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Quantized Enveloping Algebras Associated
with Simple Lie Superalgebras
and Their Universal jR-matrices

By

Hiroyuki YAMANE*

Introduction

O.L In this paper, we introduce a new family of quasi-triangular Hopf
algebras coming from complex simple Lie superalgebras. We shall do this
by constructing explicitly the associated universal ^-matrices. An outline
of our results has been reported in [21].

Let H be a (topological) Hopf algebra. Let & = ̂  at (X) b{ e H (X) H be
i

an invertible element. Following Drinfeld [4], we say that (J/,A,^) is a
quasi-triangular Hopf algebra if it satisfies the following properties:

where A = T o A , i(x (X) y) = y (X) x and

i

It is easy to see that the element 31 satisfies:

(0.1.1) ^12^13^23=^23^13^12-

Let V be a finite dimensional vector space. An element R of End(F)(X)
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End(F) Is called a (constant) R-mastrix If it satisfies the Yang-Baxter equation:

The importance of this notion in mathematics and physics is widely recognized;
See, for example, [2] and [21]. From the fact (0.1.1), it follows that, if n;H-*
End(F) is an algebra homomorphism, then n (X) n(&) is an jR-matrix. For
this reason the element 8t is called a universal R-matrix of H.

0.20 Drinfeld [4] (and Jimbo [5]) introduced a family of quasi-triangular
Hopf algebras Uh(G) coming from complex simple Lie algebras Go The
Hopf algebras Uh(G) are called quantum groups or quantized enveloping
algebras. Moreover Drinfeld [4] gave a method of constructing the universal
.R-matrix of Uh(G)y the so-called quantum double construction. Several authors
gave explicit formulas for the universal jR-matrix of Uh(G) by using this
method. See [8], [10], [18].

0.3. Let & be a complex simple Lie superalgebras of type A — G, and
U(&) the universal enveloping superalgebra of &. Let (O,II,/>) be a root
system of ^, i.e. <P, II = {als ••-,(%„} and p: II— »{0,1} are a set of roots, a set
of simple roots and a parity function respectively. In this paper, we assume
that (O,II,/>) is of distinguished type (see [7]) if 9 is of type F4 or G3. For each
such (<D,II,/>), we introduce an h-adic topologically free C[[/i]]-Hopf
superalgebra Uh(9)=Uh(Il,p) such that Uh(<g)/hUh(<&) is isomorphic to U(9)
as a C-Hopf superalgebra. The Hopf superalgebra structure of Uh(Yl,p)
seems to depend on the choice of (0,II,/>). (Note that two root systems of
a simple Lie superalgebra are not necessarily isomorphic.)

0 A Let § = §0 0 §! be any Hopf superalgebra. Let a: §-»§ be an in-
volution defined by a(&) = ( — I )l& for & e §£ . Then §* = § XI <(j>( ~ § ® §a)
has a Hopf algebra structure (see the last paragraph of §1).

In this paper, we show that the Hopf algebra Uh(H,p)ff is quasi-triangular
by constructing explicitly the associated universal .R-matrix using the quantum
double construction. As in "non-super" cases (see [8], [10], [18]), our $
is also described by using g-root vectors and the g-exponential.

In doing these, our basic references are Lusztig's paper [11] and [12]:
our g-root vectors are defined as natural super-versions of g-root vectors
defined there. We also need commutation relations of g-root vectors similar
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to the one given in [11] and [12]. Using these results, we prove a Poincare-

Birkohoff-Witt type theorem for Uh(Yl,p) (Theorem 10.5.1), which is almost

equivalent to the topological freeness of Uh(Tl,p).

0.5. We define the superalgebra Uh(Tl,p) in a rather abstract manner

in §2. Later, we redefine it by generators and relations (see Theorem

10.5.1). A remarkable fact is that the relations are not exhausted by binary

relations such as Serre relations; we also need trinomial and quadrinomial

relations. Since a C-superalgebra Uh(Tl,p)/hUh(Yl,p) is isomorphic to the

universal enveloping superalgebra U(^) of ^ (see 0.2), we also get defining

relations of U(&) by putting h = Q in the relations of Uh(YI,p). So we get a

Serre type theorem for simple Lie superalgebras (see [6] for Serre's theorem

for simple Lie algebras). This result also seems to be new.

In [9], Khoroshekin and Tolstoy "defined" their quantized Kac-Moody

superalgebras by generators and relations [9; Definition 2.1]; in Note added

in proof at the end of their paper, they admit that the relations given in

the text of [9] are not enough. So it is not clear what they mean by

"quantized Kac-Moody superalgebras". For example, the Poincare-BirkhofT-

Witt type theorem does not hold, in general, for the superalgebras of

Khoroshkin and Tolstoy (contrary to the remark at the end of §3 of [9]),

even if the relations in Note added in proof of [9] are taken into account. See

§n.

0.6. Before the Drinfeld-Jimbo quantized enveloping algebras was

introduced, Perk and Shultz [15] discovered an .R-matrix with a continuous

parameter q = eh and a discrete parameter e = ( ± l , - - - , ± l ) e (Z/2Z)N. For the

special case e = (!,•••,!), their /^-matrix coinsides with the JR-matrix obtained

through the general procedure explained in 0.1 using the universal ^-matrix

and the fundamental representation of L/ft(gl(JV,C)).

One of our motivation of the present work was to understand their

J^-matrix in terms of quantized enveloping algebras. In the end of §10, we

show that, if (U,p) is of type AN_1 and p: Uh(n,p)"-+MN(C[[h]]) is the

fundamental representation, then R = p (X) p ($) is the constant jR-matrix of

Perk and Schultz, their jR-matrix with spectral parameter being given

by R(x) = x(p ® p(@)) — x ~ 1 (p (

0.7. This paper is organized as follows. In §1 , we explain the quantum

double construction applied to /z-adic topological C[[/z]]-Hopf algebras. In
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§2, for any pair (!!,/>) of a set of simple roots II and a parity function p of
any symmetrizable Kac-Moody type Lie superalgebra, we define an h-adic
topologically free C[[/z]]-Hopf superalgebra Uh(Yl,p). We also show that, if
/>(«) = 0 for any a ell, then Uh(TIyp) coincides with the Drinfeld-Jimbo
quantized enveloping algebra Uh(G) defined for the Kac-Moody Lie algebra
G with simple roots II.

In §3—10, for the pair (TI,p) satisfying the assumption in 0.3, we give
the definding relations of Uh(Tl,p). Moreover we show Uh(H,p)/hUh(H,p) =
U(&) by proving the Poincare-Birkhoff-Witt type theorem for Uh(Tl9p).

In §10, we give an explicit formula for the universal R-matrix M of
Uh(II,p)ff. The relation with the Perk-Shultz .R-matrix is also discussed.

In §11, we remark that the trinomial and quadrinomial relations can
not be dropped from our defining relations of Uh(TI9p).

§1. Quantum Double Construction

1.1. Let jR = C[[/z]] be the C-algebra of formal power series. We explain
briefly elementary facts concerning the h-adic topological .R-modules. For
details, see [13].

Let V be an jR-module. Let vv = v: F-»Z+u{-hoo} be the /z-valuation

defined as follows; if v€hiV\hi+iV, put v(v) = i, and, if v€ f\hlV, put
ieZ +

v(v) = + oo . We can regard V as a topological space such that a fundamental
system of neighborhoods of VE V is given by v + hlV (ieZ '+). This topology
is called the h-adic topology. For v9weV9 we put

Then dv( , ) is a quasi-metric for the topological space V. For a subset O

of V, the symbol 0 denotes the closure of O. Note that any jR-module
homomorphism is continuous with respect to the h-adic topology.

If any Cauchy sequence (with respect to dv( , )) has a limit, then V

is called complete. If {0} = {0}, then Fis called separated. If V is separated,
then dv( , ) is a metric on V. Note that, for a submodule W, the quotient
topology of V/W coincides with the h-adic topology of it. If V is complete,
then V/W is also complete. If V is separated and W is closed, then V/W

is separated.
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It is well known that, for any h-adic topological jR-module F, there
exists a pair (V,i) of an h-adic topological .R-module V and an
.R-homomorphism i : V—> V satisfying: For any h-adic topological complete
separated .R-module W, and, for any .R-homomorphisrn cp : V—*W, there
exists uniquely an .R-homomorphism cp : V—*W such that (p°i = (p. We
note that V is complete and that i(V) is dense in V. It is also well known
that, if V is separated, then i is injective and the induced topology of F(cz V)
coincides with the h-adic topology of V.

If a complete separated h-adic jR-module V has a submodule W such
that W is a free .R-module and V is the completion of W> then we say that
V is topologically free. A basis of W is called a topological basis of V.

Example 1.1.1. Let F0 be a C-vector space and V=R® F0. Let V
be the completion of V. Then we have the following natural identifications:

Ca,)<oo}

where ^] hlat is a formal infinite sum.
t = 0

Definition 1.1.2. We say that an JR-module V has a handy basis {ujje/
if (i) F is a topologically free ^-module with a topological basis {^},-e/,
(ii) / is a partially ordered set and (iii) there is an order homomorphism
p: I-*Z+ such that, for each neZ+, p~l(n) is a finite set.

Example 1.1.3 Retaining the notation in Definition 1.1.2. We have
natural identifications:

lim v(a)=

?, a f /0 for finitely many i's}
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where ^T a^f is a formal infinite sum.
i = 0

For J^-module V and W, we denote the completion of V (X) W by
F® PF. If F and PF have handy bases [v^iel and {wj}jej respectively, then
{vi (X) Wj}(i,j)eixj is also a handy basis of F® W. In particular, F(X) PF and
F 0 W are separated.

1.2 Let A = (A,m,rj,A,S,s) be an /z-adic topological .R-Hopf algebra.
Namely, the h-adic topological JR-module A has a topological R-Hopf algebra
structure with the product m : A (§) A-*A, the unit ^ : R-*A, the coproduct
A : A-+A 0 ,4, the antipode S : A-+A and the counit g : ^4-»jR. Here the
definition of the h-adic topological Hopf algebras is given by replacing
A® A, A® A® A in the definition of the Hopf algebras by their
completions A ® A, A ® A ® A. For the definition of the ordinary Hopf
algebras, see [1].

Define T : A (g) A^A (g) A by t(a (X) b) = b (X) a. It is well known that
A°p = (A,myr],T;° A,^"1^) is also an h-adic topological .R-Hopf algebra. We
call Aop the opposite Hopf algebra of A.

Let «/ be an ideal of the .R-algebra A. We say that */ is a bi-ideal if
«/ satisfies: A(</)^</ ® ^4 +-4 ® ,/ and £(,/) = 0. Moreover, if </ satisfies

= t/, we say that J> is a Hopf ideal.

1.3. Let A = (^4,m,^,A,*S,e) be an h-adic topological J?-Hopf algebra. In
this subsection, we assume that A has a handy basis {a^iel. Let A* = HomR(A,R)
be the dual space of the jR-module A. Define afeA* (iel) by a*(aj)
= 8. Then we have a natural identification:

iel

where J] OLtaf is a formal infinite sum. Then A* is a torsion free complete
i = 0

separated JR-module.
The ^-module A* has a two-sided ^4-module structure defined by:

a.f.b(c)=f(bca) (feA*, a, b, ceA).
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Put

A° = {fEA*\A.f.A is a finitely generated free ^-module}.

Similarly to the case of ordinary Hopf algebras (see [1]), it can be shown

easily that

A° = {fEA*\A.f is a finitely generated free /^-module}

= {feA*\f.A is a finitely generated free JR-module},

and that A° = (A°,tA,ts,tmy
tS,trj) is a non-topological R-Hopf algebra where t

denotes the transpose. We call A° the dual Hopf algebra of A. Let A° be

the completion of A°. It is obvious that (A°,tA,t£,tm,tS,tri) is an /z-adic

,R-Hopf algebra. We note that A° (resp. A° (g) A°, A° (g) A° (g) A°) is

naturally identified with the closure A° of A° (resp. A° (X) A° of ^4° (X) ^4°,

^4° (g) ,4° (X) ^4° of A° (g) ^4° (g> ^4°) in ^4* (resp.(^ (g) ̂ )*, (^4 (g) ̂ 4 (g) ^4)*).

Hence we shall denote (^°/A,te,tm,rS,riy) by ,4°.

1.4. Let ^4 = (y4,m,^,A,»Sr,e) be an /z-adic jR-Hopf algebra. For z">2,

A(0 and m(0 denote (A ( i~1} (X) id) o A and mo(m ( I '~1 ) (X) fd) respectively.

Let A = (A,mA,riA,&A9SAieA) and B = (B,mB,iiB,&B,SB,eB) be /z-adic top-

ological /?-Hopf algebras. Let <( , ^ : A® B— >R be an .R-bilinear form.

We say that < , > is a Hopf pairing if < , > satisfies:

(i) (a^a^V) = <«! (g) «2,AB(6)>,

(ii)

(iii)

where a,a^A and b,b{eB.

