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Global Existence for Systems of Nonlinear Wave
Equations in Two Space Dimensions

By

Soichiro KATAYAMA *

8§ 1. Introduction

We consider the Cauchy problem for systems of fully nonlinear wave equa-
tions of the type

1.1 Ou,=F(uu,4) in R,XR", i=1,+,N,
(1.2) u,(0, x) =¢ef(x), 0u 0, x) =eg.(x), x=R" i=1,-,N,

where 0, =0,=08/0t, 6,=08/0x;,, j=1, -, N, O =082 0} is the
D’Alembertian, F= (F;), u= (u;), v = (u;,) = @), ' = (u;,») =
(0,05u;) withj=1,--, Nand a, b=0, 1, -+, n. Let f;,, g E£C (R") for i =
1, -*-, Nand € > O be a small parameter.

We assume that F is a smooth function in its arguments satisfying F =
O( ul?+ | u |74+ | u'|?) near (u, ', u’') = 0 with some positive integer p and

OF;
0u; 4

Al =0 forall j#iand aq, b=0, -+, n.

Let T, be the life-span of the classical solution to (1.1)—(1.2), When F
does not depend on u explicitly, namely F= F (', u"), the following results
are known : When n =3, T, > exp{ce "'} for p=12, T, = +oo for p > 3, and
when n=2, T, > ce *for p=2, T, > exp{ce "} for p=3 and T, = +o
for p > 4, if € is sufficiently small. (See Klainerman [7}, Kovalyov [9], Li-Yu
rai)

In general cases it is known that when n =3, T, > ce % for p = 2 and
T. = oo for p> 3. Klainerman [8] showed that when n =3 and p = 2, if
the quadratic part of nonlinear terms satisfies the null condition (which will be
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stated later), then T, = +oo for sufficiently small e. See also Christodoulou
[1] and John [5].

When n = 2, it was shown that T, > ce ° for p =3, and T, = + for
p = 4. (See Li-Yu-Zhou [13]. In fact they are concerning single equations, but
these results also hold for systems.)

Recently Godin [2] showed that for single semilinear wave equations in two
space dimensions of the type

Ou=F&) inR,XR*, F(')=0(41|% nears =0,
T. > exp{c/e 2} when the quadratic part of F satisfies the null condition, and
T, = + oo when the quadratic and the cubic part of F satisfy the null condition.
His proof is using some transformation associated with the null condition to
treat the quadratic term. It works well for single and semilinear equations, but
it is not applicable to the system (1. 1). So we only treat the case n = 2, p = 3

for the system in this paper, and we prove the global existence under certain as-
sumptions, following the method used in Klainerman [8],

§ 2. Klainerman’s Null Condition and the Main Theorem

In this section we state about Klainerman’s null condition (see Klainerman
[8] and Christodoulou [1]) and our main theorem.

Definition 2. 1. Let F be a smooth function of u = (u;), v= (v;,) and w

= (w,) Withi=1,-, Nanda, b=0, 1, -, n. We say that F satisfies the
null condition when

F(/luﬂiXa’ ViXaXb) =0

forall A, u, vERY and all X = (X, X,, -, X,) ER""" such that Xi—X}— -
—X>=0.

We assume that Fin (1. 1) satisfies the following :
(A2) F=0(ul*+ 1413+ |4|® near (u, v, u") =0,
(A3) F(4,0,0) =0(ul?,

(A4 F(u o, ud)=G(u v, u)+H(u v, d), i=1, -, N,
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where G,, the cubic term of F;, satisfies the null condition,
and H;, = O(| u|*+ | o |*+ | 4" |*) near (u, /', &) = 0.

Without loss of generalities we can also assume that
(A5) (1. 1) is quasi-linear, i. e., F;is linear in (u;,) fori=1, ---, N.
Now we can state our main theorem.

Theorem 1. Let n = 2. Assume F satisfies (A1)—(A4), then there exists a
positive constant € ,(depending on f, g, F) such that for any ¢ < e,, a smooth
solution u(t, x) to (1. 1)—(1.2) exists for0 < t < + oo,

The proof of this theorem will be given in section 4.

