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An Extension of Baum-Fulton-MacPherson's
Riemann-Roch Theorem for Singular Varieties

By

Shoji YOKURA *

Introduction

In [1] Baum, Fulton and MacPherson extend the Grothendieck-Riemann-
Roch theorem (abbr. GRR) for non-singular projective varieties to (possibly
singular) quasi-projective varieties over any field and proper morphisms. More
precisely, in [1, Chapter 1] they prove the Riemann-Roch (abbr. RR) in the
case of (possibly singular) complex projective varieties with the ordinary singu-
lar homology theory with rational coefficients, by deformation to the normal
bundle, and in [1, Chapter 2], in more general, they prove the RR in the case
of (possibly singular) quasi-projective varieties over any field and proper mor-
phisms with the Chow homology theory with rational coefficeints [3], by the
"Grassmannian graph construction". If the field is the complex numbers C, then
the above Chow homology theory can be replaced by the singular homology
theory (and Borel-Moore homology theory for non-compact varieties). Thus
[1, Chap. 2] generalizes [1, Chap. 1].

In this paper our varieties are complex projective varieties and the homology
is the singular homology theory with rational coefficeints.

Let K0 be the covariant functor of Grothendieck groups of algebraic
coherent sheaves. For a morphism /: X—**Y the pushforward /* : J^0OO^
J£o(F) is defined to be the alternating sum of higher direct images Rlf*. Let
-^2* G G) be the even part of the Q-homology covariant functor. The GRR-
theorem says ("homologically") that if T : K0(X)-^H2*(X; (?) is defined by
r(J*0 := [fc/CT^cAC^)] n \_X] (=td(Tx) n (cA(#0 n [*])), where td is the
Todd class and ch is the Chern character, then T becomes a natural transformation.
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When it comes to singular varieties, the above definition of r(^) does not make
any sense since the tangent bundle Tx cannot be defined. However, by intro-
ducing the localized Chern character ch%&) of the coherent sheaf <IF (which is
a homology class of X) with X embedded into a non-singular quasi-projective
variety M, as a substitute of (c/zC^O D [X]), Baum-Fulton-MacPherson proved
in [1] that there exists a unique natural transformation Td* : K0-^H2*(i; 2)
satisfying the extra condition that for a smooth variety X Td* (j® x) is equal to the
Poincare dual of the usual total Todd cohomology class td(T^) of the tangent
bundle Tx, where (9 x is the structure sheaf of X. Here for a variety X Td*(tF}
is defined by i * td( TM) H chx(&}, which turns out to be independent of the
choice of the embedding i: X-^M. For a smooth variety X i*td(T^ flchx(^
is equal to td^T^) Hc/zC^") H [X], thus in the category of smooth varieties Td*
is nothing but the GRR-transformation T above.

For a variety X Td* (X) : = Td* (0 x) is called the homology Todd class of
X, the 0-th component of which is the arithmetic genus #(X, & x) of X- And
Td* is multiplicative, i. e., Td* (XX 7) = Td* 00 X Td* (7), which is a gener-
alization of x(X*Y, 0jrxr)=*0t ®x)x(Y, Oy). Thus the homology Todd
class is a generalization of the arithmetic genus to higher dimensional homology
classes. The above Baum-Fulton-MacPherson's Riemann-Roch theorem (abbr.
BFM-RR) has another aspect, besides being an extension of GRR, that the
natural transformation Td* : K0-^H2*(; g) is a "singular" version of the usual
Todd cohomology class of non-singular varieties (cf. MacPherson's survey
article [10]). As commented in the introduction of [1], establishing BFM-RR
was clearly motivated by the "singular" version of Chern cohomology class, i. e.,
the Chern-MacPherson homology class [9] : Let F be the constructible function
covariant functor. Then there exists a unique natural transformation C* : F—>
#2*(; 2) satisfying the extra condition that for a smooth variety X C^(l^) is
equal to the Poincare dual of the usual total Chern cohomology class c(Tx) of the
tangent bundle Tx, where lx is the characteristic function on X. For a variety X,
C*CY) : = C*(ljr) is called the Chern-MacPherson class of X3 the 0-th compo-
nent of which is the topological Euler-Poincare characteristic %(JT) of X. Re-
cently Kwiecinski [7] has proved that C* is multipliciative, i.e., C*(XX 7) =
C*COXC*(7), which is a generalization of %(XX Y)=%00*(D (see also
M).

In [12] the author extends C* so that the Chern class c in the above extra
condition can be replaced by the Chern polynomial C(g) = S />o^^ ;. In this
paper, in the same spirit as that in [12], we shall extend the BFM-RR-trans-
formation Td* so that the Todd class td in the above extra condition can be
replaced by the "Todd polynomial" td^ = ̂  z>0 #''&//.
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Theorem A. Let K^ (X) ' = #0OD <8> Q[q, q~l~] and for a morphism f: X-+
Y the twisted pushforward f^ : tf^OO^^W is defined simply by f^ : =
qtmx-tonTf^ f nheref^ , R0(X^KQW is the original one. And let H$( ; g) '• =
•#2* (;(?[#» # ~1]). Then there exists a unique natural transformation Td^* :

; Q) satisfying the extra condition that

for smooth X,

and such that if we "evaluate" Td^* at q=\, then we recover BFM-RR Td^^ —
Td*.