Define an jR-module homomorphism 0: B 0 A-+A 0 B by

where A<4
2)(a) = Xo|1) (g) aj2) ® a[3) and
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In the following proposition, we define an h-adic topological R-Hopf
algebra D(AyB

op) which is called the quantum double of A and B. The

notion of quantum double was introduced by Drinfeld [4] (See also [18]).

Proposition 1.4.1. Let A and B be h-adic R-Hopf algebras with a

(possibly degenerate) Hopf pairing < , > : A 0 B^>R. Then there exists

uniquely an h-adic topological R-Hopf algebra D(A,Bop) = (D(A,Bop),mD^D,

&D,SD,8D) satisfying:

(i) As an h-adic topological R-module, D(A,Bop) is isomorphic to A ®E,

(ii) The R-module maps A^D(A,B°P) (a-*a® 1), Bop-»D(A,Bop) (b-+

I (X) b) are h-adic topological R-Hopf algebra homomorphisms ,
(iii) The multiplication mD is given by mD = (mA (X) mg) o (idA 0 O 0 idB).

Proof. Here we prove the associativity of the multiplication mD of

D(A,Bop) only.

Let a (X) b, c (X) d, e (g)fED(A,Bop). Put

J2) xr> (3)
C v cv '

By (iii), we have:

(a <g> 6)-(c ®

Put

A(2)/ x_y (1) /Ov (2) /ox (3)
">i \e/ ~ 2*< ex yy ex yy ex •
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By (iii), we have:

(1.4.2) (a (g) b)-(c ® d))-(e (

Putting

we have that (1.4.2) is equal to

(1.4.3) X <Sx1

Similarly, we can show that (« <g) c)-((ft (X) c)-(J (X)/)) is (1.4.3). Then

((a (g> c)(6 <g> c))(d ®/) = (fl ® c)((6 ® c)(d (g) /)).

1.5. Let F be a complete and separated .R-module. Here we define

the notion the convergence of a multi-series in V.

Let {0i1...iM}i1,...,iue^+ be a multi-sequence in F. If there exists an

element aeF such that, for any MeZ+, there exists ATeZ+ satisfying that

v(ct. — ail,,.ii)>M for all ii,'-,iu>N, then we say that {ailm.miu$ converge to a

as a multi-sequene. The element a is denoted by lim a^..^ . The uniqueness
ii—iu

of a follows from the separatedness of V. The following lemma is obvious.

Lemma 1.5.1. Let V be a complete separated R-module. Let {bilmmmiu

(h>""> l 'iie^+)} be a subset of V. Assume that, for any MeZ+, there exists

NeZ+ such that, v(btl...iu)>M if il>N or,--,or iu>N. Then there exists the

limit j8= lim ^ ^ir--iM- Moreover, for any permutation p of, {1,2, •••,&}, it

holds that



24 HIROYUKI YAMANE

ipd) iP(2) ip(u)

1.6o Let V be a complete separated /z-adic topological J?-module with a
00

handy basis {wjfe/. Let K=C((h)} ( = {£ «i*J faeZ)}) be the fraction field

of R = C[[h]]. The /z-valuation VK : K^*Z is defined by putting VK(^
ath

l) = n\m{i\ai ̂  0} . Let VK = K 0 V be the scalar extention. Then we have
the following identification:

iel i-+ + oo

The /z-valuation VVK on FK is given by putting

Let A and jB be complete separated /z-adic topological J?-Hopf algebras
with a non-degenerate Hopf pairing < , > : ^4 ® B—»R. We assume that ̂ 4
(resp. J5) has a handy basis {a^}iej (resp. {bi}ier). Moreover we assume that
<aI.,6J.> = 50-cf for some ^-e^\{0}. Let D = D(A,Bop) be the quantum double.

Let AK,BK,DK be /z-adic topological K"-Hopf algebras which are obtained
by the scalar extentions of .R-modules A, By D respectively. Then
DK~AK®BK as an /z-adic topological X-vector spaces. Moreover we
consider AK (resp. (BK)op) as a topological K-Hopf subalgebra of DK by the
embedding AK^DK (a-*a(g) 1) (resp. (BK)op^DK (b-»l (g) b)). We denote
the Hopf pairing K® < , > : AK (§) BK-+R simply by < , >.

Let {ejjej and {el}iel be the subsets of AK and Bx respectively such that
eteKaiy e{^Kb{ and <ei,e

/> = 5£</. Let us define wj1'"1'", ^.-j^ 7JeK by

Using Hopf pairings ^ , X we have:



QUANTIZED ENVELOPING SUPERALGEBRAS 25

From Proposition 1.4.1, we obtain the following lemma. We omit the
proof.

Lemma 1.6.1. In DK
y the following equations hold.

(i) e<es = Z

1.7. In [4], Drinfeld introduced the following construction of a universal
JR-matrix, which are so-called the quantum double construction.

Proposition 1.7.1 (The quantum double construction). Retaining the notation
in 1 .6. Let C be a complete separated h-adic topological R-algebras with 1 . Let
O : D-+C be an R-algebra homomorphism. Denote the scalar extention idK ® O:

DK->CK by again O. Assume that ^ = £ fi(e,-) (X) Q(ef) converges in
ief

CK (g) CK. Then ffl satisfies:

(i) The element @t is invertible. The inverse 0i~l is given by 0t =

iel

(ii) ^(Q (x) n(A(*)))« ~ 1 = O ® (T o A(jc)) for all x

(iii) £ (O (X) O (X) O)((A (g) fd)(«« ® eI')) = ̂ 13^23>
is/

5] (O ® O (x) «)((« (g) A)(c£ g) *')) =#13#12.
tel

Proof. Note that any multi-series below satisfies the assumption in
Lemma 1.5.1. In the proof, we simply write a (X) b for (O (x) D,)(a 0 6). For
all IE I, we have:

#-A(ef) = £ l4* *&&<?*,

— V //r wtr //s w?fc/p T;" ^ 6?) ̂  ^ — V /v1 mklpr vn P 6& P pl
— 2~i r"rs mx rnjk mt lpex\CJ ef ~ 2-t "rnjk mx fp ex vc> eje

) ef
l = (T o (e£))-»
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Similarly, we have &'&(el) = T °(el)-0$ for all teJ. Since [ai-bj = ai (X) 6,-G
^i'e

/'}(I-j)ejx/ is a topological basis of Dk we obtain (ii). The equations (i),
(iii) can be proved similarly.

1.8. Here, we comment on the definition of an h-adic topological algebra
with generators and relations.

Let V be a free .R-module with a basis {*/}/6L- Let ^ = R(xt\leLy be
the tensor algebra T(V) of V and let #" be the completion of #". Let

PA(/leA) be the elements of &. Put V = #/(£&-P^P). We say that the
A

/z-adic topological J?-algebra *6 is Radically generated by xl (leL) with the
relations {PA (/16A)}.

1.9. Let § = §o0§i De a (topological) P-superalgebra. For /e{0,l},
define />,-: §->§> by />i(#0+ *!) = #,• where #fee|)fc (&e{0,l}). Let <a> be the
cyclic group of order two with a generator a. Let R(c>y be the group ring
of (&y over jR. We define an jR-algebra structure on an .R-module §CT = § ®R
P<a> by

(x ( c + d

We write xac for ac ^) crc. Define ra : §-^§ff (resp. lff : §->§ff) by rff(5c) = xa
(resp. lv(x) = ax) (JCG§). From the axiom of Hopf superalgebras (see [17]),
we can easily show:

Proposition 1.9.1. Let (§ = §0 © $i,A,e,5) 6e a (topological) R-Hopf
super algebra. Then the R-algebra §ff has a (topological) R-Hopf algebra
structure ($)ff,Ay£,S) such that

(i) The coproduct A: §'-»$' (X) §ff M ^M^ 63; A(a) = ((f'rf (g) />0 +

°A)(jc) (jce§) aw J A(d) = (7 (g) or,

(ii) The counit e: §ff— »J? M defined by e(x) = s(x) (XE$)) and s(o") = l,

(iii) The antipode S: §ff-»§ff is defined by S(x) = ((p0 + la°pl)° S)(x)
) and

Conversely, we can also show:

Proposition 1.9.2. Let § be a (topological) R-super algebra. Assume that
§ff has a (topological) R-Hopf algebra structure ($ff,A,s,S) satisfying:
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(i)

(ii)

(iii)

Then there uniquely exists a (topological) R-Hopf superalgebra structure

(§^,8,5) such that ($ff,A,s,S) coincides with the Hopf algebra defined in

Proposition 1.9.1 for (§,A,e,£).

§2. Quantized Enveloping (Super)algebras

Notation. In §2-10, the following notation will be used:

($,YI,p):=si triple of an AT-dimensional C-vector space <f with a

non-degenerate symmetric bilinear form ( , ): <f x<f-»C, a linearly in-

dependent finite subset H = {OLI , • • • ,aw} of (f and a function />: II -> {0, 1 } (see 2.1)

Z+a20---0Z+an (c#) (see 2.3)

D = diag(^1,---)<fn):=a diagonal matrix of degree n whose matrix elements

are half integers (see 2.1)

Jf:=(f* (see 2.1)

HI (Ae<f):=the element of Jtf defined by ^(jffA) = (^) (fief) (see 2.1)

R:=C[[h'\'\, the ring of formal power series in an indeterminate h

q:=eheR (see 2.9)

N+:=a free J?-algebra with generators {Et\l<i<n} (see 2.1)

JV_:=a free .R-algebra with generators {F f | l<i<w} (see 2.1)

®[Jf*]:=a symmetric .R-algebra generated by J^R = ̂ f (g) R (see 2.1)

jR<<7>:=agroup ring over ^ of a cyclic group <cr> of order two (see 2.1)

f7j=Oj((#,n,/>),D):=an h-adic J^-Hopf algebra, which is, as an

^-module, isomorphic to N+ (§) <5[J>!?R] ® ^<o-> (g) ̂ V_ (see Lemma 2.1.4)

R:=C[[^/h]] (see 2.2)

N'+:=N+ ®R' (see 2.2)

S[^*']:=S[Jf*](g).R' (see 2.2)

R\ay:=R^ay(g)Rf (see 2.2)

f?-6^. = C7's6^(^,n,/>):=a ,/^-adic R'-Hopf algebra, which is as an

jR'-module, isomorphic to N'+ (§) S[Jf R'] ® -R'<(7>; We put E\ = E{ (X) 1 (X) 1,
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a' = \ (x) 1 (g) cr, H' = 1 (X) H (X) 1 (HeJt?)] usually we identify EJ and <j' with
E£ and cr (but not H' with H) (see 2.2)

£?, fTA°, (7°:=elements of (U'^bff
+)a (see 2.3.1-3))

< , > : U'^ b\ x U'^ ba+->R':=a Hopf paring (see 2.4)

f)r:=D(Ur^ & + , (U'fc b\)°p) the quantum double defined with respect to

< , > (see 2.5)
Since, as ^'-modules,&~ U'^ b\ (X) 0%- b\, we write XE& for X® 1 and

X°ef)' for 1 ® X where J*Te t7^ 6ff
+ (see 2.5)

j; + :=Ker < , > (see 2.6)
U'^b^U^bVI'^ (see 2.7)

J'+:=:Ker < , >j^+ x^+ (see 2.6)
N'+:=Nf

+/T+ (see 2.7)
T)':=D(U'j^ bff+, (IT* b\)op) the quantum double defined with respect to

< , > (see 2.8)
Since, as .R'-modules, T)'^U'^ bff+ (X) 17' b*+, we write XeT)' for ^(x) 1 and

^°e D' for 1 (g> ^ where XE Ur^ ^+(see 2.5)

AT+:=a unital .R-subalgebra of N'+ such that N'+= N + Q) ^/hN + (see
Lemma 2.9.1)

/+:=/'+n#+; /'+=/+ © xA/+, N+=N+/I+ (see Lemma 2.9.1)
C/J= t/J((^,Il,^),D):=a topologically free ,R-Hopf algebra (see Theorem

2.9.4); if II is a set of a simple roots of a Kac-Moody Lie algebra G (resp.
a simple Lie superalgebra ^ in 3.1) and />(a^) = 0 for all o^ell, then, as a
C-Hopf algebra, U*h/hUff

h~ U(G)ff (resp. U*h/hU"h~U(<g)ff) (see Theorem 2.10.1
(resp. Theorem 10.5.1))

t/+:=an ideal of N+ generated by Serre relations and additional relations
(see Definition 4.2.1)

^ + :=N+/J?+ (see 4.3)
</J,+ :=an ideal of U'rba

+ generated by elements of «/+ (see 4.3)

*^6*+^=C^6V^+ (see 4.3)

7w /ac«, i« wi'H be shown that < /+=/+, ^+=/i+ , *^ 6+= C7^ 6+ (see

Proposition 10.4.1)

^ + jV:=a weight space of «yK"+ of a weight veP+ (see 4.4)

2.1. In §2, we construct quantized enveloping algebras associated with
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generalized symmetrizable Cartan matrices of Kac-Moody type Lie
superalgebras.

