily see :

Proposition 2, 9. Let X, D, E, F and a) X-D be as in Proposition 2. 6 and let
L be a line bundle on X. Assume that E is ample modulo D and that L is ample
on X. Then there exist a hermitian metric h on 0 E^L(l} and a positive constant 7]
such that
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D
Corollary 2.10. Let X and D be as above, and let

0 >Ei—

be a short exact sequence of vector bundles on X, with El and E3 ample modulo
D. Then E2®L is ample modulo D for any ample line bundle L on X.

Proof. By the same argument of the proof of [Ha 1, Proposition 2. 2], El

®E3 is ample modulo D. Hence for each torsion free sheaf 3F there is an
integer «0>0 such that for n>nQ and i>0,

by Proposition 2. 6, 2. 7 and 2. 9. In other words, for p+q>nQ, p, q>0,

since SH((El®Ej®D = S^lo" SP(E,^L) ®Sq(E3®L), and cohomology
commutes with direct sums. Now Sn(E2®L) has a filtration whose successive
quotients are Sp(El®L)®Sq(E3®D for p+q=n and p, q>0. Hence, using
the exact sequence of cohomology and proceeding step by step up the filtration,
we deduce that

for f>0 and for all large enough m. By Proposition 2. 6, E2®L is ample
modulo D. D

Remark 2. 11. We can see from the proof above, in the situation of Corol-
lary 2. 10, E2®L is not only ample modulo D but also satisfies the good coho-
mological condition (iii) in Proposition 2. 6.

§ 3. Vanishing Theorems and Existence of Holomorphic Sections

In this section, we recall some results in [De 2] for some criteria Kx+ L to
be spanned, very ample and so on for a nef and big line bundle L on a projective
n-fold X. The reader is referred to [De 2] for detail. Throughout of this
section, we let X be an n-dimensional projective manifold.

Let T be a d-closed positive (p, p) -current on X. Let ([/, z) be a local
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coordinate centered at x£EX. The Lelong number of Tat x is defined to be

T).
where xr is the characteristic function of B(r) : the ball of radius r in l/CC".
The Lelong number exists and finite for all {/-closed positive (p, p) -current and
it is independent of the choice of the local coordinate (cf. [G-H]). In the case
where T is a current of integration [A\ over an analytic subvariety A9 the Lelong
number v([y4], x) coincides with the multiplicity of A at jc(cf. [G-H])0 By a
theorem of Siu([Si])5

EC(T) :={x^X v(r,x)>c}

is a union of subvarieties of codimension at least p for every positive number c.
Moreover T can be written as a convergent series of J-closed positive currents

(3.1) r -SA f c [Zj + *,
k=l

where [Zj is a current of integration over a subvariety Zk of codimension p
and .R is a residual current with the property that codim -Ec(/0 >p for every c>
0. This decomposition is locally and globally unique : the sets Zk are precisely
the /^odimensional components occurring in the sublevel sets EC(T), and A k=
minx(=zi>(T, jc) is the generic Lelong number of T along Zk. Let <p be a
plurisubharmonic function on X. The Lelong number of (p can also be defined
by

*)=lim inf log z|

with respect to (17, z) : a local coordinate centered at x. It is known that v(<p,
x) is equal to the Lelong number v(T, x) of the associated positive (1, 1)-
current T= ~l dd(p. Accordingly, we set Ec(<p) — EC(I}. We also use the
concept of multiplier ideal sheaf of <p([Na]) which is the ideal subsheaf </(#>) C
6x of geams of holomorphic functions /such that \f\2e"^ is integrable with
respect to the Lebesgue measure in some local coordinate. The zero variety
K/(0>) is thus the set of points in a neighborhood on which e~2(p is not integra-
ble. This zero variety is closely related to the Lelong sublevel sets Ec((p\
Indeed, if v(<p9 jc)=7, the convexity properties of plurisubharmonic functions
show that

(p(z)<y log z | H- 0(1) in a neighborhood of x,
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and hence there exists a constant C>0 such that e~
2<;o(z)>c z \~2r in a neigh-

borhood of x. We easily infer that

where Ji x, x is the maximal ideal of 0 Xi x . In the opposite direction, it is known
that v(<p, x)<l implies the integrablity of e~2(p in a neighborhood of x, that is,

^®x,x> In particular, the zero variety K/(<p) of </(<p) satisfies

(3.2) 1

With these results and symbols in mind, we have

Lemma 3. 3([Na]). For any plurisubharmonic function <p on X, the ideal
sheaf J*(<p} is a coherent sheaf of ideals over X. D

Proposition 3» 4([Na]). Let a) be a Kdhler metric on X and let L be a big
line bundle over X. Assume that L has a singular metric of weight cp such that
c(L) >£0) for some £ >0. Then Hq(X, 0(KX+D ® </(<?)) =0 for all q>\. D

Proposition 3. 4 can be seen as a generalization of the Kawamata-Viehweg
vanishing theorem ([Ka], [Vi]). As a corollary of this, we have the following
important

Corollary 3. 5 ([De 2, Corollary 4. 6]). Let L be a nef and big line bundle
over X. Assume that L has a singular metric of weight (p such that c(L) >0 and
let Xi, •-, XN be isolated points in the zero variety K/(<p). Then for every £>0,
there is a surjective map

D

The above result can be applied to construct sections of given line bundle,
provided we are able to produce singular metrics with logarithmic poles. For
this, we use the following existence theorem of Yau for solutions of Monge-
Ampere equations ([Ya]).