To obtain the above "twisted" natural transformation in a similar way to
that of the BFM-RR Td* , we consider how to modify the basic ingredients
td(T^) and c/#(#0 in the BFM-RR-theorem. In BFM-RR c/#(#") is
defined by c/#(#") : = cA?GO, where g. is a resolution of the sheaf i*^ for an
embedding /: X-^M. In our case we define ch(q$(^ : = qd™x~±mMch(q$ (g.\
by introducing some "twisting coefficient", where cA(9) = 2 i>oqlcht is the "Chern
character polynomial". Then, in a similar manner as in [1], we can show that
for a coherent sheaf J^ and for an embedding /: X-*M, f td (q)(T '^) fl
ch (<j)x(^ is actually independent of the embedding / : X-^M and that the trans-
formation Td(q^ : KP-*H$(; g) defined by Td (g) * (^) = i* td (q) ( TM} H

is nothing but the natural transformation in the above theorem.

It turns out that there is a simple relationship between the "twisted" natural
transformation Td ̂  * and BFM-RR Td* as follows : for a variety X and a
coheret sheaf 3F on X,

(0. 1) Tdu*&=q*'mX'ZteQq-tTd*l&\

where the natural transformation Td*{ : K0-^H2i( ; Q) is the projection of Td* :
KQ-*H2*(:> Q) to the 2 f- dimensional component. If, from the very beginning,
we define the "twisted" natural transformation Td(q)* : K^^H^d (f) by
(0. 1) and by extending it linearly with respect to the Laurent polynomial ring
Q lq, <? *], then it is not hard to see Theorem A itself. However, the aim of this
paper is to prove Theorem A in an analogous manner to that of BFM-RR
Theorem, as a natural extension or generalization of it.

As a corollary of the above theorem, we can get the following "twisted"
version of GRR :

Corollary B. For a non-singular projective variety X, if we define the homo-
morphism r(*} : K$>(.X)-*H2*®(X; Q)(: = #2*U; Q[q, q
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tTx) and extending linearly with respect to Q[_q, g"1], then r({?)

becomes a natural transformation, i. e., for a morphism f: X-*Y the following
equality holds :

where A - H2*(q\X; @)-*H2*(q\Y; g) is the Gysin homomorphism.

If we consider 'K$ to be just a linear extension of the functor K0 with re-
spect to the Laurent polynomial ring Q\_q, g"1], then by considering the map
from a smooth X to a point we can see that one cannot get such a natural
transformation T: 'K^-^H^ ( ; Q) satisfying the condition that t((9^) =
td^^Tx) n \_X~\ for smooth X. In general we can show

Theorem C. Let cl: K-^H2*(; Q[q, g"1]) be a total characteristic class of
complex vector bundles. Then r : 'K^-^H^* ( ; (?) & a natural transformation
satisying that T(@ x)=cl(Tx) fl [X] for smooth X if and only ifcl^X o td and i
=Ao Td* for some X^Q[_q, q~l~\.

The organization of the paper is as follows. In § 1 we recall some basic
facts and results about characteristic cohomology classes. In § 2 we show the
universality theorem of BFM-RR transformation Td* and Theorem C. In § 3
we prove Theorem A and give a characterization of the "twisted" BFM-RR
transformation Td*.

§ 1. Preliminaries

In this section we introduce some notation and recall some basic results on
characteristic classes of complex vector bundles, which we will use in the rest of
the paper.

A usual characteristic class cl of complex vector bundles is a rule assigning
to any complex vector bundle E over any topological space X an element c/(£)
of the cohomology group of X such that it satisfies the naturality condition, i. e.,
c/(/*£)=/*c/CEF) for any map/: Y-*X. To paraphrase this more fashionably,
let "fact : ZT&fi,^$n4 be the contravariant functor from the category ^?/ of
topological spaces to the category $n$ of sets, such that i^W(JO=the set of
isomorphism classes of vector bundles over X, and let H * ( ; A) ' = H * ( ; Z) (E) z

A : ST&fa^ino be the usual cohomology contravariant functor, where we ignore
the algebraic structures of cohomology rings. Then the above characteristic class
cl is a natural transformation cl: i<ecJ-+H*( ; A). If cl is multiplicative, i. e.,
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cl(E@F)=cl(E)cl(f), then cl can be strengthened to be a natural transforma-
tion from the Grothendieck contra variant functor K° to H*(;A), where K°
and H*(;A) are now functors from ,^/fc to the category 9lin# of rings.

Let n be a non-negative integer and a partition of n be a non-decreasing
sequence \r\, r2, ..., rj of positive integers whose sum is exactly equal to n.
The (only) partition of zero is conventionally zero itself. Let Ik(n) denote such
a partition {r1? r2, ..., rj of n and let I(ri) denote the set of all partitions of n
and p(n) denote the cardinality | I(ri)\ of the set /(/*). Let Pn(ci, c2, ..., c J be
a homogeneous polynomial of degree n with the weight of ct being /. Thus
^n(c i» c2, ..., cj is a linear combination of Ik(ri)-Chern class c/ (n) - = cr cr ...

