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PBW Basis of Quantized Universal
Enveloping Algebras
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Yoshihisa SAITO*

§ 0. Introduction

In [4], Lusztig constructed PBW bases of £/£. Then, he introduced the
canonical base of Uq [6] in case of A, D, E type. His results can be reformu-
lated in case of Uq as follows.

Let L be the sub Z[g]-module of U~ generated by a PBW basis of U~.
This submodule is independent of the choice of the PBW basis. Let n': L —>
L/qL be the canonical projection. Then the image B of the PBW basis is a
Z-basis of L/qL and it is independent of the choice of the PBW bases. Let
— : Uq^Uq be the Q-algebra involution defined by et^elf /*>->/*, qh*->q~h,
q^q~l. Then n' induces a Z-module isomorphism TT" : Lr\L-*L/qL, B =
(nff)~l(B) is a Z-basis of LC\L and Z[#]-basis of L. Moreover each element of
B is fixed by —. B is called the canonical base of U~.

On the other hand, in [1] Kashiwara constructed the global crystal base of
Uq. Let (L(oo), £(oo)) be the crystal base of U~ and let UQ be the sub-Q[q, q~1']-
algebra of U~ generated by fln\ Then f/QnL(c5o)nL(oo)-^L(oo)/^L(oo) is an
isomorphism. Let G be the inverse of this isomorphism. Then G(B(oo)) is a
base of Uq and called the global crystal base of Uq.

In [7], Lusztig showed B=G(B(oo)) in the simply laced case.
In this paper, we show that the monomials of the root vectors form a base

of U~ and they give a crystal base at <?=0, when g is an arbitrary finite
dimensional semisimple Lie algebra.

In Section 1, we define the braid group action on the integrable Uq-module.
Let M be an integrable £/Q-module. Then we shall define the automorphism Sz

of M as follows:

) / 2v for
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Here expg(x) denotes the ^-analogue of the exponential function
S"=o($*(*~1)/a/[>] !)**- The operator 0J i<** + D/ 2 sends u to qf<m+1"zu if ttu=q?u.
Here ^ i=^ ( a<-a* ) and tt=q(ai'a^hi. Since 07 Wt1, A and 0,0^ act on M in locally
nilpotent way, S* is well-defined. Moreover expg(*)expg-i(— x)=l implies that
Si is invertible. There exists a unique automorphism Tt of Uq such that
Si(xv)=(Tlx}Siv for *e£/g and i;<=M. This automorphism Tl coincides with
the automorphism 7\ introduced by Lusztig [4] with a small modification. In
Proposition 1.4.1 we shall show that {Sl\ satisfies the braid relation. In Section 2,
we show Ker e'i=TlU~r\U~. (ef

t is defined in 2.1.) This is the key of this
paper. In Section 3, we shall give a relation of cystal base and the braid
group action. Let P be an element of T^Uq^Uq. We assume that P belongs
to L(oo) and Pmod^L(oo) belongs to B(oo). Using the fact that Ker ei=
TlU~r\U-) we show that TTP belongs to L(oo) and TxPmodqL(oo) belongs
to J5(oo). Thus fik^TlP belongs again to L(oo) and gives a crystal base at
0=0. In Section 4, we introduce PBW basis {/* ; k=(klf ••• , kN)(=Z£0}. Chos-
ing a reduced expression stl ••• siN of the longest element of the Weyl group
we define

^
By the consequence of Section 3 we show that /* forms a base of L(oo)

and {/* mod qL(oo}} = B(oo) when g is a finite-dimensional semisimple Lie
algebra (Main Theorem). This generalizes the result of Lusztig [7].

This paper could not be written without Professor M. Kashiwara's guidance.
The author would like to thank Professor M. Kashiwara.

§ 1. Braid Group Action on Integrable Modules

1.1. The operator 0

We follow the notations in [1, 2, 3]. For example, g is a symmetrizable
Kac-Moody Lie algebra, {ai}l<=1 is the set of simple roots, P is a weight lattice,
Uq is the corresponding quantized universal enveloping algebra generated by
eif fi, qh(h<=P*\ etc.

Let Uq(sl2}i be the subalgebra of Uq generated by eif ft, ti=q(ai'ai>hi.

Introduce the Q(<?)-algebra anti-automorphism * of Uq by

(1.1.1) *?=**, /?=/„ (?*)*=?-*.

We define the Q(#)-algebra homomorphism 0: Uq-*En.d(Uq) by

(1.1.2) 0

where
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Then we have

(1.1.3)

for x<=Uq.