Lemma 3. 6. Let a) be a Kdhler metric on X. Then for any smooth volume
form />0 with $ xf=$ x&n> there exists a Kdhler metric & in the same Kdhler
class as a) such that a) n=f. D

We first suppose that L is an ample line bundle over X and that L is
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equipped with a smooth metric of positive curvature. Then consider the Kahler
metric eo = c(L). Any form oj in the same Kahler class of co can be written as a)

i.e. is the curvature form of L after multiplication of the
original metric by a smooth weight function e'^. By Lemma 3. 6, the Monge-
Ampere equation

can be solved for 0, whenever /is a smooth (n, n)-form with J Xf—Ln. In
order to produce logarithmic pole at given points xi9 ... , xN^X, let /converge
to a Dirac measure at xj9 then a) will be shown to converge to a closed positive
(1, 1) -current with non zero Lelong number at jc;. Let (z l y ... , zj be local
coordinates centered at xj9 defined on some neighborhood Vj= (\ z <R) . Let
g j = ( g j , i , • ••, gj,n) be arbitrary holomorphic functions on Vj suth that gy~

1(0) =
{x) and

log B

Then log | gj \ has an isolated logarithmic pole at jc7- and (c~f^-ddlog gy- 1)"=
Pjdx., where py is the degree of the covering map g; : (C

n, ^)-^(C", 0). Indeed
dd log | g; | =g* Off log | w | has rank (n— 1) on F;— {jc^} and

for every r>0 small enough. Now, let x • R~*R be a smooth convex increasing
function such that x(t) = t for t>0 and #(/) = — \ for r< — 1. We set

Then a^> £ is a smooth positive (1, l)-form and ajtE=^~-dd log g; | over the
set of points ze F; such that g/z) ' >£. It follows that a/£ has a support in the
compact set | g;(z) | <e and Stokes' formula gives

Hence a/£ weakly converges to the Dirac measure p;<5x. as £ tends to 0. For all
positive numbers r7>0 such that a =Sp //<!*", Lemma 3. 6 gives a solution of
the Monge-Ampere equation
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(3.7) WE"

with co£=a)H — ~^dd(p£9 since the right-hand side of the first equation is positive
and has the correct integral L n over X. The solution 0 £ is only determined up to
a constant. If 7 is an arbitrary Kahler metric on X, we can normalize 0£ in such
away that J^0£r"=0.

Lemma 3. 8 ( [De 2, Lemma 6, 6] ) . There is a sequence £ v converging to
zero such that 0£ has a limit 0 in Ll(X) and that the sequence of (I, 1) -forms
co £ weakly converges towards a closed positive (1, 1) -current T. The cohomology
class of T is equal to c l (L) and T=a)+^j^dd</). D

Let L/C X be an open coordinate patch that L is trivial on a neighborhood
of U9 and let e~h be the weight representing the initial hermitian metric on Li #
Then —~-d^h=a) and — ̂ -<55(/z+0£) =CL> £ , so the function <p£ = /z+0£ defines a
plurisubharmonic weight on L| #, as well as its limit (p = h+(/). By the continuity
of G, Green operator associated with 7, we also infer that the family (0£) is
bounded in L\X). The usual properties of subharmonic functions then show
that there is a uniform constant C such that <p e < C on U. We use this and
equation (3. 7) to prove that the limit (p has logarithmic poles at all points jcy-E=
U, thanks to Bedford and Taylor's maximum principle for solutions of Monge-
Ampere equations ([B-T 1]) :

Lemma 3. 9. Let u, v be smooth (or continuous) plurisubharmonic functions
on U, where U is a bounded open set in C". If

u\ QU> v\ QU and (-/— Wdu)n< (V — Wdv)n on U,

then u>v on U. D

In the application of Lemma 3.9, we suppose that U is a neighborhood of
Xi and take

where Cl is a large constant. Then for £ >0 small enough

, V\du<Cl9

on U.

For Ci sufficiently large, we infer u>v on U, hence
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<pE<Tjlog ( |g y - |+£) + C2on 17.

