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Global Existence for Systems of Nonlinear Wave
Equations in Two Space Dimensions

By

Soichiro KATAYAMA *

§ 1. Introduction

We consider the Cauchy problem for systems of fully nonlinear wave equa-
tions of the type

(1.1) D i i ,= F,U u , w") in R + XRn, i= 1, ••• , N,

(1. 2) n,(0, *) = e/,(*), 3,i/,(0, x) = £g/Gc), xEEJT, i = 1, - , N,

where <30 = 5, = d/df, 57 - <9/<9;c;, j = 1, — , N, D = d^-S/L A2 is the
D'Alembertian, F= (F,-), w = (w;-), i/ = (w^J = (daUj\ u = (ujiab) =
(dadbu^ with 7 = 1, — , JVand a, 6 = 0, 1, — , n. Let/,, g^qTQr) for i =
1, ••• , JVand £ > 0 be a small parameter.

We assume that F is a smooth function in its arguments satisfying F =
0(1 u p+ u \p+ u p) near (w, u , w") = 0 with some positive integer p and

(Al) -^- = 0 for all yV=/ and a, ft = 0, — , n.
t ab

Let TE be the life-span of the classical solution to (1. !)-(!. 2). When F
does not depend on u explicitly, namely jp= F(i/, w"), the following results
are known : When n = 3, Te > exp{ce -1} for p = 2, !T£ = +00 for p > 3, and
when n = 2, Te> ce ~2 for p = 2, Te > exp{ce ~2} for p = 3 and TE = +00
for ^ > 4, if £ is sufficiently small. (See Klainerman [7] , Kovalyov [9] , Li-Yu
[12].)

In general cases it is known that when n = 3, TE > ce ~2 for p = 2 and
T£ = +°° for p > 3. Klainerman [8] showed that when n = 3 and p = 2, if
the quadratic part of nonlinear terms satisfies the null condition (which will be
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stated later), then T5 = +00 for sufficiently small e. See also Christodoulou
[1] and John [5],

When n = 2, it was shown that Te > ce ~6 for p = 3, and Te = 4- °o for
p > 4. (See Li-Yu-Zhou [13]. In fact they are concerning single equations, but
these results also hold for systems.)

Recently Godin [2] showed that for single semilinear wave equations in two
space dimensions of the type

D u = F (u ) in 1 + XR2, F (u ) = OQ u 2) near u = 0,

TE > exp {c/£ ~2} when the quadratic part of F satisfies the null condition, and
Te = 4- oo when the quadratic and the cubic part of F satisfy the null condition.

His proof is using some transformation associated with the null condition to
treat the quadratic term. It works well for single and semilinear equations, but
it is not applicable to the system (1.1). So we only treat the case n = 2, p = 3
for the system in this paper, and we prove the global existence under certain as-
sumptions, following the method used in Klainerman [8].

§ 2. Klainerman's Null Condition and the Main Theorem

In this section we state about Klainerman's null condition (see Klainerman
[8] and Christodoulou [1]) and our main theorem.

Definition 2. 1. Let F be a smooth function of u — (w z ) , v = (v i f l ) and w
— (wi.ab) with i= 1, ••• , N and a, b = 0, 1, ••• , n. We say that F satisfies the
null condition when

-0

for all A, / / , v^.RN and all X = (X0, Xl9 — , X^^R"*1 such thatX^-Xf- •••
-X = 0.

We assume that Fin (1. 1) satisfies the following :

(A2) F= 0(1 u 3+ u' |3+ u" 3) near (u, u' , M") = 0,

(A3) FU 0,0) = 0(| « 5),

(A4) F,(M, u, «") = G,<«, u', u"}+Ht(u, u' , «"), i= 1, -, N,
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where G/, the cubic term of Fi9 satisfies the null condition,
and H z = O(\ u \ 4+ u 4+ | u \ 4) near (u, u , u} - 0.

