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Riemann-Hilbert Factorizations and Inverse Scattering
for the AKNS-Equation with L '-Potentials I

By

Josef DORFMEISTER * and Jacek SZMIGIELSKI **

Abstract

A detailed group theoretic approach is developed for the 2X2 AKNS system with potentials

supported on the half-line. This approach uses consistently Riemann-Hilbert splittings interpreted as

factorizations in certain Banach Lie groups. In particular, it is shown how meromorphic splittings

introduced by Beals and Coifman can be replaced with regular Riemann-Hilbert splittings leading to

the group theoretic notion of a scattering data.
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Introduction

Through the work of Sato [9] and Segal and Wilson [11], it is known that
certain classes of solutions to the Korteweg-de Vries (KdV) or the Kadomtsev-
Petviashivilli (KP) equation form interesting infinite dimensional manifolds.
The appearance of an infinite dimensional Grassmannian in the theory of the
KdV equation can be traced back to the factorization problem of Riemann-
Hilbert type on the unit circle. Moreover, similar factorizations can be for-
mulated for the AKNS systems, and in particular for, the modified KdV equa-
tion. The solutions obtained along these lines include all solitons, all rational
and all quasiperiodic solutions ("Krichever's method"). In contrast, the
solutions obtained from the inverse scattering method on the real line R are
generically not in the Sato-Segal-Wilson Grassmannian.

Our goal is to clarify this situation by studying the role of the Riemann-
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Hilbert factorizations in the inverse scattering method. We restrict our attention
to 2 X 2 matrices for the sake of simplicity of presentation. The main results of
this paper should carry over to the nXn case without much change. In this
paper we study the 2 X 2-AKNS-equation

dxM(*> z) = [z./, M(x, z)] +G(*)M(x, z),

where e/=diag( — i, i) and Q is an off-diagonal matrix with Lebesgue integrable
coefficient functions. Our approach uses Riemann-Hilbert splittings, interpreted
as factorizations in the Banach Lie group

Q\( ^ & ^ rfe (l + fl)(l + d ) -c6=l f where
(A c 1 + tf/ J

denotes the Banach algebra of Fourier transforms of Ll(R) -functions.
Using extensively the work of Beals-Coifman [1] and Bar Yaakov [4] we

find that two different decompositions of G are of importance. At one hand, the
groups G- and G+ of elements g(z) of G with holomorphic extensions to C_
and C+ and lim g(z)=J define the Riemann-Hilbert splitting. On the other
hand, it turns out that for an open and dense subset P0~ of the potentials P~
under consideration, the AKNS-equation and the Riemann-Hilbert splitting are
related by the equation g(z)x=g_0c, z)~lg + (x, z), x<0, where g£^G£ and
g(zY=ex^g(z)e~xzJ, Moreover, g(z) - W-(z)~lW+(z), where W- is a lower
triangular matrix with diagonal I, i. e. W-^£P i, and W+ is an upper triangu-
lar matrix with diagonal I, i. e. JF+EE^,. In the proof of the above splitting
result we use work of Beals-Coifman, who show that a splitting exists with
matrices that are meromorphic in z, and of Sattinger-Zurkowski, who show that
the matrices of Beals-Coifman are a product of a holomorphic factor and a very
specific meromorphic factor. Note that our result is equivalent with the
statement that the holomorphic factors are in Ge. In addition we show that W -
can be chosen to lie in JS?1n6+ and W+ can be chosen to be in ^ j f l G - .
Furthermore, we show that there exists an analytic injective (scattering) map
from P0~ to (&lr\G+)x(tylXG-') that has an open and dense image i^0.
Conversely, we prove that for g£lF0 we have g*£G_G+ for *<0; therefore
the corresponding Riemann-Hilbert splitting yields a solution of the AKNS-
equation with a potential Q=Qg. We show that the (inverse scattering) map g
~^Qg maps i^Q onto P0~ and that it is the inverse of the scattering map P0~~^
i^0. In the final section we interpret this in terms of the natural image of i^Q in
the quotient Ji =^~\G/^+ ', where JS?~ and ^+ are the lower triangular and
upper triangular matrices in G_ and G+ respectively.

It is an interesting open question whether the scattering map can be ex-
tended to an injective map from all potentials to Jt .
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This paper is divided up into five chapters. The first chapter recalls some
basic definitions and results concerning the Banach Lie group G predominantly
used in this paper. This includes facts about the Riemann-Hilbert splitting in
G_G + CG. In §2 triangular decompositions of G are investigated. We note
that each g£= G can be written in the form g= uldu, where u and / are upper and
lower triangular respectively, and where d is diagonal. The last part of this
chapter investigates the elements of type ldu^G+, a technical preparation for
Chapter 5.

In § 3 we refine results of [1], [4], and [10]. Though this is of very tech-
nical character, it gives the basis for the ensuing investigations. In particular, we
show how the "meromorphic splitting" of [1] can be reinterpreted (using [10])
as a Riemann-Hilbert splitting. Also, (3. 7. 10) will provide the basis for further
investigations dealing with scattering and inverse scattering on the whole real
line.

Chapter 4 describes in detail scattering and inverse scattering for the AKNS
-equation if the corresponding potential has support in the negative half-line.
Here we use in detail the analysis of [1] and [4],

Finally, in Chapter 5 we interpret the previous results in terms of (continu-
ous) quotients of G. In particular we discuss how one can imbed an open dense
set P0~ of potentials into the quotient Jl=<£~\G/qi+.

In a forthcoming publication we plan to extend the results of this paper to
potentials integrable on the whole real line. Our starting point will be that for
such a potential Q scattering can be defined separately for the restrictions of Q
to the left and the right half-line respectively. Equation (3. 7. 10) shows how
these two scattering problems are related.

Hence scattering for Q is determined by the scattering of its restriction to
the negative half-line together with the transition matrices. It turns out that
these transition matrices are closely related to the "discrete scattering data" used
in [4]. Finally, we would like to remark that the study of factorization problems
appearing in scattering theory was pioneered by Shabat in [12] for potentials
with no discrete scattering data. Our goal, on the other hand, is to give a unified
theory for all (reasonable) potentials in L *(!?)„

§ 1. Notation and Basic Results

1.1. In this chapter we mainly collect notation and some basic results. For
proofs we refer to [5] or more original literature [8] etc.

Let

(1. 1. 1) L{(R) = {f: R->C;fis measurable, f + °° |/(jc)| dx<oo},
J —00



914 JOSEF DORFMEISTER AND JACEK SZMIGIELSKI

where dx denotes the Lebesgue measure. Similarly we use L!(0, °°), I/( — °°,
0) etc.

By J^(/) we denote the Fourier transformation

(1. 1.2) fr(fKz)=f(z)=j~goe'*f(p) dp.

The inverse Fourier transform is then given by

(1.1.3) y ~ ' (g) (z) = g(z) =^/l « ~**CZ) dz-

The following spaces will be considered throughout this paper

(1.1.4) d

(1. 1.5) j/ +

(1. 1. 6) 3/-^^(Ll(~oo9 o)).

It is known that s£ consists of continuous functions vanishing at ± oo and that
functions in si + and s& ~ have holomorphic extensions to the upper half-plane
C+ and the lower half-plane C_ respectively. Moreover, /(z)-K) as z -^oo m

the corresponding half-plane.
We note that the bounded projections on j/ + and s£ ~ are given by :

We will use the norm

(1.1.9) \\f\\ =

where II s II } denotes the L ^
With this norm, «s/, j/+, and stf~ are Banach algebras. The rational func-

tions in j/, «B/ +, and j/ ~ are dense in the corresponding space. In particular,
s$ is decomposing in the sense of [7] .

1. 2. In order to obtain invertible elements it is necessary to extend the algebra
st. We set

(1.2.1)
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This is called the Wiener algebra. Its norm is given by

(1.2.2) ||a+/|| = a + \ \ f \ \ .

It is well known that 'W is a Banach algebra and its rational elements W rat are
dense. A similar statement holds for the closed subalgebras if E= Cl -+- j/e.

By if * we denote the invertible elements of 'W . By Wiener's Theorem it is
known that a+f^if * if and only if a^O and a+/(x) ^0 for all x^R.

For this paper it is important to note

(1. 2. 3) UT * is open and dense in if.

(1. 2. 4) Every f^if* has a representation of the form f= f~ ' <%f* , where

We also note that r parametrizes the connected components of if*.
Finally, we recall that for a continuous function /: 1?-^C\{0} satisfying

/Ox)— *a, O^a^C, as x-^±°°, we define a winding number by

(1. 2. 5)

The winding number satisfies

(1.2.6) #cr1)=-#(/)=#c/x
(1.2.7) #()&)=#(/) +#(g).

(1. 2. 8) # : TT *^Z £s continuous.

Moreover, i f f ^ f y T rj *, then

(1. 2. 9) #(/) =#zeroes—#poles of f in C+.

1. 3. In the following chapters we are using essentially the group

(1.3.1)

From [5 ; 2. 9] we know that G is a connected Banach Lie group with Lie
algebra
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(1.3.2) e=LieG=\h=(a b \af bt
I \c -a)

Similarly, we consider the closed and connected Lie subgroups

(1.3.3) G_={g^G; ft 6, c,

(1.3.4) G+={gfEG; a, 5, c,

The Lie algebras g _ = Lie G _ and 8 + — Lie G + have an analogous descrip-
tion.

We will use frequently

(1.3.5) 9 = 9- + 9 +

(1. 3. 6) G_G+ is open and dense in G.

We say that g£G has a Riemann-Hilbert splitting if and only if gGG_G + .
The factorization g=g-g+ is then called a Riemann-Hilbert splitting of g.
More precisely, every g£ G can be written in the form

(1. 3. 7) g=g-AD'A-1g+, g£6EG£, A^Gl (2, C).

Here we use D=diag( ^+|., "fnf)- Note that we can always assume r>0

in (1. 3. 7). Also note that G-DrG+ has no interior points if r>0.
We will frequently use the following fact (see [5 ; 2e 11] )

(1. 3. 8) The canonical map G_ X G+-*G_G+ is an analytic equivalence.