Let $ be an AT-dimensional complex linear space with a non-degenerate
symmetric bilinear form ( , ):$>x$—>C. Let II = {«!,•••,«„} be a finite
linearly independent subset of S. We call a function p: I1->{0,1} the parity

function. We call (S,Tl,p) a triple system. Let 4e-Z\{0} (1 <i<n). Define

the diagonal matrix D by diagO^, •••,</„). Put ffl — $*. For Ae<f , let us define
H^tf by ^(HA) = Ox,A) for all jieef.

Let Oj=[7j((<fJI,/>),jD) fo aw /z-adic topological .R-algebra /z-adically
defined with generators Et, Ft(l <i<ri), HeJf, a and relations: (Here [X, Y]
denotes

(2.1.1)

(2.1.2) [HlyH2]=Q(Hi3H2eJ^)y

[H^ = ̂ (H)Eh [H>FJ=-ai(H)Fl (HeJf),

(2.1.3) *hh

Similarly to [19], we have:

Lemma 2.1.4. (T/ze triangular decomposition of Ua
h) Let N+, (resp.

R((ry or JV_) be the unital R-subalgebra of U% algebraically generated by
the elements {Ei9-,EH} (resp. {Hl9-,HN}, {a} or {Fl9"-9Fm}). Then N+ (resp.
N_) is isomorphic to the free algebra R(El9- •-,£„) (resp. ^<F1,---,FM». The
algebra U(J^R) is isomorphic to the symmetric algebra &[JJ?R] of the R-module
J^R = R0J^. The R-module ^<(7> is isomorphic to Ro~ 0 R. Moreover we
have an isomorphism of h-adic topological R-modules:

N+

Proof. Let ^<3c1,---,ac l l) and ^^i,"-,^,,) be the tensor algebras of the
free ^-modules with bases x l J - - - y x n and y^--,yn respectively. Let zlt-"9zN

be a basis of Jf. Put V=N+ (g) SfJf15] (g) R<t7> (g) JV_. Note that the
topological basis {^i^--^ ® ^i1---^^ (X) crc (X) ^ • • '^J is a handy basis with
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+ iu + al H ----- h aN + c +j\ -\ ----- \-jv. We can define a t/£-module structure on
F by the following formulas: (Here p(i) denotes

• • -yjv (He AT),

On the other hand, by using (2.1.1) — (2.1.3), we can show that U^ is
generated by the elements

Eil-E^3$-jj'-<f-Fh...Flv (ai,-,aneZ+, Ce{0,l})

as an h-adic topological J?-module. Hence we see that the JR-module
homomorphism t/£-»F (s-*x-lv) is an isomorphism. This completes the
proof.

Defining the coproduct A, the antipode S and the counit 8 by

exp( - hHx) + ̂ (ai) ® Fi9

1 + 1 (g)H (HeJf), A((7) = (7

-AHai)-<7^>^> S(Ft)=-Ft
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the algebra t/J becomes a Hopf algebra.

2.2. Let (<f,II = {a !,-••,£„},/>) be a triple system. Put W = C[[V/A]].

Then Rf = R ® JhR. Let U'^ b\ = C^ fr^ef ,!!,/>) be a ,/Jz-adic topological

.R-algebra with generators E{ (\<i<n), H' E W , (7 and relations: (In £7' 6°^,

we write H for

(2.2.1) or2 = l

(2.2.2) [^,

(2.2.3) [ff,£

A topological Hopf algebra structure of C7* /r 6+ introduced by defining

the coproduct A', the antipode S' and the counit e' is defined as follows:
(Here H' denotes an arbitrary element of $P .)

(2.2 A)

JT(g) 1+1

(2.2.5) S'(^)= -

- ff (fT e jf ), S'(a) = a,

(2.2.6) e'(£i) = e'(FI-) = fi'(H') = 0> s\a) = l.

Let O'+ : C/y bff
+ ->R' (X) C7^ be a continuous J^'-algebra homomorphism

denned by putting Q'+(jBl.) = JEI-, & +(H') = jhH' (H £ Jf), n'+(ff) = (7. Then

O'+ is a ^//z-adic topological Hopf algebra homomorphism. Similarly to the

proof of Lemma 2.1.4, we have:

Lemma 2.2.7. (i) O'+ is injective. (ii) Pw* AT+ =R' ®N+ =R'(Ei9~ -,£"„>,

&[jeR']=Re ®&[JJ?R] and R\<r)=K (g) -R'<^>-

phism of -Jh-adic topological R'-modules:

N ' + ( g ) . j -
V"

particular, if H^,---,!!^ are C-basis of J^, the elements
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(2.2.8) E^-'E^HT-Hyp'O* (1 <^---,4<^

form a topological basis of U'^ ba
+ .

23, For aE%+, let Q'a be the submodule of homogeneous elements of

degree a of 6[>f*']. Then ©[.#*'] = © <5'a. Put P+=Z+al 0-© Z+aw
aeZ +

eff. ForAeP+ ,weputJV'+,A= © RE^-E^. Then N'+ = © ^+§A.
a*! + •••+«!„ = A AeP +

We define the elements H'£ (Ae<f), £? (1 <i'<*i), tJ°6(!7' - 6^.)* as follows:
V"

(Here JT (resp. Z7) denotes a non-zero element of N'+tfJl (resp. ®^) and

(2.3.1) . .
[0 if /i^ or

(2.3.2) ^.^ =
O if /i^a,- or a

m^ ^3T7'^ J(-1)C if X=Z' =(2.3.3) a (A'Z •(! ) = <
10 if ju^O or

Lemma 2.3.4. (i) E°i9 H^°, o°e(U
V "

(ii) There is a topological R'-Hopf algebra homomorphism ©:

f-b\Y such that ©(H'A) = H'A°, &(Et) = E^9 ®(a) = a°.

Proof, (i) We show E°E(Uf^ ba
+)° only. It can be easily shown that

the basis elements x of (2.2.8) satisfying x-E^^Q are I,t7,-Ef and ^0". Hence
we have rank (^ 6+).£?<4, which implies £? 6 (C^ ^ + )°. Similarly, we

have HS, (706(C^6^)°.

(ii) First we show that © is an algebra map. We show that the
elements E°iy H'A° satisfy (2.2.3). By the definition of the coproduct A' and
the definitions of E^, jEFA°, <7°s for the basis elements x of (2.2.8), we have:

if *=*'"HX'0 otherwise,
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H'2-E°(X)= (A,jt) if * = £,
^ 0 otherwise.

Hence it follows that H'^-E* = E°tH'i +<^h(l,ai)E°i, which is the relation

(2.2.3). Similarly, we can show that the elements £?, H'A°, cr° satisfy the

relations (2.2.1—2).

Next we show that ® is a Hopf algebra map. Let m denote the

multiplication of U /- bff
+. We are going to show that

(2.3.5) tm(E°)=E°i (X)

which is the one of (2.2.4). Let x and y be a pair of the basis elements

(2.2.8). By (2.2.1-13), we have:

if x = Eta
c (c = 0,l) and y =

if x = Hf
1
ai.-H'N

a*ac (a,,- -,

0 otherwise.

Here we note that, for the basis elements x of (2.2.8),

(2.3.6) (fli°)«-(ff°)e(*)

otherwise.

Hence we have:

in (t/^ 6^.)° (X) (C7^ ^)°. The above is nothing else but (2.3.5). Similarly,

we can prove that, E°, H\, G° satisfy (2.2.4—6). This completes the proof.
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2.4. We define a symmetric topological jR'-Hopf algebra pairing < , >:

b\ x Ufbff
+^R'by(x,yy = ®(x)(y). By (2.3.1-3) and (2.3.6), we have:

Lemma 2.4.1. Let st (l<i<N) be a C-basis of $ such that

(ei9Bj) = dtj. Let XEN'+ti and YeN'+tfl. Then we have:

2.5. Let 3Y = D(C^ bff
+, (U1^ bff+)op) be the quantum double defined in

Then £>' ~ L7' b*+ (g) U^ b\ as .R'-modules.

b+, we write X for X (g) 1 and X° for 1 ® X.

§1. Then £>' ~ L7' b*+ (g) U^ b\ as .R'-modules. For an element XE

Lemma 2.5.1. T7ze h-adic topological J^'-algebra T)' w h-adically defined

with the generators Ei9 E?(l<i<n)H, H'° (Hf e Jf ), (7, a° and the relations'.

(2.5.2) The elements a, (7°, H' , ff° are mutually commutative.

(2.5.3)

(2.5.4) [H')Ei]=i(H')Ei. [ff °,BJ = -

(2.5.5)

Proo/. Put L ^ e x p t ) ^ 0 and L^expC^A^)^^. First we

show that (2.5.5) holds in f>'. By Proposition 1 .4.1 and (2.3.1-3), we have:

Similarly, we can show (2.5.2-4). On the other hand, it can be easily shown

that the .R'-algebra defined by the relations (2.5.2—5) is generated by the

elements
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as an jR'-module where {Hf
ly-',H'N} is a basis of ffl and 1 <ii,'",iuyj1,'"j'v<N,

ai,--,aN,bi,--,bNeZ+, c,de{0,l}. Since X>' ~ U'^ bff+ (g) U'^ b\ , this com-

pletes the proof.

2.6. Let /;+ (c 0^ &*+) (resp. /'+(<=#'+)) be the kernel of < , > (resp.

<( , )>!#'+ x jvv ) - The following lemma is useful.

Lemma 2.6.1. If J' is a bi-ideal of U'^ bff
+ such that, J'c=£

then J' I

Proof. By (2.3.1-3), the generators Ei (\<i<n), H (HEJtf), a are
orthogonal to J'. Hence the lemma follows.

2.7. Put U'j-hb«+ = Uj-hb\/rb+ and N'+=N'+/I'+. Put !'+,, = If
+nN'+,,

and Nr
+^ = N'+JI'+i, for

Lemma 2.7.1. (i) N'+ A is a free R'-module of finite rank. N'+ = 0 N'+^.

(ii) Tb+ =r+&[JJ?R']'R'(o-y. (iii) As topological R-modules, U^ bff
+ ~ N'+ (§)

<5[Jf K;] (g) ̂ '<d> (X'Z''0~C<-X (X) Z' ® crc). /« particular, Uj^\ is a topologi-

cally free R'-Hopf algebra.

Proof. Let c 6 #'\{0} and xeN'+^. If ex e I'+ §A, then c<^c,3;> = (^,3;) = 0
for all y€N+. Hence (x,yy = Q which implies 3c6/ f

+ f A . Hence the freeness
of AT+a follows.

From Lemma 2.4.1, we obtain:

( i )— ^ > )|JV'+<g)JV'+ (8) ^ J )|©[Jf«']®(5[JfjR'] ® ^ > ) |K '<^>®K'<ff>

1 -1

and N'+ = 0 iV'+)A (Here 0 denotes the orthogonal direct sum). Then we

have (i) and (ii). We immediately obtain (iii) from (ii).
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2.8. Let D' = D(C7^6+) (U^ b+D (* U^ b+ ® (U^ b+)°') be the

quantum double defined in §1. For an element XE Uj^)\, we write X for

X (X) 1 G X>' and X° for 1 (g) J^e D'. For a subset M of [7^ 6+ (resp. t/V 6 + ),

we write M for {m (X) 1 el)' (resp. £>')| weM} and M° for {1 (X) weD' (resp.

i>')|meM}.
By the definitions of the quantum doubles $)' and 1)' (see

Proposition 1.4.1), we have:

Lemma 2.8.1. (i) As Rf -modules,

(2.8.2) f>' ~ AT' (g) S[Jf K'] (g) ̂ '<(T> (g) JV'° (g) <5[jeR']° (g) ̂ '((J0),

(2.8.3) D' - JV (g) S[Jf *'] (g) ^'<a> (g) AT'0 ® ®[Jf R']° (g) /«'<(r0>.

(ii) Let *¥: T>'—»£)' be a natural epimorphism defined by *¥(X (g) Y) =
X® Y where X=X+I'b+ and Y= Y+I'b+. Then

2B9o Let N+ (resp. N+) be the unital R-subalgebra of N'+ (resp. N'+)
generated by the elements Ei (l<i<ri). Since N'+ is free (see 2.7.1), N+

is a free P-module. Let I+ = T+ nN+. For /16 P+, we put.
and /+ i=jr4

Lemma 2.9.1. (i)

where

(ii) For AeP+ , i^ere e^?5 a /reg R-module L + >A

Proo/. (i) We have J'+jA = /+ > A 0 ^hl+^ since <^T,F>eP for all
^T, FeAT+. The rests follow easily from this.