Remark 1. If we only assume (A1)-(A3), it was proved in Li-Yu-Zhou

[13] that T. > exp{ce “%}. But it is not known whether this result is sharp or
not.

Remark 2. For simplicity we assumed that the initial conditions depend
linearly on the parameter €, but we can show all the results mentioned above, if
we replace (1.2) by the following :

@D u 0, x) = fi(x; ), 0,0, x) = g(x;8), i=1, N,

where f;, g/ ECT(R*XR.), fi(x; 0) = g,(x;0) =0and fi(x;e) = g(x; &)
= 0 for | x| > R with some R > 0.

Following Klainerman [7], we introduce 2, = td,+x;0, for j=1, 2,
le = xlaz_xZal, ‘Qba = _‘Qab fOI‘ 0 S a < b S 2, and Fo = tat+2j2=1 xjaj.
Then it follows that
2.2) Uy, O =—-20,[2,, 0] =0 forany @, b=0, 1, 2.
Let 7= (Map)as-01,2 = diag(—1, 1, 1), then one can easily verify that
(2 3) [‘QabJ 61'] = nacab_ﬂ bcaa’

(2 4) [Qab’ ‘ch] = ﬂqud_ﬂ bc‘Qad+7]ad‘ch—7] bd‘Qac’

2.9 (24, I'o] =0,
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2.6) Iy, 0, = —

Let Fl ‘QOI! rz .Qoz, F3 :le, F4 6,, FS 61, F6 62 Wewriteru
= F0°I’a1 ]“6 for any multi-index a = (a,, ***, @¢). From (2.3)-(2.6) we
find that

Q.7 Irerfu=r*"fy+ > CH*I''u

71 < k+i-1

for |a| =k, |8 | =1 and that

.8 Irdu=2a F“u+2 , 12 Cs0,Pu(t, x)
b=0 <k—-1
for la| =k a=0, 1, 2, where C** and C§y are appropriate constants.

If u(t, x) satisfies [J u(t, x) = f(z, x), then (2.2) leads to
(2.9) OWrew) =I'*f (s, x)+‘ |Zk CiT® £ (8, x)
BI<k—1
for la| =k

For any integer k and for any scalar or vector valued function u(f x),
define

lu(t, D = 2 | T'u( x|,

lal<k
[ou(t, )|, = P2y ,,X::o | I0,u(t, x|,
1@l = lut O, = ([ 1ut 017ax)” for 1 < p< +oo,
l @l = IluG )l = sup | uts 21,

Null =1l ult, ), = (szl u(t, x)lk"dx>l/p for 1 <p< 4o,
Hu(t)Hm,k=Hu(t,°)|loo,k=sup|u(t, )| e
uau(z)m—uau(ro>\|2k—(j | ous, 0| 2dx)”.

In the remainder of this section we state some results concerning the null
condition. For any smooth functions f, g, define

(2. 10) Qab(.f; g) - aafabg—abfaag fOI‘ a, b = 0, 1, 2,

and
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210 0(f ® = 0/05~ 200

These functions are closely connected with the null condition. (See Klainerman
[81.)

In fact, suppose F = {F;(u, ', u")},_ .. y satisfies the assumptions (A1)—
(A5). Then one can write G,, which is the cubic part of F,, as

(2.12) Gu v, u') =2 PrQu, o', u)Qu;, uy)
Ik

+ 20 PP(u, v, ') Quuy, uy)

a, bk

+2 R{a(ui u/ )Q(u_,; aaui)

+ 2 P(u, v )Qu(u,, 6.u,),

a by
where P, P™* P! and P?¥ are linear combinations of their arguments and

aR]k aﬂabjk
aul.cd B O0uj

=0 for all [#1

The following lemma due to Klainerman [8] is essential for our proof of
the theorem.

Lemma 2. 2. For any integer k > 0, there exists a constant C, such that
(2.13) (i) 17Qu(f 21 < Cl1+)7 (1 f & 0l a1 | 88 0|t
+ 18t Ol o1 1 F (& Oles), @ b=0,1,2,
2.14) (i) et ol <+ U f & 0l uyni | 80t 0
+ 180t 0| a1 | £ (8 0] )
for any |a | = k and any smooth functions f, g.