In what follows we will sometimes use the projection

(1.3.9) II£ : G_G+-G£.

From (1. 3. 8) it follows that II e is well defined and analytic.
Finally, from [5 ; 2. 1. 11] we recall the following characterization of G£

(1. 3. 10) Let g£=G. Ifg has a holomorphic extension to CE and if
g(z)->7 as z£ C£ , \ z ->oof then
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§ 2. Triangular Decompositions of G

2. 1. The Lie group G defined in (1. 3. 1) has the important decomposition
(1. 3. 7) and allows a Riemann-Hilbert splitting for an open dense subset.

For the purposes of scattering and inverse scattering of the AKNS-equation
another decomposition is of particular importance.

For this we introduce the subgroups

(2.1.1) ^ i=

(2-1.2) *,=

(2.1.3) 9 =

If we allow the diagonal to be arbitrary, then we drop the subscript " 1 ",
i. e. we have

(2.1.4) *U^®qil and& = 2&l.

The intersections of ^, *lf JS?, & \ and 3f with G£ will be denoted by 3lE
 9

Off, J^£, &f, and @e respectively.
From [5 ; Theorem 3. 3] we recall

(2. 1. 5) Every j/^G admits a decomposition <*/= ULHU'

where (7, L^x e^ l , Le JS? ! and H^Q). Moreover, from 3. 3 we know

(2. 1. 6) Q^g^m is open and dense in G.

Similarly, QU—^U^^ is open and dense in G and also Q—Qu^Qi is open and
dense in G. Similar to the Riemann-Hilbert splitting we have for the canonical
map

(2. 1. 7) ^iX^XW l-*Ql is an analytic equivalence.

Using (1. 2. 4) we see

(2.1.8) ^ = U ^ ~ D r ^ + ,
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where D=diag(^y, -f^y). As a matter of fact, abbreviating @=@~Dr@ +

we see that QL r=S£ ^ fll l is a connected component of Oh

2. 2. In this section we start the investigation of triangular decompositions of
G+ and G- . We will have occasion to use this in the description of scattering
and inverse scattering of the AKNS-equation.

We set

(2.2.1) Qf = Q^GE,

(2.2.2) QZ = Qur\Ge,

(2.2.3) QE = Q^GE.

First we prove

Lemma. The sets Qe, Q», Qf, e = ±, are open and dense in GE.

Proof. It clearly suffices to carry out the proof for O+. We note that Q+ is
open in G+ and non-empty. Now let G+* denote the rational elements of G+ .
We know from [7] that G+f is dense in G+. It therefore suffices to show that

every g=( * dj^G+f can be approximated arbitrarily well by an element of

G+ln Q. But this is achieved by moving the zeroes of a and d off the real axis. D

2. 3. The goal of this section is to investigate the sets Q» and Of more closely.

Proposition. Let g^£?/+ and assume that there exist ZEEjSff , i/EE^f and d
such that g = ldu. Then 1 and u are rational and d is meromorphic in C+ .

Moreover, d, d~l, 1 and u have poles in C+ at the same points.

Proof. Setw-(J f), l=(l
x J), and d=(% jj). Then we have

. / a ay

Clearly, this implies

(1)
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(2) ax,

Splitting a=a+d 0
ra_, where do^'fqry, we thus see that a*=a+la is holo-

morphic in C+ and satisfies lim a*(z) = l in C+. But a* is clearly meromor-
phic in C_ and satisfies lima*(z) = l in C_. This implies that a* is rational,
whence a=a +a* has zeros in C+ precisely at those points where a* =0 ; conse-
quently, j3~a~l has poles there. An argument similar to the one just given
shows that also a*y and a*x are rational. Therefore x and y are rational. Next
we consider q= ft -\~axy. Assume that for z0£=C+ we have a(zo)=0. Then at
this point aq— 1 -\-axay vanishes. Thus

(3) 0 = 1 + lim (ax ay) = 1 4- lim (ax) lim (ay)
z->z0 z-*z0 Z-^ZQ

where we used (2). We see therefore that in C+, x and y have poles where a
has zeros and in fact ordz a = ordz a * = — ordz x= — ordz y, for each z0EE C+ . D

If in the above proof a + = 1, then also d is rational. We state this as

Corollary 1. Ifg^Qf, g^ldu with /GJSff , i/G*f and d=d^d^ for some
d - £ (1 + J2/ _) *. 77ze/i /, d, am/ w are rational

Corollary 2. Lef gefif, then there exist u^*U? , l^^\, d^Q) + and g
G+at such that

g= lg>ud.

Moreover, one can obtain g = I' d' u where u , df , I' are rational, u £^f , /'
rd- for some d^

Proof. Since gefi/+, there exist fej*?!, u^Ui9 3,^3) such that g^ISu.
Factoring 3=d-Drd+ with c/ + e^+, d^Q)~ we obtain g=Td^Drd + u=
Ibrd-u' d+. Next we split r=/ + 7" and i/ ^u~u+. Then g^l+(l~Drd-U~^
u+d+. To gx =l~~Drd-U~ we can apply Corollary 1 and obtain the assertion. D

Remark. 1) From the proof it is clear that one can also obtain a represen-
tation of g in the form g= dig u.

2) Mutatis mutandis the lemma above also holds for £?/~ and Q* , Q~ .
3) The rational functions x and y have poles only in C+ .

2. 4. In this section we prove essentially the converse of the lemma above. We
recall from (1. 3. 1) that for g^G we always have det g= 1.
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_
Proposition. Let x= — ̂  — —^stf _ be rational such that N£ has roots only in

Jr +

Ce U R and P+ has roots only in C+ e Then there exists T + — ldu£=G + satisfying

l 0\ AS 0 \ /I y~

Pwhere y is rational, y^jtf _ and ft '= ^ +..r .

Proof. A straightforward computation shows

*
Since det(/c?w) = 1 it suffices to show

(2a) £ holomorphic in C+

(2b) fix holomorphic in C+

(2c) /3y holomorphic in C+

(2d) j3 ~ljrfixy holomorphic in C+.

We can assume 0 = d^b _, y^ $4 _ . Hence

0) X=J^7^

(4) y=*^

T> D

(5) ^ C+C_ '

Writing ft_=—£——, we obtain from (2a) that LT divides (z—f) r- Thus C+ =
SP fH

1 and C_ = (z+0r, ^0. We therefore have & = r ^_ .-Tr. Since/8 is invertible,

deg (B+B-} = r. Combining ^_ and s=deg 5_ factors of z+/, we see . ~

£(l + j^+)*. It is easy to see that in this case we have a solution of our
problem if and only if we have a solution with B- = l. Hence we can assume

(5)7 /3=J^L, where C_ = (z+i)r, r>0.
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Next we evaluate (2b) :

B+N+N- . , 1 ... „
is holomorphic in C+ .

C_/ +

Since N+ and P+ have no common divisors, P+ divides B+, i. e.

(6) B + = P+B+.

A similar argument applies to (2c) :

is holomorphic in C+,
B+R+R- .

c_r+

hence T+ divides J5+, i. e.

(7) P+B+ = T+Q+.

Finally, we evaluate (2d) :

AA c_ , p+#; JV+#- R+Q+R^ . , , ... „
(8) ^ +—p; e—^ •—^^ is holomorphic in C+.

F+±>+ *~- f+ *+&+

Note that in the second summand we can cancel P+J5+, whereas in the first
summand nothing can be cancelled. Thus the first summand has a pole at the
roots of B+, but the second summand it holomorphic there. This implies B+ — 1.
Altogether we obtain

(9) p+

(10) v=^|

(11) £=7 where C_-(z-^-O
\~s —

With this, (2a), (2b), and (2c) are automatically satisfied. This equation (2d)
is now equivalent to

(12) P+ divides Cl+(R+Q+R-)N+N-.

Form (7) we know that Q+ is a factor of P+ (since B+ = l\ therefore (12)
implies Q^ = 1. Thus we have to show that we can satisfy

(13) C^ + (R+R^N+N- = P+H+H-
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with C_ = (z+/)r
f r=deg P+, deg #+ JR_<deg P+.

To show that (13) has a solution we proceed as follows. We know that P+
and N+N- have no common divisors. Hence there exist polynomials R and H
such that

(H) P+B-AN+N-=\.

Multiplying (14) by C- gives a solution of (13) where only the last condition is
not yet satisfied :

(15) P

It is clear that we obtain another solution of

(16)

To obtain (13) it now suffices to choose K so that deg J?<deg P+ . But dividing
RC- by P+ yields a remainder R satisfying this requirement. D

§ 3. Matrix Decomposition and Solutions to the AKNS System

3.1. In this section we start to discuss the AKNS-equation. As will become
clear from the text below we draw extensively from [1] and [4]. Another
relevant reference is [2], Let us consider the system of ordinary differential
equations

(3. 1. 1) dxM(x, z) = [zJ, M(x, z)] + Q(x)M(x, z),

where

(3. 1. 2) M(x, z) e Gl (2 ; C) for all zG R,

(3.1.3) J=diag(-U),

0 $,(*)
j(x) 0

We are mainly interested in the case QSP, where
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(3.1.5) P={Q;ql

We would like to point out that the derivative in (3. 1. 1) is taken in the distri-
butional sense.

It is easy to see that for two solutions Ml and M2 of (3. 1. 1) we have

xzJ~xzJ

(3. 1. 6) MjGc, z)=M2Gc, z)exzJA(z)e

with some matrix A(z) independent of x.
It will be convenient to use the following abbreviation

(3. 1.7) A*=A(z)*=e'aJA(z)e-'a'.

We have stated in the introduction that we want to describe P from a group
theoretical point of view using a Riemann-Hilbert problem for the group G
defined in 1. 3. To do this we will show M(x, • ) e G for all

To obtain Me G we impose the additional condition

(3. 1. 8) lim MGc, z) =/ for all
X-^-oo

(3. 1. 9) M(x, z) is bounded in x for all fixed

It has been shown in [4 ; Lemma 1. 2] that for Q^P the equation (3. 1. 1)
together with the conditions (3. 1. 8) and (3. 1. 9) has a unique continuous
solution M=MQ.

