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Quantized Radiation States from the Infinite
Dicke Model

By

Reinhard HONEGGER* and Alfred RIECKERS**

Abstract

By interpreting infinitely many two-level atoms as a mean field quantum lattice system in
a recent paper the time evolution of the Dicke Maser model has been elaborated in terms of
operator algebraic methods. Using these results, here the emitted radiation of the infinite
Dicke model is investigated. It is shown how the collective behaviour of the atoms influences
the quantized radiation, which for large times becomes classically coherent (in the sense of
Glauber). The field modes which are (approximately) resonant with the level-splitting energy
of the atoms are found to be the essential part of the generated coherent light, and thereby
determine its macroscopic nature. Furthermore, the destruction and revival of coherence, the
mean number of the emitted photons during the time evolution, as well as their spatial
distribution are discussed.

§ 1. Introduction

In terms of operator algebraic quantum statistical mechanics the present
work gives a detailed microscopic description how the coherent light is
dynamically generated from the macroscopic preparation of the radiating
atoms or molecules. For this we use the extended Dicke model of an earlier
paper [1] in which we studied the limiting dynamics with the number of
the radiating two-level atoms going to infinity. Thereby the interaction
strength remains on the level of finitely many atoms, which one may interpret
as a weak coupling of the radiation field to a macroscopic atomic reservoir.

In terms of a perturbational treatment one first selects adequate
representations of the uncoupled systems. The representation of the atomic
C*-algebra is chosen according to the sharp values of the cooperation and
excitation numbers, r\ resp. y, which (up to a phase) completely determine
and characterize the classical part, that is the collective features of the
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infinite atomic system due to its macroscopic preparation.
In [1] the photons had testfunctions of unspecified nature. In the

present investigation the physically real case is considered. The electro-
magnetic field is assumed to be quantized in the full euclidean space R3

and all (momentum-) modes keR3 are included into the model discussion.
However, for notational simplicity in Sections 2 to 4 only one direction
of polarization is considered, whereas in Section 5 we briefly outline the
case of arbitrary polarization. For the relevant representation for the photonic
C*-Weyl algebra the Fock representation is chosen, since at time zero only
a few photons are assumed to be present. These assumptions are essential
for the emitted radiation to become coherent during the time evolution.

The interaction of the atoms and the radiation is given in terms of the
so-called coupling function (/). Their Fourier transform $ evaluated at keR3,
(j)(k), gives the coupling constant between each two-level atom (with
level-splitting e>0) and the field mode k. In physical applications (f) is
uniquely calculated by use of the wave functions of the two energy levels
of the type of atoms or molecules under consideration. For hydrogen-like
systems we give the explicit formula in Section 5. It is based on the
rotating-wave-approximation for the interaction (for more details see [2,
Section 3.2], [3]).

Our investigations concerning the Dicke model ([4], [1] and the present
paper) are inspired by the work of Davies [5], [6], where related problems
are discussed, however, by considering for the dynamics only the collective
behaviour of the atoms, which there is set up in an ad hoc manner. In [1]
the infinite atomic system is regarded as a mean field quantum lattice system,
so that in the total limiting dynamics both aspects of the atoms, the quantum
as well as the classical part, occure.

The present paper is devoted to the emitted radiation of the infinite
Dicke model. If vt, teR, is the (limiting) Schrodinger dynamics of the
total system, we restrict the time evolved states vt(oj) for arbitrary (normal
in the uncoupled representation) initial states co to the photon field, the
restriction of which we denote by vf(co)|b.

We perform the infinite time limit t -*• oo and prove the existence and
the form of the time asymptotic photon states Rt(a)) in the sense of

weak*-lim ( vt(a))\b-Rt(a)) ) = 0. (1.1)
*-»oo \ /
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2n
The time dependence in Rt((D) is periodic with period — and arises from

s
the classical flow on the classical phase space of the atoms, which expresses
their collective dynamical behaviour. From the shape of the states Rt(co)
one recognizes how the classical, macroscopic ordering of the atomic system
influences the photon field. The time asymptotic states turn out to be (fully)
coherent, classical states on the photonic C*-Weyl algebra.

The coherence properties are discussed in their operator algebraic version
([7], [8], [9], [10], [11]), which is an extension and refinement of Glauber's
original definition [12] and obtained by a smearing procedure with one-photon
testfunctions. The algebraic formulation of a photon state to be coherent
is characterized by the factorization of the normally ordered expectation
values of the creation and annihilation operators with respect to a linear
form on the one-photon testfunction space. This extended coherence
condition naturally allows to consider more general cases than coherent states,
which are normal to the Fock representation.

Indeed, here in the Dicke model it depends on the coupling constants
(j)(k) for the resonant modes k (which fulfill |&|=e), whether the generated
coherent light is of microscopic or macroscopic nature, that is, whether the
appearing coherent states Rt(a)) are normal resp. disjoint to the Fock
representation.

As we will see, the coherence properties occurring for large times are
determined by a linear form L on the one-photon testfunctions, which
depends uniquely on the coupling function (/>, and which is additively
decomposed into two very different terms. The first one represents the
exact resonance between the radiation field and the two levels of each atom,
whereas the other term concerns the remaining modes.

