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Local Derivations, Automorphisms and Commutativity
Preserving Maps on J^

By

Erasmus SCHOLZ * and Werner TIMMERMANN *

§ 1. Introduction

In this paper we study linear operators 0: J&?~u(^) >J*f +(^), where 2 is
a dense linear subspace in a Hilbert-space Jf. j£f+(S) is a *-algebra which in
general contains unbounded operators. Such *-algebras of unbounded operators
have been studied for more than 20 years (see e. g. [7]). Much results of this
theory state analogies between *-algebras of unbounded operators and algebras
of bounded operators. That will be the case also in this paper. We want to
generalize results of LARSON, SOUROUR and OMLADIC (see [5], [6]) concern-
ing maps 0: 38 (j£) ^(-X) on the algebra of all bounded linear operators on
a Banach space X. The linearity together with further assumptions on the map
0 which seem to be rather mild leads to strong conclusions about the structure
of 0.

Before we come to the results we want to collect some definitions, notations
and introductory results. Let 3) be a dense linear subspace of a Hilbert-space
Jf, then JSf +(^) = {A A2^&, A*@^@} is a *-algebra with respect to the
usual operations and the involution A\ >A + '. = A* ®. A unital subalgebra sf
of &+ (0) is called an Op *-algebra.

By the system of seminorms

a topology t on D is generated. The seminorms

A\ > \ \ A \ \ j f : = sup |<<p, A<p}\ ; eJfd^ t-bounded
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resp. {|| • || jr Jfd-Q) t-relatively compact} generate the topologies r Q resp. r|
on j£?+(^). We always want to assume that 2\f\ is complete, this is equivalent

In the sequel we make an extensive use of rank-one operators in
They are of the form <p\ - ><0, <p)% with some 0, x^&t, we use the notation
%(8)0. It is easy to check that (%®0) + z=0®;t:. The linear hull of all rank-one
operators, i. e. the set of all finite-rank operators, is denoted by
is a two-sided *-ideal in j£?+(^). If ®[t] is an (F) -space then

(see [8]).
If j/ is an algebra then a linear map 0 : jtf - *<$/ is called a local deriva-

tion (resp. local automorphism) if for every a£=:s$ there exists a derivation
(resp. automorphism) ¥^a\ depending on a, such that <P(a) = W(a)(d). Note
that every derivation on J*?+(^) is inner (see [4]). If jaf is unital one can
define generalized derivations as linear maps W on jtf for which W(ati) = W(CL) b
+ a¥(ti) — a¥(l) b for all a, b^$0. Wis an inner generalized derivation if there
are x, y^.^ such that W(d) ^xa+ay for all a£j/. If all derivations on jtf are
inner then also all generalized derivations and vice versa. Now one can define
also local generalized derivations similar to the local derivations. Furthermore
on *-algebras «s/ local *-automorphisms may be defined.

In the second section of our paper we show that local derivations, local gen-
eralized derivations or local automorphisms (P on J*?+(^) are even "global".
That's a bit surprising because the only other assumptions concerning the topol-
ogical structure of 2 [t] seem to be of technical nature. In section 3 we gener-
alize a result of OMLADIC concerning commutativity preserving maps. Roughly
speaking one can say that such maps are nearly automorphisms or anti-
automorphisms.

§ 2e Derivations and Automorphisms

The following theorem generalizes a result of LARSON/SOUROUR about
local (generalized) derivations

Theorem 2.1. Let 0: ^ ~(0) - ><£?+(^) be a local generalized deriva-
tion, Le. Q(A)=XAA+AYA with some XA> 7^^+(^) depending on A. Then
there are X, F£J^+(^) such that Q(A)=XA+AY. In particular, ifXA=-YA

for allA^.y+ (0) then X= - Y and 0 is a derivation.

Proof. The idea of the proof is adapted from [5] . The new point is that
we have to get X, Fin J^+(^). For rank-one operators

(0(8)%) Y^ = f
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As in [5] p. 189-191 we can prove in some stages that it is possible to take f0a

— X(/>, 7]<i,iX=¥x with some linear maps X, ?: 3) - *2. Now we have to prove
that X, ?ej2?+(^). Assume that <#, 0> = 1, i.e. P=(()®x is a projection. We
have 0(P)=X<l>®x + (l>®¥x. Since 0 is a local generalized derivation we get
P- 0(1- P) • P=0 and therefore P« 0(f) • P=P* <P(P) • P.
That means <*, (Z>(J)0>P= {<*, *0> + < ?*, 0» P. Hence

> for all*, 0£E^ with <*, 0> = 1.