Any characteristic class c/: T^W-^ffC ; yl)can be expressed as a formal power
series of Chern classes, i. e., c/^AoCo+S n>\Pn(ci, c2, ..., cj. A fundamental
result about Chern classes is that the total Chern class c : KQ^H2* ( ; A) A : = 1 +
2 i>\H2l( ; A) is universal for all multiplicative characteistic classes. I. e., given
any multiplicative characteristic class cl: ^°-^H2*( ; yl)A, there exists an
endomorphism 0cl: H2*( ; A) A-^f2*( ; 7l) A such that the following diagram
commutes :

Indeed there exists a unique multiplicative sequence M'-—{19 M{(x^), M2(.x\,
*2), ..., Mt(xl9 x29 ..., x}, ...} such that c/=l + S n^\Mn(,cl9 c2, ..., cn).
Thus the multiplicative sequence M gives rise to the endomorphism 0ci:
If2* ( ; A) A^H2* ( ; A) A defined by

l + S^jM^JC!, JC 2 , ..., JC,),

and cl is the composite of the total Chern class c= 1 + 2 / > i C / and the endomor-
phism 0ch

Let Xbe a compact complex manifold of dimension m>n and then as usual
define the 2«-dimei

manifold X as follows :
we define the In-dimensional characteristic cohomology class c/ (n)(X) of the
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where Tx is the tangent bundle of X. And we denote the 2 (m-n) -dimensional
homology class c/ (w)COn[Xl by simply c/ („)[-¥]. In particular, if m=n,

then GJ («)[X] is an integer and called the Ik(ri)-Chern number of X (see [11,
§16]).

For a partition /7-(n) = {r1, r2, ..., rj- of n we define the J;(w)-projective
/• («)

space P y by :

With these definitions above, we have the following fundamental result :

Theorem (1.2) ([11, Theorem 16.7 and a remark right after it]). The
p(ri) Xp(ri) matrix Mn whose entries are Ik(ri)-Chern numbers of I j(ri) -protective
spaces P j :

is non-singular.

Corollary (1.3) (The linear independence of Chern numbers [11, § 16]).

J/(Pn(ci, c2, ..., cJ)[PJ ' B]=0/or all Ij(ri)^l(n), then Pn(cl9 c2, ..., 0 =
0 as a polynomial. Hence, if (Pn(ci, c2, ..., c„)) [X] =0 for any compact com-
plex manifold of dimension n, equivalently (Pn(c1? c2, ..., cn))[rj=0 ftj; the
Poincare duality, then Pn(c1? c2, ..., cn)=0 as a polynomial..

Corollary (1.4). If r is a rational number and (Pn(c1? c2, ..., cn)) [P; ]
= rfor all Ij(n)^I(n), then Pn(cl9 c2, ..., cj = ro tdn(cl9 c2, ..., cn), where
tdn(ci, c2, ..., cj is the n-th Todd class.

Proof. Use the fact (see [6]) that (tdn(cl9 c2, ..., cn))[P/; "]=1 for any
Ij(n)^I(n) and Corollary (1. 3).

Proposition (1. 5). ([14]) Lef m>n and /ef Z and F be compact complex
manifolds of dimensions m-n and n, respectively, and let n : XX Y-*X be the pro-
jection. Then

TT* (c/fc(n) [XX 7]) = (clkU) [7]) [Z].

Corollary (l. 6). Let m>n and let X and Y be compact complex manifolds
of dimensions m-n and n, respectively, and let n: XX Y-*X be the projection.
Then
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c l 9 c 2 , ..., c n X - n c 1 , c 2 , ...,

We introduce more terminology. The natural transformation c^S^oC/,-:
1fect->E* ( ; yl) shall be called a fora/ characteristic class, instead of just a char-
acteristic class. Here cl0=hQCQ and cl^P^Ci, c2, ..., c/). If we are arbitrarily
given isobaric polynomials clQ=X0c0 and cl^Pfai, c2, ..., c/) (!</<«), then
c/(n) : = S o</<n c/z is called a degree- n characteristic class.

Using Corollary (I. 6) we can show the following proposition, which is a
generalization of the above "linear independence of Chern numbers" :

Proposition (1.7) ([14]). Let c/(n) be a degree-n characteristic class. //*
c/(li)(rjc)=0 for any compact complex manifold of dimension n, then c/(n)=0 as
a polynomial.

§ 2. The Universality of BFM-Riemann-Roch Transformation Td*

The uniqueness of the BFM-RR-transformation Td* : KQ-^H2*(; 2) satis-
fying the extra condition that T(&x) ="td(T^) D \_X~\ for any smooth variety X
follows from the following lemma, which can be shown by resolution of singu-
larities.

Lemma (2.1) (cf. [2, §4.2]). Let I, T : K0-^H2*(;(}) be two natural
transformations. Then T=T if and only if r(d?pr)=r / (0^) for any smooth
variety W.

Proof. It suffices to note that for any variety X KQ(X} is generated by the
structure sheaves 0 v for all subvarieties V of X, and furthermore that for any
structure sheaf 0 v there exist a finitely many smooth varietes Wi9 morphisms
nt: Wr+Vand some integers m/s such that

0 F^S tWiTti*® w. •

This lemma is an analogue of: For two natural transformations i, T : F-*
JEf2*(; £)T—T if and only if T{\^=T (lx) for any smooth variety X. The
proof of this is similar to that of the above [5, 9].

In [1], however, the uniqueness of Td* is not shown by using resolution of
singularities at all, but by the following strengthened "uniqueness theorem" of
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"Uniqueness theorem" ([!]). BFM-RR-transformation Td* : KQ-+
H2* ( ; (?) is ^e only natural transformation r satisfying the property that

r(0 P») = [P"] -i-homology classes of lower degrees

for each projective space Pn, n—09 1, 2, ... .