So we have :

Corollary 3,10. The plurisubharmonic weight (p = h+(fi on L v associated
with the limit function 0=lim0£^ satisfies ~^-dd(p=T. Moreover, 0 has loga-
rithmic poles at all points x^ U and

<p (z) < TJ log g;(z) | + O(1) in a neighborhood of Xj .
D

Case of a nef and big bundle. Let L be a nef and big line bundle and
let A be a fixed ample line bundle with smooth curvature form 7=c04) >0. As
mL+A is ample for any m>l, by Lemma 3. 6, there exists a smooth hermitian
metric on L depending on m, such that a) m=c(L)m+— c04) >0 and

r
n

7 -

However, we can not a priori control the assympotitic behaviour of a) m when m
tends to infinity, so we introduce the sequence of not necessarily positive (1, 1)-
forms 6/TO=c(L)1+— c 04) £E {&;,„}, which is uniformly bounded in C°°(X) and
co verges to c(L) i . Then we solve the Monge- Ampere equation

(3.11) <e= S r/a/£ + l

with w TO,e:=:Ci/mH — ~~db<l) m>£ and with some smooth function 0m£ such that
Jjr0m,£7"~0» this is again possible by Yau's theorem 3. 6. If we suppose

then we solve (3. 11) for all m. Then also there exist a convergent subsequence
Iim^+0o0m ,£ =0 in L1^) and a closed positive (1, 1) -current T=
lim w^.e ==/(!,)! +J^590£c1(L) such that Corollary 3. 10 is still valid. In
this case, h is taken to be the weight function corresponding to c(L) 1 .

Let us assume (with the notations of Corollary 3. 10) that each point Xj is
isolated in Ei(y>). Then we conclude by (3. 2) and Corollary 3. 5 that there is a
surjective map

(3. 12) H°(X, KX+L)-^ 0
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Finding sufficient conditions ensuring that Xj is isolated in E1(^)=E1(30 is
done in the next section. The rest of this section, we explain how to choose the
logarithmic poles log gy | and the contants r; to obtain specified ideals and jets
of sections at each point xjf Suppose that an ideal / fLM XiX, is given at point
Xj, in other words, that we are given a 0-dimensional subscheme (S1, CD 5) with
3= {xi, ... , *#} and 0s.x.= ® x.x.// j- We want to find sufficient conditions for
the surjectivity of the restriction map

H°(X,KX+L) >H°(S,G)*(Kx+£))= © 0(Kx+L)x®0Xx//rX ^ ^^ V X ;Xj X,Xj *r j

By (3. 12), we need only find a germ of map gj,: (X, x^) ^(C", 0) and a
constant Tji0 such that *f(rji0 log 1 g}-\)C./j. For r ;>r /0 and £ small enough,
Corollary 3. 10 then implies ./((I— e)^))C£/;-. Thus we have to choose a
slightly larger than o^^p-c^ where p; is the degree of the covering map gj9

this is possible only if Ln>oQ. Let us discuss some specific cases.
Spannedness. To obtain that Kx-\-L spans at x&X, we consider a single

point Xi = x and take / \ — ̂ x,x> &i( z )~(z i» ••• > z«)» ^i.o"^ and o-o=:'z:i"o==

«". Then «/(r l j0 log | gi!)d^^x as desired.
Separation of points. To obtain the separation of two points x^x2 in ^Tby

sections of KX+L, we make the same choices as above at xl9 x2 and get OQ=TI>Q

-i-T2to = 2nn. If Xi, x2 are infinitely near in some direction £^TX, we choose
coordinates (z1? ... , zn-i, zw

2). We can choose g1(z):=(z1, ... , z n _ 1 ? zn
2) and

Ti}0 = n. Then the degree of gi is p i = 2 and we find again O0—p iT"0=2nn.

Corollary 3.13. Let L be a nef and big line bundle. A sufficient condition
for spannedness (rasp, separation of points) of KX+L on a given set S is Ln>aQ

with oQ=nn (rasp. o0=2n") provided that the solution a)E of (3. 7), rasp, the
solution &) m>£=6/mH—^-dd(/) m>E of (3. 11), always has a subsequence converging
to a current T for which all points jcEESTll^CT) are isolated in E^T), D

§ 4. Generalization of Demailly's Self-intersection
Inequality for Closed Positive Current

In this section, we generalize some results of Demailly ([De 2, Theorem 10.
7] and so on) with the aid of the criteria in Section 2 for a vector bundle to be
ample modulo D. Through out of this section, we use the following notations

X : an w-dimensional projective manifold,
D : a divior on X with simple normal crossings, and
L : a nef line bundle on X.

Let r=c(L)>0 be the curvature current of any singular metric on L. We
want to derive a bound for the codimenion p components in the sublevel sets
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EC(T) in terms of the pth power {T}p of the cohomology class of T. In general,
Tp does not make sense as a current. However, products of currents can be
defined in some special circumstances. Suppose that 0 is a closed positive (p, p)
-current and that 0 is a locally bounded plurisubharmonic function on a com-
plex manifold M. According to Bedford-Taylor ([B-T 2]), the product 0A
/— T990 can be defined by

(4. 1) 0 A /==T550 = /=Td3 (0 0) .