Linearity immediately implies

<*, <PO)0> = <*. *0> + <%, 0> for all*, 0GE^. (1)

The adjoint 0(I)+ exists in J^+(^), therefore

\<X. X&\ < II ̂ (/)+%

Hence *eD(^*), now (1) implies

X*x=

and so X^&+(@\ In the same way one can show that Fej^+(^). Now (1)
becomes an equation in J2?+(^), namely : 0(1) =X+ Y+.

If we define Y • — Y+ we have

®(F)=XF-tFY (2)

at first for all rank-one operators, therefore for all finite-rank operators F. In
addition (2) is true also for F=L Now take <P0GO - = XA + AYvx\A W:=0—00.
With 0 also ^ is a local generalized derivation. Assume that there is a T£=:
J*?+O) with 5= !T(D ̂ 0. Then a p£^ exists with 5p=a^0. Let P be the
orthogonal projection from 2 onto lin{p, a}. Pis in &(<&} and P« W((l-f) T
(/-P))«P=0. Therefore r-(/-P)r(/-P)e^(®) and P?T(r)P=0. From
the last equation we get a contradiction with P¥(T)Pp = o^Q. Hence the map
?P"must be identically zero, i.e. 0(A) =XA+AYfor aU A^^+(^. q. e. d.

Now we want to consider (local) automorphisms on j£?+(^). The follow-
ing proposition is an essential tool for studying automorphisms.

Proposition 2. 2. Let si be a *-subalgebra of g + (®) with
( i ) Suppose that 0 : stf - >s$ is bijective, linear and preserves rank-one oper-
ators in both directions (z'.e. 0(F) is a rank-one operator if and only if F is a
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rank-one operator). Then either
(a) there are bijective linear operators Ul9 U2: 2 *3) such that

I = Ui<p (8> f/20 for all <p,
or

(b) there are bijective antilinear operators V\, F2: ® *3$ such that

(ii) I/* 0: s$ *sf preserves rank-one projections in both directions then either
(a) there is a linear operator U£=.y?^(&), invertible in J*?+(^)5 such that

(PC/0 = UFU~l VF£ #"(0)

or
(b) r&ere /s <2 bijective antilinear operator V: Q) >Q) with V*@d@ such

that

¥F

(iii) If 0 in addition is ^-invariant one can choose U resp. V such that U+ =
U~{ resp. V+=V~l.

Proof. Let ^l(0} be the set of all rank-one operators in 3?+(0), Every
maximal linear space in 3F l (*3T) U {0} is of the form

resp. Mr={0®^p|0e®} with some

Because 0 is bijective and rank-one preserving maximal linear spaces in 3F l

U {0} are mapped onto maximal linear spaces in 3F l (&) U {0} . Hence for every

1. 0(M /) = [£?/(<?)] /or (P(Mz) = [G,(^)]r with some G/:

and

2. (P(Mr) = [Gr(^)]ror (P(Mr) = CG r(v)]/ with some Gr:

Note that G/(^) =o resp. Gr(^) =o if and only if 0> = o. If <p, (/>=£o are linearly
independent then

,n [0] 7) - d/m( M rn [0] r) =o

otherwise
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Furthermore dzm([<p]/n [0]r) = l for all <p, 0€=^A{o}. Together with the bijec-
tivity of 0 that implies either

(I) (P(M^ = [G /(^)] /and(P(M r) = [G r(ff)] r for all

or

(II) (P([^]^ = [G /(^)] rand(P(M r) = [Gr(^)]/ for all

Assume that (I) is true. For a fixed (pQ^o and 0e£^ we get then

0(<Po®0) = G/(tf>o) ®^o(0) with some H0 : ® - »

Now

so that //o linearly depends on 0.
With 0 also H0 is injective. Together with 0 also 0"1 fulfils (I), therefore

H0 is surjective. Hence CP(#?o®0) = G/(^0) ® ^20- Variation of #? with fixed 0
in the same way leads to <P(p®0) = ^ (0) (8) C/20.