This "Uniqueness theorem" follows from the fact [1, Chap. IK, § 1] that
for each variety X Td*®Q induces an isomorphism KQ(jC)®Qr:>H2^(X\ Q)
and the following "Identity theorem" ([3, § 5]) :

"Identity theorem" ([3, §5]). I/a: H2*( ; @)-+H2*( ; ft) is a natural
transformation such that for each projective space P\ i=Q, 1, 2, 3, ...,

a ( [P'] ) = [Pz] -f- homology classes of lower degrees,

then a must be the identity.

It turns out that "Uniqueness theorem" tells us more about BFM-RR-trans-
formation Td* :

Theorem (2.2) (The universality of BFM-RR-transformation I'd* [15,
Theorem !])„ I f r : K0-^H2*( ; fi) is a natural transformation, then there exists
a unique sequence {rj f>0 of rational numbers such that T=^i-^QriTd^it where
Td*i : H2*(; g)-»^2f( ; 6) is the projection of Td* to the 2i- dimensional compo-
nent. Thus BFM-RR-transformation Td* : KQ-*H2* (;(][) is universal in the
sense that for any natural transformation r : KQ-^H2*( ; 6) there exists a unique
natural transformation 0T : H2* ( ; @)-+H 2* ( ; Q) such that T= 0T ° Td* , where
0T is defined by 0r(£ ^o^,) = S I^0 ' 'i^i-

Td*7I H2*( ; Q)

By the same argument (see [15, Proof of Theorem 1]) and using "Identity
theorem", we can show the following

Theorem (2. 3) (The linearity of endomorphism H2* ( ;Q)-^£T2* ( ; Q))0 //
r: _H2*(; (?)~^^2*(; Q) is a natural transformation, then there exists a unique
sequence {r} ,>0 of rational numbers such that i— 2 ,>o^/» where nt : H2* ( ; Q)
~*H2i( ; Q) zs the projection to the 2i- dimensional component. Namely, r(S />0^f)
— 2] t>QfiXi.
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Remark (2. 4). It is easy to see that "Uniqueness theorem" and Theorem
(2. 2) are equivalent and that "Identity theorem" and Theorem (2. 3) are equi-
valent.

Remark (2. 5). Establishing Theorem (2.2) has been motivated by
Kennedy's conjecture that any natural transformation T : F—*H2* (; Z) can be
uniquely expressed as T= 2 />o^zdc/» where C*f: H2* (; Z)->J/2i( ; Z) is r/ze pro-
jection of the natural transformation C* to the 2i-dimensional component and
each mf is an integer. This conjecture is still unsolved. Note that Kennedy's
conjecture is equivalent to claiming that C* : F-^£T2*(; Z) is the unique natural
transformation satisfying the property that

r(l P«) = [Pn] + homology classes of lower degrees

for each projective spdce Pn, n=Q, 1, 2, ...

The "linear" natural transformation S^o^Jtf*/ has the following "charac-
terization" :

Theorem (2.6). Let cl(n) : i<ecJ-^H2*(; Q) be a degree-n characteristic
class of complex vector bundles, and let {cl(n)} n>0 be a sequence of degree-n char-
acteristic classes. Then T: J£0~^#2*(; 6) is a natural transformation satisfying
the "dimension-wise universal smooth condition" that T(& *) =cl(dmX\Tx) D \_X~\
for any smooth variety X, if and only if there exists a unique sequence {r J {>Q of
rational numbers such that

( i ) T= S l>QriTd*i, and

(ii) cl™ = X0^HrttdH-t.

This theorem follows from Theorem (2. 2) and Proposition (1.7), or with-
out using "Uniqueness theorem", we can also show this theorem by Lemma (2.
1), Corollaries (1.4) and (1.6).

Proof I (Using Theorem (2. 2)). By Theorem (2. 2) there exists a unique
sequence {r/}/>0 of rational numbers such that r—lL /^o'1/^*/- So it remains to
prove that each degree-n characteristic class cl^ = ̂ Q<ti<nritdn-l. Since
(2]/>o^/r(rf*/)({P^) = (5]o<z<n^/^«-/)(^) for any smooth variety X, we have
the following equality :

c/^dv) n m = (S0^B rtd
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for any smooth variety of dimension n, L e., by the Poincare duality, we have

for any smooth variety of dimension n. i. e.,

for any smooth variety of dimension n. Thus from Proposition (1.7) we can
conclude that c/(ll) — S0^^« r ,-&/„_,•=(), i. e.,

Q. E. D.

Proof II (Using Lemma (2. 1)). Suppose that T : KQ-^H2^{ ; g) is a natu-

ral transformation satisfying the "dimension-wise universal smooth condition"

that T((9x)=cl(d{mJC(Tx)n M for any smooth variety X, with c/(0)=Agc0 and

c/(n)=/io+S i</<n^"(ci, c2, ..., c/). For each partition /.-(i) of i, we considerj (£ J

the projection n : Pn~iXPj -*Pn~l. Then by the naturality of our transforma-

tion r, since ^*(^J,»-/xp//o) =*CP/J'°}, ^p/.a))^pn-/=^pn-z- (because

^ / O ) = 1, see [6]), we have

Hence by the "dimension-wise universal smooth condition", we have

(**) ^

Therefore, by Corollary (1. 6) we get

LHS.of (**)=^*(

+ homology classes of degree < 2 (n — /) .

RHS. of (**) =Ao"I"[PB~1'] +homology classes of degree < 2 (/i-i).