Without loss of generalities we can also assume that

(A5) (1. 1) is quasi-linear, i. e., F, is linear in (uiiab) for i = 1, • • • , N.

Now we can state our main theorem.

Theorem 1. Let n = 2. Assume F satisfies (A1)-(A4), then there exists a
positive constant £ 0(depending on f, g, F) such that for any £ < £0>

 a smooth
solution u(t, x) to (1. !)-(!. 2) exists for 0 < t < + °°.

The proof of this theorem will be given in section 4.

Remark 1. If we only assume (A1)-(A3), it was proved in Li-Yu-Zhou
[13] that Te > exp{ce~2}. But it is not known whether this result is sharp or
not.

Remark 2. For simplicity we assumed that the initial conditions depend
linearly on the parameter e, but we can show all the results mentioned above, if
we replace (1.2) by the following :

(2. 1) 11 ,(0, x) =/,(*; e), 5,11,0), x) = g,(x; e), i = 1, -, N,

where/,, gi.eC°°(l?2X^+), /,(*; 0) - g,(x; 0) - 0 and/,(*; e) = g,(*; e)
= 0 for | x > R with some # > 0.

Following Klainerman [7], we introduce Q0j= tdj-\-Xjdt for j = 1, 2,
#12 = xld2-x2dl9 Qba = -Qab for 0 < a < b < 2, and T0 = fd,+ S/= ! x79;.
Then it follows that

(2. 2) JT0> n] = -2 D, lQab, D] = 0 for any a, 6 = 0, 1, 2.

Let j] = (flab)a.b = w,2 = diag(— 1, 1,1), then one can easily verify that

(2.3) [Qab, 5J =rjacdb-nbcdaf

(2.4) [£>fl6, 12J = 7]acQbd-7]bcQad+7]adQbc-7]bdQac,

(2. 5) [£?„,, T0] - 0,



1024 SOICHIRO K ATA YAM A

(2.6) [r0)5j = -3a.

Let r, = om, r2 = Q02, r3 = Q12, r4 = a,, r5 = 5,, r6 = a2. we write ra

= r^/f1 ••• if6 for any multi-index a = (a0, • • • , a6~). From (2. 3)-(2. 6) we
find that

(2.7) rar^u = ra+^u+ s
l r l £ * + / -

for | a = k, 10 = I and that

(2. 8) Fadau = dar
au+ S 2 £

6 = 0 10 I < k-1

for I a = k, a = 0, 1, 2, where C^ and C^fl are appropriate constants.
If u(t, x) satisfies D u(t, x) = f(t, x), then (2. 2) leads to

(2.9) o(rau) = raf(t, x) + E csr*f(t, x)
I / S I < f c - l

for a = k.

For any integer fc and for any scalar or vector valued function u(t, x),
define

2

u(i)\\p= l l t t ( t O I I P = «(t j c ) | ' d x f o r l <p< +00,

^ f c = \\u(t,^\\p>k=(jR2 u(t, x)\ k
pdx)1/P for I < p < +00,

o *= II tt(f, • ) l l o o *= SUP I W(f, jc)|jk,

In the remainder of this section we state some results concerning the null
condition. For any smooth functions / g, define

(2. 10) Qab(f, g) - djdbg-dbfdag for a, b = 0, 1, 2,

and
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(2. 11) Q(f,g)= dtfdtg- £ d
J= 1

These functions are closely connected with the null condition. (See Klainerman
[8].)

In fact, suppose F= {F^u, u , w")K = it...jN satisfies the assumptions (Al)-
(A5). Then one can write Gif which is the cubic part of F19 as

(2. 12) G;U u , i/') = S P?(u, u' , iOg(ii,f
7.*

S P ° b j k ( u , u , u " ) Q a b ( u j , u k ' )
a, b,j, k

a, b, c,j

where P{k, Pfbjk, P£ a and P^ are linear combinations of their arguments and

= 0 for all
dulcd dulc

The following lemma due to Klainerman [8] is essential for our proof of
the theorem.