Because, as mentioned above, the coupling function $ is uniquely
determined by the wave functions of the considered two energy levels, we
have in general (j)(k)^Q for some resonant modes k, which is equivalent for
the linear form L to be unbounded with respect to the norm topology on
the one-photon testfunction space. As a consequence our coherent time
asymptotic states Rt(a)) are not realizable by density operators on Fock
space. In fact, for unbounded L during the time evolution there are so
many emitted photons, that vt(w)\b leaves Fock space, when time goes to
infinity. The statistical correlations inherent in the factorization property
of Rt((D) then extend over so many photons (the photon mean number is
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strictly infinite) that macroscopic features of the electromagnetic field are
generated. Especially a macroscopic phase observable is displayed, which
arises from the classical atomic ordering, which is expressed in terms of the
fixed cooperation and excitation numbers, Y\ resp. y, and the collective phase
observable. This demonstrates that for unbounded L in the asymptotic
states one recovers the classical atomic aspects.

In detail we proceed as follows. In Section 2 we recapitulate the notions
and results of [1], as well as some preliminary facts concerning states on
the Weyl algebra. The linear form L, the time asymptotic states Rt((D) and
their averages R(a)) over the time period are deduced in Section 3. Section 4
is devoted to a discussion of the properties of the emitted radiation:
microscopic and macroscopic quantum optical coherence, destruction and
revival of coherence, the mean number of emitted photons during the time
evolution, and finally the spatial distribution of the photons in the time
asymptotic states. As mentioned above, in Section 5 we briefly outline the
case of all directions of polarization.

For the comparison of the present model with the more common versions
with finitely many atoms we refer to the review paper [13].

§20 Description of the Model

The following formulation of the Dicke model is based on the previous
paper [1], For the sake of a self-contained presentation we recapitulate
some fundamental notions and results, supplementing some generalities of
Boson states.

The atomic system is regarded as an infinite mean field quantum lattice
system with the inductive limit C*-algebra

j/= (x) M2,
neN

where the complex 2 x 2-matrices M2 are the algebra of observables for each
two-level atom. Each atom is assumed to have the same Hamiltonian with
a strictly positive level-splitting e>0.

The electromagnetic field is taken to be quantized in the whole euclidean
space J?3, but for notational simplicity only one direction of polarization is
considered. In Section 5, however, we briefly outline the considerations
including all directions of polarization. The single photon Hamiltonian
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>/ —A acts on L2(J?3) (A denotes the usual Laplacian on J?3) such that the
associated unitary group leaves the one-photon testfunction space E invariant,

exp{it^/^K}(E) = E We/*. (2.1)

E should be a dense subspace of L2(l?3) and will be further specified in
Section 3. The C*-algebra for the photon field is the Weyl algebra O^(E)
over E [14].

The representation (Tl^J^f^ of s$ is chosen according to sharp values
of the cooperation and excitation numbers, Y\ resp. y, which satisfy

1
[0,1]. (2.2)

2

The representation Hilbert space ffla is then a tensor product

(2.3)

with a separable Hilbert space Jf 0 and the normalized Lebesgue measure
A*7'7 on the circle line

As in [1] we use the parametrization of Tn y with the phase angle $e[0,27c[,
d$

in which ^ = [0,2^ and di™ (&) = —.
2n

By 3F a we denote the folium of the rifl-normal states on <£/, which are
just the normal states on the von Neumann algebra

jt.=nj,j*r=jto ® L«(r,i7><i'-o, (2.4)

where ^0 is a factor acting on J^o-
Assuming to exist at time £ = 0 only a few photons, for the quantized

radiation system the Fock representation HF of i^(E) on the Bose-Fock
space F+=F+(L2(1?3)) is selected.

In the representation Tla (X) OF of the composite system algebra
s& (X) H^(E) the limiting dynamics is unitarily implementable and given in
the representation Hilbert space
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by the essentially selfadjoint Hamiltonian (A>0 is a constant)

H=A_®_lfF + 1J8H* 4- A(B_ 0 a^^^E^®^^ ' (2<5)

free atoms free photons interaction

Here A generates the free atomic (limiting) dynamics, which acts on the
center ^fl = !0 ® Lao(Tl,iy,AI|'y) of Ji 'a in terms of the flow q>™ on T^r

We* ^€[0,24=7^, (2.6)

by the equation

exp{tk4}(!0 (x) G)exp{-ik4} = l0 (g) G o ̂  VGeL00(T^,A'?'y). (2.7)

In the coupling term B± = 10 (X) j5e±l!9 e^fl are the collective raising and
lowering operators of the atoms, where

(2.8)

is the radius of the circle line T^r £ffe = dF(^/ — A) denotes the second

quantization of one-photon Hamiltonian ^/ — A. %(/), «*(/), /eL2(l?3), are
the smeared Fock annihilation and creation operators. The Fourier transform
$(&) of the coupling function 0eL2(J?3) represents the coupling constants
between each atom and the field mode kER*. In momentum space the
operators Hb and <z*($) formally are written as l\k\a*ak d

3&, resp. I(j)(k)a*d3k.
For later reference let us give here the explicit expressions of the unitaries

eitH,tER, which are derived in [1, Theorem 4.3]:

where

r r»
L J[0,2*[

ft fu

=-^2^2 du
Ju=0 Jv=

(2.9)