Hence by looking at the 2 (n—/) -dimensional part of (**), we have the follow-
ing equality :

(P/'Cc?!, c29 ...,
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Pr(c1? c2, ..., O [P''0)] =*;-'' for each /,(/)£/(/).

Hence by Corollary (1.4) we can conclude that

f C2, ..., c f ) .

ra-
remains to

Thus, letting r,— AQ, we can see that there exists a unique seqence {rf}/>o of
tional numbers such that cl^ = ̂ Q<i<nritdn-i for each n. Then it remains
show that T= 5] />0 r,Td *,. Since

n [jf] - (2 0^n r^;) (TV) n

it follows from Lemma (2. 1) that r= S />0 r^d^. Q. E. D.

Let yl be a commutative integral domain with unit and let 'K$ '- — K^ ) (8)
yl be just the linear extension of the functor K0 with respect to A. Then as a
corollary of Proof II, we can show the following

Corollary (2.7). Let cl: 1^cJ-+H2*(\ A) be a total characteristic class of
complex vector bundles. Then T: 'KQ-^H2*(. ; A) is a natural transformation
satisfying the extra condition that for a smooth X T(@ x)=cl(Tx) fl [X~], if and
only if there exists an element /I of A such that c/=A ° td and T—^° Td* .

Thus it follows from Corollary (2. 7) that there is no natural transforma-
tion T: 'K^^H^d G) satisfying the extra condition that T(& *) = td^(Tx) R
[X~\ for any smooth X. A similar situation occurs in C* and in [12] we ex-
tended C* to the Chern polynomial C(g) = l + I] i>\qlci, introducing the "twist-
ed" constructible function functor. In the following section we will discuss the
extension of BFM-RR Td* to the Todd polynomial td^ = 1 + S i>\qltdi.

§ 3. A "Twisted" Version 1W(9)* of Baum-Fulton-
MacPherson-Riemann-Roch Td*

First we recall the Chern character polynomial ch^ (this notation and de-
finition are borrowed from Hirzebruch's book [6, § 12]) and the Todd poly-
nomial td (9).

Definition (3.1). Let q be an indeterminant.
( i ) Chern character polynomial ch ̂  is defined by :
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where ch=chQ^ S ,->i cht is the total Chern character. To be more precise, if we
let a i 's be Chern roots of E,

Ck (q} (E) : - £ l</<rank£

( ii) Todd polynomial fc/^ is defined by :

where fJ= 1 + S />i tdt is the total Todd class. To be more precise,

It is well-known (e. g., see [4] or [6]) that an important connection be-
tween the usual Chern character ch=ch^ and Todd class td=td(^ is the fol-
lowing formula, which plays a key role in the formulation of GRR and BFM-
RR:

Formula (3.2). £0^II(-l)J>cAU^v)=cII(£)fd(£)-1, where E is a
complex vector bundle of rank n and Ev is the dual of E.

The proof of Formula (3. 2) is well-known or standard, but we recall it here for
the sake of Formula (3. 2)(?) below : Let a/s be Chern roots of E (l<i<ri).
Then the proof is as follows.

-2o<^<n(-l)pS/1<.. .<^exp(-aZ i ----- aip)

= 11 !</<„(! -exp(-aI-))

=«!... an I l i^^n((l

If we follow this proof, i. e., if we replace a t by qa t in the above proof, then we
get the following

Formula (3. 2) (q),

(or ^0<p<n(-lYch^(ApEy^ = {c^}n(E)td^(E) ~l, if we use the Chern poly-
nomial C(g) .)
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In this paper the appearance of the twisting "#n" in this Formula (3. 2)(q) plays
a key role.

Remark (3. 3). In [6] Hirzebruch defined a generalized Todd genus or Ty-
genus as follows.

Ty(E) ^ni^^^KC^+Oa/Al-expC-C^+Oa,))-^,}.

For E— T M, the tangent bundle of a complex manifold M, if we "evaluate"
Ty(.T^) at some special values, then we get some known invariants of M; e. g.,
TO(TM) is the Todd class of M, T-i(T^ is the Euler-Poincare characteristic of
M, and T^T^) is the signature of M In our definition we drop the additional
term "ya ". If we use Hirzebruch's T^-genus, then we have

Indeed,

x H !<<<„(« .;

Thus this formula becomes sort of "redundant", this is why we take up the sim-
pler form td^. We do not know whether one can formulate a GRR type theo-
rem for r^-genus or not, which remains to be seen.

Definition (3. 4) (A "twisted" version K^ of the Grothendieck covariant
functor Kg). Let IS^CY) : = tf0CX)®6[fc q~l~] for any variety X and for a
morphism/: X-^Y, the pushforward ffl is defined by :

f (q) _
J* ~

_reldim(/)
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where /* is the pushforward for the original functor K0 and reldim(/) ' = dimX
— dim F is the relative dimension of f. (Then it is obvious that K^ is a covaiant
functor.)

There are several proofs of BFM-RR Td* , i. e., by deformation to the
normal bundle [1, Chap. 1], by Grassmannian-graph [1, Chap. 2] , by using
topological K-theory [2], and by Fulton-MacPherson's bivariant theory [4,
Chap. 18]. In this paper we follow the proof by deformation to the normal
bundle, since it is least hard to give an analogous proof of our "twisted" version
Td^*. Instead of writing down all ingredients and details developed in [1,
Chap. 1], we just write down necessary points and key formulae to get our
"twisted" version.