Proof. For |a | = k, we can show that

FaQab(f; g) = Qab(raf; g)+Qab(.f; Fag)

+ 2 2 ChaQu(T*f I

¢d=0 |Bl+IrI<k—1

and similarly,



1026 SOICHIRO KATAYAMA

reQ(f=0U+Qfrg+ ¥ CULITD.

+lrI<k—

Hence it suffices to prove the assertions for k = 0. When ¢ < 1, it is clear that
(i) and (ii) hold. From the definition of /s, we can write

0,.(f @ = lt<901fazg— Q0 018—0.f 20,
04(f © = +@.f Goyg— Dy f0.8).
O£ ) = TGS Tog— 3] G0,

Therefore the assertion holds for ¢ > 1 and this completes the proof.

§3. Preliminary Results for Linear Wave Equations
In this section we state some results for linear wave equations
3.1 Ou(t,x) =f( x), (t x)ER.XR?
where fis a smooth function satisfying
(3.2 f(x)=0 for|x|>t+R
with some constant R > 0.

Lemma 3.1. Let u(t, x) be a smooth solution of (3. 1) with initial data 0.
Suppose 0 < k£ < 1. Then there exists a constant C > 0 such that

(3.3)  A+t+xD2A+1 = x| D22 u(t, )| < Cf;']({%ss))ﬂ}%d&

Proof. See Hormander [4]. In fact, in Corollary 6. 2 of [4], it was shown
that

{a+12= %171+ @+ x DD A+ @+ 21D L, )

' PAACE)]
= C\aéx fo fRz {1+ (s2+] y]2>1/2}m dyds.

Observing that (1+¢+|x)) (1+] r—|x|]) <2v2 (A+|2—|x|*|+ (24| x| ),
the assertion follows immediately.
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The next proposition is due to Li-Yu—Zhou [13].
Proposition 3. 2. Suppose u satisfies (3. 1), then
G4 () a1 < ¢ (16u@ I+ 15 lads),
G5 ) ul@® < w0 [+ Cor® O [ 0,u(0) 14

17 1 as)

for0 < & < 1, where C; is a constant depending on 0.

Proof. (i) is a standard energy estimate. So we prove here only (ii).
First, let u be a solution of (] u = 0 with initial data u(0) = u, and 0,u(0) =
u,;. Let % denote Fourier transform and #(¥) = % [v](¥). Then it is well
known that

a(t, &) = 0,(E)cos | £ | t+ 1@

sin | £ ¢

Fix any p satisfying 0 < o < 1. We have

%sinTE\t, :‘sm\‘f] ‘ﬂ'(sm\’g‘lt)”"
b E] €| ‘ E|TP
sin [ £z p
S sl s e gt

Let ¢ ,(x) = | x| % for xER?, then ZF [¢ ] (§) = C,| E| **¥* for any a > 1.
(See Mizohata [11] for instance.) So it follows from Parseval’s formula that

|,=¢Cl

1Py

H‘E‘l—ﬂ

Hardy-Littlewood inequality implies that

I

<c,llull,

where 1/p=3/2—(1+p)/2 = (2—p)/2. (See Hormander [3; Theorem
4.5.3].) Therefore we get

| u(t, » )Hz </ Uy H2+Cptp [l u, Hl+p/(2—p)'
Choose p = 26/(14+06) (0 < 6 < 1), then we obtain

3.6) IR71€A ')Hz I uoll, +C§t26/(1+6) I uy ] ss-
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Now let u be a solution of [Ju = f with initial data 0. From Duhamel’s
principle we can write

u(t, x) = ft U(t, x; s)ds,
0

where U(t, x; s) is a solution of [J U(t, x; s) = 0 for ¢t > s with initial data
U(s, x;5) =0and B,U) (s, x; 5) = f(s, x). (3.6) leads to

U@, e ;9l, < Cd(t—s)w/(Ha) IFACEDIETY

Thus it follows that

3.7 L@l = [ UG s 9dslh < [T UG 9l ds

t
< Cgtz‘”“*‘”J. IFACD Y-}
0
Combining (3. 6) with (3. 7), we obtain the result for the general case.

