PBW Basis of Quantized Universal Enveloping Algebras

By

Yoshihisa Saito*

§ 0. Introduction

In [4], Lusztig constructed PBW bases of U_q^+ . Then, he introduced the canonical base of U_q^+ [6] in case of A, D, E type. His results can be reformulated in case of U_q^- as follows.

Let L be the sub $\mathbf{Z}[q]$ -module of U_q^- generated by a PBW basis of U_q^- . This submodule is independent of the choice of the PBW basis. Let $\pi'\colon L\to L/qL$ be the canonical projection. Then the image B of the PBW basis is a \mathbf{Z} -basis of L/qL and it is independent of the choice of the PBW bases. Let $-\colon U_q\to U_q$ be the \mathbf{Q} -algebra involution defined by $e_i\mapsto e_i,\ f_i\mapsto f_i,\ q^h\mapsto q^{-h},\ q\mapsto q^{-1}$. Then π' induces a \mathbf{Z} -module isomorphism $\pi''\colon L\cap \bar L\to L/qL,\ \mathbf{B}=(\pi'')^{-1}(B)$ is a \mathbf{Z} -basis of $L\cap \bar L$ and $\mathbf{Z}[q]$ -basis of L. Moreover each element of \mathbf{B} is fixed by -. \mathbf{B} is called the canonical base of U_q^- .

On the other hand, in [1] Kashiwara constructed the global crystal base of U_q^- . Let $(L(\infty), B(\infty))$ be the crystal base of U_q^- and let U_q^- be the sub- $\mathbf{Q}[q, q^{-1}]$ -algebra of U_q^- generated by $f_i^{(n)}$. Then $U_q^- \cap L(\infty) \cap L(\infty)^- \to L(\infty)/qL(\infty)$ is an isomorphism. Let G be the inverse of this isomorphism. Then $G(B(\infty))$ is a base of U_q^- and called the global crystal base of U_q^- .

In [7], Lusztig showed $\mathbf{B} = G(B(\infty))$ in the simply laced case.

In this paper, we show that the monomials of the root vectors form a base of U_q^- and they give a crystal base at q=0, when g is an arbitrary finite dimensional semisimple Lie algebra.

In Section 1, we define the braid group action on the integrable U_q -module. Let M be an integrable U_q -module. Then we shall define the automorphism S_i of M as follows:

$$S_i v \! = \! \exp_{q_i^{-1}}(q_i^{-1}e_it_i^{-1}) \exp_{q_i^{-1}}(-f_i) \exp_{q_i^{-1}}(q_ie_it_i)q_i^{h_i(h_i+1)/2}v \qquad \text{for} \quad v \! \in \! M.$$

Communicated by M. Kashiwara, April 1, 1993.

¹⁹⁹¹ Math. Subject Classification: 17B37, 81R50.

^{*} Department of Mathematical Sciences, University of Tokyo, Hongo, Tokyo, 113, Japan.

Here $\exp_q(x)$ denotes the q-analogue of the exponential function $\sum_{k=0}^{\infty} (q^{k(k-1)/2}/[k]!)x^k$. The operator $q_i^{h_i(h_i+1)/2}$ sends u to $q_i^{m(m+1)/2}u$ if $t_i u = q_i^m u$. Here $q_i = q^{(\alpha_i, \alpha_i)}$ and $t_i = q^{(\alpha_i, \alpha_i)h_i}$. Since $q_i^{-1}e_it_i^{-1}$, f_i and $q_ie_it_i$ act on M in locally nilpotent way, S_i is well-defined. Moreover $\exp_q(x) \exp_{q-1}(-x) = 1$ implies that S_i is invertible. There exists a unique automorphism T_i of U_q such that $S_i(xv) = (T_i x) S_i v$ for $x \in U_q$ and $v \in M$. This automorphism T_i coincides with the automorphism T_i introduced by Lusztig [4] with a small modification. In Proposition 1.4.1 we shall show that $\{S_i\}$ satisfies the braid relation. In Section 2, we show Ker $e'_i = T_i U_q^- \cap U_q^-$. (e'_i) is defined in 2.1.) This is the key of this paper. In Section 3, we shall give a relation of cystal base and the braid group action. Let P be an element of $T_i^{-1}U_q^- \cap U_q^-$. We assume that P belongs to $L(\infty)$ and $P \mod q L(\infty)$ belongs to $B(\infty)$. Using the fact that Ker e'_i = $T_{\imath}U_q^- \cap U_q^-$, we show that $T_{\imath}P$ belongs to $L(\infty)$ and $T_{\imath}P \mod qL(\infty)$ belongs to $B(\infty)$. Thus $f_i^{(k)}T_iP$ belongs again to $L(\infty)$ and gives a crystal base at q=0. In Section 4, we introduce PBW basis $\{f^k; k=(k_1, \dots, k_N) \in \mathbb{Z}_{\geq 0}^N\}$. Chosing a reduced expression $s_{i_1} \cdots s_{i_N}$ of the longest element of the Weyl group we define

$$f^{\mathbf{k}} \! = \! f_{i_1}^{(k_1)} T_{i_1} \! (f_{i_2}^{(k_2)} T_{i_2} \! (\cdots f_{i_{N-1}}^{(k_{N-1})} T_{i_{N-1}} f_{i_N}^{(k_N)}) \cdots) \, .$$

By the consequence of Section 3 we show that f^k forms a base of $L(\infty)$ and $\{f^k \mod qL(\infty)\} = B(\infty)$ when g is a finite-dimensional semisimple Lie algebra (Main Theorem). This generalizes the result of Lusztig [7].

This paper could not be written without Professor M. Kashiwara's guidance. The author would like to thank Professor M. Kashiwara.

§ 1. Braid Group Action on Integrable Modules

1.1. The operator Φ

We follow the notations in [1, 2, 3]. For example, g is a symmetrizable Kac-Moody Lie algebra, $\{\alpha_i\}_{i\in I}$ is the set of simple roots, P is a weight lattice, U_q is the corresponding quantized universal enveloping algebra generated by e_i , f_i , $q^h(h \in P^*)$, etc.

Let $U_q(sl_2)_i$ be the subalgebra of U_q generated by e_i , f_i , $t_i = q^{(\alpha_i, \alpha_i)h_i}$.

Introduce the Q(q)-algebra anti-automorphism * of U_q by

$$(1.1.1) e_i^* = e_i, f_i^* = f_i, (q^h)^* = q^{-h}.$$

We define the $\mathbf{Q}(q)$ -algebra homomorphism $\Phi: U_{\sigma} \to \operatorname{End}(U_{\sigma})$ by

(1.1.2)
$$\Phi(x)(y) = \sum (S(x_{(2)}))^* y x_{(1)}^*$$

where

$$\Delta(x) = \sum x_{(1)} \otimes x_{(2)}$$
.

Then we have

(1.1.3)
$$\Phi(e_{i})(x) = t_{i}^{-1}[x, e_{i}]$$

$$\Phi(f_{i})(x) = x f_{i} - f_{i} t_{i} x t_{i}^{-1}$$

$$\Phi(t_{i})(x) = t_{i} x t_{i}^{-1}$$

for $x \in U_q$.

Lemma 1.1.1. For $i \neq j$

$$(1.1.4) \Phi(f_i^{(n)})(f_j) = \sum_{k=0}^n (-1)^{n-k} q_i^{(n-k)(-a_{ij}-n+1)} f_i^{(n-k)} f_j f_i^{(k)}.$$

Proof. Let A and B be the endomorphisms of U_q defined by $Ax = xf_i$ and $Bx = f_i t_i x t_i^{-1}$. Then we have

$$\Phi(f_n)(x) = Ax - Bx$$

for $x \in U_q$. The operators A and B satisfy the commutation relation:

$$AB=q_i^2BA$$
.

By the q-analogue of the binomial formula, we obtain

$$\begin{split} \varPhi(f_i^n) &= (A - B)^n \\ &= \sum_{k=0}^n (-1)^{n-k} q_i^{-k (n-k)} \begin{bmatrix} n \\ k \end{bmatrix}_i A^k B^{n-k} . \\ \varPhi(f_i^{(n)})(f_j) &= \sum_{k=0}^n (-1)^{n-k} q_i^{(-n+1)(n-k)} f_i^{(n-k)} t_i^{n-k} f_j t_i^{-n+k} f_i^{(k)} \\ &= \sum_{k=0}^n (-1)^{n-k} q_i^{(n-k)(-a_{ij}-n+1)} f_i^{(n-k)} f_j f_i^{(k)} . \end{split}$$

$$Q. E. D.$$

For $n=1-a_{ij}$, the Serre relation implies

$$\varPhi(f_i^{(1-a_{ij})})(f_j) = \sum_{k=0}^{-a_{ij}+1} (-1)^{-a_{ij}+1-k} f_i^{(-a_{ij}+1-k)} f_j f_i^{(k)} = 0.$$

Along with $\Phi(e_i)f_j=0$, we conclude that f_j is $U_q(sl_2)_i$ -finite and it is a highest weight vector. Here U_q is regarded as a $U_q(sl_2)_i$ -module through Φ .

1.2. Definition of S_1

Let V(l) $(l \in \mathbb{Z}_{\geq 0})$ be the irreducible $U_q(sl_2)_t$ -module of dimension l+1. Let us take a highest weight vector $u_0^{(l)}$ of V(l). Then we have

(1.2.1)
$$e_{i}u_{0}^{(l)} = 0,$$

$$t_{i}u_{0}^{(l)} = q_{i}^{l}u_{0}^{(l)}.$$

Let $u_k^{(l)} = f_i^{(k)} u_0^{(l)}$. Then we have

$$V(l) = \bigoplus_{k=0}^{l} \mathbf{Q}(q) u_k^{(l)}$$
.