(ii) By Lemma 2.7.1, N*+^ is a free jR'-module of finite rank. Hence,
by (i), AT+ A is a free J?-module of finite rank. Since N+ jA = 7V+ >A//+ ,A,
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choosing representatives xl,--,xueN+>i such that xlt"-txu form a basis of
7V+>A (modulo /+>A), we have N+^ = I+^ 0 (Rxl ©•••0 Rxu). Hence,
putting, L+ i = Rxi ©•••0 Rxu the part (ii) follows.

Lemma 2.9.2. Put Ki = exp(^/hH'ol.)) K°i=exp(^/hH'°i)E'£)'(l<i<n).
Let T (resp. T°) be the R-subalgebra of X1' generated by the elements K^1

(resp. K?±l) (1 <i<ri). Let U be the R-subalgebra of D' algebraically generated

by the elements a11, a0±i and K?1, K**1, Eiy E°t (\<i<ri). Then

(i) U is a (non-topological) R-Hopf subalgebra of £)'.

(ii) As R-modules, U~ N+ (x) T (x) #<<J> (X) N°+ (X) T° (g) ̂ <(T°>
(^(jc y°5°(Tod <- ̂ T (x) f (x) ac (x) F° (g) 5° ® ffod) (XeN+) teT, ce{0,l}
N°+, S°E r°, rf6{0,l}). TAg gfemenfr Klt'-Kl

n
n (resp. Klll--K°n

l") (l^--
form an R-basis of T (resp. T°).

Proof, (i) By (2.2.4-6) and Proposition 1.4.1, we have (i).
(ii) By (2.2.1-3), (2.5.2-5), we have

By Lemma 2.8.1 (i), we can easily show that

N+ -Ki1 • • .Xi"-/?<(7> • N°+ -Klmi • • 'K°n

holds in X)' for each lly- >,ln,m^ • • - ,mn E Z. Therefore, it is enough to show

(2.9.3) tf~ 0 N+-K[l'''K[n'R^y-N0
+'Klmi'-'K0

n

Take an + 1 ,---,%e(f such that a l 9 - - -,an,aw +1,--,a jv form a basis of (f. For
l<i<n define .R'-module maps 5f: D'-»T>' and 5°: D'-^D' by:

//ni . £/'a^^?i <TC /^ V° <^ Pf'obi.. . H'°bN /Os rr0^
ai ^ajv ^9 ^ Q9 ^ 09 •"«! ^aiv x9 " /

T • 3^ ̂  ^f' ai . . . ff'fl« ~ 1 . . . ff'a* (^ <T£ rS?» v° 6?» ff'°bi • • - ffrob*f 6?) frod
^ \ ( ) ^ z •••/i •••JnL ( } u { } i ^ A ; n •••n V A / o ,
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rl°( Y fi?\ ff'ai • . . f f f { l N <Vl rsc (^\ V° fi?\ f f f o b i . . . ffGi \^ 09 •"«! -^XN 09 & 09 * 09 "«i -^

— h-Yfib H'ai • • • Pf'aN 6h rrc fo V° ^— 0j -^ v^y -"ai ^(ZN ^-? ® ^ ^S/

where the elements

3*" (^ f/'fll . . . F/'flJV /^ rfc (^ V° f^ JT'^\. v^xs; iiaj "^(Zjv ^^ ^i' >^y "^

are basis elements of

(see (2.8.3)). Then we have:

dt(X (g) /d1 • • -Kl
n

n (g) (Tc (g) F° (g) jqmi - - -K°n
mn

7" !̂ E^^n /Q\ ,rc /sxN V° /i •••/vn Q9 ̂  09 ^

d 0/"

^

Hence (2.9.3) is the eigenspace decomposition of U with respect to di and 3°.

Now we state the main theorem of §2. We put q = eh.

Theorem 2e9.40 Let (<f , II = {0^ ,-••,$„},/>) be a triple system and

D = diag(rf1, ••-,</„) (^E-Z\{0}). Put qt = qdl€R. Then there exists a unique

topologically free R-Hopf algebra U%= Ul(($,H,p),D) satisfying the following

conditions:

(i) The R-algebra Uff
h contains <5[Jf R], ^<a>, N+, N°+ as R-subalgebras.

Here N°+ is another algebra isomorphic to N+. For YeN+, we denote the
corresponding element of N°+ by Y°. As topological R-modules,
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(ii) There is a topological R'-Hopf algebra homomorphism Q': !D'-> U^ (X) R'

such that

(2.9.5)

Proo/. Ste/>/. Put E^Fp^eUl (l<i<n). By Lemma 2.5.1, we

see that there exists a topological .R'-Hopf algebra homomorphism Q':

£>'-»£/£®^' satisfying the conditions (2.9.5). Let N°+ be the unital

subalgebra of U% algebraically generated by the elements E°t (\<i<ri). By

Lemma 2.1.4, it is clear that

(2.9.6) U°h~N+

Step II. We construct [7J as a quotient of f/J. Set Ji =

-R(ay-N0
+ and J2 = AT+-S[JfR]-JR<c7>-/0

+ where J°+ = {Y° | Fe/+}.

We claim:

(2.9.7) Jj and J2 are Hopf ideals of U*h.

Assume this fact for a moment. We define the Hopf algebra U% by

t/^/(J1+J2)- By Lemma 2.8.1, there exists an jR'-Hopf algebra homomor-

phism Q': D'-»UJ(g)jR' naturally induced from O': I) -> £/£ (x) #' of Step 1.

By (2.9.6) and the definition of C7J, it is clear that Uff
h~N+ (g) S[jf R] (g)

^^°") ® ^+ as ^R-nmodules. In particular, t/J is topologically free. Since

/z(t7^(g)J^')c:ImO', the product in U% is uniquely determined by Q'. Hence

the uniquiness of C7J follows.

It remains to prove (2.9.7). We shall prove this only for Jt; J2 can be

treated similarly.

First we prove that Jt is a two-sided ideal of the algebra 0%. Evidently,

Jj is a right ideal and Ei-J1 c: Jj (1 <i<ri), H-Jic:J1(HEJ^), (J-Jic:Jl. Recall

/+ = ® ^+,A- ^7 Lemma 2.9.1, J^ is a direct summand of U%. Hence it
AeP-r

is enough to show that

(2-9.8) (qr'
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Let X be an element of J+ j A . By Lemma 2.5.1, we have that

(2.9.9) ^-A^^-^ + ^-expfv/^

with some ^1}, ^2)e7V+5A_a{ in the algebra X)'. Let ¥: X)'->X>' be the

Hopf algebra homorphism defined in Lemma 2.8.1. By Lemma 2.9.2, X^l\

J^2)eKer ¥. Hence, by Lemma 2.8.1, &l\ X(2}eI+^_(Xi. If we let operate

Q' on the left and right hand sides of (2.9.9), we obtain:

Hence (2.9.8) follows. Thus we showed that Jj is a two-sided ideal.

Noting that KerNK is a Hopf ideal, and using an argument similar to

the above, we have

,^t + v = A

with some Ajl
1)6/+iM, ^V

2)e/+>v, ^6^+^ Yjt
2)eAT+)M. Hence

ft ® ^i- Similarly we have:

Hence S^^aJ^ It is clear that e(J1) = 0. Hence (2.9.7) is proved. This

completes the proof.

By Proposition 1.7.1 and Lemma 2.4.1, we have:

Lemma 2.9, 10, Let Q': D'-» U"h (X) .R' 6e ^e Hopf algebra homomorphism

defined in Theorem 2.9 .4. Le£ J^' (re^p. K) be the fraction field of R' (resp.

R). Denote the scalar extention Q' (X) idx,: D' ® K'-»Ua
h (X) K' o/ O'

63; Q'. For AeP+ , />«« |>A = rank JV+>A , aw^ fei {e(A,0}i<»<pA, {^'

bases of N+ )A (X) K" 5wc/z ^a^ <e(A>0,e(A'y)> = (5I-J-. Le£ {eji<i<jv ^ « ^^ of
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N

such that (shSj) = d{j. Put t0 = £ H*t ® #* e Jf (g) Jt?. // the element

converges in L7J (g) C7J (g)/T and 9teUl®Ul, then (C7J,A,#) w a
triangular Hopf algebra.

By Proposition 1.9.2 and Theorem 2.9.4, we can easily show:

Corollary 2.9.11. Let Ft = E°(7p(^E U*h (1 <i<ri). Let Uh= Uh(U,p) =
Uh(($,Tl,p),D) be an R-subalgebra of U% h-adically generated by the elements
Eh Ft (\<i<ri) and HzJtf. Then we have

(i) U^=Uh@ Uh-a. In particular, Uh is topologically free.

(ii) Uh has a superalgebra structure such that the parities of Eh F{ and
Heffl are />(af), />(af) and 0 respectively.

(iii) Uh has a topological Hopf superalgebra structure such that the
Hopf algebra U% is isomorphic to the Hopf algebra in Proposition 1.9.1 for Uh.

2.10. Here we show that, if n = {a1,---,aw} is the set of simple
roots of a symmetrizable Kac-Moody Lie algebra G and p(xi) = Q
(l<i<ri), then Uh is isomorphic to the quantized enveloping algebra
Uh(G) introduced by Drinfeld [4] and Jimbo [5], More precisely,
we obtain the following theorem.

Theorem 2.10.1. Suppose />(a£) = 0 for all i. Assume that (ai,(x,i)

(1 <i<n), (a,,oc;)<0 (i*j) and au = 2(ai,aJ)/(ai,ai)eZ. Let d^^-^ (1 <i

and D = diag(di,--,dn). Then /+ is the ideal of N+ generated by the elements

(2.10.2) (-ir E[
v = 0
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where qt = exp (hd^) and

-.,i ^
v J,, M

Proof. Let us denote yijeN+ the element (2.10.2). By a direct

computation, we see that A'Cvy^^y ® 1 +exP(\A^((i-fl0)a,+^)) ® J'u- Hence
the ideal of U'Jbff

+ generated by the elements y^ is the bi-ideal. Hence,

by Lemma 2.6.1, 3^6!+. Put U=Uh/hUh where Uk is of Corollary 2.9.11.
Since U(G) is defined by the Serre relations, there exists a natural epimor-

phism i/r. C7(G)-»U.
Let U(G)= U(n + ) ® t/(jf) (x) t/(w_) be the triangular dcomposition.

Put 91+ =N+/hN+. Let L7(n+)y and 91+ y denote the weight space of a weight
yeP+. Let ^(A) and 23(1) denote the irreducible highest weight module
with highest weight 1 of U(G) and U respectively. Let f^(/l)A_yc:f^(/l) and

33(/l)A_yc:93(/l) be the weight spaces of weight A — 7. From a well-known
fact in the representation theory of G (see the formula (10.4.6) in [6]), we

can see that, if A is sufficiently large as compared with yeP+, dim [7(n + )y =

dim i^Wx-y On tne other hand, using \j/: C7(G)->U, we can regard 93 (A) as
an irreducible t/(G)-module isomorphic to T^(A). Hence we have:

dim C/(n+)y = dim TT (A)A _ y = dim 93(A)A_y < dim 9l + >r

Since if/ is an epimorphism, dim f/(n + )y>dim 9l + §r Hence we have

(2.10.3) dim U(n + )y = dim 9l + tr

Note that N+>^ is a free ^-module of finite rank and /+ A is a direct summand
of N+^ (see Lemma 2.9.1). Hence, if wu (1 <u<rank /+> A) are elements of
/+ A such that {wu + hl+ )A} is a C-basis of J+ A//z/+ A, then {wu} is an l?-basis

of /+ j A . In particular, by (2.10.3), we can put
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Hence the theorem follows.

Remark 2.10.4. We remark that the above theorem can also be proved
by using Tanisaki's result; as an immediately consequence of Proposition 2.4.1
in [20], we can show the non-degeneracy of the Hopf pairing < , ):
Uk(n + ) x Uh(n + )-^R where Uh(n+) = N+/(yij(l <i^j<n)). Hence J+ =(yij).

§3. Root Systems of Simple Lie Superalgebras

3.1. Let ^ = ̂ 00^! be a finite dimensional complex simple Lie
superalgebra of type A — G. Let (®,$R) be a root system of ^. For
terminologies related to simple Lie superalgebras, see [7]. Here SR is an
AT-dimensional real vector space with a non-degenerate symmetric bilinear
form( , ) :<f R X(f R -»J?and<I>(c<f R ) i s thesetof roots. Put $ = C (X) &R. Let
H = {xl, ••-,«„} be a set of simple roots and p: YI-+{Q,1} = Z/2Z the parity
function. Put P = Zoc1H ----- hZaw(c=^). We extend p to the function p:
P-+Z/2Z additively. We assume that the triple ($ ,!!,£) is of distinguished
type if # is of type F4 or G3. We do not treat (<f ,!!,/>) of type D(2,l;a). That
case is easy. However we need some unpleasant notation for type
jD(2,l;oc). To fix notation, we list below Dynkin diagrams, systems of simple
roots 0 = {a !,•••,«„}, the set of positive roots <D+ and parity function p:

II-»{0,1} of triples (<f,n,/>) of type A-G. We put N=n + l if (<B,II,/>) is of
type A, and N=n otherwise. Let (ef (1 <i<N)} be a fixed orthogonal basis
of $R\ the values of (£j,£j) are given below. The element of S>

R written
under the dot with the i-th label is the simple root a(. Note that the
numbering of a/s is not the standard one for types F4 and G3. In the
following diagram, the parity function p: II-»{0,1} is defined as follows. The
dot x at the i-ih label stands for the dot O (resP- ®) if (af,af)/0
(resp.(aj,at-) = 0). If the i-th dot is O5 (X) or •, then we define P(OL{) = 0,1,1
respectively. We also give the diagonal matrix D = diag(dl , • • • ,dn) such that
A=D~1[(xi,aj)] is the Cartan matrix of (<D,I1).

