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The E7 Commuting Squares Produce D10

as Principal Graph

By

David E. EVANS* and Yasuyuki KAWAHIGASHI**

Abstract

We prove that the (two) connections, or commuting squares, on the Coxeter-Dynkin
diagram E7 produce a subfactor with principal graph D10. This was conjectured by J.-B.
Zuber in connection with modular invariants in conformal field theory, and solve the last case
of computing the flat parts of the connections on Coxeter-Dynkin diagrams with index less than 4.

§ 0, Introduction

Since V.F.R. Jones initiated a systematic study of subfactors in [Jo],
more and more connections of the subfactor theory with topology and
quantum field theory have been pointed out. Our aim in this paper is to
provide an evidence of a deeper relation between a notion of flatness in
subfactor theory and modular invariants in conformal field theory through
a computation of flat parts of a commuting square arising from the
Coxeter-Dynkin diagram E7, which was the last case left among the A-D-E
diagrams.

In theory of operator algebras, a classification problem of subfactors (of
the approximately finite dimensional factor of type I I i ) have attracted much
attention, and approach using higher relative commutants has been quite
successful [Ol, P2, P3]. Ocneanu's paragroup machinery [01, O3] appeared
as a combinatorial characterization of higher relative commutants and it has
a strong resemblance to some combinatorial aspects of statistical mechanics
and rational conformal field theory such as [ABF, Bas DHVW, DJMO, DZ1,
DZ2, DV, F, FG, Ko, So, Z, W], as noted and exploited in [BG, EK1, EK2,
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IK, Kai9 Ka29 Pas R]. For example, the commuting square condition in
subfactor theory [Pi, GHJ9 Sc] is related to the crossing symmetry or second
inversion relation in solvable lattice model theory. (See [ABF9 B9 BJMO9

Ji] for more on solvable lattice models.)
The subfactors of the approximately finite dimensional (AFD) factor of

type II j with index less than 4 have attracted much attention. In these
cases, the so-called principal graph of the inclusion must be one of the
Coxeter-Dynkin diagrams of type A, D, E, as observed in [GHJ,
§4.1]. (Each graph has a distinguished vertex denoted by *, determined
as the vertex with the least entry of the Perron-Frobenius eigenvector. See
[P2, Theorem 3.8], [II].) Then for each graph, we have an additional
structure — a ''connection'' giving a commuting square. The commuting
squares can be written down explicitly as in [GHJ, §4.2] for the A-D-E
graphs, and all the connections can be classified as follows [Ol, O39 Kal]:
Each of the diagrams of type A or D has a unique connection, and each
of the diagrams of type E has two connections. The remaining problem
is to decide whether they really appear as higher relative commutants of
subfactors. Alternatively, in Popa's terminology [P2], we have to determine
whether or not these commuting squares are canonical commuting squares.
Ocneanu claimed that this question can in general be solved by checking
finitely many explicit equations, and when these are satisfied the
connection is said to be flat [Ol, O39 Kal9 Ka2]. This flatness is a key
axiom in Ocneanu's combinatorial approach, and it also plays a key role in
construction of topological invariants of 3-manifolds of type Turaev-Viro
[T¥9 DJN] from subfactors [O45 In the case of A-D-E diagrams,
Ocneanu announced the following claim [Oi]: The connections on An, D2n,
E6, Es are flat, but those on D2n + i, E7 are not flat. He has not shown full
details of his method, but these claims have been proven by several people
[II, 12, Ka!9 SV]. (The claim for An is easy to verify, and E6 has been
realized by [UN]. Impossibility of E7 and D5 is implicit in [P2, Theorem
3.8].) The classification is thus complete for index less than four, but it is
natural to ask what happens in the case of non-flat connection. We have
commuting squares even for non-flat connections and hence subfactors. So
we have a problem of determining the principal graph. In Ocneanu's
terminology [O3], this is the problem of determining a flat part for a non-flat
connection.

In the case of Z)2 n+ii we can conclude except for the D7 case that
the principal graph is A4n_i by considering only the value of the Jones



THE E-j COMMUTING SQUARES 153

index. The index value 4 cos2 — for D7 is realized for Ali and E"6, but

by the compactness argument of Ocneanu [O3, 11.6], we know that the
higher relative commutants of this subfactor are contained in the string
algebra of D7, which eliminates the possibility of E6. The case of E7,
however, is more subtle. By looking at the index value, we know that
the principal graph is either Dlo or Ai7, but it seems that there is no
easy way to determine which is the right one. Our object in this paper
is to prove that D10 is the correct invariant. As far as we know, this is
the first example of a direct computation of a flat part of the non-flat
connection. Our method comes from Izumi's paper [12] on the flatness
of the E8 connections.

Cappelli, Itzykson and Zuber [CIZ] and A. Kato [Kt] encountered
an A-D-E classification in conformal field theory, and Zuber noticed a
strong similarity to the subfactor classification mentioned above. Based
on this observation, Zuber conjectured that the E7 connections produce
the D10 principal graph. Our result here proves this conjecture, and
provides the last missing piece in similarity between the A-D-E classifications
in subfactor theory and solvable lattice model theory.