Remark that U^ may depend on 0, it remains to prove that it doesn't. If
0 i , 0 2 are linearly dependent it is easy to check that U?^= U^ . Now let 0 l ,
0 2 linearly independent. Then £720 ! , C/20 2 are linearly independent and

2)

2V® C/202

=> (t/^ V- t/i01 V) ® ̂ 20i= (t/i02 V- f/i03 V) ® t/202

=> t/^0i V = ^i03 V = ^i02 V for all ̂  e ^

hence t/1
(</>) doesn't depend on 0. So we have proved that (I) implies (i) (a).
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The proof that (II) implies ( i ) (b) goes along the same way.
Now suppose that 0 even preserves rank-one projections and ( i ) (a) is ful-

filled. Then <0, <£> = ! implies <t/20, Ui<p) = \. With some linearity arguments
we get :

< J720, tf,«p> = <0, <p) V<

=> @ = RanU2^D(U?^ and

and

and t/2=(C/i+)-1.

With U:=Ui one gets

I/"1.

Because of linearity 0(£) = KFCT ! follows for all
If ( i ) (b) was true then ( ii ) (b) can be proved analogously.
Now suppose that ( ii ) (a) is true and 0 in addition is *-invariant. From

= CP(F)+ we get then

=> U+UF+=F+U+U

=> £/+C7 =A/

Therefore we can choose tt=-j% U. In case (ii) (b) the *-in variance of 0 im-
plies F+ F=A/ (A >0). Hence one can take F=^ F. That proves (iii).

q. e. d.

Remarks.
8 Part (ii) of the proposition has been proved for £/ = &(X), X a Banach-

space, in [6], [10]. In our proof we use ideas of these two papers. Our proof
of ( i ) with obvious modifications also works in the Banach-space situation.

8 (ii) includes some regularity statements about the operators U, F; namely U
£J*?+(^) resp. F*£^^. We couldn't prove similar things for the operators
U\, U2, FI, F2 in (i). If one modifies (i) for the Banach-space situation one
can prove that if 0 is continuous then C/1? C72, F1? F2 are bounded.

8 In [10] Synnatzschke proved a version of (ii) for abstract algebras. It is not
difficult to reformulate and to prove also ( i ) in the language of Synnatzschke.
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• If ® [t] is an (F) -space and 0 is r^-continuous then in the cases (ii), (iii) the
representation of 0 can be transfered from J^(^) onto the whole algebra jtf
because of

Now we get the following results.

Theorem 2. 3.
(i) Let 0 be an automorphism {resp. antiautomorphism) on <£+(.<2)}. Then
there exists an operator U with U, U~l^&+(9i) such that (PCX) = UXU~l for all
X^&+(j3#) (rasp, there exists an antilinear operator V with V, V~\ V*, V~l* :
3 - >® such that 0(X) = VX+ V~l for all X^&* '(0)).
(ii) If 0 is a ^-automorphism (rasp. *-antiautomorphism) then in addition U
can be chosen unitary (rasp. V can be chosen antiunitary) .

Proof, (i): One-dimensional elements 5 (in ^f+(^)) are characterized by
the existence of a non-trivial linear functional gs on $£+ (&) with SXS=
gs(X) * S VXEiJ^f +(^). Hence automorphisms and antiautomorphisms pre-
serve rank-one operators in both directions. Furthermore P is a projection iff
CP(P) is a projection. According to Proposition 2. 2(ii) there are the possibilities

(a)

or

(b)

U resp. F already have the desired properties. Assume that 0 is an automor-
phism and (b) is true. Then the following equation would hold true

But this is impossible because 3F(Qi) is not commutative. Therefore if 0 is an
automorphism then (a) must be true. In the same way one shows that (b) is
true iff 0 is an antiautomorphism. It remains to prove that (a) resp. (b) is true
for all Xej£?+(^). We demonstrate this for case (a).