Next, we define the endomorphism S_i of the vector space V(l) by

$$(1.2.2) \hspace{1cm} S_{\imath}v \!=\! \exp_{q_{\,\overline{\imath}}^{-1}}\!(q_{\,\imath}^{-1}e_{\imath}t_{\,\imath}^{-1}) \exp_{q_{\,\overline{\imath}}^{-1}}\!(-f_{\,\imath}) \exp_{q_{\,\overline{\imath}}^{-1}}\!(q_{\,\imath}e_{\imath}t_{\,\imath}) q_{\,\imath}^{\;h_{\,\imath}(\,h_{\,\imath}\,+\,1)\,/\,2}v$$

for $v \in V(l)$, where

$$\exp_q(X) = \sum_{k=0}^{\infty} \frac{q^{k(k-1)/2}}{\lceil k \rceil!} X^k.$$

The operator $q_i^{h_i(h_i+1)/2}$ sends u to $q_i^{m(m+1)/2}u$ for a vector u with $t_iu=q_i^mu$. Since the action of e_i and f_i are nilpotent, this endomorphism is well defined.

For $x \in U_q$ and $n \ge 0$, we set

$$x_{i} = \frac{x - x^{-1}}{q_{i} - q_{i}^{-1}}$$

$$\begin{cases} x \\ n \end{cases}_{i} = \frac{\prod_{k=1}^{n} (q_{i}^{1-k} x)_{i}}{\lceil n \rceil, !}.$$

Hence we have

$$(1.2.3) \qquad \begin{cases} q_i^m \\ n \end{cases}_i = \begin{cases} \begin{bmatrix} m \\ n \end{bmatrix}_i, & \text{for } m \ge n \ge 0 \\ 0, & \text{for } n > m \ge 0 \\ (-1)^n \begin{bmatrix} n-1-m \\ n \end{bmatrix}_i, & \text{for } n \ge 0 > m \end{cases}$$

and

(1.2.4)
$${x \brace n}_i = (-1)^n {q_i^{n-1} x^{-1} \brace n}_i.$$

Ordinary, $\begin{bmatrix} m \\ n \end{bmatrix}_i$ is defined for $m \ge 0$, $n \ge 0$. But we will extend $\begin{bmatrix} m \\ n \end{bmatrix}_i$ for $m \in \mathbb{Z}$, $n \ge 0$. We set

Then we have

$$\begin{bmatrix} m \\ n \end{bmatrix}_i = (-1)^n \begin{bmatrix} n-1-m \\ n \end{bmatrix}_i.$$

Proposition 1.2.1.

$$(1.2.7) S_i u_k^{(l)} = (-1)^{l-k} q_i^{(l-k)(k+1)} u_{l-k}^{(l)}$$

for any $0 \le k \le l$.

The first step is the next lemma.

Lemma 1.2.2. For integers s, k, l with $0 \le k$, $s \le l$, we have

$$\begin{split} & \sum (-1)^b q^{(l-2k)(c-a)-c(b-c)+b-a(a-b+c)} \begin{bmatrix} l-k+c \\ c \end{bmatrix} \begin{bmatrix} l-s+a \\ b \end{bmatrix} \begin{bmatrix} s \\ a \end{bmatrix} \\ & = (-1)^{l-k} q^{(l-k)(k+1)} \delta_{k,s} \end{split}$$

where the sum ranges over non-negative integers a, b, c such that s=l-k+a-b+c.

Proof. We recall the next formula

(1.2.8)
$$\sum_{n=0}^{k} x^{-n} y^{k-n} \begin{Bmatrix} y \\ n \end{Bmatrix} \begin{Bmatrix} x \\ k-n \end{Bmatrix} = \begin{Bmatrix} xy \\ k \end{Bmatrix}$$

for x, $y \in U_q$. Then, (1.2.5) and (1.2.8) imply

$$(1.2.9) \qquad \qquad \sum_{n=0}^{k} q^{-a \, n + b \, (k-n)} \begin{bmatrix} b \\ n \end{bmatrix} \begin{bmatrix} a \\ k-n \end{bmatrix} = \begin{bmatrix} a+b \\ k \end{bmatrix}.$$

By (1.2.6) and (1.2.9), we have

$$\sum (-1)^{c} q^{-c(l-s+a)+(k-c)(-l+k-1)} \begin{bmatrix} l-k+c \\ c \end{bmatrix} \begin{bmatrix} l-s+a \\ k-c \end{bmatrix}$$

$$= \sum q^{-c(l-s+a)+(k-c)(-l+k-1)} \begin{bmatrix} -l+k-1 \\ c \end{bmatrix} \begin{bmatrix} l-s+a \\ k-c \end{bmatrix}$$

$$= \begin{bmatrix} k+a-s-1 \\ k \end{bmatrix}$$

$$= (-1)^{k} \begin{bmatrix} s-a \\ k \end{bmatrix}$$

$$= (-1)^{k} \begin{bmatrix} s-a \\ s-a-k \end{bmatrix}$$

$$= (-1)^{s-a} \begin{bmatrix} -k-1 \\ s-a-k \end{bmatrix}$$

and

$$\sum q^{s(s-a-k)+a(k+1)} \begin{bmatrix} -k-1 \\ s-a-k \end{bmatrix} \begin{bmatrix} s \\ a \end{bmatrix} = \begin{bmatrix} s-k-1 \\ s-k \end{bmatrix}$$
$$= \delta_{s,k}.$$

Therefore

$$\sum (-1)^{c+s-a} q^{-c(l-s+a)+(k-c)(-l+k-1)+s(s-a-k)+a(k+1)} \begin{bmatrix} l-k+c \\ c \end{bmatrix} \begin{bmatrix} l-s+a \\ b \end{bmatrix} \begin{bmatrix} s \\ a \end{bmatrix} = \delta_{s,k}.$$

Assume that s equals k. Since s=l-k+a-b+c, we have

$$-c(l-s+a)+(k-c)(-l+k-1)+s(s-a-k)+a(k+1)$$

$$=(l-2k)(c-a)-c(b-c)+b-a(a-b+c)-(k+1)(l-k),$$

which implies

We define the endomorphism s_i of V(l) by

$$(1.2.10) s_i = \sum_{a,b,c} (-1)^b q_i^{c(c-b)-a} (a^{-b+c})^{+b} e_i^{(a)} f_i^{(b)} e_i^{(c)} t_i^{c-a}.$$

Lemma 1.2.3.

$$(1.2.11) s_i u_k^{(l)} = (-1)^{l-k} q_i^{(l-k)(k+1)} u_{l-k}^{(l)}.$$

Proof. We get

(1.2.12)

$$s_{i}u_{k}^{(l)} = \sum_{i}(-1)^{b}q_{i}^{(l-2k)(c-a)+c(c-b)+b-a(a-b+c)}\begin{bmatrix} l-k+c\\c\\c\end{bmatrix} \begin{bmatrix} l-s+a\\b\\d\end{bmatrix} \begin{bmatrix} s\\a\\d\end{bmatrix}_{i}u_{l-s}^{(l)}.$$

Indeed

$$\begin{split} s_{i}u_{k}^{(l)} &= \sum (-1)^{b}q_{i}^{c(c-b)-a(a-b+c)+b}e_{i}^{(a)}f_{i}^{(b)}e_{i}^{(c)}(q_{i}^{(l-2k)(c-a)})u_{k}^{(i)} \\ &= \sum (-1)^{b}q_{i}^{(l-2k)(c-a)+c(c-b)+b-a(a-b+c)} \\ & \begin{bmatrix} l-k+c \\ c \end{bmatrix}_{i} \begin{bmatrix} k-c+b \\ b \end{bmatrix}_{i} \begin{bmatrix} l-k+c-b+a \\ a \end{bmatrix}_{i} u_{k-a+b-c}^{(l)} \\ &= \sum (-1)^{b}q_{i}^{(l-2k)(c-a)+c(c-b)+b-a(a-b+c)} \begin{bmatrix} l-k+c \\ c \end{bmatrix}_{i} \begin{bmatrix} l-s+a \\ b \end{bmatrix}_{i} \begin{bmatrix} s \\ a \end{bmatrix}_{i} u_{l-s}^{(l)} \end{split}$$

where s=l-k+c-b+a. By Lemma 1.2.2, we have

$$s_i u_k^{(l)} = (-1)^{l-k} q_i^{(l-k)(k+1)} u_{l-k}^{(l)}.$$

Q. E. D.

Proof of Proposition 1.2.1. It is enough to show that s_i equals S_i . First, we get

$$e_i^{(a)} f_i^{(b)} e_i^{(c)} t_i^{c-a} = q_i^{2ac-2ab+a(a-1)-c(c-1)} \frac{(e_i t_i^{-1})^a}{[a]_i!} f_i^{(b)} \frac{(e_i t_i)^c}{[c]_i!}.$$

Then, we have

$$s_i \! = \! \sum (-1)^b q_i^{c(c-b)-a \, (a-b+c)+b+2a \, c-2ab+a \, (a-1)-c \, (c-1)} \frac{(e_i t_i^{-1})^a}{ \left \lfloor a \right \rfloor_i \, !} f_i^{(b)} \frac{(e_i t_i)^c}{ \left \lfloor c \right \rfloor_i \, !}.$$

On the other hand, we have

$$\begin{split} &c(c-b)-a(a-b+c)+b+2ac-2ab+a(a-1)-c(c-1)\\ &=-\frac{a(a-1)}{2}-a-\frac{b(b-1)}{2}-\frac{c(c-1)}{2}+c+\frac{(-a+b-c)(-a+b-c+1)}{2}. \end{split}$$

Therefore, we have

$$s_{\iota}u_{k}^{(l)} = \sum_{a.b.c} \frac{q_{\iota}^{-a \cdot (a-1)/2}}{\lfloor a \rfloor_{\iota}!} (q_{\iota}^{-1}e_{\iota}t_{\iota}^{-1})^{a} \frac{q_{\iota}^{-b(b-1)/2}}{\lfloor b \rfloor_{\iota}!} f_{\iota}^{b} \frac{q_{\iota}^{-c \cdot (c-1)/2}}{\lfloor c \rfloor_{\iota}!} (q_{\iota}e_{\iota}t_{\iota})^{c} q_{\iota}^{(-a+b-c) \cdot (-a+b-c+1)/2} u_{k}^{(l)}$$

$$= S_{\iota}u_{k}^{(l)},$$

since
$$k=s=l-k+a-b+c$$
.