(i) Types A, B, C or D. For types A-D, we put (fi^)=±5y

(l<i,j<N)y where we can arbitrarily choose the signs of (e^-)-
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1 2 N-l
x - x ----- x

1 2 JV-1 AT

x - x ----- x ;>Q or

1 2 AT-1 JV
X - X ----- x=>^

— S2 ^2~^3 %-l~% %

1 2 JV-1
x - x ----- x<

(Dff) x - x

1 2

6j — £2
 £ 2~~ £ 3 e JV-2~- f i JV- l

if (e^_ i ,e*f_i) = — (£v,e^),

(ii) Types F4 and G3.
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1 4 3

O 0=> O

[(£,.,£;)} = diag(6,- 2, -2, -2), D = diag (2,1,1,2),

O+ = {Wla! + «4a4 + «3a3 + n2a2 1 (w1)«4 ,«3 ,w2) = (1,0,0,0), (1,1,0,0), (1,1,1,0),

(1,1,2,0), (1,1,1,1), (1,2,2,0), (1,1,2,1), (1,2,2,1), (1,2,3,1), (1,2,3,2), (0,0,0,1),

(0,0,1,1), (0,1,1,1), (0,1,2,1), (0,0,1,0), (0,1,2,0), (0,1,1,0), (0,1,0,0)}.

- 2,2,6), D = dia

3 + fi2a2 | ( i i1 ,fi3>fi2) = (l>0,0), (1,1,0), (1,1,1), (1,2,1), (1,3,1),
(1,3,2), (1,4,2), (2,4,2), (0,0,1), (0,1,1), (0,3,2) (0,2,1), (0,3,1), (0,1,0)}.

3.2. Let <I>+ be the set of positive roots with respect to II. Put

®^d = {jSe<I>+ |-j3<£<D + }. We define the partial order < on Or^d as

follows. Given /} = c1onl -\ ----- h cn%n € ^r+d> we define integers ht(p), g(f$), c^ e Z+

by ht(f$) = cl-\ ----- h cn, g(f$) = m'm{i \ c{ / 0} , cp = cg(^ respectively. Define a half

integer ht'(P) by ht'(P) = ht(/l)/Cp. Let a,jS be elements of d>7d. We say that

a</? if they satisfy one of the following

(0
(ii) g(*)=g(ft and

or

(iii) €>r+d is of type DN, p(si—HN) = l and a = ef — %, j8 = 2e^ or a = 2e,.,

, or, a = £;-£#, jg = £. + eAr.
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For, a,jSe<I>r
+

ed, let <Dr
+

ed( < a) = [y e <Dr
+

ed | y < a}, (^d(a < j5) = {y e <T^d | a <

8}, ^+
ed(j?<) = {yecDr

+
ed|j8<y}.

Let *+*={0e<BTMs(i8) = i}. For a.jSe*^ let 0>r
+

edi( < a) = <Dr_fd< n 0>r
+

ed

§4. Defining Relations of N+

4,1 . Keep the notation in §2-3. Assume that the triple system

(<?,n = {a !,••-,«„},/>) satisfies the assumption in 3.1. Let A = (^ij)i<ij<n
 =

D~i((KiyMj)) be the corresponding Cartan matrix. Let U'rbff
+=N'+®

&[3tfR'] (g) R'^y be the topologically free .R'-Hopf algebra defined in 2.2

for the triple (<?,!!,/>). The purpose of this section is to define an ideal ^ +

(ii /+) of N+ with an explicit set of generators. In §10, we will show,/+ =/+.

4.2. We define the Z2-graded algebra structure on N+ such that the

parity of Et is pfa). Denote the parity of XeN+ by p(X). Put

[X,Y]v=XY-(-l)p(X}p(Y)vYXand [X,Y] = [X)Y]l where p(X) and p(Y) are
rm_i_*z~i n -i

the parities of X and F. Set = fj ((r+"-'-r""" + W"1"1-*"'"1))
L « Jt i=o

Put g = eft, v{ = q^i:Ei) and ^- = gdl.

Definition 4.2.1. Let J> + be the ideal of N+ generated by the following

elements:

(i) [Et,Ej] for l<ij'<n such that a0- = 0,

-v E.Ev for i^i^j^n

q.

such that />(af) = 0,

(iii) [[[Ei9Ej\vj9EJOJ+l9Ej\ with i_4-x

/ i j k i 3 k .
(resp. x— <x)— O or x— ®— ®),

(iv) [[[^N-i^]^,^]^],-! with x
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if A is of type BN,

(v) [[EN-2>EN-i\VN_l,EN]VN--[[EN_2>EN]VN_l,EN_l]VN

N-l

with ^^ I! if A is of type DN,

(vi)

(resp.

f N-2 N-l N JV-3 N-2 N-l N
tor 0 (g)<=Q (Jesp. x Q ®<=O )

if A is of type CN.

4.3. The following proposition will be used in proving «/+=/+.

Proposition 4.3.1. (i) The R'-submodule J^r
b+=(J^+

a bi-ideal of U' - b\.

Proof, (i) Here we consider the case of the triple ((f ,!!,/>) given by

1 2 3
Q - (g) - Q in this case, the ideal </+ is generated

6^ £2 S2 £3 £3 84

by the elements

and

^1223 = [«>1 23*^2!

where Wi23 = [[^i^2L2,^3]i;3-

By an easy computation, it follows
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for any sv. We also have:

Let 5^ be the ideal generated by the element s2(X2- Then £f is a bi-ideal

and we have:

[[E^E^EJ^E^EM^ =0 (modulo ^).

Therefore we have:

l 23),£2 ® 1 + e x p ( ^ 2 _ E - 3 ) - < 7 (g)

+ {0 + exp(N//zH^i_E%)-<T ® (1223} (modulo

Hence A'(J^+)c:1/+ ® C/V 6+ + t/V b\®J+. This implies that «/;+ is a

bi-ideal of U'jrba
lr. The other cases can be proved similarly.

(ii) It is immediate consequence of (i) and Lemma 2.6.1.

Denote the h-adic topological ^?'-bi-algebra L/ 6+/«/J,+ by W^ b"+. Put
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JT+ =N+/J?+ and JT'+ =Jf+ (X) R ( = Nr
+/J?'+). Then we have:

V"

4.4. Put ̂ +y = N+fV/(S + nN+>v) (c^r+) for veP+ . For v,^e^+ and

^, we put

Let ^ve^+,v, -YMe^K+tM, X,6^T+i, (v,^,f|6P+). In §6-§9, we shall
frequently use the following identities:

(4.4.1) IX^X^X^K^IX^I + ( -

(4.4.2)

(4.4.3) If X$ = 0,, we have:

(4.4.4)

+ ( -



50 HIROYUKI YAMANE

.M)( _ ! )P(V + .0pte)g - <v + l.*)^

In particular, if X = rj, we have:

(4.4.5) [[[*v,jy,*J*J
= 1x^11x^1x^1

§5, Root Vectors of «yf+

5.1. Here we define q-root vectors Ex (ae<l>r+d) of Jf+.

Definition 5.1.1. For jSeO^, we define the element

as follows. (For type F4 (resp. G3), we write Eabcd and E'abcd (resp. Eabc and

(reSP- ^o«i+6a3+ca

(i) We put jE^JEi (1 <^</t)

(ii) Let ae<D+d and l < f < w be such that g(oC)<i (see 3.2 for the

definition of g(a)) and a + ̂ 60. We put £;+a< = [J?a,Sai]^_(a<ai). If ^ is of

type SN, f = JV and a = 5j (l<j<N-l), let £.+aw = (^2+J-^2)-1£; + ̂ . If

^ is of type DN, i = N and a = a j v_ 1 > let £t
a+flt2V = (g + g~1)~1£';+ajv. If ^ is

oftypeF4, letE1120 = (g + g-1)-1F1i2oandE1232 = (g2 + l+g-2)-1F1232- If

A is of type G3, let El2l = fa + g~1)"1£i21, ^02i = te + ̂ ""1)"1^02i and

^03i = (92 + l+^"2)"1^o3i- Otherwise, put B8+fll| = £;+ai.

(iii) For a, jSe$r
+

ed such that g(x)=g(p), a<j8, ht(P)-ht(ai)<l and

a + jSe^r
+

ed, we put Ffl[+/, = [jE:a,E/f]4_(ap/,). If ^ is of type C^ (resp. DN, F4

or G3), then Ea + p is defined by (q + q'^r^t + p (resP- (q + q'^'^+p,

tf + q-2)-1^*, or (g2 + l+g-2)-1^+/?).

5.2. The following lemma will play key role in proving our main results

(Theorem 10.6.1).
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Lemma 5.2.1. (i) Let ae<£+d (see 3.2 for this definition) and
j>i. Then we have:

for some cyi ...7uER.

(ii) Let a,j3e<D+d. J/a</?, then we have:

/or some cy i j . . . j V MejR.

(iii) £a
2 = 0 f/(a,a) = 0.

Remark 5.2.2. In some special cases, we can show more detailed results
than Lemma 5.2.1.

(i) Let ae$7d satisfy ca=l. Take at-ell such that i>g(a) and
a + a,£<Dr.Jd. Then we have:

(ii) Assume that a, j8e€>r+d satisfies a<£/? and /?<£a. Then we have:

<
5.3. Let Y\ denote the product taken with respect to a total order on

red

compatible with the partial order < .
As an immediate consequence of Lemma 5.2.1, we have:

Proposition 5.3.1. The R-module ^+ is generated by the elements

Y\ El* (waeZ+ if (a,a)^0, wa = 0,l if (a,a) = 0).
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5.4. The purpose of §6-9 below, is to prove Lemma 5.2.1 and Remark
5.2.2.

In §10, we shall prove that the monomials ]Q E%* form an orthogonal

basis of Jf+y which implies «/+=/+.

§6. Commutation Relations of Roof Vectors of Jf +

(type AN_i9 BN9 CN or DN)

6.1. In this section, we assme that Jf \ is of type AN_lt BN, CN or

Put <7i = (Mi)e{l,-l}

Lemma 6.1.1. The following identities hold in Jf + .
J

(i) [£'ai+aj+afc,£'J.] = 0/or x - x - x

i j k i j k

x - x=>o or x - x=>®.

(ii) [E^^Ej^-^lE^^-^Q for x - x (/<».

(iii) [EXN_2+<XN_i+(XNyEN-i]q-dN-1

= [E*N-2+*N-i+«N>EN]q-*N-i = Q for type DN.

(iv) [EN_1,E«N_1+XN,]q-*N_l = [EaN_1 + 2aN,EN]q-*N = Q for type BN.

(v) [EaN,i+XN,EN]q-2*N = Q,

[EN_lE2tXN_l+XN]q-2^N-l = 0 for type CN.

(vi) [E«N-2 + 2xN-i+*N>EN-i]q-*N-i = Q for type CN.

(vii) [E2»N-2 + 2«N-i+«N,EN-i] = Q (^(aN_2 + aN_1) = 0)/or type CN.