Let X be arbitrary and P a projection in 3F (®) . Then

U[X- (I- P) X(I- f)~\U~l= 0(X- (/- P) X(I- P) )

= <PCX) - (/- t/ptr 0 <PCX) (/

Hence UXP= 0(X) UP. In particular, if || <p \\ = 1 then UX<p®<p=0(X) U<p®<p.
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Therefore UX<p=®(X)U(p V<p<E^, that implies 0(X) = UXU~l

The proof for the antiautomorphisms is analogous. Assertion (ii) now
follows from Proposition 2. 2(iii). q. e. d.

Remark. The representation of *-automorphisms in ^+(^) has already
been shown in [12].

Theorem 2. 40

(i) Let 0 be a bijective local automorphism on <&+(@\ Then either
(a) 0 is an automorphism

or
(b) 0 is an antiautomorphism

(ii) If in addition 0 is ^-invariant then either
(a) 0 is a ^-automorphism

or
(b) 0 is a ^-antiautomorphism

Proof. ( i ) : 0 is a local automorphism, therefore

0 preserves rank-one projections. On the other hand if 0(X) =
then X=Uxl(p®Ux(/> so that 0 preserves rank-one projections in both direc-
tions. According to Proposition 2. 2(ii) either

(a) 0CF) - UFU'1

or

(b) 0(f) = VF+¥'1

We demonstrate for (a) that then also

Let Xbe arbitrary and Pa projection in &*(&). Then

- (I- P) X(I- P) ) CT ! = (P(AT- (/- P) X(I- P) )

= <PCx) - ^((/
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with an automorphism ¥ P i X - From Theorem 2.3 we get the representation
WPtX(f) = UYU~l with some U. Hence

u(x- (I-P)X(J-P)) cr ' = <PCx) - (/-

=> PXU~1UP=PU~10(X) UP.

Take P=<p®</) with (0, ^> = 1 then we get

Because of linearity this equation is valid for all 0, <p^@. Hence
U~10(X) U, that implies UXU'l^0(X).

Assertion (ii) now follows from Proposition 3. 2(iii) q. e. d

Now the question appears if one can exclude the possibility that a local
automorphism is a global antiautomorphism. This is possible for a wide variety
of domains 3). We need the following lemma.

Lemma 2. 5. Assume that D is one of the following domains :
(0) @ = d, (d the space of finite sequences)
(1) 2\i\ is an (f) -space
(ii) ®[t] is a (Qf) -space, for which a t-bounded subset M exists with

^f 0 = °°
(iii) ®[t] is the (Qf) -space, constructed in [2] (which doesn't belong to case
00).
(iv) ®[t] is one of the (Df) -spaces, constructed in [3], [1],
Then there are an orthonormal system ($^)™=1C»Q) and a generalized shift-
operator R on this system, i.e. R<pn:=hn(pn+l (An>0) such that

Proof. The problem is to find <pn, An in such a way that R is in
(0): Take the usual shift-operator on the canonical orthonormal system <pn=en.
(i): If ^ is an (F) -space then the existence of suitable An has been proved for
any orthonormal system ((p^)CL£$ in [9] Lemma 3. 4.
(ii): lin Jt l is an infinite-dimensional (F) -space therefore (i) applies.
(iii) : Let d be the space of finite sequences, h some fixed vector from I2\d and
dh=lin{d, h}. The construction of the (QF) -space 2 in [2] uses the space dh.
For our purpose it is enough to find a weighted shift-operator in £ f + ( d h ) (see
[2] Lemma 2). But that is obviously possible because dh and d are unitary
equivalent.
(iv): In [1] (DF) -spaces are constructed as follows. Let (ara) be an increasing
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sequence of positive reals with limn^00^
L—0 and

p nan <oo

anan <oo

Now let ̂ C|2 be given by

sup

We want to use the canonical orthonormal system (O and have to find a se-
quence (AJ such that

sup I hnfn+lan | < oo and sup ljnan+l < °° for aU
n «

It is enough to have

sup | Xnan | < oo and sup | Anan+1 | < oo for all

We can fix some p^(0, 1) and choose then A n=min(pcX pan+1) to meet these
requirements.

In [3] (DF) -spaces are constructed as follows. Take a matrix («fc,n)/Tn=i
with

(a)

(b) akn=l ifn<k

(c) (ak,^<ak+l,n.