Lemma 2. 2. For any integer k > 0, there exists a constant Ck such that

(2.13) (i) FaQab(f,g)\ < Ck(l + t ) - l Q f ( t , x ) \ L k / 2 ] + l g(t,x)\k+l

(2.14) (ii)

a = fe anc? a«j smooth functions f, g.

Proof. For a \ = k, we can show that

raQah(f, g) = Qab(r°f, g) + Qab(f, rag)

S

and similarly,
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raQ( f,g) = Q(raf, g)+Q(f,rag)+ s
Il l + irl <k-l

Hence it suffices to prove the assertions for k = 0. When t < 1, it is clear that
( i ) and ( ii ) hold. From the definition of /^'s, we can write

Q n ( f , g ) = -yCQ>i/d2 g- 002 dig-dJQug).

Q0j(f, g) = (

Q(f, g) = \(d
I j= 1

Therefore the assertion holds for t > 1 and this completes the proof.

§ 3. Preliminary Results for Linear Wave Equations

In this section we state some results for linear wave equations

(3.1) Dii(f f x) =f(t, x), (t, x)el + XJ?2,

where /is a smooth function satisfying

(3.2) /(r, x) =0 for x > t+R

with some constant R > 0.

Lemma 3. 1. Let u(t, x) be a smooth solution of '(3. 1) with initial data 0.
Suppose 0 < /c < 1. Then there exists a constant C > 0 such that

(3.3)

Proo/ See Hormander [4] . In fact, in Corollary 6. 2 of [4] , it was shown
that

{(1+ t2- x 2 +a2+ x 2) i/2) >-*(!+ a 2+ 1 * 2y/2r}l/2 \ u(t, x)\

Observing that (l + f+ x|) (1+ r-|x I) < 2^/2 (1 + 1 f2- |x 2 +(f 2+ x 2)1/2),
the assertion follows immediately.
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The next proposition is due to Li-Yu-Zhou [13].

Proposition 3. 2. Suppose u satisfies (3. 1), then

(3.4) (i) ||5«(0 || 2< c(||du(0) H 2 +J ' l l / ( s )

(3.5) (ii) | | M ( O I I 2 < l l " ( 0 ) l l 2 +

for 0 < 6 < 1, where Cs is a constant depending on 6.

Proof. ( i ) is a standard energy estimate. So we prove here only ( ii ) .
First, let u be a solution of D u — 0 with initial data w(0) = UQ and d,w(0) =
u{. Let 3F denote Fourier transform and vQf) = J^HGr). Then it is well
known that

Fix any p satisfying 0 < p < 1. We have

sn sin | If t P (sin
I f

sin |r
l-p

Let 0 f lGO = I ̂  ~2/fl for xei?2, then J^"[0 J (£) - Cfl f ~2+2/fl for any a > 1.
(See Mizohata [11] for instance.) So it follows from Parseval's formula that

Hardy-Littlewood inequality implies that

\\0-L-XU! |2 < Cp | | I/! I I , ,

where 1/p = 3/2-(l+p)/2 = (2-p)/2. (See Hormander [3; Theorem
4. 5. 3]. ) Therefore we get

I I u(t, ' ) I I 2 < I I u0\\2+Cpt
p\\ i / i l l i + p / u - p ) .

Choose p = 25/(l+5) (0 < 5 < 1), then we obtain

(3.6) | | t/(f, « ) I I 2 < I I W 0 I I 2 + C
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Now let u be a solution of D u — f with initial data 0. From Duhamel's
principle we can write

u(t, x) = {' U(t, x; s)ds,
J o

where U(t, x\ s) is a solution of D U(t, x; s) = 0 for t > s with initial data
l/U x ; s) = 0 and (3,17) U x ; s) = /U x). (3. 6) leads to

Thus it follows that

(3.7) I l n ( d l l 2 = I I f ' U(t,« ;s)ds\\2< r \ U(l* ; s ) \ \ 2 d sJo Jo

<c »/(!+» f ' | | /(4 .) l l ,+a&
J 0

Combining (3. 6) with (3. 7), we obtain the result for the general case.