(viii) [£I
a2V_3 + 2aiv-2 + 2a^-1+a2vA-i] = 0/^ ^« CN-

Proof, (ii)-(v) These can be proved by direct computations. The proofs
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are immediately obtained from the formula (4.4.3) or Definition 4.2.1 (ii).
(i) This is the defining relation (iii) of Definition 4.2.1 if p(a.}) = \. If,

/>(«,-) = 0, by Definition 4.2.1 (ii), (4.4.1), and the formula (ii), we have:

0 = lEhE
2Ek -(q+q- ^EjE.Ej + EkE]l

(vi) The case />(aAr_1) = l follows from (4.4.3) since, in this case, we
have l?^_i=0. Assume £C*iv-i) = 0. By using the facts Xa)v-i)=Xo£jv) = 0
and 3N-l=dN, and, by using Definition 4. 2.1 (i-ii), (4.4.1) and (ii), we have:

— (q + q )EN-1EXK_2+xrl_l+xriEN^1+E<XK_2+llN_l+<lflEN-1}
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(vii) This is the defining relation (vi) of Definition 4.2.1 if p(ajv_1)
Assume />(a jv_1) = 0. By (ii), we easily see lEN.2)EaN_2+XN_l+<XNl

By (vi), similarly to the proof of (i), we have:

(viii) If p(aN_2) = 0 and, p(a^_1) = l, then (viii) is defining relation (vi)
of Definition 4.2.1. Next, we assume />(a^_1) = 0. Note that, by (i) and
(vi), we have

(6.1.2) iEXN_3+OLN_2+!XN_1+aiN,EN_2l = Q,

(6.1.3) iE<xN_3 + <XN_2 + 2aN-i+zN>EN-lj=Q

respectively. Hence, by (4.4.5) and (ii), we have:

ff _ 1 \P(«2V~1 )P(«2V- 2)ndN-i Iff T?
\\ LJ <£ J^aN-3+<tN-2+2(ZN-i+(XN£:'lXN-2 + «N-l

_ / _ | \P(«N -3 + CLN-2 + OIN-1+ <*N)p(<*N -2 + &N- tifAl*

W J? \
^XN -2 + «N- i «2V - 3 + «N - 2 + 2<XN - i + &N ) '

Using £(aN-i) = 0 an<i dN-l = dN> the right hand side equals
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Here we used the identity EOCN_2+(XN_i = [^-2^-1]- Hence, by (4.4.2) and

(6.1.3), this equals

(6.1.4)

Finally, we assume p(aN_2)—p(^N-i) — ̂ - BY (i) and (ii), we have:

i*-'<*N-3+<*ri-2+aN-l' ' «N-2+«tN-lJ

From this, we have:

[Ex - 3 'E2lfl _ i + 2xri _ ! + a J

__ [Ti^ 17 Tj
IL^aK - 2 + «2vr - i » «K -3 + «2v-2+«JV- i+ a iv J '

Hence, by Definition 4.2.1 (vi), Lemma 6.1.1 (ii) and (4.4.2), we have:

- 3 >^2ajv - 2 + 2<*N - i + J '^N - 1 J

v - 2 + «2V - i '^aiv - 3 + ajv - 2 + a*r - i + «iv J J-^AT - 1 J

- 2 + «
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But, by (6.1.3) and (4.4.2), this equals

l^xN - 3 + 2«N - 2 + 2<xN - i + <ZN>EN - 1 J •

Hence we get the desired formula.

6.2. Similarly to the proof of the formula (i) of Lemma 6.1.1, we
obtain the following lemma.

i J k
Lemma 6.2.1. For x - x - x (i<j<k), x - x => o or

i j k
x - x => ®, the following identities hold:

[EXi + xj , [EJ9E J€(aj,afc)] = 0 •

6.3.

Lemma 6.3.1. For l<i<N—\, we have the following identities'.

(i) For type BN, we have:

[£?()£,f+5Jg-,-=0.

(ii) For type CN, we have:

[E2-ei,E-ei ̂ ,-a, = 0 (p(e, - %) = 0).

In the formulas (iii)-(ix) below, we assume that A is of type DN.

(iii) [£Ii_^,^(+jJ = 0 (/>(£; -%> = 0),

(iv) [^,_Sl,^+5w_1],-ai = 0,

(v) t^l«w^l+iw.1],-ai = 0,

(vi) [Ej5l^w_1] = 0 (p(£i-ejv) = l),

(vii) [E2-Et,EN]=3N(q-q-1)E-Ei+-£K_lE-Ei+-Eli

(viii) [^(_eN,£2ei]4-"< = 0 (K8(-ew) = l),
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(ix) [£K|,^+5B],-2ai = 0 (/>{e,-ew) = l).

Proof, (i) By Lemma 6.1.1 (i), (ii), (iv), we can easily show

[£-„,-„ js-j=o,

K+!w^»]=o.

By (4.4.5), we have:

= (q112 + <T 1/

_ f _ 1 \P(g« ~ eiv)p(e< + EN) ̂  ~di
V 1/ </

- ,- E- —( — I Y(^ ~ glv)p(gl" + ̂ Q ~ **E-Ej + Eff Bi V 1/ V ^E

(ii) This can be proved similarly to (i).
(iii) By Lemma 6.1.1 (i) — (ii), it can be easily proved that

(6-3-2) 0 = [^_Sir_1>^l_;J,

(6.3.3) 0 = [^1_;w.1 f̂+!J.

If p(si-£N-1) = 0 (resp. />(£;-%_!) = !), by Definition 4.2.1. (i)-(ii)
(resp. (v)), we have:



58 HIROYUKI YAMANE

Hence, by (6.3.2-3) and (4.4.2), we have:

0 = lE-£i--EN. AlE-Et--EN>EN] - iE-Ei+-EN,EN_ J}]

— . // I \P(EI -EN- i)p(«i - EN)^ ~ d~i

7-rfi\£'_ 17 -
j-^Ei + EN-^ei-EN-

Since />(8i-%)=/)(8£ + eN) = 0 and 4 = ̂ , this equals

which implies (iii).

(iv) By Lemma 6.1.1 (ii), we can easily show:

(6-3.4) [^-^»-i] = 0.

If p(ei-eN) = 0, by (iii), (6.3.4) and (4.4.2), we have:

By (6.3.2) and (6.3.4), we have:

Q _ / _ I \P(E» ~ EN)P(EN - i - EN)Q ~ d~Nj?2 _ _ / |\p(£j-£2v- i)p(Ei - 1N) - dt ^2

If pfa -%) = 1, this implies 0 = (/2V + g~Jlv)£I|._E>. Hence, by (4.4.3),

we have (iv).

The formula (v) can be proved quite similarly to (iv).

The formula (vi) — (ix) can be easily proved by using (iii) — (v).

6.4.

Lemma 6.4.1. The following identities hold in Jf+.

(i) [EtN_3 + 2(XN_2+0,N_l+aiN,EN] = 0 for type DN.

(ii) [EXN_3 + 2 a N _ 2 + X N _ i + ( X N , E N _ _ l ] = Qfor type DN.
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(»0 [E«N-2 + 2*N-l + 2*N,EN] = V for type BN.

(iv) [E^_2 + 29N_l + tlK9EN] = Ofor type CN.

Proof. In the proof, we may assume that N=4. Put Eabcd =

+ &«2+c*3+<fa4- Denote/>(<x£) (resp. p(ah + ••• + 0^)) by/>(f) (resp./>(*r "'••))•

(i) We are in one of the following three cases.

(1) />(3)=X4) = 0,

(2)

(3)

First consider the case (1). From Lemma 6.1 .1 (i) and (4.4.5), we have:

+ (1 + (- 1)* V*~'4){( - l^^V^i 1 1 1^0101

By Definition 4.2.1, we can easily show [£'0101,£
I
4] = [£'1111,JE

I
4] = 0. Since

/>(3)=£(4) = 0 and J3 = <?4, the right hand side equals

Using (4.4.2) and Lemma 6.1.1 (iii), we have:

Hence we have [

The case (2); by Lemma 6.3. l(v), DE0ioi^oiii]€-*2 = 0.

Similarly to the case (1), by Lemma 6.1.1 (i) and (4.4.2), (4.4.4), we have:
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+ ( - D"(2)P(3 Y^! 1 1 ^OlOl + ( -! 1 1 O l O l - ! j ! !

By Definition 4.2.1, it can be easily shown that

Since p(2) = Q, p(3)=/)(4) and d3 = 32, the above equals

Hence, similarly to (6.4.2), we have [El2iL^E4] = Q.

Finally assume that we are in the case (3). We can easily show that

)E()1QiE1E01Q1-\-E1EQlQi=0 and E0101E3 — (q + q )E0101

Q1Ql=0. Then, similarly to Lemma 6.1.1 (i), we can prove

our formula.

(ii) The proof of (ii) is quite similar to that of (i).

(iii) The proof is similarly to the case (2) in the proof of (i). By Lemma

6.4.1 (i), we have [£0011.^0012] = °- Hence, by (4.4.2) and (4.4.5), we have:
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By Lemma 6.1.1 (iv), we can easily show 1_E0112,E41=Q. Hence the above
equals

Hence, similarly to (6.4.2), we have [E0 ̂  22^4] =

(iv) By Lemma 6.1.1 (v), we have

Therefore, using (4.4.5), we have:

Since />(4) = 0, this equals

Hence, by Lemma 6.1.1 (v) and (4.4.2), we have

This completes the proof of Lemma 6 A.I.
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6.5,

Lemma 6.5.1. Let Jf ' + be of type CN. Let i e{ l , - - - , JV— 1}. We
have:

(ii) [£K,,£w-i] = 0 (l<i<N-2) if X^-%-i) = 0.

Proof, (i) If i = N—2, this is proved easily by using Lemma 6.1.1

(ii), (vii). Assume i<N—3. By Lemma 6.1.1 (i)-(ii) (resp. (viii)), we can

easily show that

(6-5.2) 0 = p^N_2,£^N_J

(resp.

(6-5.3) 0 = [^(+;N_ ,,£„_!]).

Using (4.4.2), from (6.5.3), we obtain:

Hence, using this and (6.5.2), we have (i).
(ii) By Lemma 6.1.1 (ii), we can easily show that [£*£._ ̂ 2V,£'Ar_1] = 0.

From this and the formula (i), we can immediately prove (ii).

6.6, Lemma 5.2.1 (and Remark 5.2.2) for <Dr^d of type AN.l9 BN, CN

or DN can be proved using lemmas in 6.1-6.5. In 6.7-6.9 below, this will
be done only in some special cases. In the remaining cases, the proof can
be done similarly and more easily.

6.1, Proof of Lemma 5.2.1 (i) for 0>7d of type AN_lt BN, CN or

DN. Here we give a proof in the case when ®r+d is of type BN and a = £f 4- sk

(i+l<k<N—l). The other case can be treated similarly.
Since [Ei9Ej\ = 0 if \i-j\>2, by (4.4.2), we have

(6.7.1) ^^[[^-^-p^-.-^.J^-n^.aVu^

if i<u<N.

Hence, by Lemma 6.1.1 (i), we have:
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(6.7.2) [£?()£J = 0 if i<u<N.

Hence, putting E?k = \_[---[EN,EN_l\z!i---,Ek+l\qsk+.i,Ek]qsk+l, we have:

(6.7.3) E-£i+-Ck = (ql'2 + q-l>2rl[E-cl,EtJ.

Similarly to (6.7.2), using Lemma 6.2.1 (i), we have:

(6.7.4) [EI,EU]=Q if k<u<N.

Hence, we have:

(6.7.5) [E-Ei+^Eu] = 0 if i<u<k-\ or k<u<N.

By Definition 5.1.1, we have:

[̂ £i + £k>^fc-l]gJk = JE? f+?fc-l-

By Definition 4.2.1 (i),(ii), it can be easily shown that

[El,Ek]q-Sk = 0.

Hence, we have:

(6.7.6) [^+*,3J,-* = 0.

By (6.7.2), putting

^-^-i = [[''-[^-2^-3]^-3--s^fc+iVfc+2A]^k,1, we have:

Hence, by Lemma 6.4.1 (iii), we have:

(6.7.7) [E-st+-ek,EN] = Q,

as required. Remark 5.2.2 (i) also follows from this and (6.7.5).
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608. Proof of Lemma 5.2.1 (ii) for <F+
ed of type AN_^ BN, CN or DN.

Here we give a proof in the case when <Pr+d is of type BN and /} = 8i + 8k

By Lemma 6.1.1 (ii) and (6.7.2), we have:

(6.8.1) [E-tl--Eu,E-Jq-^0 if i

Similarly to (6.7.1), we have

if i<k<u<N.

Hence, by Lemma 6.2.1 (ii) and (6.7.4), we have:

(6.8.2) [E-^ER ifk<u<N.

By (6.7.3) and (6.8.1-2), we have:

(6.8.3) t^-^+iJi-^O

if i<u<k — l or k<u<N.

If oc = st — sk, then we can inductively show the formula by using the
following fact.

Ef + e g J

Since E-£i = [E-Ei_-EN,EN]qd-N by (6.7.7) and (6.8.3), we have:

(6.8.4) [^.,^+?fc],-dl = 0.
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By (6.7.5), (6.7.7) and (6.8.4), we have

(6.8.5) [^+?M,^.+,J,-d-=0 if k<u<N.

Other cases can be shown similarly.

6.9. Proof of Lemma 5.2.1 (iii) for <Dr_£d of type AN_l} BN, CN or

DN. Here we give a proof in the case when €>r+d is of type BN

and a = ef + efc (i+l <k<N— 1).

By Definition 5.1.1 and (6.7.6), (6.8.5), we have:

Since p(e£ + ek) = 1, we have£fi+gK = 0. Other cases can be proved similarly.