We show

Proposition. Let Q^P, then the unique solution M=Me of (3. 1. 1), (3. 1.
8), and (3. 1.9) also satisfies

(3. 1. 10) M(x, • ) <=/+Mat(2, 2 ; j*) for all

(3.1.11) det MGc, z) = 1 for all x, z<E R.

Moreover, if Q^P has compact support, then M(x, • ) extends to an entire func-
tion and M( • , z) is absolutely continuous.

Proof. As pointed out in [1 ; § 2] Mis the unique solution of the Volterra
equation

(3. 1. 12) MGc, z)=/+J*oo e(x~y)zJQ(y)M(y, z)e(y~x)zjdy.
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Note that for fixed xQ^R and all x<x0 we have M(x, z)=MQ'(x, z)9

where

(3.1.13) f[ 0 f o r xQ<y.

It was shown in [4 ; Theorem (1. 13)] that Q&P implies

Sc-/(EMat(2, 2; j/),

where

(3. 1. 14) SQ(z)=I+r°° e-yzJQ(y)M(y, z)eyzjdy.
J — oo

It is easy to see that with x0 and Q' as above

(3. 1. 15) Me'U z) = e^G'(z)e-^, x>x0

holds.

This implies that M(x0, * ) =MQ' (x0, ° ) satisfies (3. 1. 10).
The statement (3. 1. 11) can be derived from [1]. But it can also easily be

seen directly :
One notes that 9^=^40 implies d x det 0= (trace A) det 0. In our situation

we set <l> = MQeXZJ, then 3x0=(z/+g)0, whence <9xdet 0= (trace (z/+Q)) det 0
=0. Thus det 0 = det MQ does not depend on x. But Hrn^ Me=/by (3. 1. 8)
and the claim (3. 1. 11) follows. ^ D

Corollary. For Q^P the unique solution of (3. 1. 1), (3. 1. 8), and (3. 1. 9)
is contained in G.

3o 20 From [4 ; Theorem (1. 13)] we know <Se-/eMat(2J 2 ; ja/). In the last
section we have used this to show that MQ— /EEMat (2, 2; j/) holds. Later
(see Theorem 3. 5) we will need a stronger result.

For gePand x^R we set

(3.2.1)

Theorem. For Q£P we have

a ) BQ(x, • ) e/+Mat(2, 2 ;
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b ) BQ(x, • ) -S^O in Mat (2, 2 ; j*) as J^oo.

Prao/ We will follow closely the proof of Theorem (1. 13) of [4]. We
have

(1) BQ(x,z)=I+±Bk(x,z),
k=l

where

(2) B \ X , z ) = \ - \ r

For each k>\ the scalar coefficients B»(x, z) of Bk(x, z) are given as a sum

(3) Bk(x,z) = T>Rk(x,z)

where the summation is taken over all sequences of the form /=(/i , /2, • ..,
/*_!) with l < / i , ..., ik-i<n = 2 and i^ii+l and

/,\ ^fcA \(4) H/Uz)

Here A s= — 1 if 5= 1 and A s= 1 if 5=2. Rewriting (4) we obtain

/^\ « fc / \ f f B[y ia.-A.) + -+y.a, - A . ) ] x , ,
(5) Jtf(*z)= J - J * ! ' 'i k ^-1 '* ̂ (^1)^(

To prove our claim we replace qit by qtixx where ^x denotes the characteristic
function of (— °°, x) and make the change of variables yr-*u=yiQ. /— A / ) H —
+^A'fc-i~Ai)- Then

(6) H/Uz)

where
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and the region of integration B is described in ( y2 ..... y^) space by

Setting 5(fc ri) = [ — r~j, n=2, one shows as in [4]

(9) «'Uu)

where * denotes the same integrand as in (7) and where a denotes permuta-
tions of y2 ..... j>fcthat do not change *. Then

(10)

'
dyk'"dy2

-<5(fcn) l

In view of (6) this shows

(ID
But as in [4] this implies Bk(x, •)— / <CE-^ — rr gl^00. This

fc= 1 O \K, Yl) !

proves part (a) of our claim. To verify (b) we consider SQ(z)—BQ(x, z).
Clearly, this is given like in (2) but with y^(x, o°). Thus replacing xx by 1

— xx we can derive (6) and (9) as before. Now (10) gives qj(x, it)\ du
J — oo

<5a
C

n), CCl-xJI, ' CJ" 1 , whence *;*(* - )|rf = J^ | q&x, «)| du
r̂

< d(fe n)i G(l~Zx)li S f- As a consequence we have 5e(z) — BQ(x, z)|

<C Q(l-Z^li 2 i^!<C4((g) • I e(l-zJli.Clearlynow,thislast

term tends to zero as x-^°o, proving the claim.
Part (b) of the above theorem can be rephrased as

Corollary 1. For Q^P we have MQ(x, • )~*-*Se in I+Mat(2, 2 ;
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Corollary 2. For Q^P the (1, ^-coefficient MQ(x, • )„ of MQ(x, •)
converges in 1-f-j/ to CSG)n as

Proof. It suffices to note that convergence in C/+Mat(2, 2 ; ^ occurs by
definition (1. 3. 1) entrywise and that (MQ(x, z)~x)n = MQ(x, z)n.

3.3. In this section we recall some more definitions and results of [1] which
are of importance for the considerations of this paper.

Let Q(EP. We introduce functions M+(x, z) = (Me) + Gc, z), *<EJR, z<EC+
and M~(x, z) = (Mc)~(x, z), x<^R, z<=C_ by the conditions

(3. 3. 1) M£ U z) safw/zes (3. 1. 1), (3. 1. 8), and (3. 1. 9) forz^CE.

The following results have been shown in [1 ; Theorem A]

Theorem 1 ([!]). Let Q<EP. Then the following holds
a ) There exist bounded discrete subsets Z£CC£ such that (3. 3. 1) has for every
z£C£\Ze a unique solution ME(x, z) and such that for every x^R the function
M£(x, z) is meromorphic in C£ with poles precisely at the points of ZE, and lim
M£(x, z)=J.
b ) There exists a dense and open subset P0dP such that for Q^P0 we actually
have

(3. 3. 2) Z+ and Z_ are finite

(3. 3. 3) the poles ofM+(x, z) and M~(x, z) are simple,

(3. 3. 4) distinct columns of M+ and M~ have distinct poles

(3. 3. 5) M£(x, • ) extends continuously to R from C£, e = ±.

Remark, a ) From [1] it actually follows that P0 is defined by (3. 3. 2) to
(3. 3. 5).

b ) The elements of P0
 are sometimes called generic potentials.

c ) From Lemma 2. 22 and Theorem 3. 32 in [4] it follows that M(x, z)
is absolutely continuous in x if Q£=P0-

d ) The proof of Proposition 3. 1 shows that det M£(x, z) = 1 for z£Ce .
e ) Since M£ extends to 1? for Q^PQ and satisfies (3. 1. 1) we know that

ME = MWe
x for some matrix function WE(z), independent of x. This formula

also appears in [4, 2. 11]. Note that for a comparison with [4] one has to
replace W- by
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More precisely on has (recall the definition of tfl l and <£ i from 2, 1).

Theorem 2 ([!]). Let Q^P0. Then there exist W+^^{ and
such that for e = ± .

(3.3.6) ME (x, z) = M(x, z) WE (z) * for x9 z<E R.

In the 2X2 case, the poles of M+ occur only in the second column and the
poles of M~ occur only in the first column. Moreover, for z0£=Z£ ,

(3. 3. 7) Res ME(x, z0) =Iim [M£U z) fT£(z0)
x] ,

Z^Z0

where W+(ZQ) is an upper triangular matrix (with diagonal 0) and W-(ZQ) is a
lower triangular matrix (with diagonal 0).

Remark. To avoid confusion we point out that for z^R the matrix We(z)
has diagonal I, whereas for z0^C+ U C_ the matrix WE(ZQ) has diagonal 0.

The set

(3.3.8) $-{(W-, W+,Z^Z_UZ+, OKz^z^Z})}

is called the set of scattering data.
More precisely, we will refer to W+ , W - as the continuous scattering data

and to the remaining parameters as discrete scattering data.

3. 4o From Theorem 2 of the last section one would suspect that one can
remove all poles from ME by a matrix of type WE . This can actually be done.
For Q^PQ and for some more general Q9s this is contained in [9 ; Theorem 1.4],

It is our goal to refine this result to obtain a new type of forward scattering.
The Theorem below generalizes [9 ; Theorem 1. 4].
Let geP0 and let Z+, Z_ be associated with Q as in (3. 3. 2) and WE(z^

as in (3. 3. 7) . Then we set for £ = ±

(3.4. 1) F-e(z)

Theorem. Let Q^.P09 then there exist r]E^G such that with V~E as above

(3.4.2) M£U z)=7?£0c, z)V-£(z)xforz^CEUR,

(3. 4. 3) ?]E(x, z) has a holomorphic extension in z to Ce9

(3.4.4) 7?£U
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(3.4.5) lim 7?£0c, z)=Iforz^CE.
X^-°°

Moreover, F~££=G_£ and the decomposition (3. 4. 2) is unique.

Proof. From [9 ; Theorem 1.4] we know

(1) M£U z)-77£0c, z)£/-£(z)*, e = ±.

Here (3. 4. 5) holds and U~ is upper triangular with diagonal I and off-diagonal

element a finite sum M(Z) = S S /* Z(\fe. For H7+ the analogous statement
—

holds. From Theorem 3. 3. 2 we know that the poles of M+ occur in the second
column only and since Q^PQ, these poles are all simple. From (1) we see that
the first column of rj+ is holomorphic in C+ and we obtain for the matrix
coefficients

(2) (M+)12=(7T)nwand (M+)22- (7?+)21i/.