Remark 3. Proposition 3. 2 (ii) does not hold if we choose 5 = 0. In
fact, consider the Cauchy problem

Du(r, x)=0 in (0,oo) xj?2,

with u(09 x) = 0, dtu(Q, x) = g(jc). Suppose that g(E C0°° ( J£ 2) , g > 0 and m =
J R2g(*) dx > 0. Then g(0) = m > 0. So there exists some constant A > 0 such
that g© > m/2 for f < A. As fi(ff f) - (sin f Og©/!? , from
ParsevaPs formula we get

sin2 f| f

= nCm2 CA sin2rt = nCm2 fAt sin2i>

Assume that there exists some constant B > 0 such that || u(t, ° )| 2 ^ ^ for
0 < r < oo. Then it follows that

f °° si
Jo "I

< 2^2
'o v nCm2'

But as
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f°° sin2^ , ^ f
- dv = 2]

Jo ^ j = oJ

this is a contradiction. So || w(f, e )|| 2 cannot be bounded.

Lemma 3. 3- Le£ u be a smooth solution of

Di/Ux) = S CadJ(t,x\
a = 0

wz'f/z i«itia/ data 0. TTien

(3.8) i )

< (5 < 1.

Proof. This is an analogue of the result of Lindblad [10]. (In fact his
result concerns the case n = 3, but there is no difference in the proof.)

Let v be a solution of D v = / with initial data 0, and let w be a solution of
D w = 0 with initial data w(0, jc) = 0, d,w(0, x) = /(O, x). Then u can be
written as u= 2a = 0 Cadav—C0w. So we obtain the result using Proposition
3.2.

Proposition 3.4. Let u(t, x) be a solution of (3. 1) with initial data 0.
Then it follows that

(3.9) ! l u ( z ) l l 2 1 < C,fw(1+« \'\\f(.s)\\l+tds+C f '(
Jo Jo

for 0 < 5 < 1, where R is the same constant as in (3. 2).

Proof From Proposition 3. 2 (ii), we get

i iM (diJ2<cv 2 ' 5 / ( i + s ) r\
J 0

From (2. 2) it follows that

As (row)(0) = (<9frow)(0) = 0, noting that | x < t+R in supp / Proposition
3. 2 and Lemma 3. 3 imply that
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o

For j = 1, 2, it follows that

r'
Jo

(0oi«)(0) = 0, (S,00/ a)(0) = *,/(0, x).

As in the proof of Lemma 3. 3, we obtain

o

Similarly, we get from Lemma 3. 3 that

I Ql2u(i)\\2 < c {|IOc2/)(s)||2+ \\(xJKs)\\2}ds
J 0

Finally, | | < 3 w ( f ) | | 2 < CJollA-5) \\ids from Proposition 3.2 (i) and this com-
pletes the proof.

Lemma 3. 5. Let u^C°°(R + XR2^ be a solution of

D u(t, x)-E rab(t, x)dadbu(t, jc) =/(t x).
a, 6

Suppose that

/or all(tt x)^R + XR\ Define

l l n ( d l l i = f ISoo S^IHS^
J I?2 1 , 7 = 1

= 1— 7oo> 0g = ^y+7y /or awJ z» J = U 2. Then there exist some
constants c, C > 0 such that
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(3. 10) ± || n ( O I I E
2 < \\ du(f)\\ 2

2<c\

and

(3.11) -j-t\\u(i)\\E< C H / C d l l c o l l u(i)\\E+

w/zere II 7 ' (OIL = max f l f Z j > c \djab(tt • )|L.