Then define

Z={

and

Now there are two possibilities
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1 . There is no row in (a ki „) with an infinite number of non-zero elements.
Then X is the space of all sequences and $) = d. Every weighted shift on the ca-
nonical orthonormal system is in e£?+(^).
2 . There is a row in (a k> „) with an infinite number of non-zero elements a ki „.
( j= 1, 2, ...). Then all elements a k+ii n.(l=Q, 1, ...) are non-zero because of (c).
We want to choose in ^ the orthonormal system (e „.)./= i- Then it is enough to
consider the matrix (a k+!i n .) ̂ o, /,.... So we can suppose without loss of gen-
erality that all akiH are non-zero. Similar to the other type of (DF) -spaces we
have to construct a sequence (/!„) with

L An/n+1aJ2<oo and SUn /nan + 1!2<~ for all/e®, a&X.
n n

Again it is enough to have

sup Xnan <°° and sup Anan + 1 < oo for all a^X
n n

because S i /„ 2< °°. We can choose A^minCa l} n, a l} n+1). q. e. d.

Theorem 2. 6. Assume that there is a weighted shift operator R in =£?
Then every bijective local automorphism 0 is an automorphism. If in addition 0
is ^-invariant then 0 is a ^-automorphism.

Proof. Because of Theorem 2. 4 we only have to find a contradiction if we
assume 0(X) = VX+ V~l VXej^+(^). For the weighted shift operator R the
relations her R2=ker R and ker(R+y 3= her R+ are true. Hence there is no in-
vertible linear or antilinear map W ': 2 - >&> with R+ = WRWl. However we
assumed URRURl=0(£) = VR + V~l and that leads to the desired contradiction.

q. e. d.

Remark. The theorems 2. 1, 2. 6 show that the sets 5^ of generalized inner
derivations resp. of automorphisms on J2?+(^) are algebraically reflexive in the
following sense :

ref ^:

Both sets are certain subsets of the set of elementary operators on
Note that the set of all elementary operators on J^f+(^) is not algebraically ref-
lexive. This can be shown as in [5] section 3.

The referee suggested to consider also maps 0 on subalgebras
A check of the proofs shows that for unital algebras j2/D^"(®) there are
necessary only few modifications to obtain results similar to the Theorems 2. I/
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2.4.

Proposition 20 7. Let j/ID J^(^) be an Op* -algebra
(i) For every derivation 0 on s$ there exists an

Q(X)=AX-XA

(ii) Lef 0 6e an automorphism (resp. antiautomorphism) on &/. Then there
exists an operator U with U, U~1^ &+ (0) such that 0(X) = UXU~l for all X^j/
(resp. there exists an antilinear operator ¥ with V, V~l, V*, F"1* : 3) - *@ such
that 0(X) = VXV~l for all X^s/\
If 0 is a ^-automorphism (resp. ^-antiautomorphism) then in addition U can be
chosen unitary (resp. V can be chosen antiuni tary) .

Remark, For some Op*-algebras the representation of *-automorphisms has
also been obtained by Takesue in [11], see also [7], Theorem 6. 3. 6. Takesue
used other assumptions instead of j^D^(®), so that also some algebras with

can be considered.

Proof, (ii) can be proved by obvious modifications of the proof of Theorem
2. 3. For the proof of (i) we refer to [7], p. 167. q. e. d.

For a generalized derivation 0 the map W(x) -=0(x)~0(l)x is a deriva-
tion. Hence we can note the following corollary.

Corollary 2, 8, For every generalized derivation 0 on an Op* -algebra
there exist operators As B^g+($) with 0(X)=AX+XB for

Now we can generalize the theorems 2. 1/2. 4.

Theorem 2. 90 Let jtfZ) #"(®) be an Op* -algebra.
( i ) Every local (generalized) derivation on jf is a (generalized) derivation.
(ii) Every bijective local automorphism on j/ is either an auto- or an antiauto-
morphism.

The proof is left to the reader. There are only needed some obvious modifica-
tions of the proofs of Theorem 2. 1 resp. 2. 4.

Remark. For other algebras s^7^^(&} (resp. j/Z^C^f ) in the bounded
situation) it seems to be an open question if there are local derivations/automor-
phisms which are not global ones.
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§ 3. Commutativity Preserving Maps on <£+ (&)

In this section we want to generalize a result of Omladic [6] for the algebra
!£^(Qi). Some ideas of the proof are as in [6] but note that Omladic's proof is
not complete and correct in all steps. The theorem is the following one.