After this work was completed, we learned that U. Haagerup inde-
pendently and recently obtained the same result with the essentially same
method.

This work was completed while the first author visited MSRI, Berkeley
in the spring of 1992. We wish to thank MSRI and Irving Kaplansky
for the financial support and their hospitality, D. Bisch for informing us
of Haagerup's result, U. Haagerup for explaining his method, which turned
out to be the same as ours, J.-B. Zuber for making the conjecture during
a visit to Swansea in February 1992, and the London Mathematical Society
for financial support for making that visit possible. The second author
was supported by a Miller Research Fellowship at University of California,
Berkeley.

§1. Embedding of Algebras of A17 to That of E7

We will freely use notations and results in string algebra approach
as in [El, E2, Kals Ka2? Ol, O2? O39 Su]. We first look at the subalgebra
generated by the Jones projections in the string algebra of E7 because
the Jones projections are always flat. Then we get a commuting square
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embedding of two string algebras as in [GHJ9 §4.5], and the graphs for
embeddings are obtained as in [EG1], [EG2], [OK] or [DZ1, page 622]. We
label the vertices of the Coxeter-Dynkin diagram E7 as follows.

E7: 0—1—2—3—4—5

Because we already know that the connections on E7 are not flat,
/c, k<6, are generated by the Jones projections. So we look at the

level k = 7. If we look at the minimal projection orthogonal to the Jones
projections in N'nM7 and check its string algebra expression in the E7

string algebra, we know that it is a sum of three minimal projections and
that they are in summands corresponding to the vertices 0, 2, 6 respec-
tively. (We use the preceding embedding graphs for this.) Because this
projection is flat, we cut the string algebras making M7 by this projec-
tion and get the following commuting square series, and proceed as in [12].

B00 c Bol c .802 ci •••

(1.1) n n n

B10 c Bil c= B12 <= •••

Here BOQ^BQ^C:-" is the series of string algebras of E7 starting from
the vertex 0 and B1 0^ JB1 1cz--- is the series of string algebras of E7 starting
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from three vertices 0, 2, 6. Next we compute the two vertical embedding
graphs of (1.1). This is done just by counting the dimensions in the two
Bratteli diagrams, and we get the following two graphs as in Figure 1.1,
where we used notations 0, 1, • • • , 6 for denoting the vertices of j£7 for
the string algebras BlociBll a ••• as in [12].

§2. Computations of Connection Matrices

Next we look at the series (1.1) and will determine the connection
for this series just by studying the graphs, or at least we compute several
entries of the connection matrices in a way similar to that in [12] with
the same notation as in [12]. Of course, there is a connection for the
series (1.1) arising from the original connection, but it is very hard to
compute that explicitly. We will determine the information that we need
regarding the connection from the graphs using gauge choices without
considering the original connection E7. This was the basic idea of Izumi
[12]. We do not have to determine all the entries completely, so we use
the symbol * for entries which we do not determine. Our aim in this
section is to prove that after certain gauge choices all the connection
entries are given by the following list.

(2.1)

(2.2)

(2.3)
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(2.22)

We now prove the above claim. In the first place, we make gauge
choices for the following pairs of vertices in this order:

3 1 3 1 2 3 4 4 4 5 6

I I I I I I I I I I I
3, 35 1, 1, 4, 5, 4 2, 6, 3, 4.

In this way, we fix the matrices (2.12), (2.2), (2.10), (2.1), (2.6), (2.9),
(2.16), (2.17), (2.18), (2.19), and (2.22) as desired.

By the crossing symmetry

r1

c

and (2.1), (2.2), we can partially fill entries of (2.4). Then by a gauge choice

for 2, we get (2.4) as desired.

Using the crossing symmetry, (2.10), and - =1, we get (2.20).

Similarly, using the crossing symmetry, (2.2), and - — =1, we get

(2.5). Similarly, using the crossing symmetry and (2.1), we get (2.3).
Next we fill several entries from the determined entries and the crossing

symmetry. Using unitarity, we get (2.7) as above. After filling further
entries with the crossing symmetry, we get the following expression for (2.15).
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where \<j}\ = I, and a, b, co e C.

Using this, first we get the following expression for (2.13).

2i 22 6i 62 4i 42

\

0 x y a b

z 0 0 6u> —au

* * * * 0

* * * 0 *

0

where x, y, #, weC. Using the orthogonality of the first and second rows
and the fact that the (lsl)-entry is not zero, which comes from (2.8), we
can conclude that w = 0. Then by the orthogonality of the second and the
fifth rows, we can conclude that b = 0. By the orthogonality of the first and
sixth rows, we next get y = Q. Then (2.15) is of the desired form. In (2.8),
the entry (14, 32) is 0, and this implies that the entry (32, 32) is 0 by
orthogonality of the first and the fourth columns. Then the orthogonality
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relations give (2.11) in the desired form. Finally we get (2.14), (2.8), (2.13),
and (2.21) in this order, and we are done.

§30 Computing the Flat Part and the Goodman-
de la Harpe-Jones Stibfactor for Ai7 and E7

We look at the following diagram for computing the flat part.