Remark 3. Proposition 3.2 (ii) does not hold if we choose § = 0. In
fact, consider the Cauchy problem

Ou(t,x) =0 in (0, o) X R?,

with u(0, x) = 0, ,u(0, x) = g(x). Suppose that g=C;°(R*), g > 0and m =
T rg(x)dx > 0. Then g(0) = m > 0. So there exists some constant 4 > 0 such
that |g(E)| = m/2 for [E|< A As a(s &) = (sin|E|Dg&) /I El, from
Parseval’s formula we get

lu(s, «)II2=Cllas )32

_ sin® | Elt, . 02 Cm? sin?| £ ¢
o aera = [ S

7Cm?* (4 sin’rt ,  7Cm? (4 siny
dr = dv.
2 0 r 2 0oV

Assume that there exists some constant B > 0 such that || u(%, < )||, < B for
0 < t < oo, Then it follows that

dy < 7

f"" sin%y 2B?
0 y 7Cm

But as
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0 oin 2 o0 w(j+1) qin 2
sy sSin‘y
f SV = 3 j sV g
0

14 =0 J 2zj v
> m o, = 1
[ — e o)
this is a contradiction. So || u(¢, = )||, cannot be bounded.
Lemma 3.3. Let u be a smooth solution of
2 I
D u(t’ x) = 2 Caaaf(t’ x)v (t’ x>ER+><R2
a=0

with initial data 0. Then

(3.9) 1Dl < Cot® @D £ @1t € [ 1 £ () s

foro <6< 1.

Proof. This is an analogue of the result of Lindblad [10], (In fact his
result concerns the case n = 3, but there is no difference in the proof.)

Let v be a solution of [J v = f with initial data 0, and let w be a solution of
O w=0 with initial data w(0, x) =0, & w(0, x) = (0, x). Then u can be

written as u = > 2_, C,0,v—Cow. So we obtain the result using Proposition
3.2.

Proposition 3.4. Let u(t, x) be a solution of (3. 1) with initial data 0.
Then it follows that

G0 1 ully < CP 0 [T f Ol ypdstC [ G+ RSO ds
for 0 < 6 < 1, where R is the same constant as in (3. 2).
Proof. From Proposition 3.2 (ii), we get
@Il < €t [ £ ds.
From (2.2) it follows that
Do) = (To+Df = 0, + 2 0~

As (I'ou) (0) = (8,1 yu) (0) = 0, noting that | x| < t+ R in supp f, Proposition
3.2 and Lemma 3. 3 imply that
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Tl < €[ {I SO+ 3 1D @l s
+ C5126/(H6) ft H f(s) H 4o ds
0
< ¢f G+ RIF @ 2ds+Cot 0 [ £l yipds
0 0
For i = 1, 2, it follows that
D(Qo;'u> = Qo.f= 6i(tf> +at<xif)y
(20;w)(0) =0, (020,u) (0) = x,f(0, x).
As in the proof of Lemma 3. 3, we obtain
120> < € U S+ 1 Ol s
< cf'(s+R)uf(s)uzds.
0
Similarly, we get from Lemma 3. 3 that
1251 < €[ WG O+ 16 (O} ds
< [ s+ BRI Ol ds
0

Finally, || du(9)|l, < Cf{ !l fs) || ,ds from Proposition 3.2 (i) and this com-
pletes the proof.

Lemma 3.5. Let u=C (R . XR? be a solution of
Out, x) — 2 7a(t, X)8,0,u(t, x) = f(z, x).
ab
Suppose that
1
2 ra(t 0 < —
a b
for all (t, x) ER , X R*. Define
2
lu(®]l i" = J-Rz{ﬂoo | Ou | 24 > .Bx_'jaiuaju} dx,
Lyj=1

where By = 1—70, Bj=0;+7; for any i, j=1, 2. Then there exist some
constants ¢, C > 0 such that
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(3.10) Lu@l 2 < 10w # < el u(d| 2
and
(3.11) L u@ll< Y Ol w@lg+ 1 £ D2,

where || 7 (Dl o = max, , 1075t * )l .
Proof. See Klainerman [6].