Lemma 1.1.1. For i^-j

(1.1.4)

Proof. Let ,4 and 5 be the endomorphisms of £/Q defined by Ax = xfl and
Bx=fltlxt^1. Then we have

for x^Uq. The operators ^4 and 5 satisfy the commutation relation:

AB=q\BA.

By the (/-analogue of the binomial formula, we obtain

AkBn~k.

{/t})(/;)= 2 (-i)"-*^-"^)^*-*)/^-*)^-*/^;^*/^^
fe=o

= 23 ( — l)7*-*^71-*^-0^7^^/*1*"^/;/!^ •
*=° (?. £. D.

For n=l — a l j } the Serre relation implies

Along with 0(el)fJ=0, we conclude that f} is f/g(s/2)t-finite and it is a highest
weight vector. Here Uq is regarded as a Uq(sl^l- module through 0.

1.2. Definition of 5Z

Let V(l)(l^Zz0) be the irreducible L/"g(s/2)i-inodule of dimension /+!. Let
us take a highest weight vector u^ of F(/). Then we have

0 ttt{
l )=0,

(1.2.1)
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Let MiZ ) = /}*)i/{Z). Then we have

V(l)= © Q(q)up .
k=0

Next, we define the endomorphism Sz of the vector space V(t) by

(1.2.2) Slv=expfl7ifa7W71) expff7i(-/<)

for v^V(l), where

The operator q^^t+1^z sends M to qf(m+1>/zu for a vector u with tiU—qfu.
Since the action of gz and /* are nilpotent, this endomorphism is well defined.

For x^Uq and n^Q, we set

\n\t~ *[>]»! *'

Hence we have

\m] , for m^n^C
In _U

(1.2.3)

and
r*

(1.2.4)
Uh

0 , for

for n^

Ordinary, r^ is defined for m^O, n^O. But we will extend r" for
L ^ J t L ^ J i

n^O. We set

I m

J 's n
Then we have

["ml \n — 1 — ?
(1.2.6) =(-Dn

UJi L n

Proposition 1.2.1.

^-!••«••/ o^M^ —^ XJ ^j

/or an^ Q^k-^l.

The first step is the next lemma.
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Lemma 1.2.2. For integers s, k, I with 0^&, s^l, we have

where the sum ranges over non-negative integers a, b, c such that s—l

Proof. We recall the next formula

* ( y } ( x ) (xy
/I o ON v, r-»i;*-»J U I —JU.Z.Oj 2j ^ ^ 1 h I ~~ 1

U J U - n J U

for x, 3^^^5. Then, (1.2.5) and (1.2.8) imply

A _a plf a 1 fa+^1
(1.2.9) 2j ^ re I

L^JL^-^J L * J

By (1.2.6) and (1.2.9), we have

|7-fe+c-|p-

-c

Is — a
=(-!)*.

k

s — a
=(-!)*"

-^-1

s —a —^
and

Ls —a — ^ J L a

Therefore

s
\— Os,k>

b a
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Assume that s equals k. Since s=l— k + a — b+c, we have

=(l-2k)(c-a)-c(b-c)-\-b-a(a-b-\-c}-(k+l)(l-k))

which implies

__/ _ ^ \l- kq(l- k) (k +i)g

b a
We proved the lemma. Q. E. D.

We define the endomorphism sz of V(l) by

(1.2.10) sl= 2 (-l)&^(c-6)-a(a-6+C)+6e|a)/l6)^c)fra.
a , 6 , c

Lemma 1.2.3.

(1.2.11) stuil>=(-l)l-kqil-k"k^ullJk.

Proof. We get

(1.2.12)
l-k+c r/-

s.u(l)=-^/^bq(l-2k)(c-a)+c(c-b-)+b-a(a-b+c)

Indeed

[ 7 y ( D

b U«l '-

fe-c+61 -A+c-

a

[6 /2 ~T~ £ I I '
I

c JiL

— V Y 1 \bnU-2k)(c-a.)+c(c-o)+o-a(a-o+c) i i i I I I 7yi t ;

I i i M'/.—s

b

where s=l—k-\-c—b+a. By Lemma 1.2.2, we have

Q. E. D.

Proof of Proposition 1.2.1. It is enough to show that st equals Si. First,
we get

Then, we have
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( 0 f-"1^ (o f Y
c — VV _ 1 \bnc(c-b')-a(a-b + c)+b^2ac-2ab + a(a-i)-c(c-i') Ji^li_Z_ f (6) _l_l_ll_
l~^( }Ql [a]J fi M;! '

On the other hand, we have

c(c—b)—a(a—b+c)+b+2ac—2ab+a(a—l)—c(c—l)

_ g(g-l) fr(fr-l) c(c-l)

Therefore, we have

~-a (a - i ) / 2 n-b(b-l)/2

since k = s=l-k + a-b+c. Q.E.D.