=0

(2.10)
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Let be 3F a F the folium of Yla (X) IlF-normal states on s$ (X) W(E). In
our notation we do not distinguish between states in 3F a F and their unique
normal extensions to the associated von Neumann algebra

(2.11)

(remember Up(iP(E))" = #(F+) [14, Proposition 5.2.4]). By duality

<vt(o;);Z> = <co;e*HZe-<fH> VZe^fl)F VcoeJ%>F Vte jR (2.12)

the limiting dynamics is obtained in the Schrodinger picture as a group (vf)fgjR

of affine, bijective maps on $* aj with lim || vt(co) — co || = 0 Vo) e ̂ atF. Obvious-
f->o

ly, if Qm is any density operator on Jffl>F representing o}e^fl>F,

<co;Z> = trfeaiZ] VZe^Fj (2.13)

the Schrodinger dynamics is given in the usual form vt(a>) = e~ItH^QJe
ItH.

In the present paper we investigate the time evolution of the
electromagnetic field, that is, we are interested in the restrictions vt(co)\b of
the time evolved states vt(co), teR, to the bosonic part (photons):

Clearly, vf(co)|& defines for each tER and every a>e^ f lF a state on the photon
C*-algebra 1^(E), which is normal to the Fock representation.

Let us at this point introduce some notations concerning states on the
Weyl algebra if(E) (see also [1, Section 3]).

Because of the Weyl commutation relations [14, Theorem 5.2.8] each
state cp on i^(E} is uniquely determined by its characteristic function

the expectation values with the Weyl operators W(f)e i^(E), feE, [8].
For a regular state (p on if(E) we denote the field, creation, resp.

annihilation operators associated with the GNS-representation (Il^Jf ̂ ,,0^)

of q> by fl>n,tf) = <W, <(/) = <(/)> ^sp. an,(f) = a9(f), feE.
The Fock representation T1F is just the GNS-representation of the Fock
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state COF on W(E) with associated characteristic function

1
(2.14)

and the Fock vacuum vector OF as cyclic vector. The Weyl operators WF(f)

acting on the Fock space F+ are connected with the abstract W(f)ei^(E)
by the representation morphism HF(W(f))= WF(f), feE.

In the case of an analytic state (p on *W(E) the cyclic vector O^, is contained
in the domain of every polynomial of field operators O^t/), because of which
one commonly defines the expectation values of the unbounded field
expressions as

<<p;*fVi)-^(/J>: = <n,l*,(/i)-*,(/«)n,> (2.15)

for arbitrary /!,-•• Jm e E and wEJV [14].

§3. The Photon Field at Large Times

The existence of the time asymptotic states Rt(a))> teR, toeJ^jr, on
i^(E) in the sense of (1.1) is based essentially on two facts. First, since

the one-photon Hamiltonian ^J — A has a purely absolutely continuous

spectrum, one obtains

(3.1)

a result from scattering theory, [15] p. 11 Off. Secondly, we have to perform
the infinite time limit of the (bounded) linear forms /e E h-> <A t |/X teR, where

(3.2)

with the coupling function (j) of (2.5), and e>0, the level-splitting of a single
atom. To obtain the existence of some limiting linear form L:E -» C with

(3.3)
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we however have to specialize the one-photon testfunction space E. For
this we introduce in momentum space R3 the energy sphere of resonant modes

|*| = 8}. (3.4)

If F denotes the (unitary) Fourier transformation on L2(l?3)1,

=f(k) = (2nr312 I e-ik'xf(x)d\, /eL2(J?3),
Jl*3

we demand E to be a subspace of

is^1 in a neighborhood of Sj, (3.5)

where ^k for &eATu{oo} means the &-times continuously differentiable
functions. According to Section 2 E also has to fulfill (2.1) and to be dense
in L2(J?3).

For the existence of the limits in (3.3) we also have to assume the
coupling function $ to be an element of EmaK.

Proposition 3.1. Let E be an arbitrary subspace of Emax and (j)EEmax.

Then the limits (3.3) exist, and the limiting linear form L:E-+C is given

as the sum

L(f) = L'(f) + L"(f) V/e£ (3.6)

with the linear forms Lr and L"

(k)f(k)dS(k), (3.7)

L"(f)=-pv\ ^^d3^, (3.8)
Jl*3 \k\-B

where dS(k) is the surface measure of the sphere SE and pv denotes the principle

value.

3

*It is a- b := £ akbk for all a = (al,a2,a3), b = (bl,b2,b3)eC3.
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Proof. From the theory of distributions it is well known (observe, (t,x) f
1 . e'"tx — 1
f e"xdr = - is continuous) [16] that

x

Km \l/(y)\ exp{iTCy-fi)}dTdy = 7c^(e) + tpv
t - » o o j R Jo jRy—

djy, (3.9)

which can be generalized to functions \j/EL,l(R) which are #* in a neigh-

borhood of £6(1?). Consequently, by splitting the integral into its radial

component and a spherical integral (cf. e.g. [17] §14 Satz 8), equation (3.9)

leads for those he'L1(R3) which are #* in a neighborhood of /S£,£>0, to

lim h(k) exp{fT(|*|-e)}dT d3k = n I h(k)dS(k) + ipv | -^- d3k,
t->oo Jj?3 Jo JsE Jus 1*1 -e