Q. E. D.

We define the endomorphism S'_i of V(l) by

$$(1.2.13) S_i' u_k^{(l)} = \exp_{q_i^{-1}}(-q_i^{-1}f_i t_i) \exp_{q_i^{-1}}(e_i) \exp_{q_i^{-1}}(-q_i f_i t_i^{-1}) q_i^{h_i(h_i+1)/2}.$$

We can prove the next result similarly,

$$(1.2.14) S_i' u_k^{(l)} = (-1)^{l-k} q_i^{(l-k)(k+1)} u_{l-k}^{(l)}.$$

Therefore, $S_i = S_i'$, and (1.2.13) is another expression of S_i .

Let M be an integrable U_q -module. M is a direct sum of irreducible $U_q(sl_2)_i$ -modules. So, we regard S_i as an endomorphism of M.

1.3. Definition of T_i

Let $Int(\mathfrak{g}, P)$ be the category of integrable U_q -modules, for an object M of $Int(\mathfrak{g}, P)$ let $\Psi(M)$ be the underlying Q(q)-vectorspace. Then Ψ is the functor from $Int(\mathfrak{g}, P)$ to the category of Q(q) vector spaces. Let R be the endomorphism ring. Then R contains S_i as well as U_q .

We define the algebra automorphism T_i of R by

$$(1.3.1) T_i x = \operatorname{Ad}S_i(x)$$

for $x \in U_q$.

Proposition 1.3.1. We have

$$(1.3.2) T_i(e_i) = -f_i t_i$$

$$(1.3.3) T_i(f_i) = -t_i^{-1}e_i$$

$$(1.3.4) T_{i}(t_{i}) = t_{i}t_{i}^{-a}i_{j}$$

$$(1.3.5) T_{i}(e_{j}) = \sum_{k=0}^{-a_{ij}} (-1)^{-a_{ij}-k} q_{i}^{a_{ij}+k} e_{i}^{(k)} e_{j} e_{i}^{(-a_{ij}-k)} for i \neq j$$

$$(1.3.6) T_{i}(f_{j}) = \sum_{k=0}^{-a_{ij}} (-1)^{-a_{ij}-k} q_{i}^{-a_{ij}-k} f_{i}^{(-a_{ij}-k)} f_{j} f_{i}^{(k)} for i \neq j.$$

In particular U_q is stable by T_i .

Proof. Let $\{u_k^{(l)}\}$ be as in 1.2. Then we have

$$S_{i}e_{i}u_{k}^{(1)} = S_{i}e_{i}S_{i}^{-1}S_{i}u_{k}^{(1)}$$

$$= T_{i}(e_{i})(-1)^{l-k}q_{i}^{(l-k)(k+1)}u_{l-k}^{(l)}$$

and

$$\begin{split} S_i e_i u_k^{(l)} = & [l-k+1]_i S_i u_{k-1}^{(l)} \\ = & [l-k+1]_i (-1)^{l-k+1} q_i^{k(l-k+1)} u_{l-k+1}^{(l)}. \end{split}$$

Therefore $T_i(e_i) = -f_i t_i$. Similarly, $T_i(f_i) = -t_i^{-1} e_i$ and $T_i(t_j) = t_j t_i^{-a_{ij}}$. We shall prove (1.3.6).

Lemma 1.3.2. Let

$$S_i'' = \exp_{q_i^{-1}}(-f_i) \exp_{q_i^{-1}}(q_i e_i t_i).$$

Then we have

$$\mathrm{Ad}(S_{i}'')(f_{j}t_{j}^{-1}) = q_{i}^{-a_{ij}(a_{ij}-1)/2} \, \mathrm{Ad}(\exp_{q_{i}}(-q_{i}^{-1}e_{i}t_{i}^{-1}))(\varPhi(f_{i}^{(-a_{ij})})(f_{j})t_{j}^{-1}).$$

Proof. Since $[q_i e_i t_i, f_j t_j^{-1}] = 0$, we get

$$Ad(\exp_{q_{j}^{-1}}(q_{i}e_{i}t_{i}))(f_{j}t_{j}^{-1})=f_{j}t_{j}^{-1}.$$

Therefore

$$\begin{split} \operatorname{Ad}(S_i'')(f_j t_j^{-1}) &= \operatorname{Ad}(\exp_{q_1^{-1}}(-f_i))(f_j t_j^{-1}) \\ &= \sum_{n=0}^{\infty} \sum_{k=0}^{n} (-1)^{n-k} q_i^{-(n(n-1)/2)+k(n-1+a_{ij})} f_i^{(n-k)} f_j f_i^{(k)} t_j^{-1} \\ &= \sum_{n=0}^{\infty} q_i^{-(n(n-1)/2)-n(-a_{ij}-n+1)} \varPhi(f_i^{(n)})(f_j) t_j^{-1} \\ &= \sum_{n=0}^{-a_{ij}} q_i^{n(n-1)/2)+na_{ij}} \varPhi(f_i^{(n)})(f_j) t_j^{-1}. \end{split}$$

By (1.1.3) and Lemma 1.1.1, $\bigoplus_{k=0}^{-a_{ij}} Q(q) \Phi(f_i^{(k)})(f_j)$ is a $(-a_{ij}+1)$ -dimensional irreducible $U_q(sl_2)_i$ -submodule of U_q , and f_j is a highest weight vector of weight $-a_{ij}$. Therefore

(1.3.7)
$$\Phi(e_i^{(k)})\Phi(f_i^{(-a_{ij})})(f_i) = \Phi(f_i^{(-a_{ij}-k)})(f_i).$$

Then, we have

$$\begin{split} &\operatorname{Ad}(\exp_{q_i}(-q_i^{-1}e_it_i^{-1}))(\varPhi(f_i^{\{-a_{ij}\}})(f_j)t_j^{-1}) \\ &= \sum_{n=0}^{\infty} \sum_{k=0}^{n} (-1)^k q_i^{(n(n+1)/2)+k(n-1)} t_i^{-n} e_i^{(k)}(\varPhi(f_i^{\{-a_{ij}\}})(f_j)) e_i^{(n-k)} t_j^{-1} \\ &= \sum_{n=0}^{\infty} q_i^{(n+1)/2} \varPhi(e_i^{(n)}) \varPhi(f_i^{(-a_{ij})})(f_j) t_j^{-1} \\ &= \sum_{n=0}^{-a_{ij}} q_i^{n(n+1)/2} \varPhi(f_i^{\{-a_{ij}-n\}})(f_j) t_j^{-1} \\ &= \sum_{n=0}^{-a_{ij}} q_i^{n(n-1)/2} e_i^{n(n-1)/2} e_i^{n(n$$

Q.~E.~D.

Let

$$(1.3.8) S_{i}' = \exp_{q_{i}^{-1}}(q_{i}^{-1}e_{i}t_{i}^{-1})S_{i}''.$$

By Lemma 1.3.2, we have

(1.3.9)
$$\operatorname{Ad}(S_i')(f_j t_j^{-1}) = q_i^{-a_{ij}(a_{ij}-1)/2} \Phi(f_i^{(-a_{ij})})(f_j) t_j^{-1}.$$

On the other hand, we get

$$f_j t_j^{-1} = q_i^{-a_{ij}(a_{ij-1})/2} q_i^{h_i(h_i+1)/2} f_j t_j^{-1} t_i^{a_{ij}} q_i^{-h_i(h_i+1)/2}.$$

Therefore,

$$\begin{split} \mathrm{Ad}(S_i')(f_{j}t_{j}^{-1}) &= q_{i}^{-a_{ij}(a_{ij}-1)/2}\mathrm{Ad}(S_i)(f_{j}t_{j}^{-1}t_{i}^{a_{ij}}) \\ &= q_{i}^{-a_{ij}(a_{ij}-1)/2}\mathrm{Ad}(S_i)(f_{j})t_{j}^{-1}. \end{split}$$

This and (1.3.9) imply (1.3.6).

Introduce the Q-algebra anti-automorphism ω by

$$\omega e_i = f_i$$

$$\omega f_i = e_i$$

$$\omega t_i = t_i^{-1}$$

$$\omega q = q^{-1}.$$

Applying ω to (1.3.6), we obtain (1.3.5).

Q. E. D.

This proposition immediately imply the next corollary.

Corollary 1.3.3.

$$*T_{i}*=T_{i}^{-1}$$
.

1.4. The braid group action

Proposition 1.4.1. $\{S_i; i \in I\}$ satisfies the braid relations for the Weyl group

W of \mathfrak{g} .

Proof. In case of $a_{ij}=a_{ji}=-1$, we have to prove

$$S_iS_jS_i=S_jS_iS_j$$
.

This is equivalent to

$$S_1 = (AdS_1)(AdS_2)(S_1) = T_1T_2(S_1)$$
.

By (1.3.2)–(1.3.6), we have

(1.4.1)
$$T_{i}T_{j}(f_{i})=f_{j}$$

$$T_{i}T_{j}(e_{i})=e_{j}$$

$$T_{i}T_{j}(t_{i})=t_{j}.$$

Therefore we get

$$\begin{split} T_{\imath}T_{\jmath} &(\exp_{q_{\imath}^{-1}}(q_{\imath}^{-1}e_{\imath}t_{\imath}^{-1})\exp_{q_{\imath}^{-1}}(-f_{\imath})\exp_{q_{\imath}^{-1}}(q_{\imath}e_{\imath}t_{\imath})q_{\imath}^{h_{i}(h_{\imath}+1)/2}) \\ &= \exp_{q_{\imath}^{-1}}(q_{\imath}^{-1}T_{\imath}T_{\jmath}(e_{\imath}t_{\imath}^{-1}))\exp_{q_{\imath}^{-1}}(-T_{\imath}T_{\jmath}(f_{\imath}))\exp_{q_{\imath}^{-1}}(q_{\imath}T_{\imath}T_{\jmath}(e_{\imath}t_{\imath}))q_{\imath}^{h_{\jmath}(h_{\jmath}+1)/2} \\ &= \exp_{q_{\jmath}^{-1}}(q_{\jmath}^{-1}e_{\jmath}t_{\jmath}^{-1})\exp_{q_{\jmath}^{-1}}(-f_{\jmath})\exp_{q_{\jmath}^{-1}}(q_{\jmath}e_{\jmath}t_{\jmath})q_{\jmath}^{h_{\imath}(h_{\jmath}+1)/2} \\ &= S_{\imath}\,. \end{split}$$

The remaining cases are similarly proved by the corresponding identities to (1.4.1) due to Lusztig [4]. Q. E. D.