We recalled above that the poles of M+ are simple ; moreover, since
det M+==det rj + — l, (77+)n and (?7+)21 do not vanish simultaneously at any z0

£=Z+ . Therefore, the poles in u are simple. Now (3. 3. 7) implies that U~ is
given by (3. 4. 1). Similarly one proves that U+ is of the form stated. This
implies that F~£ is in G_e . It is also easy to see that the decomposition (3. 4. 2)
is unique. Next we note that 7]E^G since M£, V~e^G. We want to show that
actually rj£(x, ° )^G e if *<0. To verify this we will apply (1.3. 10). It
suffices to show

(3) lim7?£Uz)=/.
^Q

But from Theorem 3. 3. 1 we know lim M£(x, z)=I and (3. 4. 1) implies lim
K~£(z) =/, whence also lim F~£(z)x=J if x<0. Note that we use here the form
of J and the form of F"£.°°Now (3. 4. 2) implies (3) and (1. 3. 10) implies the
claim. D

3. 5. In the last section we decomposed M£=7?£(F~£)X, where 77 e was satisfying
several conditions for x<0. In this section we want to discuss decompositions
M+=<p+lx and M~~=<p~ux where (p£ satisfies conditions for x>0. In the last
section we had F££=Ge ; in this section / and u are not (necessarily) contained in
G+ or in G_.

Theorem. Let Q^P0, then there exist <p£e G and l<^g, u^ U such that
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(3.5. 1) M+(x, z)=<p + (x,z)l(z)

(3.5.2) M-(x,z)=<p-(x,z)u(z

(3. 5. 3) (p£ has a holomorphic extension to Ce,

(3.5.4) <p£(x, •)&Geforx^O,

(3. 5. 5) lin <p£(x, z)=Iforallz^CE.

Proof. Since QeP0 we know from [1 ; 5. 9] that lim M+ (x, z) =L0(z) for
where L0(z)=diag{(5(z), 5(z)~!} is meromorphic in C+ . Moreover,

[4 ; 2. 18] and [4 ; 2. 66c] imply L0(EG, and that 5 has only simple zeroes at z,
and no additional poles or zeroes in C+ . We want to show that actually

holds. To verify this we recall first from Corollary 2 of section 3. 2
that M(x, • )n^Sn in 1+j* + . Next we recall from (3. 3. 6) that for z^R we
have M+(JC, z)—M(x, z)W+, where W+ is upper triangular with diagonal I.
Hence M(x, « ) n = M+ (jc, • ) n . This shows that lim M+ (x, z)n = Sn exists in
1H-J2/, actually then it exists in !+<£/ + . From [4 ; 2. 18] we thus conclude lim
M+(x, • ) 1 1 = < 5 i n l + efi/ + . This shows in particular (since 5 has only finitely
many zeroes)

(0) 5£ 1 + j* + and lim LQ(z)= I.
z-» oo

Now we set

(1) M+Uz)=M+Uz)L0(z)-1 .

suppressed the variables. We want to find a matrix h=( t) such that

and <p + — M+h satisfies the requirements of the theorem. First we note that
M+h is of the form

bd

Here the second column is analytic in C+ and has a continuous extension to R
since b and d have simple poles at z7 whereas 6 is zero there. Therefore one
needs to show that the first column can be made analytic by a suitable choice of
7. Thus we want
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(2) ad -l + rbd and cd~l->rrd8 analytic.

To this end we choose

0) rU*)=«2taX!-rV.z,ez. Z—Z,

Then hE^G and lira h(x, z) =1 for zeC+. It suffices to choose 7, so that corre-
sponding residues in (2) cancel out. This yields the conditions

(4) a

(5) c

Here 5;=Res(^~1, z^) and (65) (z;) and (c5) (z^) make sense since b and c/ have
simple poles at zj and d has a simple zero at z;(see Theorem 3. 3. 2 and the
remarks on 5 above).

Next we evaluate (3. 3. 7) at ZQ=ZJ. We obtain

(6) 6;-

(7) d,

Moreover, (65) (z;) =6;-57-~1 and (dd}(z^)=dj5J~
l. Inserting this into (4) and

(5) we see that (4) and (5) follow from (6) and (7) if we choose

(8) r^-^V1-

With this choice of jj (whence H) we have shown

(9) (p + (x, z)=MU z)*(* z)eGf

(10) #> + (x, e ) has a holomorphic extension to C+

(11) lirn^ q>+ (x, z) =/ for all z£ C+.

(12) M+U z)=^+ U z)/z(x, z)~1L0(z),

thus (3. 5. 1) is satisfied with

(13)
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where A0(z)-(_r
1

o(z) °

(14)

Finally we show <p + (x, ° )^G+ for ;t>0. But we have seen in (0) that L0(z)
-»/ as z-^oo and we also know h(.x, z)-»/, M+(x, z)->/ as z-^°o for zGC+.
Therefore (p + (x, z)-*/ as z->°o, whence (1. 3. 10) implies (p+^G+. Mutatis
mutandis the same argument applies to 0> ~ and the theorem is proven. D

Corollary 1. For Q^P0 there exist q-^£fl and q + ̂ W{ such that for all z

(3.5.6) lim (p + (x,z)-x=q-(z),
X^co

(3.5.7) lim <p~(x,z)-x=q + (z).
X^co

Proof. From [4 ; Lemma 2. 66] we know that lim M+(x, z)~x—L(z) holds,
z^R, L^^e. From (3. 5. 1) we thus obtain L(z)l(z^'l=lim <p^(x, z)'x. From
the proof of the theorem above we know that L and / are both in 5£ and have
the same diagonal factor L0. This finishes the proof of (3. 5. 6). The remaining
part is seen analogously. D

Corollary 2a Under the assumptions above we have

(3.5.8) q- = Ll'1 andq + =Uu-\

From (13) and (14) of the proof of the above theorem we also obtain

Corollary 3.

So 6e We consider the continuity condition at x=0. We have

(3. 6. 1) n + (0, z) V- (z)=(p + (0, z) I(z),

(3. 6. 2) 77 - (0, z) V+ (z)=<p- (0, z) ii(z) .

For our considerations later the following functions T+ and r~ will be of
special importance.

(3.6.3) r + (z) = /(z)F-(z)-',
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(3.6.4) -c-(z) = u(z)V+(z)-\

Proposition, a ) r£ G Ge ,
b) r + ̂ ^^^l9

C) T'^*!®^!,

d) /=/ + r, /£E!G£, / + =r + , r=F~,
e) w = w " w + , w ££G £ , i i~=r~ , w + -F+.

Prao/ Part (a) follows from (3. 6. 1) and (3. 6. 2) in view of the fact that
?7£(0, z), <p£(0, z)eG£ holds by Theorem 3. 4 and Theorem 3. 5. The remaining
parts follow easily. D

3. 7. For easier reference we write down various (mostly obvious) relations be-
tween the many different matrix functions considered so far

(3.7.1) 77 + (0,z)^ + (0,z)r + (z),

(3.7.2) 77~(0 > z)=^-(0 ,z)r- (z) ,

(3.7.3) M-UZ)- IM+UZ)-(^_(Z)- IPF+(Z))^,

whence in view of (3. 4. 2), (3. 5. 1), and (3. 5. 2)

(3.7.4) 7?^Uz)-177
 + Uz) = (F+U)^_(z)-1W+(z)F-(z)-1)x,

(3.7.5) V -Uz)-V + (x,z) = («(z)^_(z)-1^+(z)/(z)-1)-.

For x~0 we evaluate (3. 7. 4) and apply (3. 7. 1). This yields

(3.7.6) r-(z)^V(0,z)^V + (0,z)r + (z) = F+

A similar treatment of (3. 7. 5) gives

(3.7.7) T-(z)77~(0>z)-17?
+(0,z)r + (z)"1 = M

Comparing (3. 7. 4) at x=0 with (3. 7. 7) shows

(3.7.8) F+(z)W_(z)-V+(z)F-1(z)-1

The analogous procedure with (3. 7. 5) and (3. 7. 6) yields the same equation.
Finally, recall (see e.g. [4; 2. 18]) that 5(z) =L(z) W+(z)~l and 5(z) =
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U(z)W-(z)~\ where L is lower triangular with diagonal term L0 and U is
upper triangular with diagonal term U0 . Thus we have

^_(z)-' W+(z) = ^_(z)-'S(z)-'S(z) W+(z) = f/-'

We state this and insert it into (3. 7. 8). Thus we obtain

(3.7.9) W-(z)-lW+(z) = U-l

(3. 7. 10) V+ (z~)W-(z)-lW+ (z) V~ (z) - '
=r-(z)-1(u(z)C/-1(z)L(z)/(z)-1)r + (Z).

The last formula will be of particular importance in a later publication. We
would also like to point out that (3. 7. 10) shows that the T'S change an "upper-
lower decomposition" into a "lower-upper decomposition".

3. 8. In this section we show that P0 is invariant under a natural involution of
P. For gfEP we set g* (*) = -Q(-x).

Theorem. P0*=P0

Proof. Let Q^PQ. It is straight forward to verify that the functions

(1) F(x, z)=M~(-x, z),

(2) G(x, z)=M+(-x, z),

satisfy the AKNS-equation with g*. Since g*£Pwe thus know

(3) M~ (- x, z) = M* + U, z) C(z)x,

(4) M+( —x z)=M* + (x

Here C(z) and D(z) are matrices independent of x. Since M~ and M*+ both
satisfy (3. 1. 8) and (3. 1. 9), the matrix function C(z)* stays bounded as
x-*— °° and also as jc-^ + o0. This implies that C(z) is a diagonal matrix,
whence C(z)*=C(z). Similarly one proves that D(z) is diagonal, i. e. D(z)x=

D(z) holds. Now we use (3. 1. 8) and lim M+(x, z) =L0GO for z£C+ ([1 ; 5.
9]) in (4) and obtain

(5) D(z)=L0(z).
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Similarly we see

(6)

Hence

(7) M-(-X,Z:
(8) M+(-x, z)

From the last two equations it is clear that M*£(x, • ) has a continuous exten-
sion to C£. Moreover, since M£(x, • ) has only finitely many poles and L0( • )
and L/o( • ) have only finitely many poles and zeroes in C£, also M* + (x, • ) has
only finitely many poles in CE.