We define the endomorphism S^ of F(/) by

(1.2.13) SlMf'^exp^iC-^M) expa7i(ej expg-i(-^/^^?^^+1^2 .

We can prove the next result similarly,

(i.2.i4) s;-4°=(-iy-*^-*)(*+l)w!^.
Therefore, Sl=S'l, and (1.2.13) is another expression of St.

Let M be an integrable f/g- module. M is a direct sum of irreducible Uq(slz)r
modules. So, we regard St as an endomorphism of M.

1.3. Definition of Tl

Let Int($, P) be the category of integrable /7g-modules, for an object M of
M(g, P) let f(M) be the underlying Q(<?)-vectorspace. Then W is the functor
from M(g, P) to the category of Q(^) vector spaces. Let R be the endomor-
phism ring. Then R contains Sz as well as Uq.

We define the algebra automorphism 7\ of R by

(1.3.1)

for

Proposition 1.3.1. We have

(1.3.2)

(1.3.3)

(L3.4)
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(1.3.5) ri(^)=gJ(-l)"a^~^?*>+*^*^X"°^"*) for

(1.3.6) Tf(/J)="s'(-l)-Bo-Vfl^-*/i-a^-*)/,/{*) /o
k=Q

In particular Uq is stable by Tx.

Proof. Let {u^} be as in 1.2. Then we have

and

Therefore 7\(et)=-M. Similarly, Tl(fl)=-rl
1el and Tl(tJ)=tJrl

a^. We shall
prove (1.3.6).

Lemma 1.3.2. Le£

Proo/. Since [?,e,it, /ji7
1]=0, we get

Therefore

By (1.1.3) and Lemma 1.1.1, ®&Q(q}®(f\k})(fj} is a (-fle,+l)-dimensional
irreducible U"g(s/2)l-submodule of Uq, and f} is a highest weight vector of weight
— alj. Therefore

(1.3.7) ^

Then, we have
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2 qt
l*+

71=0

Let

(1.3.8) s;=
By Lemma 1.3.2, we have

(1.3.9) Ad(S{)(/^71)=

On the other hand, we get

Therefore,

This and (1.3.9) imply (1.3.6).

Introduce the Q-algebra anti-automorphism CD by

(oel = fl

a)fl~el

(otl=rl
1

(DQ^q-1.

Applying a) to (1.3.6), we obtain (1.3.5). Q. E. D.

This proposition immediately imply the next corollary.

Corollary 1.3.3.
*7>-T;1.

1.4. The braid group action

Proposition 1.4.1. (Sl; /e/} satisfies the braid relations for the Weyl group
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W of 9.

Proof. In case of alj=ajl= — l, we have to prove

Oj.OjSt—SjSiSj .

This is equivalent to

SJ

By (1.3.2)-(1.3.6), we have

(1.4.1)

Therefore we get

The remaining cases are similarly proved by the corresponding identities
to (1.4.1) due to Lusztig [4]. Q. E. D.

This proposition immediately implies the following result.

Corollary 1.4.2 ([5]). [Tl ; z'e/} satisfies the braid relations.

§2. TtUjr\Ut=KeT e(

2.1. Proof of T^-n^-Ker e(

Let U~ be the subalgebla over Q(q) of Uq generated by /t.

Lemma 2.1.1 ([!]. For any P^Uq, there exist unique Q, R<=U~ such that

By this lemma, if we set e"(P)—Q and e'i(P}—R, then e( and &'{ are endomor-
phism of Uq. Moreover, we get

and
eif,=<llai>f,ei+

Here /^ acts on U~ by the left multiplication.
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The aim of this section is to prove the following result.

Proposition 2.1.2.

(2.1.1) Tl(f/

The first step is the next lemma.

Lemma 2.1.3.

(2.1.2) /*(£/«

Proof. Let u^fi(U-)r\Tl(U~). Then T~lu^U-. On the other hand,
choosing x^Uq such that u=fzx, we have

T-lu = -eltlT-1x.

Since elUq!~\U-=Q, we obtain u=Q. Q.E.D.