where the principal value is taken with respect to the radial integral. Now,

using the Fourier transformation F with (3.2) we obtain

t l /> = M <e-'r(^-ety|/>dT = t'
Jo Jo

= i f W)f(k) fe"(lfel-£

J||3 Jo

dr

For 0,/e£max the function k G R3 \-^> $(k) f(k) is L1 on R3 and <gl in a

neighborhood of SE. H

Before proceeding let us give some examples for the testfunction space

E. Observe that F exp{it^/ — A}F-1 is the multiplication operator with the

continuous function keR3\— >exp{it\k\}9 which is ^°° except at the origin

k = Q. Define ^0(R
3) to be the space of all complex-valued ^°° -functions

on R3 with compact support and vanishing in a neighborhood of the

origin. Further, write fe^^0tE(R3), if and only if /e^0(J?3) and / vanishes

in a neighborhood of the sphere SE. Some appropriate choices for E are

given by
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each of them fulfilling the above conditions. (^(R3) are the continuous
functions on J?3.) In the following we choose E always to satisfy

F~^o.£(K3))£Ecr£max. (3.10)

After this preliminary discussion we now turn to the time asymptotic
states Rt((D) of (1.1). With (2.4) and (2.11) one has

The restriction of coe J^F to L^T^,/^)— more exactly, to 10 (g) L00(T^y5^'7)
® 1F — leads to a probability measure pmeM\(T1ltY) absolutely continuous
to tf*:

(3.11)

for each GeL°°(T?? r/l^'y) and with a density operator Qm satisfying

r®(2.13). Since each i /^eJf f l F= Jf 0 0 F+ 6.^(0) is isomorphic to a

square integrable, J^f0 (X) F+ -valued function we find the following result
concerning the measure

N

Lemma 3,2. Let 2^= X ^nl 'KXWj «n>0> wti/z some JVeATu{oo} 6e
n = l

spectral decomposition of a density operator Qco on ffi 7
a F associated with

r®
p via (2.13). Then with \l/n ^ \l/n(&) d^'y(^) the function $e T^i-*

J^,v
N

X flJl^iit'9)||2 w aw element of L^T,^, A^'v), «wJ ^e measure
n=l

has the form

Proof. £?h-> J] «JI^W(^)H2 being an element of L^T^,/^) is an im-
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mediate consequence of the theory of direct integrals. Since 10 ® G (X) 1F =

® tFd^'y($) one easily checks

JV

G (X) 1F)] = X

from which the result follows by observing that G is uniformly bounded
and by use of Lebesgue's dominated convergence theorem. H

Lemma 3.2 also shows that the measure pw is absolutely continuous with
respect to An>y.

We now arrive at the main theorem of the present section, which ensures
the existence of the time asymptotic states Rt(a>) on the Weyl algebra

Theorem 3«,3e The following two assertions are valid:

(a) For each CD 6 3P aF and every teR the characteristic function

: = CK/) I
J[0,2

defines a state Rt(oj) on

(b) With the states Rt(co) of (a) we have the time asymptotic relations (1.1):

weak*-lim(vf(CD) | b - Rt(co)) = 0
t-»oo

/or eac/z 0)E^aF.

Proof, (a) Since COF is a state on i^(E), its characteristic function CF

constitutes the positive definite kernel (f,g)eEx I?h-»exp<-Im</|g> fCF(g— f)
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on ExE. Because the map j 'e E W (Rt(a))\W(f)} = :C(/) is the product of
CF and a positive definite function on E, the kernel (f,g)eExE\-*

exp <-Im<(/|g> {C(g— /) is also positive definite and hence defines a state on

iT(E) ([8], Appendix).

(b) For the proof of (b) we need several steps.

(i) Using (2.10) for each/e L2(J?3) with the substitution t: = t — u we get

( ft \
e^+«r) <e*"-')(^-£)0|/> dw

Jw = 0 /

( ft
e«(*+*> <e-"^-e)0|/>

Ju = 0

(3-12)

with /z, from (3.2) and the flow q>1'y on T^ y from (2.6).

(ii) With (2.14) and (3.1) one immediately checks

(3.13)

(iii) Define for each tER and feE the following functions on T^y

Obviously lim \\F{-Ff 11^ = 0 by (3.3) resp. Proposition 3.1.
t->oo

(iv) Now choose vectors 9k = ̂ k (X) PFF(/zfc)OF, /e = l,2, where ^ f te Jfa (cf.
eq. (2.3)) and hkeE\ Q,F is the Fock vacuum vector. For feE we obtain
with (2.9), the Weyl relation, and the equations (3.12) and (2.7)

(3.12)
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(2.7)

(3.14)

Obviously |<e-^1|(l0(x)(F/'-F/)) e~^2>|< ||̂ || ||£2|| HFf-F^-^O,

from which together with (3.13) and the observation

follows

lim

= 0. (3.15)

(v) From the fact that {£ (x) WF(h)Q,F\£Ej4?a,heE} is total in Jfa>F =

^«(8)^+ (cf- eQ- (2-3)) by an --argument the validity of (3.15) for all
3

9l902eJira,F follows. With (2.12), (2.13) and (3.11) we finally obtain the
assertion from the substitution F-^o (p