§7. Braid Group Actions on Quantized Enveloping Algebras

7.1. In this section, we briefly explain the braid group action on Uh(G)
introduced by Lusztig [11] and [12].

Let (<f,n = {a1,---,an},/)) be a triple system. Assume that H is the set
of the simple roots of a complex simple Lie algebra G and that />(ai) = 0 for
any af. Put ^ = (ahae)/2 (1 <i<ri) and D = diag(dl,--,dn). Let sfeGL(<f) be

such that st(x) = x -- ^-^-^ (XE$). Let W be the Weyl group, i.e., the
(ahaf)

group generated by the elements st (1 <i<ri). Let U°h = Ua
h(($,H,p),D) be the

/z-adic .R-Hopf algebra defined in Theorem 2.9.4. Put F^E?. Then
Drinfeld's [4] Uh(G) is equal to the unital subalgebra of U% /z-adically
generated by the elements Eh F{ (1 <i<ri), HeJf (see Theorem 2.10.1). We
have Uff

h = Uh(G)®R(o~y. We put Uh(£yll)= Uh(G).

Let d~- (l<i<n) and ^ = exp(H). Put Kt = exp(hHXi) and

ql where [r]J= f[ ^^ . In [11] and [12],
—
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Lusztig introduced a braid group action on Uh($,Tl).

Proposition 7.1.1. ([11] and [12] (i) For any 1 <i<ny there is a unique
algebra automorphism Tt (resp. Tf 1) on Uh(G) such that

T^Ej^-FiKi, (resp. T^(Et)= -K^Fj,

7^)=-*-% (resp. Tr\Fi)=-EiKi),

T,(Ej)= £ (-\Yqr'

(resp.

(resp. Tr\Fj)= X (-1)^^ = 0)
r + s= -atj

Tt(H,)=HSlW (resp. T^(H,) = HSiW) (le

(ii) Tt's satisfy the braid relations:

where m0- = 2 + 4(ai,aJ.)
2/(ai,aj)(aJ-,aJ.). In particular, for any wfW, there is

a unique element Tw such that Tw=Til-- Tirfor any reduced expression w = sil- -sir.

7.2. Let €> ( c: g ) be the set of the roots of G and <1>+ the set of the positive
roots with respect to II. Put N-=N°+. Lusztig proved:

Proposition 7.2.1. ([11] and [12]) (i) // wenT and a£ell satisfies

+, then Tw(Ei)eN+ and rw(F£)eAT_.
(ii) If w€i^ and af, 0,-eII satisfies w((x,t) = (X.p then Tw(Ei) = Ej and
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§8. Commutation Relations for Root Vectors of JV+ (type F4)

8.1. First, in the subsections 8.1-3, we treat N+(d Uh(G(F4))) associated
to the complex simple Lie algebra G(F4) of type F4. We denote this N+

by N+. In §8, the symbols ft, d^, /+, Eiy'- respectively mean II, a,-, /+,
Eh"~ defined for the simple Lie algebra G(F4). So, for example, ft is the
set of simple roots of G(F4) in an Euclidean space S !. Namely

n = {a1,a2,a3,a4} with a1=s2-e3, oi2=-(Bi-£2-s3-e4), a'3=e4> ^4 = S3~S4

where et (1 <«<4) is a basis of $ satisfying (ef,e7.) = Sy. The Dynkin diagram
of (<?,fl) is given by:

1 4 3 2

o - o=> o - o
e2-e3 £3-£4 £4 i(ei-£2-e3-e4)

8.2. Let 4>+ be the set of positive roots of G(F4). Put <& + tl =

{jS = $+|j5'=a1H-w4a4 + W3a3 + w2a2}- Then the number of elements <6 + >1 is
equal to 15. Define w1ei^r by the following reduced expression:

(8.2.1). Wl=s1s2s3's2s4's1s3's2-s3sl's4s2's3s2s1.

The following lemma can be verified directly.

Lemma 8.2.2. For 1<£<15, let sit be the t-th generator in the reduced

expression (8.2.1) of w^ We put A = JI-1-"^_1(ait). Then &+ j l = {&

lipute'p't=Til-'Tit_i(Eit). By Proposition 7. 2. 1,

we see that epteN+.

8.3. By using Proposition 7.2.1, and reducing to rank 2 cases, we can

obtain the following identities. Here we put eabcd = eayl+bSt4+cy3+dS;2. See also

[12].

Lemma 8.3.1. The following identities hold.
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804. For type F4, we use the following fact.

Lemma 8.4.1. Le£ 1/T+ 6e rte R-algebra defined for the distinguished

triple system (<?,!!,/>) of type F4 (see §4). Le£ v = «1a1 + w4a4 + ̂ 3a3-|-W2a2e^+
6e 5MC/Z that n2 = Q or 1. T/zew £/zere exists an R-module isomorphism

jv:N+>v-*jy+iV such that jv(Eil--Eiu) = Eil'-'Eiu for any monomial E^'-E^

(ail + - + aiu = v) m #+>v.

Proof. By Theorem 2.10.1, f+=(ytj(i^j)) where yij(i¥Ijl) are ele-

ments given in (2.10.2). Let </+ be the ideal of N+ defined in Definition

4.2.1 for type F4. Then, for veP+ , N+tV = N+tV/(I+nN+>v), <Ar
+tV =

JV+ v/( t/+nJV+jV). The lemma now follows by observing that J+n7^+ v =

J> + nN+ <v if v = w1a1 4-w4a4 + w3a3 + W2a2e-P+ with w2 = 0 or 1.

8.5. By Lemma 8.3.1, we can easily show:

Lemma 8.5.1.
Then we have

8.6. Proo/ of Lemma 5.2.1 (i) /or d>+d o/ ^/>e F4. Here we put
Eabcd=E

aai + bx4+c*3+da2- E? Lemma 8.3.1, Lemma 8.4.1 and Lemma 5.2.1
(i) for type B3 and C3 (see §6), it is enough to show:

(8.6.1) [Ea,E2]q-(«,«2) = Q for Ea =

and
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(8.6.2) [

Since #1 = 0 and £ae/*[£a_a2>£2]g-(.-«2..2>, the formulas (8.6.1) follow

from (4.4.3).

Since El232 = (q2 + l + q~2)~i[El23l,E2]q-i, by Lemma 8.3.1 and Lemma
8.4.1, we have [E1 232,E4] = 0. By Lemma 8.3.1, Lemma 8.4.1, (8.6.1)
and (4.4.5), we have:

2]q-2,E3]q-2, E3]

8.7. Proof of Lemma 5.2.1 (iii) for type F4. By Lemma 5.2.1 (iii) for
type C3 (see §6), it is enough to show:

(8.7.1) E* = Q if aeO^ and (a,a) = 0.

We show (8.7.1) by the induction on ht(cn). Since E2 = Q and

Euii = [Eliio,E2]q-i, [^nii^2]fl-i = 0- Hence, by Lemma 8.3.1 and
Lemma 8.4.1,

If ht(a)>4, J2"a = [£0,£J, -<«.«D for some ie{3,4} and jSeO^ such that

(f}yf}) = Q, In this case, [jEa,EJ4-(...l) = 0 by Lemma 8.3.1 and Lemma 8.4.1,

and [Ep,Ea]q-(«,p) = Q since £"^ = 0 and (4.4.3). Hence we have:

0 = [ [ E p , E - (^,« i),£ l]{ - <a,/j) + («,«i)}

= (i 4. g(

8.8. Proof of Lemma 5.2.1 (ii) /or £y/>e F4. By Lemma 5.2.1 (ii) for
type #3 and C3 (see §6), it is enough to show:

(8.8.1) [£„,£,
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By Lemma 8.3.1, Lemma 8. 4.1 and (8.7.1), (4.4.3), we can easily show:

[£.,£,] = () if a,)3eOr
+

edi and *«(/?) = A*(a),

and

[£«,£,],-(.,« = (> if <x,/?e<Kft and

In the case of ht((i) — ht(oC)>2, we can choose the elements ye^+ j and

afell in such a way that jE"/3 = A"[jE'v,jE'£]g-(V,aI) holds for some XeR*. By

(4.4.2), we see:

Since a<y<jS, we finish the proof using part (i) of Lemma 5.2.1.

§9. Commutation Relations for Root Vectors of jV+ (type G3)

9.1. Let ((ffJH = {(X1^2^3},p) be the distinguished triple system of

type G3 (see §3). Let #fc = #fc(#(G3)) be an /z-adic J?-algebra with generators

Ei9 F{ (1<^<3), HeJlf and relations:

/o 1 1 \ r JT JT i n (TJ TJ a t#?\
{y.l.L) L/lj,r22J — ̂  \*^lj"2^E^/>

/Q -I ^\ r TT 77* "1 .y / J"T\ 77' T TT fp "I __ ___ _. / f-T\ Jj* ( TJ" c.

(9.1.3) EiFj-(-l)1>(*<)1'(

(9.1.4) El = Q,

= 0 for IV; and
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(9.1.5) Ff=0,

' (-ir| -'"<;'
V

=0.

"' (-1 )VP + |flu'l F,1 + >'«' ~v FfF? = 0 for i ̂  and
o L v _U

Let ^V+ be the .R-algebra with generators Et, E2, E3 which was defined
in §4 for the distinguished triple system (<?,!!,/>) of type G3. Then it is
obvious that there exists an .R-algebra map i+: Jf^-^^l^ (resp. i_: ./K+ -»•%,)

such that i+(Ei)=Ei (resp. i+(Ei)=Fi') (i = l, 2, 3). Let ^T_=i_(^T+) and

Put t7,(G(G2))=t7,(Ca3eCa2) {a3)a2}) (see 7.1).
Similarly to Theorem 1 (iii)-(iv) of [19], we have:

Lemma 9.1.6.(The triangular decomposition of %, = (

(i) The maps i+ and i'_ ar^ injective. As h-adic topological R-modules,

Q/ ~ AT (It fa — i/Y _(- \/

(ii) There exists an injective h-adic topological algebra map j: Uh(G(G2))
such that frE^Ei, j(Fd = Ft (f = 3,2) and j(H,) = H, (leJt).

We omit the proof.

9.2. We shall extend the braid group action on Uh((G(G2)) in §7 to the
one on C7h((^(G3)) (Z)^h(G(G2))). By direct computations, we can show
the following lemma. We omit the proof.

Lemma 9.2.1. Let Tiy T^1 e Aut(Uh((G(G2))) (i = 3, 2) be of
Proposition 7.2.1. Then Tb T/"1 (i = 3,2) can be extended to automorphisms

of
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^, T2(Fl)=Fi,

= HSiW (resp. Tr\H,)=HStW) (let) (.' = 3,2).

9.3. Put

(9.3.1) eilo=r3(£i), ein = r2r3(£1)) ei31 = r3r2T3(^),

(9.3.2) ei2i=(9 + 9"1)"1[eiii,^3] (see 4.4 for the notation [ ,

(9.3.3)

Lemma 983.4. We have:

z/ ie{3,2}

Proof. We are in one of the following three cases.

(i) (aAc,i) = (l,l,0,3), (1,1,1,2), (1,3,1,3), (1,4,2,2),

(ii) (a,ft>c,f) = (l,2,l,l),
(iii) (a,6,c,0 = (l,4,2,3).

(i) In this case, if we write eabc=TilTh---Tiu(El) as in (9.3.1-3), then,
by Proposition 7.1.1 and Proposition 7.2.1, we have:

where y = (si2~-siu)'~l(aii) and X=(Ti2"-Tiu)~
1(Fi)e^r.tr Hence we have the

formula in this case.

(ii) By (4.4.2) and (i), we have:
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(iii) By Proposition 7.2.1 and (i), we have:

[ei42^3]=[r2T3r2r3r2r3(£1)>T2r3T2T

= T2T3T2T3r2([eilo,£3]) = 0.

This completes the proof.

Lemma 9.3.5. We have:

(i) e,io = q-\E,,E^\.

(») ei42 = 9"1[ei32,S3].

(iii)

(9.3.6)

In particular, ea

Proof, (i) Clear.

By Proposition 7.2.1, T2T3T2T3T2(E3) = E3. Hence

(iii) The formulas (9.3.6) can be verified by direct computations. We

sketch the proof. We write elbc= T^'-T^^T^E^) as in (9.3.1-3). Then

e^q^T^.T^&E^^

Here, if (M = (U) (resp. (3,1), (3,2)), then (j;,*) = (0,0) (resp. (1,0),

(1,1)). By Proposition 7.2.1 (ii), Til...Tiu_l(E3)eJf+>(b_y)o,3 + (c_z}0[2. In fact,

by direct computations, we can show that T2(E3) = q~\E3,E2l (resp.
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2],E2] if (6,c) = (l,l) (resp. (3,1), (3,2)). By the formulas in Lemma
9.3.1 and the formulas which we have already shown in this lemma, and
by using the formula (4.4.2) repeatedly, we have the formulas (iii). For
example,

This proves the first formula. The second (resp. third) formula can be
proved similarly using the first one (resp. the first and the second ones).