Theorem 3.1. Let 0: J*?4 "(0) - ^+(^) be linear, bijective and com-
mutativity preserving (i. e. [004), <P(J3)] =0 <=> [A, B] =0). Furthermore
assume that a(A)=£<f> <=>a(0G4)) ^0. Then either

( a )

or

(b )

with a linear functional p on ^+(®), /c^O, t/e^+(^) resp. F: 0 - >^ inver-
tible and antilinear with

Remarks.
8 It is easy to check the reversed conclusion that if 0 has the form (a) or (b)

then it preserves commutativity and a(<Z>CX)) =aCX) +p(X) 7^0 iff cr(X) 7^0.
9 In Omladic's theorem for maps 0 : &(X) - »JS?CX) the space JT may be finite

-dimensional, but then dim X> 3 is needed. As already mentioned some correc-
tions of Omladic's proof are necessary. They can be done as in our following
proof where we have only at one point a restriction concerning the dimension of
2, namely again dim @>3.

9 If 0 acts on a Banach-algebra t£(jC) then the assumption about the spectra is
unnecessary because all operators in J^ (JO have non-empty spectrum.

We will give the proof step by step. Note that we always want the assumptions
of the theorem to be fulfilled.

Lemma 3.2. For a subset m^^(&) let $ = {X^<£+(&)\ XR = RX
be the commutant of M. Then 0(& ) = [<P(0)]7 and
Furthermore 0(1) =0) • / with somea)=£Q.

The proof is easy and therefore omitted.

Lemma 3.3 (see [6] Lemma 3. 1, [10] Theorem 3. 1). Assume that for
the spectrum a (A) contains more than one element. Then
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dim UK =2 <=>
with a nontrivial projection

Lemma 3.4 (see [6] Lemma 3.2, [10] Theorem 3.2). Let P^g be two
non-trivial commuting projections in J*?+(^).
( i ) Either P or (/— P) and either Q or (/— Q) are rank-one projections if and
only if%= {P} ' + {($ ' has codimension 2 in J&?+ (0).
(ii) If P, Q are of rank one then there are nilpotent rank-one operators U, V

The next lemma will be used in our proof instead of Omladic's Lemma 3. 5
which is false. We will give a counterexample later.

Lemma 3.5. Let P, R^^+(^ be rank-one projections. Then there is a
chain Ql9 Q2, ..., Qn such that (P, d), (d, Q2), ..., (Qn, H) are pairs of dis-
joint rank-one projections.

In our context 3) is always infinite-dimensional, but for the proof of this lemma
we need only dim ^>3.

Proof. Take P=<pP®(pP, R=(pR®(/>R with <0P, <PP> = <0*, 0>*> = 1 (<PP, <PR,
0P, 0^eS). As usual we sometimes interpret the vectors from 2 as linear func-
tionals on Q).
1 . Assume that her 0PD ker 0*2 lin (<pp, <pR} .

Then choose (p^(ker (/>Pr\ker 0R)\lin{(pPf (pR} and (pl with <01? ^j> = l, <01?

^p) = (0i» ^/?)=0- Now we can take n=l, Gi=^i®0i-
2 . Now assume that /cer 0Pn /cer 0*C /in {^>P, ^^} .
fcer 0Pfl feer 0* is nontrivial because of dim @>3. If (y>P, (pR^ would be linearly
dependent we would get the contradiction <0P, <PP) = (0*, ̂ n)=0.
If (0P, 0*) would be linearly dependent then dim @>3 would imply ker 0PH ker
</)R=lin{<pP, <pR} and again we would get the contradiction (0P, 0>P> = <0n, 9s)^
0. Hence (<pp, <p^) are linearly independent as well as (0P, 0*). There is a
nontrivial <p£=lin{<pp, <pR} D (ker (/)pnker 0*). The ansatz <p=a<pP

Jr/3<pR implies
<0p» <PR> 9 <0^» ^p> = l, in particular <0P, ^*>, <0*, ^P>^0.
Now choose <pl such that (p^ker 0P, ^^fcer 0*, (^P, ^, (Pi) linearly
independent. (This is possible because ker(/)Pniin (<pp, <pR} ̂ ker^)Rmin{(pPf <pR}
but ker(/>P^ker</>RJ Take 0i= <0J^> (<t>R-(<f>R, ^p>0p) and <p2=(</>R, <Pi> (&R
— <0P, <PR)<PP). fa* <PR) are linearly independent because of <0P, ^n)^0, hence
also (#>!, #>2> ^i?) are linearly independent. Now choose 02 with (02, ^i) — (02>
^)=0, <02, <P2> = 1. Then we can take n=2, d=^i®0i, Qi=92®<I>2- Q- e. d.