Lemma 2.1.4. For z £/

(2.1.3) fjnn}=^
Proof. By the definition of 0 we have

Therefore we have

(2.1.4) ^(/iB))(/J)/i

We shall show this formula by induction on n,

1
[n + 1], k=

Q. E. D.

Corollary 2.1.5.

(2.1.5) Uj=ft(l
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where M is the Q(q)-subalgebra of U^ generated by 0(/<re))(/,-) for z=£/ and

Lemma 2.1.6. For

(2.1.6) T

Proof. We shall show this formula by induction on n,

1
[n + 1], '^Ul

1

1
[n+1],

1
[n+1],

1
[n+1],'

Corollary 2.1.7. For /-£/,

(2.1.7) W

Proof. UQ is stable under *. Lemma 2.1.6 immediately implies this
corollary. Q. E. D.

Lemma 2.1.8. For i±j

(2.1.8) e{0(/i

Proof. First we have

^/{
Then, we have

Therefore
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It is easy to show that the second term is 0. Q. E. D.

Lemma 2.1.9.

(2.1.9) M=Kere-.

Proof. By Lemma 2.1.8, we have

(2.1.10) McKergJ.

We recall the result in [1],

(2.1.11) ^=Kerg{®/i(£/^).

Then this lemma follows from Corollary 2.1.5. Q.E.D.

Proof of Proposition 2.1.2. By Lemmas 2.1.6 and 2.1.9, we have

(2.1.12) Kere{cT1(C7g)n^.

Then this proposition follows from Lemma 2.1.3, (2.1.10) and (2.1.12).
Q. E. D.

§3. Crystals

3.1. Definition of crystal

Definition 3.1.1. A crystal B is a set with

(3.1.1) maps wt: B-+P, sl: B-^Zu{-°°} and <p%\ B—Zu{-°o},

(3.1.2) e%: B — > B \ J { Q } , /< : B —

They are subject to the following axioms :

(Cl) p,(«=e<(«+<Aif wt(b».

(C2) If b<=B and etb^B then,

wt(Sib)=wt(b)+alf sl(elb)=el(b)-l and y>t(^W=^(

(C20 // b^B and ftb*=B, then

wt(fib)=wt(b)-at, e»(/l6)=et(6)+l and 9l(/i&)=^(6)-l.

(C3) For b, b'^B and i^I, b'=e,b if and only if b=?lb' .

(C4) For b^B, if ^(W=-oo, then elb=flb=Q.
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For two crystals Bl and Bz, a morphism <p from B± to Bz is a map Bl

that satisfies the following conditions:

(3.1.3) // b^B1 and </>(b^B2, then wt(<p(b))=wt(b\ et

(3.1.4) For fcetfj, u;e /ZG^ <p(elb)^e^(b} provided $(b) and

(3.1.5) For fcetfj, w;e /zayg <p(f J))= ? ̂ b) provided <f>(b) and

A morphism 0: B1—B2 is called sfnVtf, if it commutes with all e% and /,.

A morphism <p\ Bl-^Bz is called an embedding, if 0 induces an injective
map ^UjO}— £2U{0}.

For two crystals #1 and 52, we define its tensor product B^Bz as follows :

i and

Here ^(6)=</z,, wt(b)y. The action of et and /t are defined by

b&fibt if (pi(b1)^el(b2).

Example 3.1.2. For fe/, J3Z is the crystal defined as follows

)= — n

for

We define the action of £2 and /^ by

for 2
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We write bt for ̂ (0).

Example 3.1.3. For /leP+, B(X) is the crystal associated with the crystal
base of the simple module with highest weight L The unique element of B(l')
of weight X is denoted by u^.

Example 3.1.4. B(oo) is the crystal associated with the crystal base of U~.
We set £i(6)=max{6^0; e\b-±§], <pt(b)=et(b)+(ht, wt(by>. The unique element
of J3(oo) of weight 0 is denoted by u^.

3.2. Some results

Theorem 3.2. ([3]).

(3.2.1) 5(oo)*=JB(oo).

We define the operators £*, f* of U~ by

(3.2.2) £?=*£»*, and /*=*/f*.

Theorem 3.2.2 ([3]). 1. For an^ 2, there exists a unique strict embedding
of crystals

that sends u^ to u00(g)bl.