Lemma 9.3.7, We have:

(i) «?* = O f y (

Proof, (i) This is obvious from (9.3.1) and (9.3.3).

(ii) If (ft,c)^(3,l), then, by Lemma 9.3.5, elbc€Rlelyt.EtJ for some
ie{3,2}. By (i), «f,1 = 0. Hence, by (4.4.3), we have (ii). If (b,c) = (3,l),

then (y,*) = (2,l).

Since [elu,e12i] = 0, we have

by (4.4.5). Hence we get (ii).

For a = aal+ba3+c(z2e®T+d, put Eabc = Ea(Xi+b(X3+cgi2. The next lemma easily

follows from Lemma 9.3.5.

Lemma 9.3.8. We have:
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By Lemma 9.3.7 and Lemma 9.3.8, and an argument similar to that in 8.8,
we have:

Lemma 9.3.9. Let a,/? 6®+^ be such that a</?. T/zew we have:

for some cyif...,y eR.

9.4. By the definition of °Uh (see 9.1), we can easily see that there is a
C-algebra isomorphism r: °tth-*

(>Uh such that

t) = Eiy r(Fi) = Fiy r(H) = H (HeJf)9 r(h)=-h.

Put

e02l = T2T3T2(E3)t e03l = T2T3T2T3(E2), e001=E2.

By Proposition 7.2.1, we see that the above elements belong to Jf+.
By direct computations, we can get commutation relations for the above

elements. For example, such commutation relations are found in Section 5
in [12]. From them, we have:

Lemma 9.4.1. We have:

(0 E0io = E3y Eoll= — r(eou)> ^032=

(ii) The q-root vectors {£'010^011^032 ^021^031^001} satisfy the
commutator relations in Lemma 5.2.1 (i)-(ii).

9.5. By lemmas in 9.3-4, we can prove Lemma 5.2.1 and Remark 5.2.2
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for J^+ of type G3.

§10. Main Results

10.1. Let (&,Tl = {ai,~ •,<*„}, p) be the triple system satisfying the
assumption in 3.1.

Lemma 10.1.1. Let ae<D+d . Then, in the h-adic topological R'-bi-

algebra, W •=• & + , we have:
V"

(10.1.2) A'(£J -{£.0

Proof. We use the induction with respect to the order < on
^r+?0(a)- Then, by using Definition 5.1.1 and Lemma 5.2.1, we can show that

(10.1.3) A'(£.)-{3, (X)

for some ^Ta_yi y ue^r+ f a_y i_. . ._y H where w = ca(see 3.2 for the notation ca).

10.2. Put Tw(i)=|J e C[t]. Let q = eh. As an immediate con-

sequence of Lemma 5.2.1 and Lemma 10.1.1, we have:

Lemma 10.2.1.

(10.2.2) < n EJ-, n
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(See 5.3 for the notation f] .)

Proof. Note that < , > is symmetric. Let ye^ r+d be such that
wy + wy7^0 and my, = nyt = 0 for all />y. Assume my>ny. By Lemma 5.2.1
and Lemma 10.1.1, we have:

< n . n E?
d

n

( 0

where we regared E~l as 0.
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Iterating this procedure, we can prove the lemma.

10.3o Here we determine the values <£a,£a> (ae<X>+d). Define daeZ

(ae<Dr
+

ed) by

1 if(a,a) = 0

2 if <D+d is of type G3 and a = aj

—-— otherwise.

For a = c1a1 + --- + cllalle*r+d, put

Lemma 10.3.1. For any a.e^"d, 6(a) can be written as

/or some a,b e Z. More precisely, for each type o/O"d, b(/x) (a e <5"d) are groe« by:

(i) (TypeAN_l)

bfa — Sj)= Y[ dfl*1 (i<j).

(ii) (Type BN)

b(Si — £j)= Y\ diqdl (i<j}> b(Si)= Y\

(iii) (Type CN)

*>= n
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(iv)

,+^)=^ ( n 4 /o ( n di
(v) (Type F4) Here 6abcd denotes b(a(x,i

^ ~~ 313 =~

="~ = =~

=~' = <l , ^0100 = = ^-

(vi) (Type G3) Here 6abc denotes b(aal+b(*3 + c(x.2).

Proof. Here we sketch how to caluculate <Ea,jEa> (a6<D+d). Put

La = exp(>/^H^)crp(a) for ae<I)r+d. We are in one of the cases (1) ca = l and
(2) ea = 2. Firstly assume that we are in case (1). Suppose ht(a)>2 and
ae<£r+dj. In this case, there exists a/ell such that a — o^eO"^. Let reZ+

be such that a-na7eOr.ft (0<w<r) and a -(r+ 1)^.^0^..
Put j8 = a — a7- and 7 = a — ra;-. By the definition of £a (see Definition
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5.1.1), Ep=yl--llErEjlE^--,Ejl and Ef=x{E^ for some *, yeR*. By
(10.1.3), we have:

(g) Ej-(-iyV>«'i>q-V*i>Ej (g) Ef,

By direct computations, we see that this equals

__ / •__ 1 ̂ ^(
V ;

Hence we can calculate ^E^E^ by the induction on /z^(a).

Next assume that we are in case (2). Suppose a e<Pr+d. By the definition

of Ea (see Definition 5.1.1), there exist ]8, yeO+ d such that a = /?-fy,

ht(y)-ht(/3)<l and £a = 4^,£j for some *el?x. If ht(y)-ht(f$) = l, then

I£y = zup£0,.Ey_0]] for some weR* . In this case, since cy = l, similarly to the

proof in (1), we have:

By (10.1.3), we have:
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Since cy = cf = \, using results in case (1), we can get (Ex,Exy.

10.4.

Proposition 10.4.1. (The Poincare-Birkhoff-Witt theorem for Jf+ and

)

(i) The R-module J^+ is a free module with a basis

{ f[ JBf (nx€Z+ Z/(

(ii) Let N+ and I+ (resp. N+ and J+} be the R-algebra and the ideal

defined in 2.9 (resp. 4.2) respectively. Then N+=^+ and /+=*/+.

Proof. By Lemma 10.3.1, ^E^E^y^Q. Therefore, from Proposition

5.3.1 and Lemma 10.2.1, the proposition follows.

10.5. Let (^,n = {alJ---,an},/>) and D be the triple system and the

diagonal matrix described in 3.1. Let Uh=Uh(Il,p)=Uh((£
>,Il,p)D) be the

.R-Hopf superalgebra defined in Corollary 2.9.11 for the .R-Hopf algebra

Ul = Ua
h(($ ,n,/)),D). Note that Uh is a topologically free jR-module. Denote

the submodule of Uh of elements of even (resp. odd) parity by Uht0 (resp.

£7M). Then Uh = C/M 0 Uh, , . Put [X, Y]=XY-(-l)i} YX for'xeUktt
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and YE UhJ. Let Fa = £'°crp(a)6 U\ (ae<D+d). As an immediately consequence
of Proposition 10.4.1, we have:

Theorem 10.5.1. (i) The R-module Uh=Uh(Tl,p)=Uh((g
>,n,p),D) has

a topological basis

do.5.2) ft E™* - n flg • n

+ iy(a,a)/0, ma,«a = 0,l */(a,a) = 0).

(ii) As an R- super algebra, Uh is topologically defined by the generators,
Eh Ft (l<i<n), Hztf with the parities p(Ei)=p(Fi)=p(ai), p(H) = Q and the

relations

(10.5.3) [HltH2]

(10.5.4)

(10.5.5)

(10.5.6) T/ze relations of E^'s defined in Definition 4.2.1.

(10.5.7) The relations (10.5.6) with Et's replaced for Ft's.

(iii) The Hopf superalgebra structure of Uh is given by the coproduct A,
the antipode S and the counit E such that (Here put K"i =

= H® 1 + 1 ®

= E, <g) 1 + K( ® £„ A(Ff) = F, ® Kl 1 + 1 ® Ft,

,)= -KTlEt, S(Fi)=-FiKi,
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Theorem 10.5.8. Let Uh=Uh((£,YI,p),D) be an R-Hopf superalgebra

defined by Uh=Uh/z-Uh where z = {HeJ^\^(H) = 0 (l<t<n)}. Then Uh is
topologically free. Let $ be the complex simple Lie superalgebra defined for

(cf ,!!,/>)• Let U(9) be the enveloping superalgebra of 9. Then U(<g)=Uh(&)/

hUh(&) as a C-Hopf superalgebra.

Proof. The topological freeness of Uh(&) is clear. By Proposition
10.5.1, we see that there exists a natural C-Hopf superalgebra homomorphism

a): Uh(%)/hUh(<g)-+U(<g) such that co(Et)9 a}(Ft) and co(O) (BeJtf/z) are Serre
generators of U(&). From the Poincare-Birkhoff-Witt theorem for Lie

superalgebras (see [3]), it follows that a P.B.W.-type basis of Uh(^)/hUh(^)

arising from (10.5.2) is sent to a basis of U(@). Hence co is isomorphism.

As an immediately consequence of Proposition 10.5.1 (ii) and Theorm
10.5.8, we have:

Corollary 10.5.9. By substituting 0 for h in (10.5.3-7), we get defining

relations of

10.6. Here we give the main theorem. Let e/s be basis elements of
n

such that (ei9ej) = dij. Put £0= Z HE.® HE.EJ^ ® J^ . Let e(u\t) =
i= l

) be the formal power series called the "q-exponential". Put

Theorem 10.6.1. (Universal R-matrix of U%) Let 3% be an element of

Uff
h (g) Ua

h defined by

• I (-irV^tT'l-expC-too).
2 c,de{0,l}

Then (U^&.ffl) is a quasi-triangular Hopf algebra.

Proof. Use Lemma 2.9.10, Lemma 10.2.1, Lemma 10.3.1 and
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Proposition 10.4.1. Here we note the facts Q,'(Ea) = EK, O'(FJ =
n

10..7, Here we give the R-matrix p (X) p (0£) for the fundamental
representation p of U°h of type A^,^.

The fundamental representation p U%-*MN(C) is defined by
N

and p(a)=^dieii. Put
1=1

= eh. In this case, we have:

P P ( ) =

Moreover ffl(x) = x(p (X) p ($)) - x~ l (p ® p (St))~l satisfies the Yang-
Baxter equation with a spectral parameter:

This J?-matrix was discovered by Perk and Schultz [15] (see also [14]).

§1L Remark on the Necessity of the Defining Relations

ILL It can be shown that none of the relations (i)-(vi) in Definition
4.2.1 can be dropped. Below we only show it for the relation (v). The other
relations can be treated quite similarly.

Iio2o We use the notation in 2.1. Let I+ be an ideal of N+ generated by
the elements of Definition 4.2.1 (i)-(iv). Put N+=N+/I+. We define an
ideal J_ of N_ in a similar way. Let L be the ideal of C7J Radically
generated by the elements in I+uI_. Put U%=U%/L.

Lemma 11.2.1. Let i+: 2V+-»C/J be an .R-algebra map defined by
. Then i+ is injective.
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Proof. By direct computations, we see that Ft'I+ c=/+-Ff + /+ (1 <i<ri).

Hence L+ =I+^>[J^R]R^N _ is an ideal of Ua
h. Similarly, we see that

i_ is also an ideal of U*h. Hence L = L + + L _ . In

particular, we see that Ln*N+=I+. This completes the proof.

11.3. ForveP+ , le tAT+ > v = N+)V + /+cAT+ and I+>V = AT+ )V nl+. Then

> then J+ j a i v_2 + a 2 V_1 + a i V = {0}.

In particular, rank JV+ j ( X . _ j + 2ai + ai +1 = 6- Hence Poincare-Birkhoff-Witt type
theorem can not hold for C7£.

11.4. Let U% be the Hopf superalgebra called the "quantized

Kac-Moody superalgebra" in [9]. Here we understand that U% is defined

as an /z-adic jR-Hopf superalgebra. Even if we take the Note added in proof

in [9] into account, we can show that there exists a natural epimorphism

(U$)*->Ul of Hopf algebras. Hence, for l/J, a P.B.W. type theorem can

not hold contrary to their assertion (Proposition 3.3 and Remark under it)

in [9].
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Note added in proof: In this paper, for the datum ((E,H,p),D), we first defined the Hopf
superalgebra Uh=Uh(Tl,p)=Uh((£

>,Yl,p),D) in an abstract manner in §2. Later, in Theorem
2.10.1, we showed that, if ({$,Yl,p),D} corresponds to a symmetrizable Kac-Moody Lie algebra
G, then our Uh coincides with the Drinfeld-type quantized enveloping algebra C/h(G) topologically
defined over C[[A]]. Namely, in this case, the defining relations satisfied by the Chevalley
generators of Uh are the g-Serre relations. After this paper has been submitted, the author
learned that the same definition and result for the Jimbo-type quantized enveloping algebra
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Uq(G) defined over C(g) are given in the recent book of Prof. G jL,usztig (Introduction to
Quantum Groups, Birkhauser, Boston, 1993).