Here 0 is a differential form with measure coefficients, so its product by the
locally bounded Borel function 0 is a well defined current of order 0, and the
derivative 99 can be taken in the sense of distribution theory. The resulting
current 0A</— 1990 is again positive, as is seen by taking the weak limit with a
sequence of smooth approximations of 0. More generally, if 0,, ... , 0m are
locally bounded plurisubharmonic functions, the product 0A-/— 1990iA ... A
v7— 1930 m is well defined by induction on m. Various example (cf . [Ki] ) show
that such products can not be defined for arbitrary plurisubharmonic functions
0;. However, functions with — °o poles can be admitted if the polar set is
sufficiently small.

Proposition 4.2 ([De 2, Proposition 10.2]). Let (p be a plurisubharmonic
function on M such that 0 is locally bounded on M— A, "where A is an analytic
subset of M of codimension >p-\~l at each point. Then 0A/— 1950 can be
defined in such a way that 0A</— 1990=limv_>+0o 0A-/ — 1990 j, in the weak
topology of currents, for any decreasing sequence (0j,X>i of plurisubharmonic
functions converging to 0. Moreover, at every point x^M we have

(0, x) v (0, x),
D

By the Lebesgue decomposition theorem, we can write T^c(L) = Tabc+
rsing where Tabc has absolutely continuous coefficients with respect to the
Lebesgue measure and the coefficients of rsing are singular measures. In general,
jfabc and Tsing are positive but not closed. We fix an arbitrary set Ed X and for
p= 1, 2, . . . , n, n+ 1, we set

(4.3) bp=bp(T, ST)=inf{c>0!codim(Ec(r), x) >p for all xE:S}9

with the convention that a geam has codimension > n if and only if it is empty.
Then Q = bl<b2<~'<bn<bn+l with bn+l = maxxEESi>(T, x)<+°o? and for c£
~\bp, bp+i~], EC(T) has codimension >p at every point of B and has at least one
component exactly of codimension p which intersects B. We call bl9 b2, ... the
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jumping values of the Lelong numbers of T over B.
Let SC.X—D be an arbitrary subset and bp~bp(T, S\ Denote by

{Zp,k$k>i the irreducible components of codimension p in U c > & J E c ( r ) which
intersect B and let vpi1£=:~]bp> bp+i\ be the generic Lelong number of T=c(L) >
0 along Zpik. With these notations, the following fundamental inequality is a
key step of our theory.

Theorem 4. 4. Let G be a semipositive line bundle on X. Assume that there
is a non negative rational number a such that Q-divisor aG is a line bundle in
usual sense and such that (TX®0(aGf))\x-D is generated by H°(X, TX®
0(aGD). Set w=ac(0r)>0 with any smooth semipositive metric on G. Then the
de Rham cohomology class ({ T} +fr1w)"-({7'} +bpu) can be represented by a
closed positive (p, p) -current 0P such that

Here A(7"abcH-67-w) is computed pointwise as a (p, /?)-form. It follows in
particular from our inequality that 7^c has locally integrable coefficients for all

P-

Proof. By [De 2, Proposition 9. 1], there is an ample line bundle F with
the following property : for every s&N there exist sections f^H0(Xf F+sL), 1
<i<N(s), with

v(T, x)-^<— minord/y^Cr, x) for all x^X.

The idea is to decrease the Lelong numbers by replacing each section /,- by some
of its high order derivatives, or rather by some jet section. In this way, the polar
components with low generic Lelong number disappear and we can decrease the
dimension so as to be able to take intersections of currents (thanks to Proposi-
tion 4. 2).

First step: E%®(!)(3F+sL+ma(j) is ample modulo D, for m-jets bundle

We show by induction on m that EZ-^QdF+sL+maGr) satisfies the
condition (iii) of Proposition 2. 6 for every me N. For m= 1, EQ* ® 0(3 F+sL+
aCf) = 2F+ aG, this is a positive line bundle. There are exact sequences

0 - >SmT*X®&(F+sL} - >Em - >£„,_! - K).

Tensoring &($F+sL+ma(j) with the duals, we get the following exact se-
quences
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aG) - K).

By the induction hypothesis, En-i®@(3F+sL+maG) satisfies (iii) of Proposi-
tion 2. 6. Since SmTX®&(maG} is spanned on X-D by our assumption, SmTX
(8) 0 (F+ raaG) is ample modulo D by Proposition 6. 3 in Section 6 below. By
Proposition 2. 9, SmTX®(9(2F+maG) satisfies (iv) of Proposition 2. 7 and (iii)
of Proposition 2. 6 as well. By the proof of Corollary 2. 10, .E*(8)0(3F+sL+
maG) and so E*(8)0(3F+sL+ (m-hl)aG) satisfy (iii) of Proposition 2.6. In
particular E*®0(3F+sL+maG) is ample modulo Dby Proposition 2. 6.