Solving (7) and (8) for M*£ yields

(9) M*+U Z)=M-(-X,

Since L0 = diag(5, <5-1) where d has only simple zeroes and d~l has only simple
poles at the points of Z+, we see that M*~(x, • ) has only simple poles at Z*
= Z+. Similarly one sees that M* + (x, • ) has only simple poles at Z+ = Z_.
Moreover, the second column of M* ~ and the first column of M*+ are analytic.
This shows that (3. 3. 2), • • • , (3. 3. 5) are satisfied, whence

Corollary. Let Q^P0. Then for the finite exceptional sets Z for Q and Z*
for Q* we have Z* = Z_ and Z* = Z+.

§ 4. Scattering and Inverse Scattering on a Half-line

4.1. In this chapter we shall study the space P0~ of potentials defined below.
On this space the map Q^>SQ is injective. In a later publication we will exploit
the fact that analogous statements also hold for P0

+ to obtain a description of
scattering and inverse scattering for potentials on the whole real line.

We set

(4. 1. 1) P+= {Q^P; support(G) C {x; x>0}},

(4. 1. 2) P = {gGEP; support(Q)C {x, x<0}},
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(4.1.3) P0
£={p0np£}.

Theorem. P0
£ is open and dense in P£.

Proof. The proof of Proposition 2. 30 in [1] and the remark before Lemma
4. 7 loc. cit. show that P0

+ is dense in P+ ; it is trivially open, since P0 is.
Theorem 3. 8 implies that also P0~ is open and dense in P~. D

48 2. If g^P", then we know from [1 ; § 5] that the scattering matrix S^SQ

can be decomposed in two ways (see also [4; 2. 18])

(4.2.1) S(z)^L(z)W+(z)-\

(4.2.2) S(z) = tf(z)JF_(z)-!.

On the other hand, since 200=0 for x>0, we have M(x, z)=S(z)x for x>0.
Comparing this to (3. 3. 6) yields

(4. 2. 3) M+U z) =L(z)x for x>0,

(4. 2.4) M~ (x, z) - C/(z) x for x>0,

From these two formulas we obtain in view of (3. 4. 2)

Corollary. If Q^P^~, then

(4. 2. 5) L(z) =77+ (0, z) F~(z),

(4. 2. 6) C/(z) = 77" (0, z) F+ (z).

Note that these formulas describe the decomposition of L and Uin G_G + .

4.3. Let 2^*0" and JP_ f W^. be as in Theorem 3.3.2. Then rewriting
(3. 7. 4) we obtain

It is clear that the first factor is in 5f i and the second one is in U\. We set
(using (1.3.9))

(4.3.2) Wi+(z)=n
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(4. 3. 3) W'+
+(z)=n+(W+(z) F-(z)-1).

Setting also Wi~ = II -(W -(z) F+(z)~0 and W+~(z) = 77_(JF+(z) F'Cz)"1)
we obtain

(4. 3. 4) [ [77 - (x, z) (Wl- (z)x) -1] -1 [77 + U z) ( JF;+ (z)*) -1]

It is easy to see that WE
£(z)x^GE for x<0. We also know from (3. 4. 4) that

?7£(;c, O^Gf i if *<0. Setting <7£U z)=7?£U z)(fF£
/£(z)x)"1 we thus have

shown

Proposition. Let 2^P0 ; *Aen there exists oe(x, z)^G such that

a) <j-U

b) a£U

4. 4. From the last Proposition it is easy to derive that oe satisfies the AKNS-
equation (3. 1. 1) for the same potential Q as M£ does, provided x<Q. Since
here we are mainly interested i n L 1 ( J R ~ ) = L 1 ( — °°, 0), oe and ME are in a
sense equivalent. Consequently, we can replace WE by We ~

e. We note

Lemma. The map P0 ~*^r, Q^*We~
e is analytic.

Proof. The map Q^SQ is analytic by [1; Corollary 1.54]. Since 5=
LW+ l= UW~\ Q^W+, W-, L, U is analytic by (2. 1. 7). From Corollary 4.
2 we obtain now that also Q^F£, is analytic, whence Q^*WE~E is analytic. D

4. 5. In this section we obtain a different description of the scattering matrix S
= SQ for Q^PQ • The results of this section are particularly important for this
paper.

Recall that S=LW+ 1== UWI1 and from 3.6 we know r + = /(F")~1, T~ =
M(F+)~ ! . This shows

(4.5.1) s=(Lr^

(4.5.2) S=(L/t/-1)

In view of Corollary 4. 2 we also know

(4. 5. 3) 5=7? "(0,
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(4.5.4) S=r,-(fl,zKW-(V+rlrl.

Using the notation introduced in 4. 3 we now obtain

(4.5.5) S=a^(0,

(4.5.6) S=o-(Q,

Note that altogether we have a fairly precise description of <7e(0, z). The
following relation will be of particular importance for our description of P0 ~.

(4. 5. 7)

From (3. 5. 8) we recall

(4.5.8) q- = Lr\

(4.5.9) q + =Uu~l.

Then combining Corollary 4. 2 with (3. 6. 3) and (3. 6. 4) we have

(4.5.10)

(4.5.11)

Proposition. Let

a) q

b) r

Moreover, the decompositions (4. 5. 10) and (4. 5. 11) are unique if the occurring
factors satisfy (a) and (b) and W++^^+ and W

Proof. From 3.5 we know #_=lim (p+(x, z)~x. Since Qf=P0 ~, we know
that <p + solves the AKNS-system (3. 4^°) for Q=0 and x>0. Thus ^ + (x, z) =
<p + (0, z)x for x>0. But (3. 5. 4) shows that <p + (0, z)£G+ holds; whence #_
=^p(0, z)^G+. Similarly one shows <? + =#>~(0, z)GG_ . To verify (b) we
note r + = /(F")~1 by (3. 6. 3) and /GJSff® by CoroUary 3 of 3. S. This shows

; similarly one checks T'G^S*^. Assume now a + (0, z) =
— q-T + (W+

+}~1 where the occurring factors are in the required
sets. Then decomposing T + = l~du~~ and f + = T~3u~ we obtain d= 3 and q-l~
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= g_r~. Since #_, #_£G + and l~ , r ~ G E G _ , q- = q- and I~ = T follows.
Similarly one shows u ~ = u ~ and W++ = W^ . This finishes the proof. D

Corollary. Let Q^P0 ~, then

a) a + (0,

b) ej~(0,

4. 6. Using the decomposition (4. 5. 5) and (4. 5. 6) we show

Proposition. The map Q-^(cr + (0, z), a~(0, z)) /ram P0~ to G + X G _ £s
analytic and injective.

Proof. The map is analytic since Q-*SQ is analytic, moreover, factorizing in
G_G + and G+G_ is analytic. Therefore it only remains to show that the map
is injective. But once we know <7 + (0, z) and cr~(0, z), then (4. 5. 7) shows that
we also know W =(W-^}~lW+~. Since we started from 2^P0~

 we know that
W'x=a~(x, z)~1a + (x, z) is solvable for all x<0 (see Proposition 4.3) and
that OE satisfies the AKNS-equation (3. 1. 1) with the originally given Q. (See
remark at the beginning of Section 4. 4.) This proves the claim. D

4. 7. In this section we start to develop our description of scattering and inverse
scattering on the half-line R.

We consider the set TT of pairs (Wi+ , WVOej^X^f satisfying (4. 7. 1)
and (4. 7. 2).

(4. 7. 1) [(jr-+)-1J*V?eG_G+ for all x<0.

Define o£(x, z) by [(W'^~lW'+~Y=o~(x, z)~~lo + (x, z). Then we require
in view of Corollary 4. 5

(4.7.2) a + (0, z)^^!^! and a~(Q,

Before investigating W in more detail we show

Proposition. The map I given by Q-*(W-+, W'+~} from P0~ to J2V" X#f is
analytic and injective and its image is contained in if .

Proof. Since Q-*SQ is analytic and the projection from G_G + and G+G_
to G_ and G+ are analytic we see that the map under consideration is analytic.
Now we note that (4. 7. 1) follows from Proposition 4. 3 and (4. 7. 2) is a
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consequence of Corollary 4. 5. The inject! vity of the map follows from Proposi-
tion 4. 6. D

48 80 Eventually (see Corollary 4. 12) we want to show that 'W is open and
dense in jSf^X^f and that there exists a subset i^ Q of if that is homeo-
morphic with P0 •

We start by introducing for

(4. 8. 1) o(x, z)=o + (x,

Note that the two expressions on the right side actually are the same by Proposi-
tion 4. 3.

Next we claim

Lemma. Let Q£=Po , then a satisfies the equation

(4. 8. 2) aU z)=J- [_a(W'+--I)xr- [a(Wl+-

(4.8.3) a + U z ) = / + : : + ) , ,<0,zEEC+ ,

(4.8.4) a-Uz)=/
7]—z 2m

Proof. First we note /- [_o(W+~-I)^ ~- \_a(W-+~t)*\ + = I~ [o + -o] ~
- [o~-o] + = I+ [a-/r + [_o-I] + = I+o-I=o. The formula (4. 8. 3)
follows from (1. 1. 7) and the fact that

)* dn
2m

since for z£=C+ we can carry out the limit in e. The formula (4. 8. 4) follows
similarly. C

4e90 In this section we consider the operator Cx acting on C/+Mat(2, si) by
the formula

(4.9. 1) Cx(A) = [_A(W'+'-lY~\-+\_A(WiJr-I)x'] +

The operator Cx has been considered in [1 ; § 7] and in [4],
Clearly, Cx depends on (W-+, FF+~)G^f1

+X^f. Moreover, the formula
(4. 8. 2) can be rewritten as

(4. 9. 2) o-I=-Cx(!)-Cx(o-I).
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Therefore, if /+ Cx is invertible, then we can compute a—/ from

(4.9.3) o-I=-(I+Cj-lCx(f).

Here we show

Proposition. Let(W'- , W'+~}^g? 'X#f . Then I+CX is a Fredholm

operator of index 0. The number K,——dim KerCJ-hC*) is the partial index of

[(Wi+rl W+~]x. In particular, [_(W'^yl W+-~\*^G-G + for all x<0 if and
only if KerU+C^^O for all x<Q and this holds if and only if I+CX is
invertible for all x<Q.