Now we go the first big step towards the proof of Theorem 3. 1.
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Proposition 3. 6 (see [6] Proposition 3. 4).
Let P, Q be disjoint rank-one projections. Then

<P(P) =

with disjoint rank-one projections R, S and K =£0.

Proof. The steps of the proof are as in [6]. We will remark only some
modifications and completions. Write P=<pP®(/)P, Q^VQ^^Q and set U=(pP®
$Q> V=<PQ®</>p. Remark that <0P, <?/>> = <0e, «0Q> = 1, <0P, <p£ = <fl>Q, <Pp>=0.
Every rank-one operator T=(p®(() has the non-empty spectrum 0(7) = {0, (0,
<p>}. Hence, according to the spectral assumption of Theorem 3. 1, the spectra a
(0(P)), a(<KQ)X <7(<P(0)X a((P(fO) are non-empty. With ,4=0(P), 5=
0(0), C=0(F), D=0(Q) assume a<EaU), 6Ga(J5), c^a(C), d^o(D).
(I) ^4 — a, D— J cannot both be nilpotent
This can be proved as in [6] .
(II) A — a, D—d are scalar multiples of projections
Without loss of generality assume a^d=Q. The Lemmata 3. 2/3. 3 imply A2 =
aA+pI, D2=rD+6L Because of Q^o(A), O^a(D) it foUows that £=5 = 0.
Assume a = 0, then 77^0 according to (I).
Take G= A+ D= ®(P+ @) , then

G2 - (G-7)2=0 (3)

P+Q is a projection, with Lemma 3.2 and Lemma 3. 3 we get dim{G}" =2.
Hence G2=fJiG+vI. From (3) we get now three possibilities :

(a) G2=0
(b) G(G-r) =0
(c) (G-r)

2=o

Now we deal with these three cases. Remark that A and D commute because P
and Q do so.

(a) 0=
=> 0 =

7=0 contradicts (I), but with 77^0 we get ^4D=0 = D2. This is also a contra-
diction.

(b) 0= U+D) C4 + D-7) =2AD-
=> Q
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Again 7=0 contradicts (I) and 7^0 leads to AD=0=A what is impossible.

(C) 0:

ve

=> Q = 2A2(D

Here 7=0 contradicts (I) and 7^0 leads to

(D- 7) 2 = - 7 CD— 7) = 0 ; D= 7! what is impossible.

So we can exclude a=Q9 7=0 can be excluded in the same way.

(Ill) R=(A— a) /a and (D— d)/7=S are projections. Because 0 is bijecti
we get with Lemma 3. 4 that either R or (/— jR) and either S or (I— S) are rank
-one projections, assume that J? and S are such ones. Then the operators

0(f)=A=aR+aI, 0(@)=D=rS+dI

get the desired structure. Also in the other cases A resp. D is a linear combina-
tion of / and R resp. S. It is not difficult to check now RS=SR~Q and a =7.
This is left to the reader. q. e. d.

Corollary 30 70 For all rank-one projections P one has 0(P)=ftRP
Jrl PI

with a rank-one projection RP. ft^O is independent of P.

Proof. Combine Proposition 3. 6 and Lemma 3. 5. q. e. d.

The next step of the proof of Theorem 3. 1 is the definition of the linear
functional p. Fix some P0=(pP®</>P with <0P, 0>P> = 1, then 0CP0)

=ft(!:®?7) +
U with K 7^0, <??, £> = 1. Define

/e<0P,^p> (4)

:=-k<PGO-,GO/>. (5)a/

In particular, /?(P0)=A, ?P"(P0) — f®??- Remark that /? and ^"depend on the
choice of P0 •

Proposition 3* 8»
(i) W fulfils the assumptions of Theorem 3. 1
GO 8r(i)=/
(iii)
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Proof. Linearity, the property of commutativity preserving and the spectral
condition follow from the construction of W. That W is bijective can be proved
as in [6] Proposition 4. 1. Since 0(1) =col we get p(I)=a)—K, W(t)=L (iii)
can also be shown as in [6] . q. e. d.