Second step : Killing Lelong numbers in the singular metric of L.
Consider the m-jet section Jmft with values in the vector bundle Em of m-

jets. By the first step above, E^O^F+sL+maG} is ample modulo D. Hence
there is a symmetric power of order q such that SqEn®@(3qFJrqsL+qma(j) is
generated by holomorphic sections gj^H°(X, S9E%®0(3qF+qsL+qmaGf)) on
X-D. We use the pairing of SqEm and SqE* to get sections Sq( Jmf) - gj^H0

(X, OdqF+qsL+qmaG}}. By means of these sections, we define for each pair
(s, m) a new singular metric || || Si m on L such that

where || || denotes the original singular metric on L as well as the induced
metric on 0(3gJF+gsL+#maG), here the metric of F(resp. G) is smooth and
has positive (resp. semipositive) curvature. Denote by <p the weight of the origi-
nal metric on L, by <p Si m the new one, and by 0 Fs 0 G on some trivializing open
set UCIX. Then

(4.5) P4m~log£ l^(/m/^ °g; -^PF-^WG,
q& i,] A A

i
because e~9 appears in the numerator and exp ( — 3q(pF—qsL—qmcKp^) qs in the
denominator of II f II s, m. As <p F, <p G are smooth and the g/s do not vanish
simultaneusly on X— D, we get

*(0>*«. x)=— mmordx(J
mf^—(min ordx(yv)-m)+ for

S i S i

where t+ : =max{t, 0} for t^R. Hence we have inequality

(4.6) (vdT, x)-^^-) <»(.vs,m,x)<(v(T, x-)—^) for
o i i3 i
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that is, we have been able to construct a new curvature current —-dd(j) Si m on L
in which all the Lelong numbers that were <-^- have been killed on X—D. Un-
fortunately the curvature is no longer >0, but by (4. 5) we have

(4. 7) ^-dd</>s,m> --c(F) -— ac(G) = --W-— u on X-D,
TC S S S S

where a) = c(F) >0. Only the term -yco can be made arbitrarily small. For each
s, select an integer m such that bp<

JI^<bp
Jr\. By (4. 5) and (4. 6), we see

that (ps>m is locally bounded on X—D—Em/s(T) and the definition of bp implies
that Em/s(_T) has codimension >p in a neighborhood of B.

Third step : Construction of the pth intersection current 0p .
By induction on p, we suppose that 0P- 1 has been constructed ( 0 1 — T

satisfies the requirements for /?=!). By Proposition 4.2, the wedge product
@P-I/\ — 1T~^(I) s, m is well defined in a neighborhood of B. Since L is nef, there
is a smooth metric on L for each s, associated with some weight p s on the
trivializing open set U, such that ^~^dbp s> — ̂ co. We introduce the weight

where A, B>0 are large constants. This weight corresponds to the singular
metric on L given by

imum ,^=mf(ii? \\,eA \\s\\ s,m, e* \\s\\ p).
Clearly <I)Sim>A,B converges to (p as A, B tend to +00 and $Sim>AiB is locally
bounded, therefore the curvature current Ts>miAiB=—^dd^SimiAiB converges
weakly to T=—^-dd(p as A, B tend to +00. Moreover, the assumed lower
bound on ~^-ddp s combined with (4. 7) implies

T ^> — — m v_ n* s,m.A.B^ u> UOTiA U,
J i3

this is seen by adding —0 F+ ^~a(p G to each of the three terms in the supremum
formula for 05> m,A,B- The positive (/?, p) -current

is well defined over X— D and well defined as a current on X9 since 0 s m Ai B is
locally bounded on X—D and since the subset D of X is of measure zero. Its
cohomology class is independent of A, B and converges to {0p-i} * (ci(L) +
bpu) when s tends to + °° (by the choice of m made at the end of the second
step, we have limmA^^). Hence the family (0p>s>m,A,B) is weakly compact.
First extract a weak limit 0piStmtA by taking some subsequence IZ^ + oo. By
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Proposition 4. 2, we see that in a neighborhood of S

&P.,n,,A:=lmioa8p

where T^^^^^dB^ s>m>A, 0s,m^=sup(<p, cps>m-A). Indeed the codimension
of the set of poles of <(> SifniA is at least p in a neighborhood of 3. By (4. 6), we
have

<p, x), v(p 4 m , x ) ) > v ( r , x) - m n .

Proposition 4. 2 shows that

By induction on p, we conclude that the generic Lelong number of @p s m ^ along
Zpi k is at least equal to

In fact, Zpi k meets S at "some point x, and therefor the inequality hold at least
on a neighborhood of x in Zp>k. Siu's decomposition formula (3. 1) yields

Take a weak limit 0p 5> m for some subsequence ^4 „— > + °° and then a weak limit
©p for some subsequence mv/sv-^bp with sv^ +°°. We obtain a current 0p

such that {0/} = {ej,_1} • (c^D + ̂ M) and

It remains only to show by induction on p that

As the coefficients of \_Zfi J are singular with respect to the Lebesgue measure,
&p will actually be larger than the sum. By construction, there exists a subse-
quence (s», mv, Av, B^) such that