This proposition immediately implies the following result.

Corollary 1.4.2 ([5]). $\{T_i; i \in I\}$ satisfies the braid relations.

§ 2.
$$T_1U_a^- \cap U_a^- = \text{Ker } e_1'$$

2.1. Proof of $T_iU_q^- \cap U_q^- = \text{Ker } e_i'$

Let U_q^- be the subalgebla over $\mathbf{Q}(q)$ of U_q generated by f_i .

Lemma 2.1.1 ([1]. For any $P \in U_q^-$, there exist unique Q, $R \in U_q^-$ such that

$$[e_i, P] = \frac{t_i Q - t_i^{-1} R}{q_i - q_i^{-1}}.$$

By this lemma, if we set $e''_i(P) = Q$ and $e'_i(P) = R$, then e'_i and e''_i are endomorphism of U_q^- . Moreover, we get

$$e_i''f_j=q_i^{a_{ij}}f_je_i''+\delta_{ij}$$

and

$$e'_i f_j = q_i^{-a_{ij}} f_j e'_i + \delta_{ij}$$
.

Here f_{j} acts on U_{q}^{-} by the left multiplication.

The aim of this section is to prove the following result.

Proposition 2.1.2.

$$(2.1.1) T_{i}(U_{q}^{-}) \cap U_{q}^{-} = \operatorname{Ker} e'_{i}.$$

The first step is the next lemma.

Lemma 2.1.3.

$$(2.1.2) f_i(U_q^-) \cap T_i(U_q^-) = \{0\}.$$

Proof. Let $u \in f_i(U_q^-) \cap T_i(U_q^-)$. Then $T_i^{-1}u \in U_q^-$. On the other hand, choosing $x \in U_q^-$ such that $u = f_i x$, we have

$$T_{i}^{-1}u = -e_{i}t_{i}T_{i}^{-1}x$$
.

Since $e_i U_q \cap U_q^- = 0$, we obtain u = 0.

Q. E. D.

Lemma 2.1.4. For $i \neq j$

$$(2.1.3) f_j f_i^{(n)} = \sum_{k=0}^n q_i^{k(n-k-a_{ij})} f_i^{(k)} \Phi(f_i^{(n-k)})(f_j).$$

Proof. By the definition of Φ we have

$$\Phi(f_1)(\Phi(f_1^{(n)})(f_1)) = \Phi(f_1^{(n)})(f_1)f_1 - f_1t_1\Phi(f_1^{(n)})(f_1)t_1^{-1}$$
.

Therefore we have

$$(2.1.4) \qquad \Phi(f_i^{(n)})(f_i)f_i = \lceil n+1 \rceil_i \Phi(f_i^{(n+1)})(f_i) + q_i^{2n-a_{ij}} f_i \Phi(f_i^{(n)})(f_i).$$

We shall show this formula by induction on n,

$$\begin{split} f_{j}f_{i}^{(n+1)} &= \frac{1}{\lceil n+1 \rceil_{i}} \Big(\sum_{k=0}^{n} q_{i}^{k(n-k-a_{ij})} f_{i}^{(k)} \Phi(f_{i}^{(n-k)})(f_{j}) \Big) f_{i} \\ &= \frac{1}{\lceil n+1 \rceil_{i}} \sum_{k=0}^{n} q_{i}^{k(n-k-a_{ij})} f_{i}^{(k)} (\lceil n-k+1 \rceil_{i} \Phi(f_{i}^{(n-k+1)})(f_{j}) \\ &+ q_{i}^{2(n-k)-a_{ij}} f_{i} \Phi(f_{i}^{(n-k)})(f_{j})) \\ &= \frac{1}{\lceil n+1 \rceil_{i}} \sum_{k=0}^{n} q_{i}^{k(n-k-a_{ij})} \lceil n-k+1 \rceil_{i} f_{i}^{(k)} \Phi(f_{i}^{(n-k+1)})(f_{j}) \\ &+ \frac{1}{\lceil n+1 \rceil_{i}} \sum_{k=1}^{n+1} q_{i}^{k(n-k-a_{ij})+n+1} \lceil k \rceil_{i} f_{i}^{(k)} \Phi(f_{i}^{(n-k+1)})(f_{j}) \\ &= \sum_{k=0}^{n+1} q_{i}^{k(n+1-k-a_{ij})} f_{i}^{(k)} \Phi(f_{i}^{(n-k+1)})(f_{j}). \end{split}$$

$$Q. E. D.$$

Corollary 2.1.5.

$$(2.1.5) U_{q}^{-} = f_{i}(U_{q}^{-}) + M$$

where M is the $\mathbf{Q}(q)$ -subalgebra of U_q^- generated by $\mathbf{\Phi}(f_i^{(n)})(f_j)$ for $i \neq j$ and $n \geq 0$.

Lemma 2.1.6. For $i \neq j$

$$(2.1.6) T_i^{-1} \Phi(f_i^{(n)})(f_j) = (\Phi(f_i^{(-a_{ij}-n)})(f_j))^*.$$

Proof. We shall show this formula by induction on n,

$$\begin{split} &T_{i}^{-1} \varPhi(f_{i}^{\{n+1\}})(f_{j}) \\ &= \frac{1}{\lceil n+1 \rceil_{i}} T_{i} (\varPhi(f_{i}) \varPhi(f_{i}^{\{n\}})(f_{j})) \\ &= \frac{1}{\lceil n+1 \rceil_{i}} T_{i} (\varPhi(f_{i}^{\{n\}})(f_{j}) f_{i} - q_{i}^{-2n-a} i_{j} f_{i} \varPhi(f_{i}^{\{n\}})(f_{j})) \\ &= \frac{1}{\lceil n+1 \rceil_{i}} ((\varPhi(f_{i}^{\{n\}})(f_{j}))^{*} (T_{i} f_{i})^{*} - q_{i}^{-2n-a} i_{j} (T_{i} f_{i})^{*} (\varPhi(f_{i}^{\{n\}})(f_{j}))^{*}) \\ &= \frac{1}{\lceil n+1 \rceil_{i}} (-t_{i}^{-1} e_{i} \varPhi(f_{i}^{\{(-a_{ij}-n)\}})(f_{j}) + q_{i}^{-2n-a} i_{j} \varPhi(f_{i}^{\{(-a_{ij}-n)\}})(f_{j}) t_{i}^{-1} e_{i})^{*} \\ &= \frac{1}{\lceil n+1 \rceil_{i}} (\varPhi(e_{i}) \varPhi(f_{i}^{\{(-a_{ij}-n)\}})(f_{j}))^{*} \\ &= (\varPhi(f_{i}^{\{(-a_{ij}-n-1)\}})(f_{j}))^{*}. \end{split}$$

$$Q. E. D.$$

Corollary 2.1.7. For $i \neq j$,

$$\Phi(f_i^{(n)})(f_j) \in T_i(U_q^-) \cap U_q^-.$$

Proof. U_q^- is stable under *. Lemma 2.1.6 immediately implies this corollary. Q. E. D.

Lemma 2.1.8. For $i \neq j$

(2.1.8)
$$e_i' \Phi(f_i^{(n)})(f_j) = q_i^{-2n-a_{ij}} \Phi(f_i^{(n)})(f_j) e_i'.$$

Proof. First we have

$$e_i'f_i^{(n)} = q_i^{-2n}f_i^{(n)}e_i' + q_i^{1-n}f_i^{(n-1)}$$
.

Then, we have

$$\begin{aligned} e_i'f_i^{(n-k)}f_jf_i^{(k)} = & q_i^{-2n-a}_{ij}f_i^{(n-k)}f_jf_i^{(k)}e_i' + q_i^{-2n+k+1-a}_{ij}f_i^{(n-k)}f_jf_i^{(k-1)} \\ & + q_i^{-n+k+1}f_i^{(n-k-1)}f_jf_i^{(k)}. \end{aligned}$$

Therefore

$$\begin{split} e_i' \varPhi(f_i^{(n)})(f_j) &= \sum_{k=0}^n (-1)^{n-k} q_i^{(n-k)} e_i' f_i^{(n-k)} f_j f_i^{(k)} \\ &= q_i^{-2n-a} i_j \varPhi(f_i^{(n)})(f_j) e_i' \end{split}$$

$$+ \sum_{k=0}^{n} (-1)^{n-k} q_i^{(n-k)(-a_{ij}-n+1)}$$

$$\cdot (q_i^{-2n+k+1-a_{ij}} f_i^{(n-k)} f_j f_i^{(k-1)} + q_i^{-n-k+1} f_i^{(n-k-1)} f_j f_i^{(k)}).$$

It is easy to show that the second term is 0.

Q. E. D.

Lemma 2.1.9.

$$(2.1.9) M = \operatorname{Ker} e_i'.$$

Proof. By Lemma 2.1.8, we have

$$(2.1.10) M \subset \operatorname{Ker} e_i'.$$

We recall the result in [1],

$$(2.1.11) U_q^- = \operatorname{Ker} e_i' \oplus f_i(U_q^-).$$

Then this lemma follows from Corollary 2.1.5.

Q, E, D.

Proof of Proposition 2.1.2. By Lemmas 2.1.6 and 2.1.9, we have

(2.1.12)
$$\operatorname{Ker} e'_{i} \subset T_{i}(U_{q}^{-}) \cap U_{q}^{-}.$$

Then this proposition follows from Lemma 2.1.3, (2.1.10) and (2.1.12).

Q. E. D.

§ 3. Crystals

3.1. Definition of crystal

Definition 3.1.1. A crystal B is a set with

(3.1.1) maps
$$wt: B \rightarrow P$$
, $\varepsilon_i: B \rightarrow Z \cup \{-\infty\}$ and $\varphi_i: B \rightarrow Z \cup \{-\infty\}$,

$$(3.1.2) \tilde{e}_i: B \longrightarrow B \cup \{0\}, \tilde{f}_i: B \longrightarrow B \cup \{0\}.$$

They are subject to the following axioms:

(C1)
$$\varphi_i(b) = \varepsilon_i(b) + \langle h_i, wt(b) \rangle.$$

(C2) If
$$b \in B$$
 and $\tilde{e}_i b \in B$ then,
$$wt(\tilde{e}_i b) = wt(b) + \alpha_i, \ \varepsilon_i(\tilde{e}_i b) = \varepsilon_i(b) - 1 \ and \ \varphi_i(\tilde{e}_i b) = \varphi_i(b) + 1.$$

(C2') If
$$b \in B$$
 and $\tilde{f}_i b \in B$, then
$$wt(\tilde{f}_i b) = wt(b) - \alpha_i, \ \varepsilon_i(\tilde{f}_i b) = \varepsilon_i(b) + 1 \ and \ \varphi_i(\tilde{f}_i b) = \varphi_i(b) - 1.$$

(C3) For
$$b, b' \in B$$
 and $i \in I$, $b' = \tilde{e}_i b$ if and only if $b = \tilde{f}_i b'$.