For special product states coe^flF one obtains by direct calculation an

explicit closed expression for the characteristic functions associated with the

states vt(a))\b. If \L is a probability measure on L2(J?3), jueM+(L2(.R3)), then

by (OF is the Fock vacuum vector)

(3.16)

there is defined a density operator on the Fock space F+. The WF(h)Q.Fy

heL,2(R3) are the so-called Glauber vectors, which are total in F+. Ex-

pression (3.16) is a statistical mixture of pure Glauber vector states, the

so-called P-representation (cf. [12] and the section on classical states in
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[18]). The Fock-normal state on i^(E) associated with the density operator
(3.16) are denoted by OJF. With the Weyl relations one immediately checks

J

(3.17)
L2(R3)

Obviously, if 11 = 6$ is the point measure at zero, then we have coF° = a>F, the

Fock state (2.14) on i^(E). For an arbitrary coae^fl the product state
oja ® O)F is an element of the folium 3Fa F

Proposition 3.4. For jueM+(L2CR3)) and coae3F a one has for each feE
and teR

<vr(ct>fl (X) COF); W(f)y (3.18)

= CF(/) I exp{i\/2/URe(e'*<Ar
J[0,27T[

x
)L2(R3) I

pa}aEM\(TnjV) is obtained by the restriction of a>a to L00(T^sV,/l';'y)J similar

to (3.11): pma = pmaaml*.
F

Proof. Analogously to (3.14) one gets with CF(ett^~^f) = CF(f) V/eE

( 3 . i 7 > r r
F{oq>™(&)dpma(&) CF(f) I

J[0,27c[ JL2(R3

From formula (3.18) one recognizes how the time asymptotic states
Rt(oja (X) COF) given by

= CF(/) I exp
J[0,27c[
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emerge from the full Schrodinger dynamically evolved states vt(coa (g) cof) by
means of the limits (3.1) and (3.3).

Since the flow (p^'7 is a rotation on T- Y with period — (cf. eq. (2.6)) it
e

seems reasonable to average over the period, or to perform the more general
limit by means of the Cesaro averages

f-*oo *-»oo Jo

noting that if the ordinary limit \imk(t) = a exists, so does the generalized
f-»00

Limk(t) = a ([15, Lemma 4.18], cf. also [6]).

Corollary 3.5. The following two assertions are valid:

(a) For each co e 3?'aF the characteristic function

: = CF(/) f
J[0,2rc[

defines a state Rn >y on 1^°(E)y where J0 denotes the zero order Bessel function.

(b) It holds for each seR and every co e ̂  a F

+ 27C/E

e fs+27C/e

= — jRT(a>)dT
27C Js

Proof. Observe that Ae@(Tn )h-»— pm(<p^\(^))di is just the
27T Js

49
normalized Lebesgue measure dA^i?) =— on T^ y = [0,27i;[ ($(T^y) are the

27C

Borel subsets of T^ y). The remaining argumentation is obvious. H
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Clearly, the measure pco is invariant under the flow ((p1'y)teR, if and only
if p(o = tf'y. In this case Rt(co) = RrtyVteR) and for such states coE^aF the
usual limit exits according to

weak*-limvf(o?)|& = R^ y.

§4. Properties of the Emitted Radiation

For an initial Ha (X) IlF-normal state a) E ̂ aF on «c/ 0 i^(E) the time
evolution is given by the Schrodinger dynamics (vt)feK, i.e. by the map
t ER h-» vt(CD) (cf. formula (2.12)). Its restriction tERs-+vt(a))\b to the photon
system describes the quantum states of the evolving radiation field, which
are obtained by emission and absorption processes up to the time
t>0. However for large times t> >0 the time asymptotic states Rt(a>),
resp. the averaged one R^ of Corollary 3.5, are appropriate for the
description of the electromagnetic field by Theorem 3.3. Denote by

^as: - (Rt(co) \tERyCDE &aj} B R^y

the set of all time asymptotic states on if(E). Obviously, there is a one-to-one
correspondence between ^?as and the measures on [0,27c[, which are absolutely
continuous to A*'7, that is, between @as and L1([0,27t[, tf'y).

4.1. Quantum optical coherence

Theorem 4.1. Let q)E&as. Then cp is entire-analytic, and with the linear
form L:E —*C of Proposition 3.1 we have the factorization

(4.1)

for all /i,"-/m, giy--,gmEE and each mEN, showing (p to be a fully coherent
state on

Proof. See [7], [8], and [9]. •

For arbitrary initial state o>e Jr
aF of the radiating system the associated time
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asymptotic photon states Rt(aj), teR, and R(a>) are fully coherent and factorize
with respect to the linear form feE\—»/UL(/), which is independent of co
and is given by the macroscopic preparation (expressed by f? and y via eq.
(2.8)), the atomic level-splitting e>0 and the coupling function $. Only
the phase distribution in Rt(co) depends on a) (and contains a periodic time
dependence). In any case the phase distribution is positive so that the time
asymptotic states are classical.