The main ingredient in proving BFM-RR-theorem is the localized Chern
character c/z^CE.), living in the g-homology H2*(X\ g), where Xis a compact
complex subspace of a complex manifold M, and E. is a complex of topological
vector bundles on M which is exact off X. To be more precise (for more details
see [1, Chap. 1]), <?/#(£.) is denned as follows : Let /(£.)£ J£°(M, M-X} be
the difference-bundle of the complex E., ch: K\M, M-X)-*H2*(M, M-X\
@) be the Chern character and L : ff2*(M, M-X\ ff)-+H2*(X; g) the Lef-
schetz duality isomorphism. Then c/z^(£r.) is defined to be the value of d(.E.) by
the composite L° ch, i.e., cA?(£.) : = £o cA(d(£.)). The "twisted" version of
the localized Chern character is obtained by replacing ch by the Chern character
polynomial ch^. To be more precise, let L^ m- = L®Q\_q, q~l~] : H2*(M, M—
X\ Qlq, q~ll)^H2*(X; Q[q, <7~!]) be the extension of the Lefschetz duality
isomorphism L with respect to the Laurent polynomial ring Q\_q, q~l~\, and let
ch(qy. K\M, M-X}^H2*(M, M-X; Q[q, g'1]) be the "Chern character
polynomial". Then the localized Chern character polynomial (or localized "twi-
sted" Chern character) ch^x(E.) of a complex E. is defined by :

Definition (3. 5) . ch (^(E.) : = L^och

Then it is not hard to see that by definition the localized "twisted" Chern char-
acter ch(q$(E.} satisfy all the properties (listed in [1, Chap. 1, §§2-3]) enjoyed
by the localized Chern character ch%(E.\ except [1, Chap. 1, Proposition
(3. 4)]. Namely, in the formulae described in [1, Chap. 1, §§2-3] symbol ch is
just replaced by symbol ch^. Our "twisted" vesion of [1, Chap. 1, Proposition
(3. 4)] is as follows :

Proposition (3. 6). Let E. be a complex of bundles on M exact off X, and
let n : N~*M be a vector bundle over M with M regarded as a subspace of N by the
zero-section. Let An* Nv be the Koszul-Thom complex on N. Then
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7T*E. is exact on N—X and

c/i(^uv*jvv<8)7^
(Note the appearance of the "twisting" coefficeint ^rankjv, which plays an impor-
tant role later. Also note that fr/^C/V)"1 actually means /"'fc/^OV)"1, where /:
X-+M is the inclusion map. However, we sometimes omit the pull-back symbol,
unless some confusion occurs.)

Following the proof of [1, Chap. 1, Proposition (3. 4)], we can see that the
above formula follows from Formula (3. 2) Cq) in the previous section, so its
proof is omitted.

The localized Chern character c/z^(J*0 of a coherent sheaf 3F on X is
defined via a resolution E. of the coherent sheaf i*3F on M, i. e., c/z^(JO : =
C/Z^CE.). In [1, Chap. 1] it is shown that it is independent of the choice of
resolution E. of i*!f ' . When it comes to the twisted verision, one might be
tempted to define the "twisted" localized Chen character c/z^jjfC^") of a
coherent sheaf 3F on X simply by ch^^E.^. But it is not the case, and our
"twisted" version is taken up to be the following :

Definition (3. 7). ch (g

Of course, this "twisted" localized Chern character of a coherent sheaf 3F is
independent of the choice of resolution E. and if O^J^' -*<JF-*<JF" -^>§ is a short
exact sequence of coherent sheaves on X, then ch (^(^0 — ch ($x(j$Ff ) +
cAw£(^').

With this definition, it turns out that our "twisted" version of [1, Chap. 1,
Proposition (5. 3), p. 115] is of the same form ; simply "c/z" and "td" being re-
placed by "cA(g)" and "td($". Namely, we have

Proposition (3. 8) . Let Xd MC P with M and P non-singular quasi-projec-
ive varieties. Let N be the normal bundle of M in P. Then for any coherent sheaftive

onXf

Proof. Let / : X-^M and j : M—^P be the inclusion maps. Then by the de-
finition we have
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fl Q i\ i P / 0j-\ __ dimJSr-dimP ^r. P( T?~\(3. 8. 1) ch(q)x(^)—q ch(q)X(K )

where it should be noted that E~ is a (or any) resolution of the coherent sheaf
7*0'*^). Then by [1, Chap. 1, Homotopy Property (2. 5) and Lemma (5. 2)],
we can see

(3.8.2) ch(/x(En=ch(q}
NM.

Here £.# is a resolution of s*(i'*JO, where s: M-*N is the zero-section of the
normal bundle N. Noticing the fact that the definition of the localized
("twisted") Chern character of a coherent sheaf is independent of the choice of
the resolution, and by observing the fact that if we let E. be a resolution of /* IF,
then A' 7i* Nv ®TT* E. is a resolution of s* 0'*^), we can see

(3. 8. 3) ch(/x(E?}^ch(/x(A'n*Nv®n*E).

Hence, by (3. 8. 1-3), we get

(3. 8. 4) ch(

(by Proposition (3. 6)).

By noticing that dim P=dim M+rank N, from (3. 8. 4) we get

(3. 8. 5) cA(^(^)=^^-dl^

Thus by the definition of ch ($%(.&} we get

(3. 8. 6) cA(^(^r) = ^
Q. E. D.