To conclude this section, we state two technical lemmata to be used in the
proof of Theorem 1.

Lemma 3.6. Let
(.12) @G = A+ [ xD720+ 1= [ x| D92 0< g < 1.
Ifap(1—k) > 2, then
(3.13) 19(t 2, < Copp (1D 7212,

Proof.

¢ Nl < Qtp o fRz{(1+t+ [ x DA+ | = [ x| D) Uy,
Switching to the polar coordinate, we get

[ (et xD @ - x] D)oo

= 27ffow{(l+t+r) A+ [ t—r D} 20072 gp

t oo
= 27:{f0 {(A+ 07— om0y dr+f {(1+ 2= 12} ~21=072p g
t

2z 2 N i-api-n)2]’
< — = — P
- ap(l—/f)—zq{(l_l—t) ) l:o
(12 2 —ap-02]T
+[—{a+p =1 1)
_ 2n 1—ap(1—K)/2 _ 2—ap(1—£)
ap(l_ﬁ)_z{(l—l—Zt) (1+9

+ @ +2t)1_"1’(1—x)/2}

IN

Ca . p(l + t) —ap(l—/c)/2+1'
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This completes the proof.
Lemma 3.7. Suppose v, w be smooth functions in R . X R?, and
supp wC {| x| < t+R}
with some constant R > 0. Then
(3.14) 1@ave w) (1, )l < Cllv(g 2 )l 1 [l Ow(z, <),

for0 < a<2.

Proof. First one can verify that
A+ = 1xID* @@ 012 <41v(t 0}
and

"HT?—\ u'l Cllow(t, <)ll,.

Therefore we get

1@ W s €1 L2

)‘11_}_

IN

Clivt )l ‘”(”4)‘112

H 1+ t— 1|
< Cllv(t <)l 1 [10w(s, <),

See Lindblad [10] and Godin [2] for details.

§84. Proof of Theorem 1

In this section we prove Theorem 1. First we make some a priori estimates.
Let u be a solution of (1. 1)-(1.2) for 0 < t< T. Fix some integer k > 4.
Define

4.1) M,(t; u) = sup sup (A+s+ 1yD72Q+ [s— [y DY uls, Y| isas

0< s<1t JE

“4.2) MG w = Ogusgt(Hs)‘A I uls, )l 2 20

“4.3) M@0 = Ogusp<t(I+S)_” [ 0us, * )l 2
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for 0 < t< T with A = 1/10, £ = 1/30, say. We show that there exist some
constants €, > 0 and M > 0 (which are independent of T), such that ife < g,
then max ;- 5 3M;(t; w) < Me holds for the solution u(z, x) of (1. 1)-(1.2) on
t=[0, T). Combining this a priori estimate with the classical local existence

theorem, we can prove the theorem.
Let

(4.4) t=sup{0 < t< T;_EnlafaM,-(s;u)SMeforOSS<t}.

In the following, we are going to show that 7 = T for any € < g, if M is suffi-
ciently large and €, is sufficiently small, and this proves the above a priori esti-
mate.

The local existence theorem implies that ¢ > 0, if M is chosen appropriately
large Let € be so small that Me < 1.

§4.1. L”-estimates
For | a | < k+2, it follows that
4.5) O uy) = w‘;m Ci(I'*G+T*H), i=1,,N.
Lemma 2. 2 implies that

NG < CA+9) 7 ul® ] o, (s 3y/2142

4.6) RUFIOlPTE Ol PP &

< CA+)?M%3 0<s<Tt

for |8 | < k+2, because [(k+3)/2]+2 < k+2 and k+4 < 2k
As H=O0( ul*+ [« |*+ | u"]%), we get

WTPH | < Clluls, o) g Ul us o )Mo erat 10uCs, © )l 4ra)-
(4. 4) and Lemma 3. 6 imply that
@D Huls, ) gnmall, < CMe? [[(A+s+ |« D72+ [s— [« D7,
< CME*(1+9) 7!

for 0 < s < 7. Therefore we get
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4.8) | TeH | < CM%e*(1+9)* ! for0<s< z
Let #7(t, x) be a solution of (] i = 0 with initial data #*(0) = (I"*u;)(0) and
0,47 () = (0, "u;)(0). From the well-known decay estimate we can show
that
4.9) A+t+ [ x DA+ 1= | x| DY 32(¢, x)| < Cee,
where C is a positive constant which may depend on %, fand g.