If the radius /? of the circle line Tn>y is zero, that is \y — l/2\ = n/2 by
(2.8), then &as= {CDF} consists only of the Fock state. Hence in the following
we suppose j5/0, that is, the inequality (2.2) is proper. Now, as mentioned
in the introduction, the boundedness resp. unboundedness of the linear form

L:E-*C comes into play.

Proposition 4.2* The following three assertions are equivalent (remember
(3.10) and the condition (l>EEmSLK):

(ii) ^e^V-A-e)-1), that is " "" "'

(iii) L:E—>C is bounded (with respect to the norm on E).

d3&<oo;

If one of these conditions is fulfilled, then L' = Q (cf. eq. (3.7)) and the linear

form L = L" (cf. eqs. (3.6) and (3.8)) is given by

Proof. (i)=>(ii) Because of <£e£maxand $|SE = 0, for keR3 with |*| = 1

fe) a^(^)
we have lim

dx
from which follows (x,k)\-* is

x — e
continuous for x in a neighborhood of e>0 and for k with |&| = 1. Hence

#e[0,oo[[—> -, where
(x-s)2

\k\=x

2
dS(k) = (4.2)
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is continuous in a neighborhood of e> 0. Consequently, by splitting I • • -d3k
JH3

into its radial and spherical integrals the assertion (ii) follows:

(4.3)
o l(*-e)

(ii)=>(i),(iii) Assume $lsE7^0. Then &0(e)^0. Hence by the continuity
of b$ there exist oc,<5>0 with b<l>(x)>SVx€ [e — oc,e4-a]. Because of 0<(52

a,e + a], and since x\— *(x — e)~2 is not an element
(x-e)2 (x-s)2

of L1([e — a,e + a]) we have a contradiction to (4.3). Consequently $lse

and thus L' = 0 and L(f) = - ((V^A - e) ~ 1 0 |/ >/e E, the boundedness of L.

(iii)=>(ii) Clearly Ee:=F"\V^0te(R
3)) is a subset of

Since Ee is also invariant with respect to the unitary group exp{zt(^/ — A — e)"1}
(which is shown by Fourier transformation), by [19, Theorem VI II. 11] Ee

is a core for (^/—A — s)~l

L being bounded, there is an h e L2(J?3) with L(f) = <Ji | jf>V/e £". Because

of EE ̂ E we have <A|/>= -<0| (N/^A-e)~1/>V/eE£. Since £e is a core

for (-x/ — A — e)"1, by the definition of the adjoint it follows that (f) is an

element of the domain of the self adjoint operator (>/— A — fi)""1. Hence

Remark 4.3. Jw i/ze case of F~l(^0(R
3)) ^E^ Emax and $|Se^O, 63;

similar methods as in the above proposition one proves that the linear form

aL' + bL":E-+C is unbounded for all tupels («,6)eC2\{(0,0)}.

Since the coupling function (j)eEmaii is uniquely determined by the wave
functions of the two energy levels of the atoms or molecules under
consideration (remember: level-splitting £>0), in physical applications in
general one has <?|sE^0> which is equivalent to the unboundedness ofL:E—>C.

4.2* Destruction and revival of coherence

The set of all (fully) coherent Fock-normal states on 'W(E), which are
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discussed by Glauber to be of physical relevance [20], one obtains by
considering in eq. (3.16) those measures fj,EM1

+(L2(R3)) which are
concentrated on the unit circle Tg for ge L2(J?3), where T = {ewe C \ Oe [Q,2n[}
is the one-dimensional torus.

Proposition 4A Let us start at time t = Q with a product state
(J[)a®(DFE^a,F w^tn arbitrary wat3Fa and ^eM+(Tg) for some geL2(J?3).
Then vt(a)a ® cop )\b is (fully) coherent for some t>Q, if and only if g = Q, that
is, if and only if \JL is the point measure at zero, or equivalently if and only if

a>F = a)F is the Fock state. In this case the states vt(a)a (x) o)F)\b are coherent
for each time point tER with respect to the bounded linear form feEi—* j8 A(ht\fy

(see [7, Definition 2.1] or [8, Definition 1.2]), and their characteristic functions
are given by

= CF(f)\ exp{i\/2/WRe(ew<*, !/>)}<!(£,. o ̂ (0)). (4.4)
J[0,2*[

Proof. Immediate consequence of Proposition 3.4 and [7], [8]. H

In both cases of the above proposition, g = 0 and^^O, the "wrong" coherence

at £ = 0, which is associated with the linear form /eEW^ - g|/) is destroyed

during the time evolution. After enough time having elapsed (t-*ao) the
new quantum optical coherence is build up, which now is in accordance
with the resonance frequency of the atoms and expressed by the factorization
of (4.1) in terms of the linear form L.

4.3. Mean number of emitted photons

Since L is unbounded for /? ̂  0 the time asymptotic states ^as correspond
formally to strictly infinite mean numbers of photons. However, for finite
times £>0 the states vt(a>)\b, a>e^"flF, are normal to the Fock representation
and the photon number is finite. Here we investigate, how the photon
number increases in time and finally becomes infinite as £-»oo. We do not
calculate the general problem, but start with the case where no photon is
present at t = Q, more exactly, with the initial state wa ® a>F E 3F aj> where
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is an arbitrary atomic state.
By means of (4.4), (3.16) and (3.17) for each teR the state vt(oja

is given in the Fock representation by the density operator

,,
6t

II 7 .11 2

Observing (WF(h)Q,F\NR3WF(h)&Fy=—^- V/zeL2(l?3) with the number

operator NR* in the Fock space F+ = F+(L2(R3)) we get a result, which is
also obtained with the restricted formalism in [5].