S , , , m , , , A , , « =SUP(<P, <9, ,m -^..P, -1>J.
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The desired lower bound follows from Lemma 4. 8 below. D

Lemma 4. 8 ([De 2, Lemma 10. 12]). Let £/CC" be an open subset and let
cp be an arbitrary plurisubharmonic function on U. Let cp v = max (<p, (p J) where 0 v

is a decreasing sequence of plurisubharmonic functions converging to — °o, each 0 „
being locally bounded in U. Let 0 be a closed positive (/?—!, /?— 1) -current. If
0A-/— \dd(p „ converges to a weak limit Q', then

D

We give a sufficient condition for (3. 12). Frist suppose that L is an ample
line bundle over X. The idea is to apply the inequalty 4. 4 to the (1, 1) -current
!T=lim co E , the limit of solutions of the equation (3. 7), and to integrate the
inequalty with respect to the Kahler form a) = c(L). Before doing this, we need
some convex inequalities and have to estimate the excess of intersection in terms

Proposition 4.9 ([De 2, Proposition 11. 1]). The absolutely continuous part
Tabc of T satisfies

D

Proposition 4.10 ([De 2, Proposition 5. 2]). In any dimension n:
(a) if a i, ... , an are semipositive (1, l^-forms on Cn, then

(b) iful9~-,unare semipositive cohomology classes of type (1, 1) on X, then

n

We consider an arbitrary subset SCLX— D and bp=bp(T, 3). By Proposi-
tion 4. 9 and the inequality 4. 10 (a), we have

(4-11) 7

Suppose that TX®aL is spanned on X— D for some a>0 as in Theorem 4. 4.
We can then apply Theorem 4.4 with u=aa) and {0p} =(1 -\-bid) •••(! + bpa)
{(L> p] . By taking the wedge product of ©p with co n~p, we get
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Tabc + blau') A - A (Tabc

Combining this inequalty with (4. 11) for T^, we find

E
o<j<P ^ L

where Sf(ti), I<j<p9 denotes the elementary symmetric polynomial of degree j
in b ! , . . . , 6P and Sf (6) = 1- Since [1(1 + 6/0 = 2S/(6) a', we get

(4. 12)

0<j<P

If L is only supposed to be nef and ample modulo D, we follow essentially
the same arguments and replace a) in all our inequalities by a) OT=c(L)m+-^-cG4)
with an ample line bundle A (see below of Corollary 3. 10). Note that all (n, n)-
forms o)n were defined to be proportional to jn=c(.A)n, so the inequalty 4. 9
becomes in the limit

m

In the inequality (4. 12), V A A . is the generic Lelong number of T along Z^^ and
Zpik runs over all p-codimensional components Y of U c>6 Ec(Jf) intersecting S
By definition of 67- we have maxfcv A fc= 6^ . Hence we obtain :

Proposition 48 13. Let L be a nef line bundle on X. Assume that L is ample
modulo D and that TX ®0(oL) is spanned on X—D for some a>0 as in
Theorem 4. 4. Let TEi c { (L) be the positive curvature current obtained by the limit
of solutions of the equations (3.7) and (3. 11). Then bp—bp(T, 3) for an
arbitrary subset Sd X— D satisfy the inductive inequalities

(4.14) (Vi-fri)-(Vi-fe)

_

where a;=(l — (1 — pr) ")L" and where Y runs over all p-codimensional sub-
varieties ofX intersecting S. D
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Observe that Oj is increasing in j, in paticular Oj< o n^o for j< n— 1. More-
over, the convexity of the exponential function shows that fH*—(1 —(1—^r)0
L" is decreasing, thus 0j>opj/p for j<p, in particular Oj>oj/n for j<n—l. We
are now in a position to prove the following general result. Let g;: (X, x)-+
(CB, 0) be germs of finite holomorphic maps with covering degree p j and with jcy-

— D. Let /\^Gx.x j ••• » /N^@x,x t>e tne associated ideals <f(TjiQ log
I),, and let

With these symbols in mind, we have :

Theorem 4.15. Let L be a nef line bundle on X. Assume that L is ample
modulo D and that TX®@(aL) is spanned on X—D for some a>0 as in Theorem
4. 4 and that there is a sequence 0=01< • -• </3 n< 1 with

for every subvariety YdX of cod imension /?=!, 2, ... , n— I passing through one of
the points xjf Then there is a surjective map

\<]<N J J

Proof. Select r ;>r /0 so that Ln~p e Y still satisfies the above lower bound
with the corresponding value O>OQ. Then apply Proposition 4. 13 with 3= {xl9

... , XN}. Inequality (4. 14) shows inductively that bp</3p for p>29 so bn<\
and we get codim (^(T), x^=n at each point Xj. Thanks to (3. 2), Corollary
3. 5 and Corollary 3. 10 imply the desired surjectivity property. D

§ 5. Very Ampleness Criterion on Open Varieties

In this section, we will prove Theorem 1 and Theorem 2. Throughout of
this section, we assume that X is an n-dimensional projective manifold, that D is
a reduced effective divisor on X with only simple normal crossings and that Kx+
D is nef.