From (4.5), (4.6), (4.8), (4.9) and Lemma 3. 1 with x = 1/2, it follows
that

A4+ [ x DA+ [ t— [ x I D* I T (s, )|
t
< Cle+M> f (1+9) " {(1+92 "2+ (1+5)' ' Me} ds
0
< c(+Me>e

for |a| < k+2, because 24 —7/4 < —1 and A —5/4 < —1. So we obtain
(4.10) M,(t; w) < CA+M*%De for0 <<,
where C is a constant independent of M and e.

§4.2. L’-estimates
For | a | < 2k—1, we get as before

O w) = Y CeIrfG+ Y CirfH, i=1,-, N
18l <2k—1 |81 < 2k—1

Write H, = I,+J;,, i=1, -+, N, where I,(u, ¥, u’) is a homogeneous poly-
nomial of degree four, and J, = O(| u |5+ | o' [°+ | u”[%).

Let v be a solution of v = X 45, < 5—1Cs T #(G,+J,) with initial data 0,
w{ be a solution of 0w = X5 < u—1CFT 1, with (6/"w?) (0) = (8,"I"*u,) (0)
for m =0, 1. Then [ %u; = v+ w’.

Lemma 2. 2 implies that

@410 [[I'6G,]],
< CA+9) M uls ol % ke (1uls, Mgt [10uls, * )l 2t

< Cc+9* 2M%?
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and for 0 < 6 < 1,
NI8G, 1 1ee < (A9 7 T uls, « ) 3 llaasea—o Il uls <52
+ [l 0uls, * )1l 5, 2}
(4.12) < CO+9 " 'Melll uls, * )32 |laa-0/a-0
for |B] <2k—1. AsJ,;= O(lul’+ |4/ |°+ | 4'|), we have
4.13) [ T%J;,
< Cllus, IS, tar-nmea{ll uls « )yt 10uls, * )l 521}
< C+9* 2M%° < C(1+9)* *M%>
and
2T s < Clluls )%, tar-na2 1 (s # ) Rar-n/mrz aaverra-o
(4.14) o {l uls, )l 1t 1 0uls, * )l g 1}
< CAU+9*'Me* |l uls, <) s laarava-sa

for |B] < 2k—1, as Me < 1. Because 2(1+6)/(1—8) > 2, we can use Lemma
3.6 to get

1 uls, * ) ez llaasoya-o < CoMe*(1+5) 1+ 17220+
for 0 < s < 7. Therefore Proposition 3.2 (ii) and Proposition 3. 4 imply that
@l < €f e e s
(4.15) +Cs(1+1) 25/““”[0'(1 +5) s M bds
< C,(1+D*M€?

for | @ | < 2k—1, provided that 26/(1+06) < A and A —2+5¢5% < —1. This
holds if we choose & = 1/20, say.

Now we are going to estimate || w*(D)|l,,. As F(u, 0,0) = 0(|ul?), it
follows that I,(u,0,0) =0, i=1, -+, N, so we can write
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(4. 16) IL(u o, u") = 2 IPCu, o )0,05u,+ 20 1P (u, u' )0,u;.
ab aj

For | 7| < 1, we have
4.17) O wy) = ‘ > C,é"’f'ﬁ],-

Bl <2k

= X GTX oI Mo ) + R,

Bl=2 ab
where
(4.18) R¥ = 3 C'T*I— 3 G 2 I« I'*(0,0,u,)

|81 <2k 181 =2k ab

+ 20 G Zb: I?[I%, 0,0,u;

181=2k

— 20 CET 2 BI™) o I'opu,.
1B =2k a b
First it is easily seen that
(4- 19) H Iiab ° f‘sabu,-Hz < CH u(S, ° )H ::0,1 H 6u(s, ° )”2,2k
< CA+9)* 3 M*%* for |B| =2k
RP7 is a linear combination of terms of the form
', I'0%u;, 130 u; "0 u;,