(C4) For
$$b \in B$$
, if $\varphi_i(b) = -\infty$, then $\tilde{e}_i b = \tilde{f}_i b = 0$.

For two crystals B_1 and B_2 , a morphism ψ from B_1 to B_2 is a map $B_1 \rightarrow B_2 \cup \{0\}$ that satisfies the following conditions:

(3.1.3) If
$$b \in B_1$$
 and $\phi(b) \in B_2$, then $wt(\phi(b)) = wt(b)$, $\varepsilon_i(\phi(b)) = \varepsilon_i(b)$, and $\varphi_i(\phi(b)) = \varphi_i(b)$,

(3.1.4) For
$$b \in B_1$$
, we have $\psi(\tilde{e}_i b) = \tilde{e}_i \psi(b)$ provided $\psi(b)$ and $\psi(\tilde{e}_i b) \in B_2$,

(3.1.5) For
$$b \in B_1$$
, we have $\psi(\tilde{f}_i b) = \tilde{f}_i \psi(b)$ provided $\psi(b)$ and $\psi(\tilde{f}_i b) \in B_2$.

A morphism $\psi: B_1 \rightarrow B_2$ is called *strict*, if it commutes with all \tilde{e}_i and \tilde{f}_i .

A morphism $\psi: B_1 \rightarrow B_2$ is called an *embedding*, if ψ induces an injective map $B_1 \cup \{0\} \rightarrow B_2 \cup \{0\}$.

For two crystals B_1 and B_2 , we define its tensor product $B_1 \otimes B_2$ as follows:

$$B_1 \otimes B_2 = \{b_1 \otimes b_2; b_1 \in B_1 \text{ and } b_2 \in B_2\}$$

$$\varepsilon_i(b_1 \otimes b_2) = \max\{\varepsilon_i(b_1), \varepsilon_i(b_2) - wt_i(b_1)\}$$

$$\varphi_i(b_1 \otimes b_2) = \max\{\varphi_i(b_1) + wt_i(b_2), \varphi_i(b_2)\}$$

$$wt(b_1 \otimes b_2) = wt(b_1) + wt(b_2).$$

Here $wt_i(b) = \langle h_i, wt(b) \rangle$. The action of \tilde{e}_i and \tilde{f}_i are defined by

$$\widetilde{e}_i(b_1 \otimes b_2) = \begin{cases}
\widetilde{e}_i b_1 \otimes b_2 & \text{if } \varphi_i(b_1) \ge \varepsilon_i(b_2) \\
b_1 \otimes \widetilde{e}_i b_2 & \text{if } \varphi_i(b_1) < \varepsilon_i(b_2)
\end{cases}$$

$$\widetilde{f}_i(b_1 \otimes b_2) = \begin{cases}
\widetilde{f}_i b_1 \otimes b_2 & \text{if } \varphi_i(b_1) > \varepsilon_i(b_2) \\
b_1 \otimes \widetilde{f}_i b_2 & \text{if } \varphi_i(b_1) \le \varepsilon_i(b_2)
\end{cases}$$

Example 3.1.2. For $i \in I$, B_i is the crystal defined as follows

$$B_i = \{b_i(n) \; ; \; n \in \mathbb{Z}\}$$

$$wt(b_i(n)) = n$$

$$\varphi_i(b_i(n)) = n, \quad \varepsilon_i(b_i(n)) = -n$$

$$\varphi_j(b_i(n)) = \varepsilon_j(b_i(n)) = -\infty \quad \text{for} \quad i \neq j.$$

We define the action of \tilde{e}_i and \tilde{f}_i by

$$\begin{split} \tilde{e}_i(b_i(n)) = & b_i(n+1) \\ \tilde{f}_i(b_i(n)) = & b_i(n-1) \\ \tilde{e}_j(b_i(n)) = & \tilde{f}_j(b_i(n)) = 0 \quad \text{ for } \quad i \neq j \;. \end{split}$$

We write b_i for $b_i(0)$.

Example 3.1.3. For $\lambda \in P_+$, $B(\lambda)$ is the crystal associated with the crystal base of the simple module with highest weight λ . The unique element of $B(\lambda)$ of weight λ is denoted by u_{λ} .

Example 3.1.4. $B(\infty)$ is the crystal associated with the crystal base of U_q^- . We set $\varepsilon_i(b) = \max\{k \ge 0 \; ; \; \tilde{e}_i^k b = 0\}$, $\varphi_i(b) = \varepsilon_i(b) + \langle h_i, \; wt(b) \rangle$. The unique element of $B(\infty)$ of weight 0 is denoted by u_∞ .

3.2. Some results

Theorem 3.2. ([3]).

$$(3.2.1) B(\infty)^* = B(\infty).$$

We define the operators \tilde{e}_i^* , \tilde{f}_i^* of U_q^- by

$$\tilde{e}_{i}^{*}=*\tilde{e}_{i}*, \text{ and } \tilde{f}_{i}^{*}=*\tilde{f}_{i}*.$$

Theorem 3.2.2 ([3]). 1. For any i, there exists a unique strict embedding of crystals

$$\Psi_i: B(\infty) \subset B(\infty) \otimes B_i$$

that sends u_{∞} to $u_{\infty} \otimes b_i$.

2. If
$$\Psi_i(b)=b'\otimes \tilde{f}_i^n b_i(n\geq 0)$$
, then $\varepsilon_i(b^*)=n$, $\varepsilon_i(b'^*)=0$ and

$$\Psi_{i}(\tilde{e}_{i}^{*}b) = \begin{cases} b' \otimes \tilde{f}_{i}^{n-1}b_{i} & if \quad n \geq 0 \\ 0 & if \quad n = 0 \end{cases}$$

$$\Psi_{i}(\tilde{f}_{i}^{*}b) = b' \otimes \tilde{f}_{i}^{n+1}b_{i}$$

3. Im
$$\Psi_i = \{b \otimes \tilde{f}_i^n b_i : b \in B(\infty), \ \varepsilon_i(b^*) = 0, \ n \ge 0\}$$
.

3.3. Action on $L(\lambda)$

Lemma 3.3.1 ([3]). For $b \in B(\infty)$

$$(3.3.1) f_i^{(a)}G(b) \equiv \begin{bmatrix} \varepsilon_i(b) + a \\ a \end{bmatrix}_i G(\tilde{f}_i^a b) \mod f_i^{a+1}U_q^-$$

$$(3.3.2) \hspace{1cm} G(b)f_i^{(a)}\!\equiv\!\begin{bmatrix} \varepsilon_i(b^*)\!+\!a\\ a\end{bmatrix}_i G(\tilde{f}_i^{*a}b) \hspace{0.1cm} \text{mod} \hspace{0.1cm} U_q^-f_i^{a+1}.$$

Let $\lambda \in P_+$, and let $V(\lambda)$ be the irreducible U_q -module generated by the highest weight vector u_λ of highest weight λ . For $w \in W$, let us denote by $u_{w\lambda}$ the global base of weight $w\lambda$. Then we have

$$(3.3.3) u_{w\lambda} = u_{\lambda} \text{if } w = 1.$$

If $w=s_iw'>w'$, then we have

$$(3.3.4) u_{w\lambda} = f_i^{(c)} u_{w'\lambda} \text{where } c = \langle h_i, w\lambda \rangle.$$

Lemma 3.3.2. For $b \in B(\infty)$

$$(3.3.5) G(b)u_{w\lambda} = G(\tilde{f}_{i}^{*c}b)u_{w'\lambda}.$$

Proof. Note that $f_i u_{w\lambda} = 0$ and $f_i^{1+c} u_{w'\lambda} = 0$. By Lemma 3.3.1,

$$\begin{split} G(b)u_{w\,\lambda} &= G(b)f_i^{(c)}u_{w'\,\lambda} \\ &= \left(\begin{bmatrix} \varepsilon_i(b^*) + c \\ c \end{bmatrix}_i G(\tilde{f}_i^{*c}b) + U_q^- f_i^{c+1} \right) u_{w'\,\lambda} \\ &= \begin{bmatrix} \varepsilon_i(b^*) + c \\ c \end{bmatrix}_i G(\tilde{f}_i^{*c}b)u_{w'\,\lambda} \,. \end{split}$$

If $\varepsilon_i(b^*)=0$, it is obvious. If $\varepsilon_i(b^*)\neq 0$, then we have

$$(3.3.6) G(b)u_{w\lambda} \in U_q^- f_i u_{w\lambda} = 0$$

and

$$G(\tilde{f}_{i}^{*c}b)u_{w'\lambda} \in U_{q}^{-}f_{i}^{c+1}u_{w'\lambda} = 0$$

since
$$G(b) \in U_q^- f_i^{\varepsilon_i(b^*)}$$
 and $\varepsilon_i((\tilde{f}_i^{*c}b)^*) = \varepsilon_i(b^*) + c$.

Q. E. D.

Corollary 3.3.3. Let $\lambda \in P_+$, $P \in L(\infty)$ and $b \in B(\infty)$ such that $b \equiv P \mod q L(\infty)$. Then we have

$$(3.3.7) Pu_{s_i\lambda} \equiv G(\tilde{f}_i^{*\langle h_i, \lambda \rangle} b) u_{\lambda} \mod q L(\lambda).$$

Proposition 3.3.4.

$$(3.3.8) T_i(P)u_{\lambda} \in L(\lambda)$$

and

$$(3.3.9) T_{\iota}(P)u_{\lambda} \equiv \begin{cases} \tilde{e}_{i}^{m}G(\tilde{f}_{i}^{*\langle h_{i}, \lambda \rangle}b)u_{\lambda} & \text{if } \varphi(\tilde{f}_{i}^{*\langle h_{i}, \lambda \rangle}b) + \langle h_{i}, \lambda \rangle = 0 \\ 0 & \text{if } \varphi_{\iota}(\tilde{f}_{i}^{*\langle h_{i}, \lambda \rangle}b) + \langle h_{i}, \lambda \rangle \neq 0 \end{cases}$$

where $m = \varepsilon_i(\tilde{f}_i^{*(h_i, \lambda)}b)$.