Proposition 4.5. For each teR and every coaE^a the photon number
expectation value is

<v((coa

with ht from formula (3.2).

Thus the growth of the mean photon number is determined by the map
teR\— > ||/zf||

2, which turns out to be linear in time, a result which goes back
to [5].

Proposition 4.6. The following two assertions are valid:

(a) Assume $\SE = O. Then \\ht\\ <2||(v/^A-e)-10||V^el?, and lim \\ht\\ =
f-"oo

(b) Assume (^|Se7^0. TTzew ^/zere e^"5i5 « continuous function cr:[0,oo[ -^1?

constants C1,c2>0 SMC/Z ^/z«i |cr(0l^ci +C2\/^ /or ^^ and tnat for

\\h,\\2 =
2 =
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Proof, (a) Using the spectral calculus we obtain

ht = (exp{ - it(^/ — A - e)} — 1 )<£ with <^: = (V/-A

from which follows ||/if|| <2||0|| and

lim ||/zJ|2 = lim<<£|2-exp{iX^^
t-»oo

where we have used (3.1). lim<^ + 0|/> = 0 also follows from (3.1).
f-»oo

(b) Using the Fourier transformation on L2(JR3) and decomposing the
integral over R3 into its radial and spherical parts and introducing

Ht(x): = <Jb$(x) - - - -, #e[0,oo[, where b$ is from (4.2)s we obtain
B — x

ft
\\ht\\

2=l \Ht(x)\2dx. Since $|Se/0 we have fy(e)^0 and ̂  is ^! in a
Jo

neighborhood of e>0. With these prerequisites the proof of [5, Theorem
4.6] is applicable and yields the result. Hi

Observe \$(k)\2dS(k) = — L'(<£) with the linear form L' from (3.7).
sE

For large times by Proposition 4.6 the emission rate is constant and
uniqely determined by the coupling constant (j)(k) at the resonant modes k e SE.

4o40 Spatial distribution of the emitted photons

For <pe^as in the case of /?^0 and of unbounded L the mean photon
number is strictly infinite, however, as we will show, with a finite,
non-vanishing density. We follow ideas and methods of [21] and [6].

Assume the one-photon testfunction space E such that 'L2(U)nE=:Eu

is dense in L2(C7) for each open and bounded subset Uc:R3. Thus the
Weyl algebra i^"(E) has a quasilocal substructure:

£ TT(£), where E1 :={^VEV.
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The coupling function 0e.Emaxwe suppose to satisfy eL1^3). By use

of the Fourier transformation for the linear form L from Proposition 3.1

with Fubini's theorem and Lebesgue's dominated convergence we obtain for

all/eE*

)=\ LW/(*)d3*
J*3

L(f)= LW/(*)d3* (4.5)
J*3

with the bounded and continuous function L:R3 —> C given by

(4.6){ f f £(k}eik'
m\ <0(fc)ett-*dS(fc)-pv ^

JSE J*3 |*| -fi

Clearly the function L:R3 —> C should be decomposed in terms of the Fourier

transform f (cf. [22] p. 5) of the tempered distribution T on the space

of function with rapid decrease,

= i7L\ tfr(*)dS(*)-pv f
JsE Jn

(4.7)

Under the condition for the coupling function (f)e^(R3) by use of [22,

Theorem IX. 4] one easily checks that L is an infinitely differentiable function,

which together with its derivatives is polynomially bounded and given by

the convolution

However, here in the context of distribution theory (4.5) is valid for all

). And (4.6) may be expressed as

a result which one could also obtain from [22, Theorem IX. 5].

Let us return from distribution theory to the above case (f) € Emax with

-^-eL1^3) and (4.5) to be valid for all feE*. Obviously LeL2
loc(J?3) is
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locally square integrable, from which follows that the restriction of the linear

from L:E-+C to Ev is bounded: L(f) = (Lu\jyVfeEu, where Lv(x) = L(x) for

x E U and Lv(x) = 0 for x$U. As a consequence, for each co e ̂ fl)F the time

asymptotic states Rt(co) and R^y are locally Fock-normal. More exactly:

For 17 c: R3 open and bounded, the restricted states Rt(co)\w.(fv} and R^Y\^(Ev}

are normal to the Fock representation I1F of the local Weyl algebra i^(Ejj)

on the local Bose-Fock space F+(L2(C/)), [8, Proposition 2.5]. From (3.16)

and (3.17) we obtain

with the density operators egi( and 0'g on F+(L2(U)) given by

Bv,t = j \WF(- te " iS^/2^Lv)QFy<, WF( - te ~ "V^^ALp)n,| d(pro «.
J[0,27r[

resp. ^g in the same way, however with the normalized Lebesque measure

^'v. Analogously to Proposition 4.5 we get:

Proposition 4070 Let be Nv the number operator in the local Fock space

F+(L2(U)). It follows for each O}E^atF and teR

(x)\2d*x.
u

As a consequence of Proposition 4.7 the photon density is given with the

integral kernel L:R3-*C of (4.5) resp. (4.6) according to

for each time asymptotic state cpe^as. Since the linear form L:E-*C is

unbounded we have L^ L2(J?3), which also implies the total number of photons

in all of R3 to be strictly infinite.