Let L be a nef line bundle on X and assume that L is ample modulo D. To
use the results of section 4, we have to find some constant a>0 such that 73f<8>
aL is spanned on X— D.

Lemma 5.1. Let F be a nef line bundle over X. Assume that F is very ample
modulo D. Then TX® 0 (Kx+ D+ nf) is generated by H°(X, TX®(9(KX+D+
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n/0) overX-D.

Proof. Since Fis very ample modulo D, the 1-jet bundle J^Fis generated by
global sections over X— D. Consider the exact sequence

0 > 7T* (2) F > J1F >F >0

where rank (J1 /0=n+l and det ( J l f ) = Kx+(n+i)F. The n-th extrior
power A "( Jlf) is also generated by global sections over X—D and there is a
surjective morphism

A ( Jlf) = ( Jlf) * ®det( Jlf) >(TZ®F*) ®det( Jlf) =

Hence TX® & (Kx+nf), and so TX® & (Kx+D+nF) is generated by global
sections over X— D. D

The next idea based on the following iteration trick ([De 2, Lemma 12.
2]) : Lemma 5. 1 suggests that a universal lower bound for the spannedness on
X—D of TX®&(aL'} can be achieved with L' ^KX+D+L if L is sufficiently
ample modulo D. Then it follows by Theorem 4. 15 that Kx+D+L' =2(KX+
D) + L is nef and very ample modulo D under suitable numerical conditions.
Lemma 5. 1 applied with F=2(KX+D)+L shows that TX®0((2n+i) (Kx+
D}+nL} is generated by global sections over X—D, and thus TX®@((2n+\)
I/') is spanned on X—D with L" =KX+D+\L<L' Hence we see that
Theorem 4. 15 can be iterated.

Lemma 5* 28 Let L' be a nef line bundle over X which is ample modulo D.
Assume that TZ(8)^((2n+l)L/ ) is spanned on X~D. Then KX+D+L' is very
ample modulo D, insofar as

VX-D(L' ) := min min (L'p - Y)l/p>2Cnn
n

\<p<n

with a positive constant Cn< 3 depending only on n.

Proof. This is only a matter of straightforward calculations as in [De 2,
Corollary 1], Hence we shall give only the outline of the proof. Let IJL=IJLX-D

(I/X a=2njrl and O0=2nn. By the convexity argument already explained, we
j)oi<p(l—^)jOi. AsyS^O, we find

1 X /

0<j<p-l 0<j<p-l P
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When we replace L' by mL( the constant a is replaced by -^-, and by definition
of !JL=jJix-D(L' ) we have (ml/ )* • Y> (^/)fc. Hence Theorem 4. 15 yields the
sufficient condition

with 0=j81<"-<j8B<l. We suppose //> A <70 and choose

with suitable constants A, a to be determined later. If we set the constants

"&,= n (i - - ) " , n= n
X X

We have Oi<T'noQ and our conditions become

n -'>r//?' »rn ^-(^^na-'(2n-)"-'-1C7o forp<«-2,// p>U^I+lpTnaQVp-\
[ (n- 1) C7n_! Fn_! rna0 for p= n- 1.

A sufficient condition is

fi>o0max {(n-DtCX-.r,,, a

We adjust A and a so that

(n-l)CC,F;-X=a max

and we take this common value to be our constant Cn. A numerical calucula-
tion gives Cn< 3 for all n. D

Proof of Theorem 1. Since L is nef and ample modulo D, there exists an in-
teger q such that

Kx+D+qL is nef and ample modulo D,
x-rD+qL^ is spanned on X— D,(5.3)

where Cn is a constant in Lemma 5.2. By Lemma 5. 1 applied to L' =KX+D+
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qL9 we find that F=Kx+D-\-L' = 2 ( Kx+ D) + qL is nef and very ample modulo
D. In particular, J£x+D+yL is, as a (^divisor, nef and ample modulo D.
Hence, for any sub variety TCZ of codimension p not contained in D, we have

= Sostsj.

By the convexity inequality 4. 10 (b) and we get

Hence (**+£+ (g- 1)L)' • Y> ((f - l)^^fl(L) +^-)p and

H X-D(KX+D+ (q- 1)L) S>y((9-2)//j-i,(L) + 1).

Moreover, Lemma 5. 1 applied to F shows that

TX® & (Kx+ D+ nf) = TX® 0 ( (2n + 1) (Kx+ D) + nqL)

is spanned on X—D. Since nq/(2n+ i)<q/2<q— I for g>2, we have :

(5.4)
— 1)L is nef and ample modulo D,

TX®&((2n+ 1) (KX+D+ (q- 1)L)) is spanned on X-D,

By induction we conclude that (5. 4) is still true for the smallest integer q—l
m such that

For this value of m, Lemma 5.2 shows that 2 (J£jr+ D) + mL is very ample
modulo D. D

Proof of Theorem 2. If JTX+D i§ nef and ample modulo D, the assertion is a
direct corollary of Theorem 1. Assume that — (KX+D) is nef and ample
modulo D. In the proof of Theorem 1, we assume that KX+D is nef only to use
the iteration trick and to show that Kx+D+L is again nef for a nef line bundle
L. So we can apply our argument for L= — m(Kx+D) with appropriate m>0.