2. // Wl(b)—b'®f7tbl(nl^ty, then el(b*}=-n, sl(0
/*)=0 and

(3.2.3)
0 if n=Q

(3.2.4)

3. Im ¥i={b^f^bl: b<=B(°°), el(b^)=Q, n^O}.

3.3. Action on L(X)

Lemma 3.3.1 ([3]). For

t ,
(3.3.1) /ia)G(6)= G(/?6) mod /

^
(3.3.2) G(b)f^= G(ffab) mod t/^/?+1.

a \i

Let /leP+, and let FU) be the irreducible Uq- module generated by the
highest weight vector u^ of highest weight L For w^W, let us denote by
uwi the global base of weight wL Then we have



224 YOSHIHISA SAITO

(3.3.3) uwi = ux if w = l.

If w=Siiv'>w', then we have

(3.3.4) uwi = flc)uw,i where c=<hl,

Lemma 3.3.2. For

(3.3.5)

Proof. Note that fluw*=Q and frcuW'i=Q. By Lemma 3.3.1,

If Si(&*)=0, it is obvious. If £j(6*)^0, then we have

(3.3.6)

and

since G(b}^U-fy>^ and e^C/f ft)*)=e<(^*)+c. Q. £. D.

Corollary 3.3.3. Let Z^P+, PeL(oo) and b^B(oo) such that b=P modqL(°°).
Then we have

(3.3.7) PuH,

Proposition 3.3.4.

(3.3.8)

and

( erG(f*<h*'*>b)ui if
(3.3.9) T t(P)M,=]

I 0 t/

where m=ei(f
:f<hi'*>b).

Proof. We recall (1.2.4)

So, L(^) and L(Z)/qL(X) are stable by Sif and for



(3.3.10) Slb=
0 if

In particular,

f ^GC/f**-^)^ if
(3.3.11) 5,/X^

I 0 if

On the other hand, by (3.3.10)
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if q>t(b)=Q

Therefore, we have (3.3.8) and (3.3.9). Q. £. D.

3.4. Action on L(oo)

Let b<=B(™) and ^eP+.

Lemma 3.4.1. G(b)ui--£Q if and only if si(^*)^</zi, ^> for any i.

Proof.

and

So, we have

Lemma 3.4.2. ([2]).

(3.4.1) *,(?W<*,(b) for 14-j.

Now, let us assume that </i t, >^> is sufficiently large for any i.

Lemma 3.4.3. // si(ft*)=0, then

© Q(q}G(b}.

Proof. By Lemma 3.4.1, G(f*<hi- *>b)u * ^ 0 if and only if ej(/f *<-
zy, /i> for any ;, where we set ef(b)=el(b*) for b^B(oo). If ^=y, then

If £--£/, then
s^/f^-

since ^>0. Q. E. Z).

Let & be an element of J3(oo) and let us assume that P=G(b} belongs to
- l - -T-t

lu-r\u-.
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Lemma 3,4.4.

(3.4.2) G(/ffc*-^)M^O.

Proof. Since T~1=*Tl* and U~ is stable under *

Then we have eJP*=0, and therefore giP*=0. This implies

(3.4.3) 6?(fc)=0.

By Lemma 3.4.3, we have (3.4.2). Q. E. D.

Lemma 3.4.5.

(3.4.4)

(3.4.5)

Since s?(6)=0, W^b^b®^ and W^f^'^b^

=max{e<(6),

Pros/. By Proposition 3.3.4, it is enough to show that ^(/f^'^-K/Zi, X>
=0. We have

Therefore we have

(3.4.6) etC/f**- »b)=<hi, I- wt(b)y .

Since </z^ ^> is sufficently large, it equals </z t , A—wt(b)y. Therefore <pt(f%<hi'

Lemma 3.4.6.

(3.4.7)

Proof. By Theorem 3.2.2

where n=e*(b)=—(pi(f
7-bi). We have
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Therefore we have

Q. E. D.

Proposition 3.4.7.

(3.4.8) TYPeL(oo).

(3.4.9) TlPz=f*mb>e\^

Proof. By Lemma 3.4.6, we have

(3.4.10) <Pt(W=^W

By (3.4.3), (3.4.6) and (3.4.10), we have

On the other hand, by Theorem 3.2.2 we have

Since Wz is an embedding, we have

(3.4.11) er/f **• ^

Therefore we obtain

(3.4.12) Tl(P}u,

For /l>0, Proposition 3.3.4 and (3.4.12) imply this proposition. Q.E.D.

Corollary 3.4.8. Let us define the map Al: {6e£(oo); £f(6)=0}
el(b}=0} by b^f*^(b}e¥(b'b. Then Az is bijective and A^(b)=ffi^8*e*^b.