For each choice of vertex e, we determine the vertex a for which the
above diagram can have a non-zero value. This is done as in [12] with the
matrices in §2, and we get the following.

(1) If e is 0, then a is 6.
(2) If e is 2, then a is 2.
(3) If e is 6, then a is 0 or 6.
(4) If e is 4 and the vertical edge from 6 to 4 is labeled as 1, then a is 2.
(5) If e is 4 and the vertical edge from 6 to 4 is labeled as 2, then a is 0 or 6.

This shows that the vertical string (0—»2, 0-»2) commutes with all the
horizontal strings on E7 starting from the vertex 0, because the horizontal
string algebras are generated by the Jones projections and a single projection
(0—»1 —»2—»3-»6, 0—»1—»2—»3—»6). This means that the higher relative
commutants arising from the E7 connections are strictly larger than the
string algebras of A17. We have thus proved that the principal graph of
the subfactors arising from the E-j connections is D10 as desired. Note that
there are two (mutually non-equivalent) connections on the graph £"7, but
both give the same subfactor, since the subfactor with the principal graph
jD10 is unique.

In general, we have the following proposition for the flat parts.

Proposition 3oL Suppose we have a double complex (Akl) of string

algebras arising from four graphs as in [O3, Ka2J. Set the flat parts

Bk = Akt ^ n^4o, oo • Then the following is a series of commuting squares of period 2.
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n n

Proof. Let ek be the &-th vertical Jones projection in Ak+l^0. Then

for #eJB f t + 1 , we get ekxek = EBk(x)ek = EAk(x)ek, hence EBk(x) = EAk(x). This

gives the conclusion. Q.E.D.

From this general statement and the above computation, we can conclude

existence of a commuting square which embeds the string algebra of D10

from * to the string algebra of E7 from *. By direct computations, we can

see that the two graphs for embedding are also jD10 and E1 respectively in

this case.

Goodman, de la Harpe, and Jones [GHJ, §4.5] constructed subfactors

from commuting squares embedding the string algebras of An from * to the

string algebras of other A-D-E graphs, and Okamoto [Ok] computed the

principal graphs of these subfactors. In the case of E7 with the choice of

* as the starting vertex, the above result shows there is an intermediate

subfactor for the Goodman-de la Harpe-Jones subfactors. Their numerical

index value [GHJ, Proposition 4.5.2] for this subfactor is really 8cos2—,
18

and the above intermediate subfactor splits this number as 2 x 4 cos2 —.
18

Existence of such an intermediate subfactor can be also seen from the

principal graph of Okamoto [Ok, DZ1] and a result of Pimsner-Popa on

existence of normalizers in [PP, Proposition 1.7].

§4. Comments on Conformal Field Theory

We now discuss meaning of the above computations from the viewpoint

of conformal field theory. These observations were bases of Zuber's

conjecture mentioned in the introduction.

In the A-D-E classification of [CIZ, Kt] on level k SU(2) WZW-models,

the An, D2n, E6, E8 models have block-diagonal modular invariants and the

D2n+i and E7 models have off-diagonal modular invariants. Comparing this

with the A-D-E classification of subfactors announced by A. Ocneanu, we

easily notice a rather mysterious similarity between block diagonal modular
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invariants and flat connections. Furthermore, this similarity still holds
between our work on orbifold subfactors from Hecke algebras [EK1] and
modular invariants of the orbifold graphs @(n) [DZ2, Tables II, III].

Dijkgraaf-Verlinde [UV] studied the relation between off-diagonal
modular invariants and non-trivial automorphism of the fusion algebra of
conformal field theory. They further discussed the following E7 pairing in
[IW, pages 95—96]. The partition functions labeled by D10 and E7 are
given as follows.

Both have the same chiral algebra containing the SU(2)k = 16 KM-algebra

and the characters are given by fa+Xn, X 3+*i5> # 5 +£i3> *7+Xi i» *9 > and

fo . Then the corresponding operators are denoted as 1, (pl9 y>2, (^3, (p%
and <p4 . In this setting, the off-diagonal pairing is given by the exchange
of q)l and (p£ . They also computed the same fusion rules of these models
with /S-matrix and observed that the pairing exchanging cp1 and (p£ gives a
Z2 symmetry of the fusion rules. Or, in the notation of [Z, page 315, Table
I], this automorphism of order 2 exchanges the block with exponents (3,15)
with the one of exponent 9. (This fusion rule is the same as the one
obtained with the N-N bimodules arising from the subfactor with Dlo

principal graph. See [II] for fusion rule computations.) With this
symmetry, one can twist the characters x with respect to the conjugated
characters / and get the E7 invariant which is not block diagonal from the
D10 invariant which is block diagonal. With this observation and similarity
between block diagonal modular invariants and flat connection, Zuber
conjectured that the (non-flat) connections on the E7 graph would give
principal graph D10. Our computations proved this conjecture and gave a
further evidence on this similarity. Our commuting square obtained at the
end of §4 clarifies a relation between the two diagrams suggested by this
pairing.
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