Withj,E{l, <, N O<Z [y ], lvyl, lv31 <2, 1< [y, <2, L7l T2l < k
iy <2k and |7, + |v,| <2k+1 for =1, -, 4. Here 8" denotes
Ogro0y 0y for v, = (W0, Vi1, Vi2)-

When | 7,| = | 75|, Horder’s inequality implies that

4

[l lerlay’uj,HHgS HFrlau‘ujlrrzapzujzHz(1+5)/(1—6) ° ]|]‘Tsa"3uh ° ]“746”4uj41|2

1=
<l u( )l i+2 HZ(]*&)/(I—&) I u(s, )l 0, k+2 [ 0u(s, ° )Hz,zk
for any 0 < 6 < 1. When |7,/ < |7;| and |v;| > 1, we can estimate the term
in the same way as above.

When |7,/ < |73/ and |v;| = 0, we obtain with the help of Lemma 3.7
and (2. 8) that

4
nglrnay’”h”lwg”Fy‘ay‘“jlrrzayzujzHz<1+6>/<1—5>”F“uh « I'"s0"%u,, |l
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< Cllult, <) k2 lhaarara-o 1l 1,8 2 )l e, irz 10T 0,11,
<[ ult )3 haresa-s | ult )l w ke [ 0u(t, « )14 2
Therefore
IRE 146 < CMPE* A+ D2 [ u(t, * )| 32 laa+0r/a-5) -
As2+2(14+6)/(1—06) » (1/2) > 2 for any 0 < 6 < 1, Lemma 3. 6 implies
M u(e, <) k2 lhasea-o
SM%EHQHt+ [ DTIAF [t= = 1D ase/a-0
< CU+) e M2,
So, from Proposition 3. 2 and Lemma 3. 3, it follows that
[ we 151 < C{Q+ D Vet (1+ W0+ ppte* J 0’(1+s KT ds
(4.20) + e[ (9 s}
< CcA+0*"(1+M%ePe for0<t<r,

3

provided that ﬂ+%—7< —1 and A >26/(1+6). This holds if we

choose 6 = 1/20.

Finally, combining above estimates, we conclude that

4.2D lu(t, )l u < CA+D*"(1+MeDe

for 0 < ¢t < 7, that is,

(4.22) M,(t; ) < CA+Mede foro<t< .

§4.3. The Energy Estimates

Finally we make estimates for L*-norms of the derivatives of the solution.
For | a | < 2k, we can write

O u) — F*Cu, u') «0,0,(I"%u;)

2
ab=0

(4.23) ::( ;: (a?]ﬂﬁlrf_' Iﬁ(u, u’) hd ]ﬂa(ﬁaabui)
Bl <2k

2
a,b=0
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+ X F®u, ' )[I° 0,0, u,,

ab=0

where F® = 0F,/0u,,,. Note that Cf =1if =@, and G =0if |G| =2k
and B#a. Because F= O(lu|*+ |« |*+ |4"|®) and F (u, 0, 0) = O(| u|?),
L*-norms of the right-hand side of (4. 23) is bounded by
[l u(s <)l 200,k+2(1+ Il u(t, o)l oo,k+2)” u(t, )Hz,zk
+ 1l ult & e (l ult, oMl t 10u(s o )ll5, )
< CU+0*'Me*+CA+D* *M°,
with the help of Lemma 3. 7.