Remark. If A is a 2X2 matrix such that det A=l then its partial indices
KI and AC 2 satisfy AC 1 +AC 2

= = 0. In the Proposition above the partial index is the
one that is nonnegative.

Proof. We define the elements Wi, w2^^ by the equations

(,,.4) (»«-,= » ° and <.*-V-I

We set # = £ ; a> b^s/j and equip H with the product norm |

II a || + || b || . Next we define a linear operator Q : H®H-^H®H by

where nE: stf—*<$$ E denotes the canonical projection and L(0), aEij/, denotes

"left multiplication" in H, L(d)^j — (^^j.

A straightforward computation shows

(2) I+Cx=(p~lQ(p,

where <p : Mat(2, s#}-*H®H is given by <p(^ d}^\cJ®\d)' ^nce ^ is an

isomorphism, it suffices to show that Q is a Fredholm operator of index 0. To
see this we note first Q=R~1Q0S~l where
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and Q0— diag(J— 7r+L(w2)7r— L(W!), /). Since R and Sare invertible operators,
it suffices to show that D=I— 7r+L(w2)7r_L(w1) is a Fredholm operator of
index 0. To verify this we note that LCv^) is a bounded operator on H and
7T+L(M>2)7r_ is compact (see e.g. [7; p. 225]). From (2) and the decomposi-
tion of Q it is clear that

K= dim Ker( /+O=- dim

It is also straightforward to see that Ker(J- 75cif+ = {(*); a, fee j/ + } ;

here we have set T=n +L(w?)n -L(w^). Since Tacts diagonally on H we see
that dim Ker(/-J)=2dim Ker(/-r0), where T0 acts like Ton j/(and not
If). To finish the proof it suffices now to show that the partial index of

[(W-+ylW'+~]x=(_I
w 1_^,1 w ) is K. To determine the partial index of this

matrix we have to compute the dimension of the subspace of elements of H +
that are mapped into H _ . Thus we have to consider the two conditions

(4)

(5)

From (4) we obtain

(6)

Inserting this into (5) yields w 2 (wi&+) + + 6^ — w2(w16+)£j/_ . This is
equivalent with b + — w 2 (w 16+ )_£j2/_ , which in turn is equivalent with b + —
(w 2 (w 1Z?+ )_) + =0, i.e. with b+ being in the kernel of the operator I—

D

Remark. We would like to note that the above proof works for arbitrary
. Hence the Proposition actually holds for arbitrary (W-> W+}^.

In the following section we show that K vanishes if x is close enough to

4.10. In this section we investigate the operators Cx in more detail. From the
proof of the last theorem it follows that we have to look essentially only at the
operator



RlEMANN-HlLBERT FACTORIZATIONS 943

(4. 10. 1) D(w2, w1)=7r+L(w2)7r_L(w1), wl9 w2^<$#.

Lemma. For all b + ^jtf + and all wls w1? H>2 , w2£j^ we have

(4. 10. 2)
< w2-w2 x - w + w 2

JProo/ First we note

From this the claim follows. D

We recall that in the proof of Proposition 4.9 actually Wi(z,x) =
Wi(z)e~2lxz and w2(z, jc) = e2zxzw2(z) occur. We note (using the notation
(1.1 .2))

< f " I £+(r) l( f 2x"' *,(p)| ̂ )df< || fe+ || f
 2

JQ \J— oo / J

and record it as

(4. 10. 3) || TT.LCw^z, jc) ) 6^ || < || b+ || f 2X
J — oo

Proposition. The map Oc, w1? w2, 6+)->D(w2(z, x), w^z, x))fe+ zs wm-
formly continuous.

Proof. Using (4. 10. 2) we obtain

x), w,U

x),
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< || w2(z, x) II II w t(z, x) II \\b + -b'+

+ II w2(z, x)-w2(z, x)' || ||

+ || w2(z, x') || l lTT-LCw^z, x)-w\(z, x'

It is easy to see that || w(z, x) \\ = \\ w \\ is independent of x. Hence the first
term above is equal to || w2 II II wl || || b + ~ b+ || and the first factor of the
third term is || w2 || . Next we consider || w2(z, x) — w2(z, x ) || < || w2(z, x) —
w2(z, x') II + || w2(z, x) — w2(z, x') || . The special form of w(z, y) implies
||w2(z, x)-w2(z, ;O II =J_oo w2(p-2x)-w2(p-2x'ydp<C\\w2\\ x-x'

for some C>0. Altogether this shows that the second summand above can be
estimated against (C || w2 || I x-x + || w2- w2 || ) || wl \\ \\b+\\.

Finally, we consider the second factor in the third summand above. Using
(4. 10. 3) we obtain

, x)-w\(z, x

+ ii r
J — oo

Here the last term is < || b+ || || w{ — Wi || , while the first term is < || w^z, x)
— w^z, x ) || || fr+ || <C|| W! || I x— ;cx || ^?+ || , where the first estimate just re-
phrases an estimate for the convolution and the last estimate has been shown
before. Summing up we have shown

(4. 10.4) || D(w2(z, x), w^z, *))6 + -lXw2(z, *'), wife

< H w 2 | | H w J I || b + -b'+ || + (C|| w2 || | x-x

+ II w2-w2 || ) || Wl || || ^+ || + || w2 || (C

From this the claim follows. D

Finally, we prove

TheoremB Let wlf w2£j/. T/ien rAere exist N>Q and £>0 swc/z that for x
< —N and w1? w2£j/ satisfying || W!~ W! || <e, || w 2 ~w 2 || <£, £/ze operator I
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— 7T+L(w2(z, x));r_L(w1(z, x)) is invertible.

Proof. Set || vt>2 || = || w2(z, x) || = 4. Choose N>Q, 0<£< 1 and such that
S~™ w\(p)\ dp<^Y for a11 II W j - w i II <£. Let now x<-N. We want to
show that the equation

(1)

has only the trivial solution. To this end we consider

z, x), wiU

U+e)(Jo°°

This shows that (1) has only the trivial solution. Since /— 7T+L(w2(z, x))
TT_L(WI(Z, x)) is a Fredholm operator of index zero as shown in Proposition
4.9 and since Ker(/— 7r+L(w2(z, X))TT_L(W I(Z, x)))=0 for x<N as shown
just above, the assertion follows. D

4.11. We want to see that the set W defined in 4. 7 is open. First we consider

( 4 . 1 1 . 1 ) W = _ ,

_G+ forallx<0}

Proposition. HT' is open in &?

Proo/ We have seen in Theorem 4. 10 that for each W0=(Wi+, W'+~}
there exists ]V>0 such that I+C^ is invertible for x<—N. Moreover, one can
choose N and a neighborhood B of WQ such that /+ Cx is invertible for x< —TV
and all W^S. Assume now that 1+CX is invertible for x<0 and W0. Then we
note that /+CX depends uniformly continuously on Wby Proposition 4. 10 ; thus
we can choose a neighborhood 3 C B of !^0 such that /+ Cx is invertible for all

D
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Corollary. ifT is open in JS?* X#f.

4. 12. We want to show that 1T is dense in JSf,+ X*f. This will follow from
an even stronger statement proved in Section 4. 13. With the definition of Z
introduced in 4. 7 we set

(4.12.1) iTo^CPo-).

From Proposition 4. 7 we know W (£JW . We will characterize if Q inside
*W intrinsically below. We will also show later that 2: P0 ~^^o is a home-
omorphism. First we find part of the inverse map for Z.

Let W=(W'-+, WV)&T\ Then we know from the definition of HT that
we have for x<0,

(4. 12. 2) ttWi+rlW+-]x=a-(x, z)-1a + (xf z).

Moreover, for x=0 we know a ~ (0, z) e^ ^JS? j and a + (0, z) G JSf i®* i . Thus
we can write

(4. 12. 3) tJ-(0, Z)= ?+T

(4.12.4) a + (O fz)=9±T

where 0+e#f, fTl~ejS?f, g + e^f^, W^+e*^, r "GG_ , r + £G+ and
where

(4.12.5) r- = ii+d-(F+)-1
>

(4.12.6) r + = rd + (F-)-1,

with M + e*!+, K+ejSf!+
f 7~ejS?f, rf~, t/ + e^, and K"e«f.

Note that the map which assigns to W^W any of the factors occurring in
(4. 12. 3), (4. 12. 4), (4. 12. 5), or (4. 12. 6) is analytic.

From the proof of Lemma 2. 3 it follows that we can assume that V+ and
V~ are rational functions.

Theorem. ^0= [W^i^ ; ¥+ and V~ have only simple poles]

Proof. We set W+ = W+~ W++ and W+ = W'- Wi~. Then we have for jc<0

(4. 12. 7) {.(W-rlW'+-\*=7i-(*. z)-lrj + (x, z)
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where

(4.12.8) 77 + Oc,z)=a + (x,

(4. 12.9) 77- (* z)=a~U

We would like to point out that 77 + £ G + and 77 ~ £ G _ for x< 0. Finally we set

(4.12.10) W+ = W+V~f

(4.12.11) W- = WiV+.

From this we obtain for jc<0

(4. 12. 12) r
L(W-)-lW+]x=M-(x, z)"1M+(x, z),

where

(4. 12. 13) M+(x, z)=7? + 0c, z)F~(z)x,

(4. 12. 14) M~ U z)=7j~ (jc, z) F+ (z)x.

Since ?7££GE and F£ is rational with only simple poles in C_£ , we know that M£

is meromorphic in C£ with only finitely many simple poles off the real axis.
We claim that W+, W-, M+, M~ satisfy the equations [4; 2.22] for

x<0.

(4. 12. 15) M(x, z)=/-

Res M(x, r)
r— Z

(4. 12. 16) Res M(x, r) =(/+/"\ j - rj — r 27ii

^r 5— r

where we set

(4. 12. 17) MU z)=M+U z)[W+(z)xrl = M-(x, z)

(4. 12. 18) Z=Z_UZ + = (poles of F+) U (poles of F+)

(4. 12. 19) Res M(x, r) =-Res M£U r) if
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We would like to note that our notation is consistent with the notation of
the previous chapters and sections and also with the notation used in [4], except
that we write WE and not /+ W£ and that we use for W'- the inverse matrix.