Now some efforts are necessary to prove the following proposition. Omladic
tried to use his Lemma 3. 5 from [6], but his lemma is false in some special
cases. We had to find some modifications. Nevertheless ideas of Omladic are
essentially used also in our proof.

Proposition 3. 9. W(R 0) is a rank-one projection for every rank-one projec-
tion RQ.

For the proof we distinguish the following cases for RQ—(PR®(/>R (Remark : P0~

(a) <0P, (PR) = <0*, (Pp) =0

(c) <0P, (pR} • <0u, <pp) = l and (<pp, (PR) or (0P, 0^) linearly dependent
(d) <0P, (PR) • <0K, (Pp) = l, (spP, (PR) and (0P, 0*) linearly independent.

Before we come to the proof of proposition 3. 9 we note the following lemma.

Lemma 3, 10. Let P0=(p P®0 P, RO=(PR^^R be projections in J^+(^). //
not (d) then there are rank-one nilpotents U, V for which P0= UV. Furthermore
QQ= VU is a projection disjoint with P0 and RQ^lin{PQ, Q0> U, V} .

This lemma is the "right part" of Lemma 3. 5 in [6], the proof is omitted. The
assertion of Lemma 3. 10 is false in case (d). This can be seen as follows. U
resp. Fmust have the structure U=(pP®(p resp. F=ZZ^®0P. For <p, 0 one gets
the requirements <0, <p) = l, 0^e/m{0, 0P}, (pR^.lin{(p, <pp}. They cannot be
fulfilled in case (d). An example for rank-one projections P, R which are in
relation (d) can be given already in a three-dimensional space <&, namely take

In the following we mainly distinguish between (d) and the other cases
where Lemma 3. 10 works.

Proof of Proposition 3.9. If we are not in case (d) the proof goes exactly
along the line of Omladic's proof for Proposition 4. 1 in [6], In the case (d)
take (p^ker (f)R\ker 0P and R^— (^P^+A^) C*)0#. R% is a rank-one projection for
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all A. Furthermore the pair (P0, R^) belongs to one of the cases (a)-(c) for all
A 7^0. Hence ¥(R%) is a rank-one projection for all A 7^0. Now it is easy to
verify that W(RQ) is also a rank-one projection. q. e. d.

The same can be done for the map W~\ hence ^preserves rank-one pro-
jections in both directions. According to Proposition 2. 2 (ii) we have either

= UFU'1

or

where £/resp. Fare maps with the properties asserted in Theorem 3. 1.

Proof of Theorem 3. 1. p, ¥ are constructed in such a way that 0(X) =
KW(X)+p(X)I (see (4), (5)). It remains to prove that the possible representa-
tions of W given above are valid not only for Fej^(^) but for all
At first we want to prove that for all rank-one projections R0

Again we have the cases (a)-(d) for the relation between P0
 and ^o- If n°t

(d) then the proof goes as in [6] „ Otherwise we consider R A as in the proof of
Proposition 3. 9, then it is R^^RQ+^SQ with some rank-one operator 50. For
all A ̂ 0 we have ¥(RAAR^> - 8^) W(A) W(Rj. Hence

for all

That implies M^= JV^O, therefore

=0 for all

Now we assume that ¥(f) = UFU'1 VFej^"(^)0 For R0=<pR®(pR and arbitr-
ary X^ <£+(&) we have

W(R0XR0) =
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~l = UR0U~l¥(X) UR0U'1

Hence, if <0*, ^u> = l then <0*, X<pRy = (<l>R, U~1W(X) U<pRy. But linearity then
implies, that this equation is true for all <pR, <pR^@. Therefore X= U~l W(X) U
resp. UXU~l=W(X).

In the case W(f) = VF+V~l VFej^(^) the proof of W(X) = VX+V~l

VJT<EJ2?+(^) is analogous. q. e. d.
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