Proof. We recall (1.2.4)

$$S_i u_k^{(l)} = (-1)^{l-k} q_i^{(l-k)(k+1)} u_{l-k}^{(l)}$$
.

So, $L(\lambda)$ and $L(\lambda)/qL(\lambda)$ are stable by S_i , and for $b \in B(\lambda)$

(3.3.10)
$$S_i b = \begin{cases} \tilde{e}_i^{\epsilon_i(b)} b & \text{if } \varphi_i(b) = 0 \\ 0 & \text{if } \varphi_i(b) \neq 0. \end{cases}$$

In particular,

(3.3.11)
$$S_{i}Pu_{s_{i}\lambda} = \begin{cases} \tilde{e}_{i}^{m}G(\tilde{f}_{i}^{*\langle h_{i},\lambda\rangle}b)u_{\lambda} & \text{if } \varphi_{i}(\tilde{f}_{i}^{*\langle h_{i},\lambda\rangle}b) + \langle h_{i},\lambda\rangle = 0\\ 0 & \text{if } \varphi_{i}(\tilde{f}_{i}^{*\langle h_{i},\lambda\rangle}b) + \langle h_{i},\lambda\rangle \neq 0. \end{cases}$$

On the other hand, by (3.3.10)

$$S_{i}Pu_{s_{i}\lambda} = T_{i}(P)S_{i}u_{s_{i}\lambda}$$
$$= T_{i}(P)u_{\lambda}.$$

Therefore, we have (3.3.8) and (3.3.9).

Q. E. D.

3.4. Action on $L(\infty)$

Let $b \in B(\infty)$ and $\lambda \in P_+$.

Lemma 3.4.1. $G(b)u_{\lambda} \neq 0$ if and only if $\varepsilon_i(b^*) \leq \langle h_i, \lambda \rangle$ for any i.

Proof.

$$\{P \in U_q^-; Pu_\lambda = 0\} = \sum_i U_q^- f_i^{1+\langle h_i, \lambda \rangle}$$

and

$$U_q^- f_i^a = \bigoplus_{\varepsilon_i (b^*) \geq a} \mathbf{Q}(q) G(b)$$
.

So, we have

$$\begin{array}{ll} \{P\!\in\!\!U_q^-\;;\;Pu_\lambda\!\!=\!\!0\} \!=\! \! \sum\limits_{i} \bigoplus\limits_{\varepsilon_i(b^*) > h_i \cdot \lambda \rangle} \! \boldsymbol{Q}(q) G(b) \,. \end{array} \hspace{1cm} Q.\,E.\,D. \label{eq:power_power}$$

Lemma 3.4.2. ([2]).

$$(3.4.1) \varepsilon_{i}(\tilde{f}_{i}^{a}b) \leq \varepsilon_{i}(b) for i \neq i.$$

Now, let us assume that $\langle h_i, \lambda \rangle$ is sufficiently large for any i.

Lemma 3.4.3. If $\varepsilon_i(b^*)=0$, then $G(\tilde{f}_i^{*\langle h_i, \lambda \rangle}b)u_{\lambda}\neq 0$

Proof. By Lemma 3.4.1, $G(\tilde{f}_{i}^{*\langle h_{i}, \lambda \rangle}b)u_{\lambda} \neq 0$ if and only if $\varepsilon_{i}^{*}(\tilde{f}_{i}^{*\langle h_{i}, \lambda \rangle}b) \leq$ $\langle h_j, \lambda \rangle$ for any j, where we set $\varepsilon_i^*(b) = \varepsilon_i(b^*)$ for $b \in B(\infty)$. If i = j, then

$$\varepsilon_{j}^{*}(\tilde{f}_{i}^{*\langle h_{i}, \lambda \rangle}b) = \langle h_{i}, \lambda \rangle + \varepsilon_{i}^{*}(b) = \langle h_{i}, \lambda \rangle.$$

If $i \neq j$, then

$$\varepsilon_{j}^{*}(\widetilde{f}_{i}^{*\langle h_{i}, \lambda \rangle}b) \leq \varepsilon_{j}^{*}(b) \leq \lambda_{j}$$

Q. E. D. since $\lambda \gg 0$.

Let b be an element of $B(\infty)$ and let us assume that P=G(b) belongs to $T_i^{-1}U_q^- \cap U_q^-$.

Lemma 3.4.4.

$$(3.4.2) G(\tilde{f}_{i}^{*\langle h_{i}, \lambda \rangle} b) u_{\lambda} \neq 0.$$

Proof. Since $T_i^{-1} = *T_i *$ and U_q^- is stable under *

$$T_i^{-1}(U_q^-) \cap U_q^- = (T_i(U_q^-) \cap U_q^-)^*$$

=(Ker e_i')*.

Then we have $e_i'P^*=0$, and therefore $\tilde{e}_iP^*=0$. This implies

$$\varepsilon_i^*(b) = 0.$$

By Lemma 3.4.3, we have (3.4.2).

Q, E, D.

Lemma 3.4.5.

$$(3.4.4) T_{i}(P)u_{\lambda} \neq 0.$$

Proof. By Proposition 3.3.4, it is enough to show that $\varphi_i(\tilde{f}_i^{*\langle h_i, \lambda \rangle}b) + \langle h_i, \lambda \rangle = 0$. We have

$$(3.4.5) \varphi_i(\tilde{f}_i^{*\langle h_i, \lambda \rangle}b) + \langle h_i, \lambda \rangle = \varepsilon_i(\tilde{f}_i^{*\langle h_i, \lambda \rangle}b) + \langle h_i, wt(b) - \lambda \rangle.$$

Since $\varepsilon_i^*(b) = 0$, $\Psi_i(b) = b \otimes b_i$ and $\Psi_i(\tilde{f}_i^{*\langle h_i, \lambda \rangle}b) = b \otimes \tilde{f}_i^{\langle h_i, \lambda \rangle}b_i$,

$$\begin{split} \varepsilon_{i}(\tilde{f}_{i}^{*\langle h_{i}, \lambda \rangle}b) &= \varepsilon_{i}(b \otimes \tilde{f}_{i}^{\langle h_{i}, \lambda \rangle}b_{i}) \\ &= \max\{\varepsilon_{i}(b), \ \varepsilon_{i}(\tilde{f}_{i}^{*\langle h_{i}, \lambda \rangle}b_{i}) - \langle h_{i}, \ wt(b) \rangle\} \\ &= \max\{\varepsilon_{i}(b), \langle h_{i}, \ \lambda \rangle - \langle h_{i}, \ wt(b) \rangle\} \ . \end{split}$$

Therefore we have

$$(3.4.6) \qquad \qquad \varepsilon_i(\widetilde{f}_i^{*\langle h_i, \lambda \rangle}b) = \langle h_i, \lambda - wt(b) \rangle.$$

Since $\langle h_i, \lambda \rangle$ is sufficently large, it equals $\langle h_i, \lambda - wt(b) \rangle$. Therefore $\varphi_i(\tilde{f}_i^{*\langle h_i, \lambda \rangle}b) + \langle h_i, \lambda \rangle = 0$. Q. E. D.

Lemma 3.4.6.

(3.4.7)
$$\varphi_i(b) + \varepsilon_i^*(b) \ge 0$$
 for any $b \in B(\infty)$.

Proof. By Theorem 3.2.2

$$\Psi_i(b) = b' \otimes \tilde{f}_i^n b_i$$

where
$$n=\varepsilon_i^*(b)=-\varphi_i(\tilde{f}_i^nb_i)$$
. We have
$$\varphi_i(b)=\varphi_i(b'\otimes\tilde{f}_i^nb_i)$$
$$=\max\{\varphi_i(b')+\langle h_i,\ wt(\tilde{f}_i^nb_i)\rangle,\ \varphi_i(\tilde{f}_i^nb_i)\}.$$

Therefore we have

$$\varphi_{i}(b) + \varepsilon_{i}^{*}(b) = \varphi_{i}(b) - \varphi_{i}(\tilde{f}_{i}^{n}b_{i}) \ge 0.$$
 Q. E. D.

Proposition 3.4.7.

$$(3.4.8) T_{i}P \in L(\infty).$$

$$(3.4.9) T_{i}P \equiv \tilde{f}_{i}^{*\varphi_{i}(b)} \tilde{e}_{i}^{\varepsilon_{i}(b)} b \mod q L(\infty).$$

Proof. By Lemma 3.4.6, we have

$$(3.4.10) \varphi_{i}(b) = \varphi_{i}(b) + \varepsilon_{i}^{*}(b) \geq 0.$$

By (3.4.3), (3.4.6) and (3.4.10), we have

$$\begin{split} \varPsi_{\imath}(\tilde{e}_{i}^{m}\tilde{f}_{i}^{*\langle h_{i}, \lambda \rangle}b) &= \tilde{e}_{\imath}^{\langle h_{i}, \lambda - wt \langle b \rangle\rangle}(b \otimes \tilde{f}_{\imath}^{\langle h_{i}, \lambda \rangle}b_{\imath}) \\ &= \tilde{e}_{\imath}^{\varepsilon_{\imath}(b)}b \otimes \tilde{f}_{\imath}^{\varphi_{\imath}(b)}b_{\imath}. \end{split}$$

On the other hand, by Theorem 3.2.2 we have

$$\begin{split} \Psi_{i}(\tilde{f}_{i}^{*\varphi_{i}(b)}\tilde{e}_{i}^{\varepsilon_{i}(b)}b) &= \tilde{f}_{i}^{*\varphi_{i}(b)}(\tilde{e}_{i}^{\varepsilon_{i}(b)}b \otimes b_{i}) \\ &= \tilde{e}_{i}^{\varepsilon_{i}(b)}b \otimes \tilde{f}_{i}^{\varphi_{i}(b)}b_{i}. \end{split}$$

Since Ψ_i is an embedding, we have

$$(3.4.11) \qquad \tilde{e}_{i}^{m} \tilde{f}_{i}^{*(h_{i},\lambda)} b = \tilde{f}_{i}^{*\varphi_{i}(b)} \tilde{e}_{i}^{\varepsilon_{i}(b)} b.$$

Therefore we obtain

$$(3.4.12) T_{i}(P)u_{\lambda} \equiv G(\tilde{f}_{i}^{*\varphi_{i}(b)}\tilde{e}_{i}^{\varepsilon_{i}(b)}b)u_{\lambda}.$$

For $\lambda \gg 0$, Proposition 3.3.4 and (3.4.12) imply this proposition. Q. E. D.