Proof. See Klainerman [6].

To conclude this section, we state two technical lemmata to be used in the
proof of Theorem 1.

Lemma 3. 6. Let

(3.12) 0U*) - (l + r+ ix |)- a / 2( l+ If-

Ifap(\-K) > 2, then

(3.13)

n 0 a o i i / < a+o~ f l jK/2 f {(i+rj /?2

Switching to the polar coordinate, we get

f {(1 + 1+ \ x I) (1 + I t- I x I)} -or
J K2

J °° {(1 + r)2- f2} ~^~^r dr]

g ( 1 ) _
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This completes the proof.

Lemma 3e 7» Suppose v, w be smooth functions in R + XR2, and

supp wC{| x < t+R}

with some constant R > 0. Then

(3. 14) ||(9flv o w)U • ) | |2 < C|| v(r, - )|| oo, !

for 0 < a < 2.

Proo/ First one can verify that

and

2 <

Therefore we get

1+ t-< ell v ( t - ) I L . i

See Lindblad [10] and Godin [2] for details.

§ 4e Proof of Theorem 1

In this section we prove Theorem 1. First we make some a priori estimates.
Let u be a solution of (1. !)-(!. 2) for 0 < t < T. Fix some integer k > 4.
Define

(4.1) A f 1 ( r ; « ) = sup sup(l + s+|j;|)1/2(l+ s- \ y
0< 5< r 2

(4.2) J f 2 ( f ; « )= sup
0<

(4.3) M 3 ( r ; w ) = sup (1 + s)-" II du(s, • )||2 2,
0< s< r
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for 0 < t < T with X = 1/10, // = 1/30, say. We show that there exist some
constants £ 0 > 0 and M > 0 (which are independent of T) , such that if £ < e 0 ,
then max /== l j 2 > 3 M z ( f ; u) < Me holds for the solution u(t, x) of (1. !)-(!. 2) on
fG [0, r). Combining this a priori estimate with the classical local existence
theorem, we can prove the theorem.

Let

(4. 4) r = sup{0 < t < T; max M,0; u) < Me for 0 < s < t] .
i = 1, 2, 3

In the following, we are going to show that r = T for any £ < e 0 , if M is suffi-
ciently large and £ 0 is sufficiently small, and this proves the above a priori esti-
mate.

The local existence theorem implies that r > 0, if M is chosen appropriately
large Let £ be so small that Me < 1.

§4.1. L°°-estimates

For a < fc+2, it follows that

(4. 5) DOTX-) - S qfCT'Grhr'Jf ,), i - 1, - , M

Lemma 2. 2 implies that

(4.6) • {||M(5)

s)2A"V2M3£3, 0 < s < r

for @\< k+2, because [(Jk+3)/2] +2 < /c+2 and /c+4 < 2/c.
«' 4+ |w"|4), weget

(4. 4) and Lemma 3. 6 imply that

< CAfVCi+s)"1

for 0 < s < r. Therefore we get
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(4.8) | | r*J5r f | | l f l < CMVCl + s)*-1 for 0 < s < T.

Let uf(t, x) be a solution of D uf = 0 with initial data ufQS) = (FauJ (0) and
(<9,wf)(0) = (9jFattf)(0). From the well-known decay estimate we can show
that

(4.9) (l + H-|*|)1 / 2(l+|r- I* l)1 / 2 |£/*ax)|< Qe,

where C is a positive constant which may depend on fc, /and g.
From (4. 5), (4. 6), (4. 8), (4. 9) and Lemma 3. 1 with K = 1/2, it follows

that

f r

J 0

for | a | < fc+2, because 2A -7/4 < - 1 and A -5/4 < - 1. So we obtain

(4. 10) M^t ; u) < C(1 + M3£2)£ for 0 < t < r,

where C is a constant independent of M and e.