The proof of (4. 12. 15) and (4. 12. 16) can be taken-mutatis mutandis-
from the proof of [4 ; Lemma 2. 22]. Next we consider the case x>0. We note
first that (4. 12. 2) at x=0 and (4. 12. 3) and (4. 12. 4) imply

(4. 12.20)

From this we obtain

(4. 12.21)

Using (4. 12. 5) and (4. 12. 6) and the definition of W+, W- we have

(4. 12.22) W-lW+=(d-rlttq;u+rl(q-'l^d+.

From this it is clear that we have

(4. 12. 23) (W-1W+Y=(JS*)-1NX,

where H~q+u + d~ is an upper triangular matrix with diagonal d~ and N=
q^l~d+ is a lower triangular matrix with diagonal d+. From (4. 12. 5) and (4.
12. 6) and Proposition 2. 3. 1 we obtain Hx is meromorphic in C_ with finitely
many simple poles at Z_ and that Nx is meromorphic in C+ with finitely many
simple poles at Z+. Setting M~(x, z)=H(z)x, M+(x, z)=JV(z)* and M(x, z)
= M+(x, z) [W+(z)-lY=M~(x, z) [_W-(z)~lY for x>0 it is not hard to verify
that (4. 12. 15) and (4. 12. 16) hold for ;c>0.

We want to apply [4; Theorem 3. 32] to see that the potential Q associated
with M+, M~~ (and thus with <7+, a~) is integrable over R. Before we can do
this we need to define scattering data &> in the sense of [1] or [4], We set

(4. 12. 24) a)=(W-(z), W+(z), Z, Res F"(r), Res F+(s)).

It remains to show that co satisfies the "winding number condition" [4; 2. 19].
Using #(/) to denote the winding number of a function /we thus have to show

(4. 12.25) #[»C1»F+]22=-#(Z+)+#(Z_).

To verify this we recall that q+u+ is upper triangular and q^l~ is lower
triangular, whence [(g-^w+)~1(gJt/~)]2 2— 1. This shows that (4. 12. 22) implies
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(4. 12.26)

From this we obtain #(WIlW+\2 = #(d2^ -#(d£). We know from the
proof of Proposition 2. 3. 1 that d£ =@ +/3* and d22 =7_7* with£*, 7* rational,
/3 + without zeroes and poles in C+ and 7_ without zeros and poles in C_.
Hence #(W~1W+)22 = #Q3*^ -#(7*). Note that the rational functions occurr-
ing here have no zeroes or poles on the real axis or at °°. Hence we know #/3*
= #(zeroes of 0* in C+)-#(poles of £* in C+) and #7* = -#(zeroes of 7* in
C_)+#(poles of 7* in C_). From (4. 12. 5) we see that £/n =(<*£) ~! has no
poles in C+ ; similarly, (4. 12. 4) shows that d& has no poles in C_ . Therefore
#( WI l W+} 22 =-# (zeroes of d£ in C+)+#(zeroes of d^ in C_). But the
proof of Proposition 2. 3 shows that the number of zeroes of d^ in C+ is exactly
the number of poles of V~ in C+, i.e. this number is #Z+. Similarly, the
number of zeroes of d^ in C_ is exactly the number of poles of F+ in C_ , i. e.
this number is #Z_ , finishing the proof of (4. 12. 25).

Now we can apply [4 ; Theorem 3. 32] to see that the potential Q associated
with M+ and M~(and thus with o+ and a~) is integrable over R, L e. Q^P.

Since M~ and M+ are meromorphic solutions satisfying all requirements of
[1] or [4], we see that Q^P0. But M~ = HX and M+ = NX for x>0, therefore
we actually have QEzP^. D

Corollary. The set i^0 is open and the mapping Z : PQ ~-*i^0 is an analytic
bijection.

Proof. We have seen in Proposition 4. 7 that Z is analytic and injective ;
moreover, it is surjective by the definition (4. 12. 1) ofiT0. The theorem above
shows that i^0 is open. D

4. 13. Next we want to show

Proposition. iT0 is dense in <e? X*f.

Proof. Let W=(Wi+, W+'^^^X^,' such that ((^1+)"1^")22 is in-
vertible. Let n= index ((FF_+)~1W/r

+~)22 and let 5>0 ; then choose rational func-
tions F~^#f and V+^<ef such that

(1) Fe-J <(5and

(2) index([^-~F+]-1[^;-F-])22

(3) a> = (W'-+V+, W'+-V~, Z-Z_UZ+, Res
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are scattering data in the sense of [4] ,'thus, in particular, a) satisfies the "wind-
ing number condition" [4 ; 2. 19]. From [4 ; Theorem 3. 12] it therefore follows
that there exists some oi=(PF_, W+, Z = Z _ U Z + , Res F£(Z)) corresponding
to a potential Q^P0 and satisfying co — o)|<5, where the norm here denotes the
norm in the space of scattering data «/ in the sense of [4] . In particular we
have

(4) \

(5)

From this we show

(6) iFP.

where C does not depend on 6< 1. To verify this we note

Note that Ccan be chosen independent of 5<1 since | F~£ — / <2d. From (6)
it also follows that for WE ~£ = [ WE ( F""£) ~ l J "£ we have

(7) [ WE-£-WE-£ <Cd.

In fact, by Theorem 4. 1 we can choose a) so that QePon (P0~+P0
+) holds.

Note that P0H C^o T + P0
+) is open and dense in P since P0 and P0 T + F0

+ are open
and dense in P. Since &£=J> 0— {wEiJ* ; CD corresponds to Q£=P0} we know that
W=(Wi+, W+~^ satisfies (4.7.1). We claim that since gePon (P0" + ^o+),
for the corresponding W also (4. 7. 2) holds. Moreover we will show that W is
in fact in if 0. Since Q^PQH (P0" + P0

+) we have e=g" + G+ with fieej£.
We will denote all the quantities associated with Q~ with a "~" and all
quantities associated with Q with a " - ". Then for x=0

(8) JI?+(0,z)=M+(0,z)£/(z)

where t/e^ t . We know from Theorem 3. 4 that (8) can be written in terms of
F's and ?7's as

(9) t) + (0, z) ?- (z) = ?? + (0, z) V~ (z) C/(z) .
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A similar computation with M~(0, z) gives

(10) 7T(0, z)F+(z)^7T(0, z)F+(z)L(z)

where L(z)=J^!.
Thus in view of (3. 7. 4), we get

(ii) v+Lw:lw+(v~url =($-&, orVCo, •).

Note, however, that (9) and (10) imply that there exist u + ̂ Wl
+ and /~GjS?f

such that V~U= V~u+
9 and F+L= V+T.

Thus W+(V-Uyl=W+(V-y\u+Tl=W+-W+
+(u+yl where we use

notation introduced in 4.3. Similarly one can rewrite W-(V+L)~l. Thus we
have

(12) jpi-rcj^r'^-^CH+r^orco, orvco, o.
Hence also

as) opi+r'tf^opi-r'orco, orvco, o«+(fn+r'
holds.

Recall that we want to show W^.i^Q. First we note that Q£P0» whence
(4. 7. 1) is satisfied. Thus the left hand side of (13) determines a + (0, z) and
a~(0, z) by

(14) OPl+r1*;- =*-((>, z)-1a + (0, z).

Note that here ae (0, • ) e G£ . Hence

(15) a + (0, z)=77 + (0, z)u + (z)(^+(z))-1,

(16) a"(0, z)=jT(0, z)/-(z)fTl-(z).

On the other hand we know Q~GP0~. Therefore Section 4. 3 defines #£(0,
z) such that ££(0, z)=??£(0, z)(WE

E(z)Yl. Moreover, CoroUary 4.5 shows
d + (0, •)^& ^^r ! and d1 ~ (0, • ) ̂ * i®^Sf ! . This together with (15) and
(16) implies a + (0, «)^^f i®*i and a"(0, O^^i^^i- Thus we have
shown that ^e^.

To finish the proof of the claim we have to determine the VB associated with
a£(0, • ) and to show that they have simple poles. But (15) and the formula
relating d + and fj + above shows that the l/i~ part of o + is the same as the one
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of f l + . Comparing (4. 12. 3), (4. 12. 5), and (4. 12. 7) now implies that the C/f
part of &+ is (F")'1. And similarly the &? part of a" is (F+)"1. By
construction Q~£P0~» whence VE has only simple poles and W^i^0 follows. D

Corollary . The sets Hf and n^0 are open arad dense in <&i+X U{

§ 5. Geometric Scattering and Inverse Scattering

5» 1. In the last chapters we have discussed a map associating with certain
P elements in the Banach Lie group G. Recall from (1.3)

(5.1.1) G = g = , ; f l . f c c . d e j/ ,detg=l

In this chapter we are interested in a geometric interpretation of this map
and a geometric extension of its inverse.

Recall from (1. 3. 6) that G-G+ is open and dense in G.
Let g^G_G + and set as before

(5.1.2) g(z)*=e^g(z)e-^.

Since the actions g^g* of R on G is continuous, there exists an open interval /
around 0 such that g*£G_G+ for all jcEE/. Hence

(5. 1. 3) g(z)*=g"U z)-!g + U z) for

We want to "differentiate" the equation (5. 1. 3) for x. Since the action of
R on G is continuous and since the splitting G_G + - > G_XG+ is analytic, the
coefficients of g£(^c, z) are continuous functions of x. Therefore we can differ-
entiate g£(x, z) for x in the distributional sense.

We obtain [z/, (g~) ~lg+] = - (g~) ~ldxg~ (g~) ~l g + + (g~) ~15;cg
+.

Multiplying by g~ from the left and by (g+) ~l from the right we thus obtain

Note that this implies that both sides are entire functions of z. Next recall that
g£(x, z)->l as z ^oo, z^C£. Hence, subtracting zJ from both sides of (5. 1.
4), dividing by z and taking the limit as z -^°° we see that both sides now are
equal to some Q= Q(x) independent of z. This shows

(5.1.5) dxg-(g~y
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(5. 1.6) 3xg
 + (g+)~1 + g+z/(g+)~1 = zJ+Q(x).