Corollary 3.4.8. Let us define the map Λ_i : $\{b \in B(\infty) ; \varepsilon_i^*(b) = 0\} \rightarrow \{b \in B(\infty) ; \varepsilon_i^*(b) = 0\} \rightarrow \{b \in B(\infty) ; \varepsilon_i^*(b) = 0\} \rightarrow \{b \in B(\infty) ; \varepsilon_i^*(b) \in \mathcal{F}_i^{\varphi_i^*(b)} \tilde{e}_i^{\varphi_i^*(b)} \tilde{e}_i^{\varphi_i^*(b)} b$. Then Λ_i is bijective and $\Lambda_i^{-1}(b) = \tilde{f}_i^{\varphi_i^*(b)} \tilde{e}_i^{\varphi_i^*(b)} \tilde{e}_i^{\varphi_i^*(b)} b$.

Proof. Let $b \in \{b \in B(\infty); \ \varepsilon_i^*(b) = 0\}$, $b' = \tilde{f}_i^{*\varphi_i(b)} \tilde{e}_i^{\varepsilon_i(b)} b$. By Proposition 3.4.7 $\varepsilon_i(b') = 0$. We have

$$(3.4.13) \qquad \qquad \varepsilon_i^*(b') = \varphi_i(b).$$

Indeed we have $\Psi_{\iota}(b') = \tilde{e}_{i}^{\varepsilon_{\iota}(b)}b \otimes \tilde{f}_{i}^{\varphi_{\iota}(b)}b_{\iota}$. Theorem 3.2.2 implies (3.4.13). We get

$$\varphi_{i}^{*}(b') = \varepsilon_{i}^{*}(b') + \langle h_{i}, wt(b') \rangle$$

$$= \varphi_{i}(b) + \langle h_{i}, (\varepsilon_{i}(b) - \varphi_{i}(b))\alpha_{i} + wt(b) \rangle$$

$$= 2\varepsilon_{i}(b) - \varphi_{i}(b) + \langle h_{i}, wt(b) \rangle$$

$$= \varepsilon_{i}(b).$$

By Theorem 3.2.2 and (3.4.13), we have

$$\Psi_{i}(\tilde{e}_{i}^{*\epsilon_{i}^{*}(b')}b') = \tilde{e}_{i}^{\epsilon_{i}(b)}b \otimes b_{i}
= \Psi_{i}(\tilde{e}_{i}^{\epsilon_{i}(b)}b).$$

Therefore we obtain

$$\tilde{e}_{i}^{*\varepsilon_{i}^{*}(b')}b'=\tilde{e}_{i}^{\varepsilon_{i}(b)}b.$$

Hence, we have

$$\tilde{f}_{i}^{\varphi_{i}^{*}(b')}\tilde{e}_{i}^{*\varepsilon_{i}^{*}(b')}b'=\tilde{f}_{i}^{\varepsilon_{i}(b)}\tilde{e}_{i}^{\varepsilon_{i}(b)}b=b.$$

Let $b \in \{b \in B(\infty); \varepsilon_i(b)=0\}$ and $b' = \tilde{f}_i^{\varphi_i^*(b)} \tilde{e}_i^{*\varepsilon_i^*(b)} b$. We have the following formulas similarly

$$(3.4.14)$$
 $\varepsilon_{i}^{*}(b')=0$

$$(3.4.15) \tilde{f}_{i}^{*\varphi_{i}(b)}\tilde{e}_{i}^{\varepsilon_{i}(b)}b'=b.$$

The corollary is proved.

Q. E. D.

§ 4. Main Theorem

4.1. Proof of Main Theorem

In this section, we assume that g is a finite-dimensional semisimple Lie algebra.

Proposition 4.1.1 [4]. (1) Let $w \in W$ and let $s_{i_1} \cdots s_{i_k}$ be a reduced expression of w. Then the automorphism $T_w = T_{i_1} \cdots T_{i_k}$ of U_q is independent of the choice of the reduced expression of w.

(2) If
$$w\alpha_i \in R^+$$
, then $T_w f_i \in U_q^-$.

Fix a reduced expression $s_{i_1} \cdots s_{i_N}$ of the longest element of W. This gives us an ordering of the set of all positive roots R^+

$$(4.1.1) \beta_1 = \alpha_{i_1}, \beta_2 = s_{i_1}\alpha_{i_2}, \cdots, \beta_N = s_{i_1}\cdots s_{i_{N-1}}\alpha_{i_N}.$$

We define

$$(4.1.2) f_{\beta_m} = T_{i_1} \cdots T_{i_{m-1}}(f_{i_m})$$

and

$$(4.1.3) f^{k} = f_{\beta_{1}}^{(k_{1})} f_{\beta_{2}}^{(k_{2})} \cdots f_{\beta_{N}}^{(k_{N})} \text{where } k = (k_{1}, \dots, k_{N}) \in \mathbb{Z}_{\geq 0}^{N}.$$

Theorem 4.1.2 (Main Theorem).

(i)
$$f^k \in L(\infty)$$
 for any $k = (k_1, \dots, k_N) \in \mathbb{Z}_{\geq 0}^N$.

(ii)
$$\{f^k \mod qL(\infty); k \in \mathbb{Z}_{\geq 0}^N\} = B(\infty).$$

Proof. Let $P \in L(\infty)$ such that $T_i P \in U_q^-$. Then we have $e_i' T_i P = 0$.

Therefore

$$(4.1.4) f_i^{(n)} T_i P = \tilde{f}_i^n T_i P.$$

Hence we obtain

$$(4.1.5) f_i^{(n)} T_i P \in L(\infty)$$

and

$$(4.1.6) f_i^{(n)} T_i P \equiv \tilde{f}_i^n \tilde{f}_i^{*\varphi_i(b)} \tilde{e}_i^{\varepsilon_i(b)} b \mod q L(\infty) \text{if } P \equiv b \mod q L(\infty).$$

By (4.1.5), we have $f^k \in L(\infty)$ immediately.

By Proposition 3.4.7, we have $f^k \mod qL(\infty) \in B(\infty)$ for any k. So, there exist the cannonical map $\pi : \{f^k\} \to B(\infty)$ by $f^k \mapsto f^k \mod qL(\infty)$. We write b^k for $f^k \mod qL(\infty)$.

The first step is the next lemma.

Lemma 4.1.3. π is injective.

Proof. Let $b_{(1)} = T_{i_1} f_{i_2}^{(k_2)} \cdots T_{i_{N-1}} f_{i_N}^{(k_N)} \mod qL(\infty) \in B(\infty)$. Then we have $b^k = \tilde{f}_i^k! b_{(1)}$

and

$$T_{i_1} f_{i_2}^{(k_2)} \cdots T_{i_{N-1}} f_{i_N}^{(k_N)} \in T_{i_1}(U_q^-) \cap U_q^- = \text{Ker } e'_{i-1}.$$

Therefore we have $\tilde{e}_{i_1}b_{(1)}=0$. Hence we obtain $k_1=\varepsilon_{i_1}(b^k)$. This implies

$$b_{(1)}=\tilde{e}_{i_1}^{\varepsilon_{i_1}(b^k)}b^k$$
.

By Corollary 3.4.8, we have

$$f_{i_2}^{(k_2)}T_{i_2}\cdots T_{i_{N-1}}f_{i_N}^{(k_N)}\equiv A_{i_1}^{-1}(b_{(1)}) \mod qL(\infty).$$

Let $b_{(2)} = \tilde{e}_{i_2^{-1}}^{\epsilon_{i_2^{-1}}(A_{i_1}^{-1}(b_{(1)}))} \Lambda_{i_1}^{-1}(b_1)$. Then similarly we have

$$\varepsilon_{i_2}(\Lambda_{i_1}^{-1}(b_2)) = k_2$$
,

$$b_{(2)} \equiv T_{ij} f_{ij}^{(k_3)} \cdots T_{i_{N-1}} f_{ij}^{(k_N)}$$
,

and

$$f_{i_3}^{(k_3)} \cdots T_{i_{N-1}} f_{i_N}^{(k_N)} \equiv \Lambda_{i_2}^{-1}(b_{(2)}) \mod q L(\infty).$$

Repeating this, $k=(k_1, \dots, k_N)$ is uniquly determined by b^k .

Now we define a map $b^k\mapsto f^{\varrho(b^k)}$. It is trivial that this map is π^{-1} . Therefore π is injective. Q. E. D.

Let
$$Q_{-}=\sum Z_{\leq 0}\alpha_{i}$$
.

$$(4.1.7) t_i f_{\beta_m} t_i^{-1} = q_i^{\langle h_i, \beta_m \rangle} f_{\beta_m}.$$

For $\xi \in Q_-$, we set

$$B_{\xi} = \{b^k; k \in \mathbb{Z}_{\geq 0}^N, wt(b^k) = \xi\}.$$

Hence we have $B_{\xi} \subseteq B(\infty)_{\xi}$. By (4.1.7), we obtain

$$\#B_{\xi} = \#\{(c_1, \dots, c_N) \in \mathbb{Z}_{\geq 0}^N; \xi = -\sum c_i \beta_i\}.$$

On the other hand, the PBW theorem for finite-dimensional semisimple Lie algebra implies

$$\begin{split} \#B(\infty)_{\xi} &= \dim_{\boldsymbol{Q}(q)}(U_{q}^{-})_{\xi} \\ &= \dim_{\boldsymbol{C}}(U^{-})_{\xi} \\ &= \#\{(c_{1}, \cdots, c_{N}) \in \boldsymbol{Z}_{\geq 0}^{N}; \ \xi = -\sum c_{1}\beta_{1}\}. \end{split}$$

Therefore

$$B_{\xi} = B(\infty)_{\xi}$$
.