§ 4. 2. L2-estimates

For | a < 2k— 1, we get as before

o(rau) - E
\0\<2k-l

Write If, = It+Ji, i= 1, ••• , N, where /,(«, wx , wx/) is a homogeneous poly-
nomial of degree four, and Jt= O(\ u 5+ I u \ 5+ w/7 5).

Let vf be a solution of D vf = S 1^1 < 2*-iQT*(GI-+//) with initial data 0,
w,fl be a solution of D wf = S ifn<2k-iCgrf3Ii with (d/V)(0) = (5r

mrfl«/)(0)
for m = 0, 1. Then r*w, = vf

Lemma 2. 2 implies that

(4.11)

2s2fc
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and for 0 < <5 < 1,

2.2*

(4. 12) ~l • 2
k+2

for 0 < 2fc- 1. As /,. = 0(| ti 1 5+ «' 5+ I w" 1 5), we have

(4.13) \\r'jt\\2

< c\\ jiU • )|| 4oo,[(2/fc-1)/2]+2{|| «u • )l l2,«-i+

and

(4. 14)

for y3 I < Ik— 1, as Me < 1. Because 2(1+5)7(1— 5) > 2, we can use Lemma
3. 6 to get

] | | . ,( „ . NI2 II I I « U • ) \ k + 2 l

for 0 < s < T. Therefore Proposition 3. 2 (ii) and Proposition 3. 4 imply that

(4. 15) + Cs(l + f)w(1+5) f '(1 + s) ̂ 2+^
J 0

for 1 a | < 2/c-l, provided that 2d/(l+<5) < A and A-2+2(\~% < -1. This
holds if we choose 5 = 1/20, say.

Now we are going to estimate || wf (01 1 2 ,1 - As F(u, 0, 0) = O(| w 5)» it
follows that /,-(w, 0, 0) = 0, z = 1, ••• , N, so we can write
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(4. 16) /,.(«, u ,

For 7 I < 1, we have

(4. i?)

where

(4. is)
\0\<2k

, 0<

+ S c?-rs
1 0 I = 2fc a. A

- 2 c?!-''i;
I j8 = 2k a,b

First it is easily seen that

(4. 19) || if - r^z-||2 < c|| iiU e )ll L

< C(l+Sy-*/2M4£4 for |^3 | = 2k.

Rf'7 is a linear combination of terms of the form

C 2k and
Q»i,id%i.2 for v i =
When 741 > 7 3 1, Horder's inequality implies that

<2, 1 < | v 4 | <2, In , I 72 < fc
for / = 1, — , 4. Here 9V/ denotes

for any 0 < 5 < 1. When 741 < I 73 and | V31 > 1, we can estimate the term
in the same way as above.

When | 74 < I 73 and v31 = 0, we obtain with the help of Lemma 3. 7
and (2. 8) that

I I n
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< C I U\t, • )| k+2 II 2(1+5)7(1-5) H UJ4\t> * )H °°,k+2 H 5U r3W7-3)|| 2

<" || I *,f * • M 2 II II 4,f f • "Ml II /3*f^* • MlZ ^ I I I M^f* y I f c + 2 I I 2(1+5)7(1-5) I I U\^l, * ) 1 1 o o , f c + 2 I I C/M^I, y I I 2 , 2fc-

Therefore

i 2
fc+2 i

As 2 • 2(1+5)7(1-5) • (1/2) > 2 for any 0 < 5 < 1, Lemma 3. 6 implies

II I "(k * )l 1+2 1 1 2(1+5)7(1-5)

< MV IKl + H- I - l)- !(l+ I t- I - I)'172 H2(i+5)/a-5)

So, from Proposition 3. 2 and Lemma 3. 3, it follows that

(4.20)

3)£ forO < t< T,

provided that / /+2a+% ~\ < -1 and A > 25/(l+5). This holds if we
choose 5 = 1/20.