Now we are ready to define our "twisted" version Td($* of BFM-Riemann
-Roch transformation. For each variety X with XdM, M non-singular, the
homomorphism Td^%: K&* (X)-*H$ (X -, g) is defined as follows: for each
coherent sheaf 3F on X

: = td (<?) ( rM) n ch (

and extend this linearly with respect to Q [_q, q~l~].

This definition seems to be dependent on the choice of an embedding / :
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M, but it turns out to be independent of it :

Proposition (3.9). Let XC.P and XdQ be two embeddings of X into non-
singular quasi-projectile varieties P and Q. Then we have

Td(g)
p* = Td(q-)$.

i. e., Td^l (JO = Td^S (JO for each &.

Proof. First we show the following lemma

Lemma (3. 9. 1). Let XCLMC.P, where M and P are non-singular. Then

Td (£ * = Td(q)*,

i. e., Td(/* (JO = 7H(^(JO for each f.

Proof of Lemma (3. 9. 1). Let /: X-^M and j: M-*P be the inclusion
maps. Then by the definition of Td^p* (JO, we have

} (rp) n ch (

(g)(rP))ni
(by Proposition (3. 8))

Since Q-^TM-*TP M~^N-+Q is exact and fc?(g) is multiplicative, we get

Thus we have

i * ri (9) ( rM) n ch (^( JO - ra (g)^f
Q. E. D.

To finish the proof of the proposition, we consider the embedding PdPXQ by
means of the mapping xH>(;c, q) for some point q of Q, fixed. Similarly we
consider the embedding QdPX Q by means of the mapping x*-+(p, x) for some
point p of P, fixed. Then we have the situation where XdPdPX Q and Xd Qd
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PX Q. Hence by Lemma (3. 9. 1) we have

ra (^ (JO.
Q. E. D.

Thus, for each complex projective variety X the above homomorphism
Td(g)%: K^^X^-^H^^X', g) is independent of the choice of an embedding of
X into a non-singular quasi-projective variety. (Hence, it suffices to consider the
ambient projective space where a given projective varitiey X lies in.) So we can
just denote Td^* without the superscript.

Now we are ready to state our main theorem :

Theorem (3.10). The transformation Td($* : K^-^H^^ ; g) is the unique
natural transformation satisfying the extra condition that if X is smooth then
Td(j*(0^) = td(q)(T^)n[x]. If we "evaluate" Td($* at q=l, then we get
BFM-RR transformation Td^^ — Td* .

The second statement is clear by the construction of Td^* and it is also
easy to see (i) that by J;he construction of Td^* the transformation Td^*
satisfies the above extra condition and (ii) that by Lemma (2. 1) Td^* is the
unique transformation satisfying the above extra condition. Thus it remains to
show the naturality of transformation TW^*, i. e., for any morphism /: X-^Y
the following diagram is commutative :

/*

Td (q)*

Since any morphism /: Z-^7is the composite of an imbedding j: X-^YX
PN (for some projective space PN) and the projection n : YXPN-+Y, i. e., /=
TTOJ, it suffices to show the commutativity of the above diagram for the
embedding case when/: X-^Yis assumed to be an embedding and the projection
n.

Proposition (3. 11). Iff: X-^Y is an inclusion map, then the above diagram
is commutative.

Proof. Let k : Y-^M be an inclusion map, where M is non-singular. It
suffices to show that for each coherent sheaf 3F
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/*

(by the definition of 7W(9)

= fc*rrf(,)(rM) n/*cA (,)?(#") (by the projection formula)

imAf/7 * . j / 7- N n /• i AfY 17 \ NC/c taf(9)UM; I \J*ch(q)x(E'))
(by the definition of cA^C^O)

imM/ ;,* . j / T1 ^ n ^.L ^^ 17 ^ ̂U td{q^TM)\\ch(q}Y{K))
(by [1, Property (2. l)(a), p. 109])

Here we observe that since E. is a resolution of A:*/*^^1/^/*^), we have

_ ^,dimy-dimM i M
—

Therefore we get that

^

Since /^(J^) =greldim(/)/* (J^) =qdlmX~dimYf* (J^) by the definition of our "twist-
ed" pushforward /*9), we get

Q. E. D.

Proposition (3. 12). Lef TT : YXPN^Y be projection. Then the following
diagram is commutative :

Proof. This "projection" case is reduced to showing the commutativity of
the above diagram for Y= a point {pt} (see [4, p. 287] for the explanation for
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this.) Let n: PN-+pt. Then, since K^(PN^> is generated by 0(n) and
ra(?)*QF) = ftd^ (iv) n chu?(& - td(q} (TX~) n c*w (#•) n [*] if x is
smooth, what we want to show is :

(3. 12. i) [cAw (4*000) tfw(rw)] n [>/]

=ff*(CcAw«p(«))rdw(r j > w)] n [/>"]),

i. e.? by the definition of the twisted pushforward n$

(3. 12. 2) ?*cA(

Here, following Fulton's book [4, Remark 3.2.2.] J xa denotes the 0-dimen-
(lf>sional component of a C \ [ X ] . Since n*&(n) = T>(-\yH'(.PN, G(n)} and ch(

On the other hand, (see [4, Example 15. 1. 4])

, where X=Cl(0(PN) (1))

Thus (3. 12. 1) holds. Q. E. D.