§ 5e The Case of Arbitrary Polarization

The quantization procedure in the Coulomb gauge leads to the C*-Weyl
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algebra i^(E) over a testfunction space E dense in

L2
div(K

3,C3) = {/= (ft,f2,f3) e L2(K3,C3) | V •/= 0}

as algebra of observables for the photons. Here V'f=Q is meant in the

distributional sense: 0 = (V '/)(^)= -<f\ grad^> V^6^(J?3).

Defining the Fourier transformation F: /i— »/ on L2(J?3,C3) component-

wise the condition V -/=0 is equivalent to k 'f(k) = 0 for almost all keR3. In

momemtum space the orthogonal projection from L2(JR3,C3) onto F(L2
div

(J?3,C3)) is performed with the linear map Pdiv given on each function

g:R3^C3 by

(5.1)

Let us turn to the one-photon dynamics. For the Laplacian A in

L2(J?3,C3), which also is defined componentwise, A/=(A/1,A/2,A/3) for

/j-e^CA), we have (Fe"'tV)(*) = eit|k|2^[*) for almost all keR3, from which

follows V- (e~ft2/) = 0, if and only if V-/=0. Thus e'f* for each f el* leaves

L2
div(J?3,C3) invariant. Consequentely L2

div(J?3,C3) is a reducing subspace

for A [23, Theorem 7.2.8], and the restriction of A from L2(J?3,C3) to

L2
div(J?3,C3) is a selfadjoint operator in L2

div(J?3,C3), which we denote also

by A. Clearly, for each Borel function u:R—*C the operator u( — A) on

L2(J?3,C3) resp. L2
div(JR3,C3) works componentwise and its Fourier transform

Fu( — A)F~ 1 is just the componentwise multiplication with k e R3 1— » u( \\ k || 2).

The one-photon Hamiltonian is given by S: = ̂ / — A (cf. [2, Section

3.1]), which is selfadjoint in L2
div(JR3,C3), and the testfunction space E should

be invariant under the unitary one-photon dynamics elts, teR.

From (5.1) is easily seen that Pdiv commutes with FeIt^F~1 = e r f '" '2 and

that Pdiv(^e(R
3,C3)) = V^e(R

3,C3)nF (L2
div(l?

3,C3)) is dense in

F(L2
div(J?3,C3)). A similar result holds for <^0(J?3,C3). In this way one

immediately constructs appropriate testfunction spaces E with

(cf. eq. (3.10)), where (cf. eq. (3.5))
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= {/eL2
div(J?3,C3)|/is V1 in a neighborhood of SE}.

From this it is clear, that — by working componentwise — all arguments
are analogous to the case of one direction of polarization. For example,
with the coupling function (j)EEmSLKthe limiting linear form L:E-»C from
(3.3) is obtained similar to Proposition 3.1 as

L(f) = in\W) -mdS(k) - pv f - d3k V/e £.
Jse JH3 1*1-8

In terms of the smeared classical vector field L(f) the emission
characteristics of the emitted radiation can be obtained. For notational
simplicity we omit the representation indices for the annihilation and creation
operators. In terms of an (arbitrary) orthonormal basis {&n \ nGN0} in
L2

div(J?3,C3) consisting of real-valued functions en:R
3-*R3, which are smooth

enough, one obtains the operator of the Poynting vector S(^c) = E(^) x B(#)
at xeR3 (cross product of the electric and the magnetic field)

where the annihilation and creation operators are normally ordered, [2,
Section 3.1]. Using the factorization (4.1) and the integral kernel
XE J?3i— *L(x)eC* (similar to equation (4.5)) the expectation values of S(x)
for the time asymptotic averaged states are calculated [2, Section 7.5]

lm(sl/2L(x) x ( V x S ~ lf2L(x))}

Here S±1I2L means the formal application of the operator S±1/2 (obtained
from the functional calculus) to the function L, which, however, is not an
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element of its domain, and given by

Sl'2L(X):= \k\^$(k)e
ik-*6+ (\\k\\ -

where <5 + (||&||— e) denotes the distribution T from (4.7).
The formula demonstrates the dependence of the emission characteristics

from the wave functions of the selected two energy levels of the considered
type of atoms and molecule, which determine the coupling function (j)
uniquely. For the example of hydrogenlike atoms the coupling function
(l>EEm3LJiis calculated as follows: With the wave functions *Ft, *FjeL2(H3)
for the upper resp. lower energy level of the active electron (level-splitting

£>0) the Fourier transform $ is proportional to Pdiv — ̂ — , (cf. [2], [3]) where

the function F^ is given by the scalar products

Here p = — i( - , - , - ) denotes the usual momentum operator and
8x1 dx2 dx$

q = ( x l y x 2 9 x ^ ) the position operator in the Hilbert space L2(.R3) for the
electron. For the interaction is used the rotating-wave-approximation.
Concrete calculations of (f>(ls — 2s and \s-2p) and estimates for $ are provided

in [3].
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