Finally, combining above estimates, we conclude that

(4.21) H ii(ff O l l2 .2*< C(l + dA0 + Af3e2)e

for 0 < t < T, that is,

(4. 22) M2(t ; u) < C(l + M3e 2)e for 0 < t < T.

§ 4. 3. The Energy Estimates

Finally we make estimates for L2-norms of the derivatives of the solution.
For a | < 2/c, we can write

(4.23) = 2 Cfr'F-
I /3 I < 2fc *" " a, 6 = 0
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where f)°* = dF,/duiab. Note that C/ = 1 if /S = a, and q? = 0 if | £ | = 2fc
and £^a. Because F= O(| u 3+ «' |3+ u 3) and F (w, 0, 0) = O(| w 5),
L2-norms of the right-hand side of (4. 23) is bounded by

I du(t, 2,2/fc

with the help of Lemma 3. 7.
As supa,6.c dtF?(.u, u)\<\u(t,x)\2

2< C(i + t)-*M2e2 and Eft

w' ) l < C(l + i)~lM2e2, we can apply Lemma 3. 5 to (4. 11) if £ is sufficiently
small, and we obtain

, n J . • » \ . » y i i £ ^ ^ I I «V«» x / l l 00,2 I I ^ «V'i V I l E

(4.24) + C | | w U . ) l l i , f c -

+cn«(f,011:

for I a < 2k, because 1 1 u(f) \ \ E < C \ \ du(t) \ \ 2j 2k . This leads to

\\rau(t)\\E< C(l + M3£2)(l + f)"£ for |a < 2k.

3£2) (l + 0"e for a < 2fc

In view of (2. 8), this means that

(4. 25) 1 1 dii(f) 1 1 2, „ < C(l + M3£ 2) (1 + r)"e for 0 < f < r,

i.e.,

(4. 26) M3(>; u) < C(l + M3£2)e for 0 < t < T.
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§ 4.4. Completion of the Proof of A Priori Estimates

We have proved in sections 4. 1-4. 3 that if u(t, x) is a solution to (1. 1)-
(1. 2) for 0 < t < T, and

T = sup{0 < t < T; max M f ( s ; u) < Me for 0 < s < t},
i = 1, 2, 3

then

(4. 27) max Mt(t; u) < C(l + M3e2> for 0 < f < r,
i = 1, 2, 3

where C > 0 is a constant independent of e, r, T and M Choose M and £0 to
satisfy M > 2C and M3£0

2 < 1/2, then from (4. 27) it follows that

max Mfo; u) < ^-Ce < —Me, 0 < t < T
i = 1,2,3 2 4

for any £ < £ 0 • By usual continuation arguments, we conclude that T = T.
This completes the proof.

§ 5. Some Remarks for the Single and Semilinear Equations

In this section we consider the Cauchy problem for semilinear wave
equations of the type

(5.1) Ou = F(u,u) in~R + XR2,

(5. 2) ii(0, x) = £/(*), 5,11(0, *) = £g(x),

where u and Fare scalar-valued functions and/ gEE C0°° (1? 2) .
Assume F satisfies the following :

(A6) F= 0(| 11 2+ wx 2) near (w, i/ ) = 0,

(A7) F(W,0) =0(| 11 5),

(A8) F can be written as

ii7) =

where G2, the quadratic term of F, satisfies the null condition,
G3 is a cubic term of F, and
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H(M, u ) = 0(1 ii 1 4+ ii7 4) near (w, u ) - 0,

(A9) In addition, G3 satisfies the null condition.

Then F can be written as

F(u, u) = cQ(u, u)+P(u, ii')fi(K, lO+ITU «'),

where c is a constant, g(i/f H) — (<3fw)2 — S,2= i(3/tt)2 as in section 2, P is a
linear combination of w and (9a«) fl = 0, i, 2 » and £T(u, t/ ) = O( | i^ |4+ w' 4)
satisfying £f(w, 0) = O(| u 5).