Hence we obtain (ii).

Q. E. D.

4.2. Examples

Example 4.2.1.

$$g = A_2$$
, $I = \{1, 2\}$, $a_{1j} = a_{j1} = -1$, $\beta_1 = \alpha_1$, $\beta_2 = \alpha_1 + \alpha_2$, $\beta_3 = \alpha_2$.

In this case, Ψ_{121} : $B(\infty) \subseteq u_{\infty} \otimes B_1 \otimes B_2 \otimes B_1$. We shall calculate $\Psi_{121}(f^{(k_1 k_2 k_3)})$. First we have

$$\Psi_1(f_1^{(k_3)}) = u_\infty \otimes \widetilde{f}_1^{k_3} b_1$$

$$T_2 f_1^{(k_3)} \equiv \tilde{f}_2^{*\varphi_2(b)} \tilde{e}_2^{\varepsilon_2(b)} b$$
 where $f_1^{(k_3)} \equiv b \mod q L(\infty)$

and

$$\varphi_2(b)=k_3, \quad \varepsilon_2(b)=0.$$

Therefore we have

$$T_{2}f_{1}^{(k_{3})} \equiv \tilde{f}_{2}^{*k_{3}}b$$

$$\stackrel{\Psi_{2}}{\longmapsto} b \otimes \tilde{f}_{2}^{k_{3}}b_{2}$$

$$\stackrel{\Psi_{1}}{\longmapsto} u_{\infty} \otimes \tilde{f}_{2}^{k_{3}}b_{1} \otimes \tilde{f}_{2}^{k_{3}}b_{2}.$$

Since $\varphi_2(u_\infty \otimes \tilde{f}_1^{k_3}b_1) = k_3$ and $\varepsilon_2(\tilde{f}_1^{k_3}b_2) = k_3$, we have

$$f_{2}^{(k_{2})}T_{2}f_{1}^{(k_{3})} \longmapsto \widetilde{f}_{2}^{k_{2}}(u_{\infty} \otimes \widetilde{f}_{1}^{k_{3}}b_{1} \otimes \widetilde{f}_{2}^{k_{3}}b_{2})$$

$$= u_{\infty} \otimes \widetilde{f}_{1}^{k_{3}}b_{1} \otimes \widetilde{f}_{2}^{k_{2}+k_{3}}b_{2}.$$

$$T_1 f_2^{(k_2)} T_2 f_1^{(k_3)} \equiv \tilde{f}_1^{*\varphi_1(b')} \tilde{e}_1^{\epsilon_1(b')} b$$
, where $b' \equiv f_2^{(k_2)} T_2 f_1^{(k_3)}$.

Since $\varphi_1(b') = \varphi_1(u_\infty \otimes \tilde{f}_1^{k_3}b_1 \otimes \tilde{f}_2^{k_2+k_3}b_2) = k_2$ and $\varepsilon_1(b') = k_3$ we have

$$\begin{split} T_1b' &\longmapsto \tilde{e}_1^{\epsilon_1(b')}b' \otimes \tilde{f}_1^{k_2}b_1 \\ &\longmapsto \tilde{e}_1^{k_3}(u_\infty \otimes \tilde{f}_1^{k_3}b_1 \otimes \tilde{f}_2^{k_2+k_3}b_2) \otimes \tilde{f}_1^{k_2}b_1 \\ &= u_\infty \otimes b_1 \otimes \tilde{f}_2^{k_2+k_3}b_2 \otimes \tilde{f}_1^{k_1}b_1 \,. \end{split}$$

Therefore we obtain

$$\begin{split} f^{(k_1, k_2, k_3)} &= f^{(k_1)}_{\beta_1} f^{(k_2)}_{\beta_2} f^{(k_3)}_{\beta_3} \\ &= f^{(k_1)}_1 T_1 f^{(k_2)}_2 T_2 f^{(k_3)}_1 \\ &\equiv f^{(k_1)}_1 T_1 b' \\ &\longmapsto \tilde{f}^{k_1}_1 (u_\infty \otimes b_1 \otimes \tilde{f}^{k_2 + k_3}_2 b_2 \otimes \tilde{f}^{k_2}_1 b_1) \\ &= \left\{ \begin{array}{ll} u_\infty \otimes \tilde{f}^{k_1}_1 b_1 \otimes \tilde{f}^{k_2 + k_3}_2 b_2 \otimes \tilde{f}^{k_2}_1 b_1 & (k_1 < k_3) \\ u_\infty \otimes \tilde{f}^{k_3}_1 b_1 \otimes \tilde{f}^{k_2 + k_3}_2 b_2 \otimes \tilde{f}^{k_1 + k_2 - k_3}_1 b_1 & (k_1 \le k_3). \end{array} \right. \end{split}$$

By [3], we know

$$B(\infty) = \{ u_{\infty} \bigotimes \tilde{f}_{1}^{k_{2}} b_{1} \bigotimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2} \bigotimes \tilde{f}_{1}^{k_{1}} b_{1}; \ 0 \leq k_{1}, \ 0 \leq k_{2}, \ 0 \leq k_{3} \}.$$

We shall calculate $(u_{\infty} \otimes \tilde{f}_{1}^{k_2} b_1 \otimes \tilde{f}_{2}^{k_2+k_3} b_2 \otimes \tilde{f}_{1}^{k_1} b_1)^*$. First we have

$$(\widetilde{f}_1^{k_1}\widetilde{f}_2^{k_2+k_3}\widetilde{f}_1^{k_2}u_\infty)^*\longmapsto u_\infty \bigotimes \widetilde{f}_1^{k_2}b_1 \bigotimes \widetilde{f}_2^{k_2+k_3}b_2 \bigotimes \widetilde{f}_1^{k_1}b_1\,.$$

And we have

$$\begin{split} \tilde{f}_1^{k_1} \tilde{f}_2^{k_2+k_3} \tilde{f}_1^{k_2} u_\infty &\longmapsto \tilde{f}_1^{k_1} \tilde{f}_2^{k_2+k_3} (u_\infty \otimes \tilde{f}_1^{k_2} b_1) \\ &\longmapsto \tilde{f}_1^{k_1} (u_\infty \otimes \tilde{f}_2^{k_2+k_3} b_2 \otimes \tilde{f}_1^{k_2} b_1) \\ &\longmapsto \begin{cases} u_\infty \otimes \tilde{f}_1^{k_1} b_1 \otimes \tilde{f}_2^{k_2+k_3} b_2 \otimes \tilde{f}_1^{k_2} b_1 & (k_1 \leq k_3) \\ u_\infty \otimes \tilde{f}_1^{k_3} b_1 \otimes \tilde{f}_2^{k_2+k_3} b_2 \otimes \tilde{f}_1^{k_1+k_2-k_3} b_1 & (k_1 \leq k_3). \end{cases} \end{split}$$

Therefore we have

$$f^{(k_1 \cdot k_2 \cdot k_3)} \equiv \tilde{f}_1^{k_1} \tilde{f}_2^{k_2 + k_3} \tilde{f}_1^{k_2} u_{\infty}$$

$$\longmapsto (u_{\infty} \otimes \tilde{f}_1^{k_2} b_1 \otimes \tilde{f}_2^{k_2 + k_3} b_2 \otimes \tilde{f}_1^{k_1} b_1)^*.$$

Example 4.2.2.

$$g=B_2$$
, $I=\{1, 2\}$, $a_{ij}=-2$, $a_{ji}=-1$, $\beta_1=\alpha_1$, $\beta_2=2\alpha_1+\alpha_2$, $\beta_3=\alpha_1+\alpha_2$, $\beta_4=\alpha_2$.

We can calculate similarly,

$$f^{(k_1, k_2, k_3, k_4)} \\ \longmapsto \frac{u_{\infty} \otimes \tilde{f}_{2}^{k_2} b_{2} \otimes \tilde{f}_{1}^{k_1 + 2k_2} b_{1} \otimes \tilde{f}_{2}^{k_3 + k_4} b_{2} \otimes \tilde{f}_{1}^{k_3} b_{1} (k_{2} \leq k_4, \ k_{1} \leq -2k_{2} + k_{3} + 2k_{4})}{u_{\infty} \otimes \tilde{f}_{2}^{k_2} b_{2} \otimes \tilde{f}_{1}^{k_3 + 2k_4} b_{1} \otimes \tilde{f}_{2}^{k_3 + k_4} b_{2} \otimes \tilde{f}_{1}^{k_1 + 2k_2 - 2k_4} b_{1} (k_{2} \leq k_4, \ k_{1} \geq -2k_{2} + k_{3} + 2k_{4})} \\ u_{\infty} \otimes \tilde{f}_{2}^{k_4} b_{2} \otimes \tilde{f}_{1}^{k_1 + 2k_4} b_{1} \otimes \tilde{f}_{2}^{k_2 + k_3} b_{2} \otimes \tilde{f}_{1}^{2k_2 + k_3 - 2k_4} b_{1} (k_{2} \geq k_4, \ k_{1} \leq k_3)} \\ u_{\infty} \otimes \tilde{f}_{2}^{k_4} b_{2} \otimes \tilde{f}_{1}^{k_3 + 2k_4} b_{1} \otimes \tilde{f}_{2}^{k_2 + k_3} b_{2} \otimes \tilde{f}_{1}^{k_1 + 2k_2 - 2k_4} b_{1} (k_{2} \geq k_4, \ k_{1} \geq k_3)}.$$

References

- [1] Kashiwara, M., Crystallizing the q-analogue of universal enveloping algebras, Duke Math. J., 63 (1991), 465-516.
- [2] ——, Grobal crystal base of quantum groups, RIMS preprint 756 (1991), to appear in Duke Math. J.
- [3] ——, Crystal base and Littelmann's refined Demazure character formula, RIMS preprint 880 (1992).
- [4] G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata, 33 (1990), 89-113.
- [5] ——, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc., 3 (1990), 257-296.
- [6] ——, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3 (1990), 447-498.
- [7] ——, Canonical bases arising from quantized enveloping algebras II, *Progr. Theor. Phys. Suppl.*, **102** (1990), 175-201.