As a corollary of Theorem (3. 10), we can get the twisted version of GRR :

Corollary (3.13) (A "twisted" version of (GRR) a For a non-singular projec-
tive variety X, if we define the homomorphism r(?) : K($\X}-*H2*(q\X\ fi)(: =
H2*U; Q[q, q'lm by r(<?)C^) ' = ch^(y^td^(T^ and extending linearly
with respect to Q[q, g"1], then r(?) becomes a natural transformation, i. e., for a
morphism f: X-> Y the following equality holds :
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ch w (/*(9) JO td(g)(Ty) =/„ (c* w (JO a/w (TV))

where /* : H2*(q\X; e)-*ff2*(?)(y; Q) is f/ze Gj>sin homomorphism. Namely,
the following diagram commutes:

T(9)

f ( q ) I f
/* v /*

Remark (3. 14). Originally we had this theorem first, the proof of which
was a "twisted" version of the proof of GRR (see [4, pp. 287-288]), which is
left as an exercise for readers. The key point is to see how the twisting coef-
ficient "gsomep°wer» fits in the proof. After we had this twisted version of GRR,
we could see how to modify the proof of BFM-RR to get our twisted BFM-RR
rd(9)#, and then we noticed a relationship between Td($* and Td* that for a
variety X, the homomorphism Td^* : K$(X}-*H$(X\ Q) can be simply des-
cribed as

(3. 14. 1) Td^^q^Z^q-'Td^.

There are at least two ways to see this. Firstly, if we take a closer look at the
definitions Td(q^ (^ = ftd^ (TM) P ch(q$(^ and Td* (?} = i*td(TM} P
cAjjfC^"), in particular ch^xd^ and c/rJfC^"), then by some combinatorial
computation (left as an exercise) we can see that

Secondly, it suffices to show that the transformation T: K^-^H^t ; 6) defined
by the righthand side of (3. 14. 1) is a natural transformation satisfying the extra
condition that T(0 x) = td (g) ( T%) P [JST] for a smooth X. It is easy to see that T
satisfies the extra condition. And by the definition of the twisted pushforward
/*(<?) and the naturality of Td* , hence the naturality of Td*it we can see the na-
turality of T. In this sense, Theorem (3. 10) itself can be proved very quickly
using the natural transformation T defined by the right-hand-side of (3. 14. 1),
but, as stated in the introduction, the aim of our proof of Theorem (3. 10) is to
show that even if "td" and "ch" are replaced by "td^" and "ch^", the whole
proof of BFM-RR-theorem works by necessarily introducing twisting coeffici-
ents «2someP°wer» in suitable places.

Finally, let us call Jtf(g)*(X) := Td(q^((9x) the twisted homology Todd
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class of X. The 0-th component of Td(q)*(X\ denoted by z^CE Gj, is just
qdlmXx(X, Ox\ Obviously % (?) is multiplicative. In fact, IW(g)* is multiplicative.
Indeed, using the multiplicativity of the localized twisted Chern character, we
can show the following

Proposition (3, 15). The followoing diagram is commutative :

x J, x

- > J ÎUX 7; 6),
Td(q)*

where the vertical homomorphisms are Kunneth homomorphisms. In particular,

This is an analogue of the multiplicativity of the twisted MacPherson classes
[8].

Before finishing this section, we give a certain characterization of our twist-
ed version Td^* of BFM-RR theorem. Let A be a field of characteristic zero.
Let cl: i<ecJ-*H2*(i; A) be a total characteristic cohomology class of complex
vector bundles. Let K$(X) - = KQ(X) ®A.

Definition (3. 16). For a morphism /: X-+ Y, the pushforward f$ :
is defined by

where the twisting coefficient a(/)£^l depends only on the characteristic class
cl dim X and dim Y9 and /* is the usual pushforward.

If the "twisting" operator a, assigning an element a(/) of A to each mor-
hism / satisfies the property that a(/° g) =a(/) ° a(g), then the above "twist-
ed" pushforward f£l is functorial. If we consider the above twisted pushforward
in the Riemann-Roch type situation, then although we cannot characterize the
"twisting" operator a we can characterize the characteristic class cl, i. e., we can
get the following theorem, which is a sort of characterization of the twisted
version Td($* of BFM-RR :



BAUM-FULTON-MACPHERSON'S RIEMANN-ROCH 1019

Theorem (3.17). The twisted pushforward f* becomes a covariant functor
with a certain twisting operator a so that there exists a (unique) natural trans-
formation Tcl : K%(X^-+H2*( ; A) satisfying the extra condition ("smooth el-
condition^) that Td(®^=cl(T^n[_X~] for any smooth X, if and only if cl^rj
S i^^tdifor some 7] andX^A and TcI=

Proof. (If part) Suppose that cl=7]Y> Z>0A ltdi for some 77 and A^yl and let
the transformation T€I :=7]Tdw# . Then, as in the twisted version Td^*, we
just define /*d(^) : =/*a) (#") = A reldim(/) /* (#") , then rcl is natural. Indeed

(by the definition)

(by the twisted version Td^^)

(Only if part) First, by a similar manner to that of Proof II of Theorem (2. 6)
(or see [12, Proof of Lemma (2. 3)]) we can show that the total characteristic
class cl must be a linear form of individual Todd classes, i. e., cl= S i>0A /fc// for
some A fEi A From this we can claim in a similar manner to that of [12, Theo-
rem (2. 2)] that c/=77S :>0^ ltd, for some rj and AEiA Hence, by the "smooth
c/-condition" we get Tcl=7]Td(v*. Q. E. D.
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