Let w satisfies (5. l)-(5. 2), and let v = (1— exp( — cM))/c.(See [2].) Then

D v = (1-cv) {D u-cQ(u, u)}

Define

(5.3) - (1^cv)p(-c-1log(l-cv), ((l-cv)-^^)^^^)^ v)

+ (l-cv)lf(-c-1log(l-cv)5 (tt-cv)-ldav\ = Q l t 2 ) .

Then v satisfies

(5.4) Dv = F(v, v),

with initial data

(5. 5) v(0) = (l-exp(-£c/))/c, 3,v(0) = £gexp(-ec/).

One can verify that F(v, v ) satisfies (A1)-(A4). So Theorem 1 and Remark 2
imply that there exists a unique solution to (5. 4) -(5. 5) for 0 < ? < + ° ° , ife
is sufficiently small. Therefore the Cauchy problem (5. l)-(5. 2) also has a
global solution.

Similarly, if we only assume (A6)-(A8) and not (A9), we can show that
the reduced equation (5. 4) satisfies (A1)-(A3). So the result in Remark 1 im-
plies that there exists a unique solution for 0 < t < exp {As ~~2} with some con-
stant A > 0, if £ is sufficiently small.

Summing up, we have proved the following :
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Theorem 2. Assume (A6)-(A8). Then there exist some constants £0 > 0
and A > 0, such that for any £ < £0» there exists a unique solution u(.t, x) to
(5. l)-(5. 2) for 0 < t < Qxp{Ae ~2}.

If we assume (A9) in addition, then there exists £ 0 > 0 such that for any £
< e0, the Cauchy problem (5. l)-(5. 2) has a global solution.

Acknowledgements

The author would like to express his gratitude to Professors Y. Ohya and S.
Tarama for their helpful suggestions and constant encouragement.

References

[ 1 ] Christodoulou, D., Global solutions of nonlinear hyperbolic equations for small initial data,

Comm. PureAppl Math., 39(1986), 267-282.

[ 2 ] Godin, P., Lifespan of semilinear wave equations in two space dimensions, Preprint.
[ 3 ] Hormander, L., The Analysis of Linear Partial Differential Operators I, Springer-Verlag, New

York, 1983.
[ 4 ] , L1, L°° estimates for the wave operator, in Analyse Mathematique et Applications,

Contributions en I'Honneur de J. L. Lions, Gauthier-Villars, Paris, 1988, 211-234.

[ 5 ] John, F., Existence for large times of strict solutions of nonlinear wave equations in three

space dimensions for small initial data, Comm. Pure Appl. Math., 40(1987), 79-109.

[ 6 ] Klainerman, S., Global existence for nonlinear wave equations, Comm. Pure Appl. Math., 33

(1980), 43-101.
[ 7 ] , Uniform decay estimates and the Lorentz invariance of the classical wave

equation, Comm. PureAppl. Math., 38(1985), 321-332.

[ 8 ] , The null condition and global existence to nonlinear wave equations, Lectures in

Applied Math., 23(1986), 293-326.
[ 9 ] Kovalyov, M., Long-time behavior of solutions of a system of nonlinear wave equations,

Commun. in Partial Differential Equations, 12(1987), 471-501.

[10] Lindblad, H., On the lifespan of solutions of nonlinear wave equations with small initial data,
Comm. PureAppl. Math., 43(1990), 445-472.

[11] Mizohata, S., The Theory of Partial Differential Equations, Cambridge University Press,
London, 1973.

[12] Li Ta-tsien, and Yu Xin, Life-span of classical solutions to fully nonlinear wave equations,

Comm. in Partial Differential Equations, 16(1991), 909-940.

[13] Li Ta-tsien, Yu Xin, and Zhou Yi, Probleme de Cauchy pour les equations des ondes non

lineaires avec petites donnees initiales, C. R. Acad. Sci. Paris, 312, Serie I (1991), 337-340.