Proof. Let 6e{6eB(oo); e*(6)=:0}, &'=/*<>*< 6 ) e;<< 6 >&. By Proposition 3.4.7

£^0=0. We have

(3.4.13) e*(6/)=p*(W.

Indeed we have W l(b'}=el^b®f^bl. Theorem 3.2.2 implies (3.4.13). We get
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By Theorem 3.2.2 and (3.4.13), we have

Therefore we obtain

ef t < 6 ' > & ' = e { t < 6 > & .
Hence, we have

/fi«6f>g*8 i (6 f^ /=/5*«6^{»«6>fe=ft.

Let &e (&EE£(OO); et(b)=Q} and &'=/f*< 6 >eft< 6 >&. We have the following
formulas similarly

(3.4.14)

(3.4.15)

The corollary is proved. Q. E. D.

§ 4. Main Theorem

4.1. Proof of Main Theorem

In this section, we assume that g is a finite-dimensional semisimple Lie
algebra.

Proposition 4.1.1 [4]. (1) Let w^W and let sll ••• slk be a reduced expres-
sion of w. Then the automorphism Tw — Tll ••• Tlk of Uq is independent of the
choice of the reduced expression of w.

(2) // wa^R+, then Tw

Fix a reduced expression sll ••• slN of the longest element of W, This gives
us an ordering of the set of all positive roots R+

(4.1.1) Pi=allt p2=sllalz, ••• , PN=SII ••• slN_1aiN.

We define

(4.1-2) /fl»=rM - T.^AJ

and

(4.1.3) /*=/fc}/ft'} - /j#} where k=(klt ••• , kN)

Theorem 4.1.2 (Main Theorem)-

(i) /*eL(oo) for any k=(kl9 - , kN

(i i) {/* mod^L(oo); k^ZSQ}=B(oo),

Proof. Let Pe L(oo) such that T1P e U~. Then we have e'ffiP = 0=
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Therefore

(4.1.4) f^TlP=fn
lTlP.

Hence we obtain

(4.1.5) / i»>7\P€EL(oo)

and

(4.1.6) fin>TlP=fn
lf*

<^(b)e£
li

(l)>b mod<?L(oo) if p = b mod<?L(co).

By (4.1.5), we have /*eL(oo) immediately.

By Proposition 3.4.7, we have fk mod#L(oo)e£(oo) for any k. So, there
exist the cannonical map K : { f k } - » B ( o o ) by fk^fk mod^L(oo). We write bk

for fk mod gL(co).
The first step is the next lemma.

Lemma 4.1.3. n is injective.

Proof. Let 6(1, = Tll/{J») ••• TlN_JfN^ mod ?L(oo)eE£(oo). Then we have

&*=/{}&ci)
and

TiJVg* - Tl^1/J*/>eTll(^)n£7^=Kerg;_1.

Therefore we have e^b^—Q. Hence we obtain kl=sll(b
k). This implies

fr(i)=«!i(6*}ft*.

By Corollary 3.4.8, we have

fi^Ti* •- TlN_JW = A3(bM

Let 6(2)=e ff5i ( J»i1(6(1) )Mr1
1(fti)- Then similarly we have

sliWr1
1(W)=*2,

^^T^/^.-T^/^,
and

Repeating this, k=(kit ••• , &AT) is uniquly determined by bk.
Now we define a map £* —> fp(bk>. It is trivial that this map is K~

Therefore TT is injective. Q. E. D.

Let 0_=

(4-1.7)

For fe(?_, we set
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Hence we have B$c*B(oo)$. By (4.1.7), we obtain

On the other hand, the PBW theorem for finite-dimensional semisimple Lie
algebra implies

Therefore
5f-B(oo)e.

Hence we obtain (ii). Q.E.D.

4.2. Examples

Example 4.2.1.

9=^2, /={!, 2}, alj=ajl = -l,

In this case, F121 : 5(oo) c, u^B^B^B,. We shall calculate
First we have

where /{*B)=
and

<pz(b)=k3, ea(«=0.

Therefore we have

Since p2(tt«»(8)/i8fci)=&3 and £z(fi
Bb2)=ks, we have

f i ( 6 f ) f t , where b /=

Since <pi(b')=(p1(u<»(g)f^b1$)fl*+k*b2)=k2 and e1(fr /)=*s we have
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Therefore we obtain

Therefore we have

By [3], we know

We shall calculate (um®f^bl®f^*k3bz®fllbi)*- First we have

And we have

Example 4.2.2.

S=B2, /={!, 2},

j8i=«i, /32=2a1+a2,

We can calculate similarly,
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^ fei^
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