D
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§ 6. Appendix

In this section, we shall mention of some elementary properties of vector
bundles which are ample modulo D. The proof is the same as in [Ha 1, § 2].
Let X be a complex projective manifold, D be a divisor with only simple normal
crossings, and let E, El and E2 be vector bundles on Z(the following proposi-
tions even hold for vector bundles on a scheme X of finite type over an algebrai-
cally closed field k and non trivial (Zariski) closed subset D).

Proposition 6. L In order for E to be ample modulo D, it is sufficient that
for every torsion free sheaf &• ', and for every closed point x^X—D, there be an
integer n0>0 such that for every n>nQ the global sections of the sheaf $* '(8)SM(.E)
generate its stalk at the point x, as a modulo over the local ring at that point.

Proposition 6. 2. Any quotient of an ample modulo D bundle is ample
modulo D. Ei@E2 is ample modulo D if and only if El and E2 are both ample
modulo D.

Corollary 6. 3. If El is ample modulo D, and E2 is spanned on X—D, then
Ei®E2 is ample modulo D.

Proposition 6. 4. If E is ample modulo D, then Sn(E) is ample modulo D
for all large enough n. Conversery, if Sn(£) is ample modulo D for some n, then
E is ample modulo D.

Corollary 6. 5. Let L be an ample modulo D line bundle. Then E is ample
modulo D if and only if L* (8)Sn(E) is spanned on X—D for some n>Q.

Corollary 6.6. If E is ample modulo D of rank r, then its highest exterior
power A r E is also ample modulo D.

References

[B-T 1] Bedford, E. and Taylor, B. A., The Dirichlet problem for the complex Monge-Ampere

equation, Invent. Math., 37 (1976), 1-44.

[B-T 2] - , A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1-

41.

[De 1] Demailly, J-P., Estimation L2 pour Poperateur d d'un fibre vectoriel holomorphe

semipositif au dessus d'une variete Kahlerienne complete, Ann. Sci, Ecole Norm. Sup.,

115 (1982), 457-511.

[De 2] - , A numerical criterion for very ample line bundles, J. Differntial Geometry, 37
(1993), 323-374.



910 SHIGEHARU TAKAYAMA

[G-H] Griffiths, P. and Harris, J., Principles of Algebraic Geometry, John Wiley and Sons, New

York, 1978.

[Ha 1] Hartshorn, R., Ample vector bundles, Inst. Haul. Etud. ScL, 29 (1965), 63-94.

[Ha 2] , Algebraic Geometry, Springer-Verlag, Heidelberg, GTM 52, 1977.

[Ho] Hormander, L., An introduction to Complex Analysis in several variables, North-Holland

Math. Libr., 1966.

[li] litaka, S., On ZMimensions of algebraic varieties, /. Math. Soc. Japan, 23 (1971), 356

-373.

[Ka] Kawamata, Y., A generalization of Kodaira-Ramanujiam's vanishing theorem, Math.

Ann., 261 (1982), 43-46.

[Ki] Kiselman, C. O., Sur la definition de 1'operateur de Monge-Ampere complex, Springer

Lecture Notes in Math., 1094 (1984), 139-150.

[Le] Lelong, P., Integration sur un ensemble analytique complexe, Bull Soc. Math. France,

85 (1957), 239-262.

[Na] Nadel, A. M., Multiplier ideal sheaves and existence of Kahler-Einstein metrics of

positive scalar curvature, Ann. of Math., 132 (1990), 549-596.

[No] Norimatsu, Y., Kodaira Vanishing Theorem and Chern Classes for d-Manifolds, Proc.

Japan Acad., 54 (1978), 107-108.

[Oh] Ohsawa, T., Vanishing Theorems on complete Kahler manifolds, Publ. RIMS Kyoto

Univ., 20 (1984), 21-38.

[Sa] Sakai, F., Semi-stable curves on algebraic surfaces and logarithmic pluricanonical maps,

Math. Ann., 254 (1980), 89-120.

[Si] Siu, Y.-T., Analyticity of sets associated to Lelong numbers and the extension of closed
positive current, Invent. Math., 27 (1974), 53-156.

[Vi] Viehweg, E., Vanishing theorems, J. Reine Angew. Math., 335 (1982), 1-8.

[Ya] Yau, S. T., On the Ricci curvature of a compact Kahler manifold and the complex

Monge-Ampere equation I, Comm. Pure Appl. Math., 31 (1978), 339-411.

[Zu] Zucker, S., Hodge Theory with degenerating coefficients, Ann. of Math., 109 (1979),

415-476.


