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Generalised Mean Averaging Interpolation
by Discrete Cubic Splines
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Abstract

The aim of this work is to introduce for a discrete function, certain discrete integrals
which may reduce in particular to usual Riemann Stieltjes integrals. We name them as Discrete
Stieltjes integrals. The existence and convergence of a discrete cubic interpolatory spline whose
discrete Stieltjes integrals between consecutive meshpoints match with the corresponding integrals
of a given periodic discrete function, are studied.
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§1. Introduction

Discrete integrals play a significant role in the theory of interpolation
and approximation of functions defined on discrete subsets of the real
line. Schumaker [8] and Lyche [4] have studied extensively the properties
of discrete integrals. Here we introduce certain discrete integrals which we
prefer to call Discrete Stieltjes (DS-) integrals, as they reduce in particular
to the usual Riemann-Stieltjes integrals.

Schoenberg [7] and de Boor [1] have considered area matching
interpolatory condition for even-degree splines. Considering Lebesgue
integrals with respect to a non-negative measure, Sharma and Tzimbalario
[9] have studied quadratic spline interpolants satisfying a fairly general
mean-averaging condition. Similar interpolation problems for cubic splines
and discrete cubic splines have been investigated in Dikshit [2] and Dikshit
and Powar [3] respectively. Discrete splines are piecewise polynomials which
satisfy smoothness requirements at knots in terms of differences. Our aim
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in this paper is to study the existence and convergence properties of a
discrete cubic spline whose discrete Stieltjes integrals between consecutive
meshpoints match with the corresponding integrals of a given discrete
function. For terms and notations we refer to [11].

§2. Discrete Cubic Interpolatory Spline

Given a real number h > 0, let / be a bounded function and a be a non
decreasing function defined over a discrete interval [a,b]h. The Discrete
Stieltjes integral of / with respect to a over [ayb]h is defined as:

fJ a

f(X)dha.(X)= £/(a + iA)-[a(a + (i+l)A)-<x(a + zfc)], (2.1)

where it is assumed that b — a = Nh, N being a positive integer. The definition
(2.1) remains valid if a is monotonic non-increasing, or in fact, if a is a
function of bounded variation.

Let P={xi}
1- = Q with Q = x0<x1 < ••• <#„ = !, be a uniform sequence of

points in [0,l]ft such that xt — xi-l=p, i=l,2,---,n. A discrete cubic spline
with knots in P is a piecewise cubic polynomial over [0,1] which satisfies the

conditions:

D\!\(Xi) = D\>\+i(Xi) .7 = 0,1 and 2,

i = l,2,-n-l, (2.2)

where s{ is the restriction of s in [xt_lyXi] and D$g is the /* central difference
of a function g. The space of discrete cubic splines with knots in
P is denoted by S(4,P,h). Consider a non decreasing function a defined

over [0,1]^ such that

x(x+p)-*(x) = K; (2.3)

K being a constant.
We shall investigate the following:

Problem 2.1. Given a I-periodic discrete function f over [0,1 ]ft, does

there exist a unique l-periodic discrete cubic spline s in S(4,P,k) satisfying the
interpolatory condition



f•> Xi

DISCRETE CUBIC SPLINE INTERPOLATION 91

(2.4)

A discrete cubic spline s can be represented in terms of its second
central differences at meshpoints, as follows:

6 p s(x) = MI-! (xi-x){^

z = l, 2, ••-,«; (2.5)

where Mi = D^s(x^). Also, c^ and dt are arbitrary constants, which in view of
conditions (2.2), are given by following relations

P
2Mi = di.l-2di + di+l. (2.6)

For convenience, we set

f(x)dha.(X)=Fi, | (*,-x)
i-i Jxi-i

and

f (x-Xi-^ dhx(x) = B(j). y=l,2,-,fi.
J x j - l

In view of (2.3) we find that

= I (xr-X){}} dhx(x)
J x r - i

and

F**
--(l/p)[A(l) + B(l)], for each i.