Note that the off-diagonal terms in g£ vanish as z -»oo. Hence

/ o

As a consequence we obtain

Proposition. Let gE=G_G+ and I be an open interval such that g*£EG-G+
for all x^ /. Then the functions g£ (jc, z) £ G£, g/ven &y g(z) x—g ~ (jc, z) ~ !g + (x,
z) satisfy the AKNS-equation (3. 1. 1) for all z^R and jcE!/.

Remark. The "potential" Q obviously is determined by g^G_G+. To in-
dicate this dependence we will sometimes write Q= Qg.

5.2. It is clear that the map g-*Qg is in some sense an "inverse" of the map Z
defined in Proposition 4. 7. More precisely we have

Theorem. Set

then

(5. 2. 2) g(z)x£G_G+ for all x<Q,

Defining Qg(x) by (5. 1. 5) a«d (5. 1. 6) for x<0 and by Qg(x) =0 for x>0 we
also have

(5.2.3) QJ^P* for all

(5.2.4)

Proof. Let g£^0. Then g=(W'-YlW+ ', where W=(Wi+, W'
Hence (4. 7. 1) implies (5. 2. 2). Moreover, (5. 1. 5) and (5. 1. 6) define a
function Qg for x<0. Setting ggOc)=0 for x>0 then defines Qg on R. We
have seen in Corollary 4. 12 that Z\ P0 ~^^o is bijective. Let (/ EEP0~ be such
that J?(Q/) = IK The Proposition 4. 3 shows gE(x, z)=o£(x, z) for all x<0.
Moreover, tracing back the definitions for o£ and 77 £ we see that a£ differs from
M£ only by a factor of type A(z)x. Hence ME and o£ satisfy the same differ-
ential equation, whence Q' =Qg a.e. This proves (b) and (c). D
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So 3e We would like to imbed P0~ into a natural quotient M of G. The quotient
Jt is suggested by the Proposition below.

Recall that we use g " = jSf H G_ and Ql + = # H G + .

Proposition. Le? g^o- ^«* for every h^& ~g% + we have (5. 2. 2) and
(5. 2. 3) /or the same potential Q= Qg.

Proof. Let h=L~gU+. Then /z*=(L-)V(^+)*K£~)*g~U * T1

g + 0c, • )"1(I7+)X for all x<0. Since (L~)xeG_ and (£7+)xGG + for x<0,
the statement (5. 2. 2) follows. Moreover, since g£Gc, z) and g£0c, z)A(z)x both
solve the AKNS-equation with the same potential Q, the statement (5. 2. 3)
follows as well. D

5. 4. In the rest of this chapter we investigate the quotient M—<£ ~\G/^l + of
G.

In this section we collect a few facts about quotients. For this we consider
a topological space E and a topological group H acting continuously from the
left on E. We set

(5.4.1) E/H={H.x-,x^E}.

Let TI : E-^E/H denote the canonical projection and give E/H the quotient
topology, i. e., UdE/His open in E/H if and only if n~~~l(lf) is open in E.

If H^H1XH2, then HI acts on E/H2([3 ; Top; Chap. IE ; §2, Proposi-
tion 11]). The "transitivity of quotients" [3; Chap. I, §3, Proposition 7] then
implies

(5. 4. 2) E/H= (E/Hj/H^E/H^/Hi.

We will apply the above remark to E= G and H=&~ X $U +, acting on G by
a-, u+).g=/-g(tt+)-1.

Finally we note that the canonical projection TI : E-* E/H is an open (and
surjective) map [3 ; Chap. 11 ; § 2, Lemma 2] . Therefore in view of [3 ; Chap.
I ; § 8 ; Proposition 8] we know

(5. 4. 3) E/H is Hausdorff <=> {(* ; h. x) ; x^E, h^H] is closed in EX E.

5. §„ In this section we consider the action

(5.5.1) Utt).g=/gii"1

of y ~ X ̂  + on G in more detail. We recall that we use £ ~ = & f) G_ and 91 +
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= (3ti n G + . We introduced the abbreviations

(5.5.2) ^ = J*f-\G/^ + = G/C3?~X^+).

Using (5. 4. 2) we see that Jt is a quotient space of either Banach manifold
<£~\G or G/tft+. To make sure that ^ is Hausdorff we show in view of
(5.4.3)

Proposition. The set $= {(g, Tgw+) ; g^G, /~ej^~, w + e^+} fc c/osec?
m GX G.

Proof. Assume gra-^g, l^gnu?-*h, l~^&~, u^W+. Consider first the
special case: g—ldu and h=l' d' u , where /, I' and u, u have diagonal I.
Then, since £?/ is open in G, without loss of generality we can assume gn~tndnun

and /n->/, dn-*d, un-*u. Therefore,

IngnUn^IndnlndnUndnUn-^r d' U ,

whence

If also c?, cT e(C+j/_)*(C+^+)*, then d*-*de, whence wn
+-^w+ and ̂ ~->

r~. As a consequence we obtain (g, ti)^$.
Now we consider the general case. We define as before £? l (resp. ^ i) to

be the set of elements in <£ (resp. ^) with diagonal I. From [5 ; Corollary 3. 3]
we know that after multiplying g and h by some /0E:JS? i we can assume /Og, /0/z

i . Moreover, multiplying on the right by some d^Q), we can assume

(1)

(2) ZoWo^jSPj®*!, I0hd0=rd'u', df =did+.

Since /ogn^o-^'ogdo, we obtain

(3) l0ln~gnUn
+d0= C/o/'f1) (/Ogndo) (4~ V^O^/cM^ /' ^ ^ .

Moreover, from (1) we know I0gnd0=-lndnunf dn=d~df. Hence I0gnd0=
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lndnun-^ldu=l0gdQ converges componentwise. We set

lot~lo~l = qnd~, a~ diagonal, i

4T1 u + d0=b+pn, b+ diagonal, pnt

Then

/ 1~& u+d —n n~1 d 11 h + n = (a n~1 (a~}~l}(n~d h+}((h+}~* h^~n ^

converges to I' d' u . But this implies

/^\ ~~ 1 L+_^W / — W' A\j) dn a no —^d — d — C i j f -

(£\ (lr\^\~^ h^ f

In (5) we know dn=d~d^^d—d~d+ componentwise. Therefore a~d~-*d-9

d^b^-^d+t whence a~ and b? converge. Since we noticed already above that
un and /„ converge, we conclude from (4) and (6) that pn and qn converge.
But now from the definition of qn and pn we see that actually /„" and u^
converge. Therefore (g, ti)^£% and the Proposition is proven. D

Corollary, Jf = & _\G/« + is Hausdorff.

5. 6. We want to find a natural open and dense subset of Ji — 5£~\G/% +. To
this end we consider the natural map ^i^ffli^G-^Jl,, where ^0—

. From [5 ; Theorem 2. 3] we recall that Ql

is analytically isomorphic with <£ 1 X 2 X <*U i .

Proposition,, The natural map $£i$)$li^G-^Jl is a homeomorphism
from &l

+X@0XW]~ = g'1
+@0qtl~ onto the open dense subset J£?

f ofJf.

Proof. Clearly, the map above (which we will denote again by n) is con-
tinuous. Next we show that it is injective. Assume n(l+Dru~~}=n(T+Dsii~}.
Then there exist /~£JSP" and u + ̂ + such that l+D^u~ = rT+Dsu~u+ holds.
Collecting terms we see that lD£=D£u holds where / :=(/"f+)"1/+ and u=
u~u + (_u~}~{. Note that here the diagonal in / is in 3) ~ and the diagonal in u is
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A straightforward computation shows that the above equation is equivalent
to /£^~, u^@+ and lDr=Dsu. But this is equivalent to r=s, /=/and u=I.
Hence l+ = TT+ with l~, l+, T+^^l and u~ = u~u+ with u~, u~, u + ^^^
But then /+(P)-1 = rejS?friJS?1

+= {1} and (fi-)-1i|- = ii + e*1
+n*f= {/},

whence l~ = I, u + = I, and l+Dru~ = T+Dsu~ follows. It remains to show that n
(jS?!+®o*r) is °Pen an(i dense in ̂  and that n\£f^2^^~ is an open map. To
verify this we recall that n : G -+Jt is open and we note

=D ' Lf J2V® 0*r*r® + = & ~& +@ o#f # +»

whence ^(fii)=^(«Sf1
+®0^r) is °Pen an(* dense in ̂ . Moreover, assume

JSf^o^f is open in JSf^o^f • Then 7r'l(K^^'K%+ is open in G, hence
TT(A:) =7r(^f ~K^r +) is open in Jt. D

5.7. In this section we relate the scattering map Z\ P^^^^X^^ defined in
4.7 to^.

First we note

(5.7.1) ^0^(^i+^o^f)

has the connected components

(5.7.2) ^

Hence, combining Proposition 4. 7 with (4. 12. 1), Theorem 4. 12 and
Corollary 4. 13 we obtain

Theorem 1. The scattering map P0 ^
>/^oc^^i+ x^i "^^0° is infective and

continuous and has as image the dense open subset TT(^O) ofJ?£.

This implies that P0~ can be considered as an open and dense subset of <M§.
Moreover, Proposition 5. 3 shows

Theorem 2. For every g^7i(<g0)c:j{g we have g*eG_G+ for all ;c<0.
Hence the inverse scattering map ;r(^0)-»P0~, g~*Qg is well defined and it is the
inverse to the scattering map P0 ^Jt§.

Remark. As outlined above the image of the embedding P0 ^^M is only
open and dense in the connected component Jt§ of Jt 0. One could perhaps
obtain an open and dense image if one would replace Jt by some "quotient" of
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Ji by ^ o • We have not pursued this at this point since a) Ji is a natural object
from the point of view of Riemann-Hilbert splitting, and b) the extension of the
map P0 ^*Ji to a map form P~-+Jt has not yet been clarified.
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