As sup,, | 0. F(u o) <|u(t, »3< C(1+0) 'M%e?and T, ,| F*(4,
W) < C(1+1) 'M%? we can apply Lemma 3.5 to (4. 11) if ¢ is sufficiently
small, and we obtain

2 reu® g < Cllulh )l b | Foul )l

(4.24) +Cllult, ) % ks (U [0ty o M o ) || 0u(t, # )l 5, 20

+Cll uz, )l to,k+2{” u(t, )H2,2k+ | Ou(t, * )HZ,Zk}
< CA+* 'M%3
for |a | < 2k, because || u(D)|| g < Cl 0u(®)||, 5. This leads to
I u®ll; < CA+Me)(1+0% for |a| < 2k
As H |0 u(D |, < || T'*u(9)|| 5, we have
oI w) (®, < CU+Me>)(1+0“ forlal <2k
In view of (2. 8), this means that
(4.25) 10u(dlly 0 < CA+MeH A+ for0< <1,

ie.,

(4.26) M,(t; w) < CA+M€eDe for0< <1
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§4.4. Completion of the Proof of A Priori Estimates

We have proved in sections 4. 1-4. 3 that if u(z, x) is a solution to (1. 1)—
(1.2) for0 < t< T, and

7=sup{0 < t< T; max M(s; u) < Me for0 < s< t},
i=1273
then
(4.27) ma;(SM,-(t; ) < CA+MeHDe for0< <1,
i=1,2,

where C > 0 is a constant independent of €, 7, T and M. Choose M and ¢, to
satisfy M > 2C and M’e{ < 1/2, then from (4. 27) it follows that

max M,(t; u) < —3-C£ < lM,s, 0<t<t
i=1,273 2 4

for any € < é&,. By usual continuation arguments, we conclude that t = T.
This completes the proof.
§5. Some Remarks for the Single and Semilinear Equations

In this section we consider the Cauchy problem for semilinear wave
equations of the type

(5.1 Ou=F(u ) in R.XR?
(5.2) u(0, x) = ef (x), 0.u(0, x) = eg(x), x=R?

where u and F are scalar-valued functions and f, g& C;°(R?).
Assume F satisfies the following :

(A6) F=0(ul>+141? near (u, &) =0,
A7 F@w0) =0(ul®,
(A8) F can be written as
Fuu)=G,(u ' )+G;(u, ) +H(u, ),

where G,, the quadratic term of F, satisfies the null condition,
G, is a cubic term of F, and
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Hu o) =0(ul*+ |4 |* near (y, v') =0,

(A9) In addition, G; satisfies the null condition.
Then F can be written as
F(u ') =cQu w+P(u, v )Q(u, w)+H(u, u'),
where ¢ is a constant, Q(u, u) = (Qu)*— 22 (0w)* as in section 2, Pis a
linear combination of u and (6,u),—q 12, and H(u, o' ) = O(ul*+ |4 |*
satisfying H(u, 0) = O(| u|°).
Let u satisfies (5. 1)—(5.2), and let v = (1—exp(—cu)) /c.(See [2].) Then
Ov=A—c» {Ou—cQ(u, w}

= - {Plu, v)Q(u, w+H(u, u')}.

Define
F(V, V/) = F(vr (6av)a=0, 1,2)
(5.3) =L p(—cog(i—cw), ((1—e)'99) )G, v
’ (1—cv) ’ 4" /a=0,1,2 ’
_ -l _ N1
+@ cv)H< ¢ log(1—cv), ((1—cw) a,,v)azo’ 1’2).
Then v satisfies
(5.4) Ov= F, V),
with initial data
(5.5) v(0) = (1—exp(—ecf)) /c, 0v(0) = eg exp(—ecf).
One can verify that F(v, v ) satisfies (A1)-(A4). So Theorem 1 and Remark 2
imply that there exists a unique solution to (5.4)—(5.5) for 0 < t < 4o, if €
is sufficiently small. Therefore the Cauchy problem (5.1)—(5.2) also has a
global solution.
Similarly, if we only assume (A6)—(A8) and not (A9), we can show that

the reduced equation (5.4) satisfies (A1)-(A3). So the result in Remark 1 im-
plies that there exists a unique solution for 0 < ¢ < exp{4e ~*} with some con-

stant 4 > 0, if € is sufficiently small.
Summing up, we have proved the following :
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Theorem 2. Assume (A6)—(A8). Then there exist some constants €, > 0
and A > 0, such that for any € < &, there exists a unique solution u(t, x) to
(5.1)-(5.2) for0 < t < exp{de .

If we assume (A9) in addition, then there exists €, > 0 such that for any €
< &,, the Cauchy problem (5. 1)—(5.2) has a global solution.
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