L—Thus, from interpolatory condition (2.4) we obtain the following
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6p Fi = Mi_iA(3) + Mi B(3) + 6 di.l ,4(1) + 6 dt

Eliminating d^s in (2.6) and the above equation we get

p2 B(l)]Mt

l), i = l,2,-,fi, (2.7)

where MM = M0, MII + 1=M1, Fn = F0 and FII + 1=F1. Now in view of the
properties of Discrete Stieltjes integrals, it is easy to see that when p>2h,

)>0, jB(3)>0
p2A(l)>A(3) andp2

Therefore the coefficients of Mi+1, Mt, Mi_l and M"I-_2 are all non-
negative. Also, the excess of coefficient of MI-I over the sum of coefficients

of Mi+i, MI and Mt^2 is

0{3} + 3x{3} - 6px2 + 3ph2]dhoc. (2.8)
o

Now if non-decreasing function a is such that it remains constant after
x = A66p in each mesh interval then the expression (2.8) is positive. The
coefficient matrix of the system of equations (2.7) is then diagonally dominant
and the system admits a unique solution.

Again, considering the excess of coefficient of Mt over the sum of
coefficients of Mi+1, M^^ Mt^2

 we observe that if the function a is such
that it remains constant up to # = .533£ in each subinterval [0,/>]ft, then the
coefficient matrix of the system of equations (2.7) is invertible and the system
is uniquely solved.

We have thus proved the following:

Tiieorem 2.10 Given a l-periodic function f and a non-decreasing function

a defined over [0,l]ft such that (2.3) holds, there exists a unique \~periodic

discrete cubic spline seS(4,P,h) with p>2h, satisfying (2.4) provided a is a
function such that it remains constant either in [A66p,p]h or in [®,.533p]h for
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each subinterval [O,̂  of the mesh P.

§ 3. Convergence

Now we aim to establish the convergence properties of the discrete cubic
spline interpolant of Theorem 2.1. Let e = s—f denote the error function.
We estimate the error-bounds in terms of 'discrete norm* and 'discrete modulus
of smoothness' denoted by ||/|| and w(f,t) respectively (cf. [11]).

We shall prove the following:

Theorem 3.1. If /,a, and seS(4,P,h) be as in Theorem 2.1, then

IkP'll < K,w(J^,p) (3.1)

and \\e™\\ < (Kt + VwtfVj), (3.2)

where K± is a constant.

Proof of the theorem. Replacing M{ in (2.7) by e\2}+f\2\ we have

B(3) eftl

+ [-2A(3)+B(3) + 6p2

$i - (A(3) - 2B(3) + 6p2 B(\)}f(2}

Expanding f(x) in each subinterval by Discrete Taylor formula we get

F;=/i_1K+/j1_>1 B(\) + ej(2\zt) 5(2)

where 0<0 f <l , zie(xi,l9xi)h\ (x — xi_l)
(2) = (x — xi_i)(x — xi_i—h) and

=r (—-i
J Xj - 1

5(2)

We observe that

where yie(xi,2,Xi)h, and
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Therefore,

\R\ < 2[A(3) + B(3) + 6pS(2) + 6p2B(l ) + 3p3K] w(f(2\p).

If \e{/-}\ >\e\2}\, f = l,2,---,«; then from (2.7) we have

2[^(3)-2B(3) + 3/>2(5(l)-^(l))]kf | < \R\.

This directly leads to (3.1). It is easy to see from (2.5) that in

Therefore,

A little calculation then leads to (3.2). This completes the proof of Theorem

3.1.

Remarks.
1. In the case when a(x) = x and /i->0, the mean averaging condition

(2.4) reduces to the area matching condition considered in [10].
2. When a is a step function, for suitable choices of function a, the

interpolatory condition (2.4) reduces to different conditions of interpolation
at one or more interior points in each mesh interval (cf. Meir and Sharma
[6]). When a has a single jump at one end point in each mesh interval
then the discrete cubic spline of Theorem 2.1 reduces to that considered in
Lyche [5]. For an other appropriate choice of function a the interpolatory
condition (2.4) reduces to the average-interpolation condition considered in

3. The estimates (3.1) and (3.2) in Theorem 3.1 are sharp, i.e., as a
functions of n, they decrease to zero, when n -» oo like /3'n~l where /? is a
constant.
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