Publ. RIMS, Kyoto Univ. 30 (1994), 191-201

Representations of Witt Algebras

Dedicated to Kunal Kadam

By

SENAPATHI ESWARA RAO*

Abstract

In this paper we construct new families of representations for the Lie-algebra of diffeomorphisms of the torus T^d and describe its sub representations.

§0. Introduction

In this paper we construct a continuous family of representations for the Lie-algebra of Diff (T^{d}) . (See [L] for more details and references on Diff (T^{d}) . Here T^{d} is d-dimensional torus. The case d=1 is extensively studied. For example see [KR]). It can also be obtained as the Lie-algebra of derivations on $A = C[t_{1}^{\pm 1}, t_{2}^{\pm 1}, \cdots, t_{d}^{\pm 1}]$. We denote it by Der A and it has a basis $D^{i}(r) = t_{1}^{r_{1}t_{2}^{r_{2}}} \cdots t_{1}^{r_{d}t_{1}} + \cdots t_{d}^{r_{d}}$, $1 \leq i \leq d$. Let h be the linear span of $D^{i}(0)$, $1 \leq i \leq d$. Then h is an abelian subalgebra of Der A and Der A decomposes under h.

We construct three types of h weight modules for Der A with d, d^2 and 1 dimensional weight spaces. We investigate the submodule structure of these modules. Let α be a d tuple of complex numbers and b be a complex number. Then we define a Der A module $\pi(\alpha, b)$ whose weight spaces are d-dimensional. In proposition 1.4 we prove that $\pi(\alpha, b)$ is irreducible Der A module whenever $b \neq 0$. When b=0 but some component of α is not an integer then we prove that there is a unique (irreducible) submodule. The case b=0 and all components of α are integers, we prove that $\pi(\alpha, b)$ is isomorphic to the well known modules of differentials Ω_A .

In section 2 we calculate the dual module of $\pi(\alpha, b)$.

In section 3 we construct modules $\hat{\pi}(\alpha, \beta)$ whose weight spaces are d^2 dimensional. In Proposition 3.1 we prove that $\hat{V}(\alpha, b) = W_1 \oplus W_0$ where W_1 is a submodule with one dimensional weight spaces and W_0 is a submodule with d^2-1 dimensional weight spaces. We further prove that W_0 is *irreducible*. In

Communicated by T. Miwa, January 6, 1993.

¹⁹⁹¹ Mathematics Subject classification: 17B65.

^{*} School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India.

the next section we give conditions under which W_1 is irreducible.

In section 4 we construct modules $\pi_1(\alpha, b)$ whose weight spaces are *one* dimensional. In Proposition 4.1 we prove $\pi_1(\alpha, b)$ is irreducible Der A module unless α is a d tuple of integers and $b \in \{0, 1\}$.

In section 5 we construct modules $\pi(k, S, \alpha, b)$ whose weight spaces are of d^k dimensional. We leave it as an open problem to describe its submodules.

§1. Modules with *d*-dimensional Weight Spaces

Let V be a d-dimensional vector space over complex numbers C and basis e_1, e_2, \dots, e_d . Let (,) be a non-degenerate symmetric bilinear form on V defined by $(e_i, e_j) = \delta_{i,j}$. Let $\Gamma = \bigoplus_{i=1}^{d} \mathbb{Z} e_i$ the Z linear combinations of e_1, e_2, \dots, e_d , be a lattice of V. We will assume that $d \ge 2$.

Let $A = C[t_1^{\pm 1}, t_2^{\pm 1}, \dots, t_d^{\pm 1}]$ be the algebra of Laurent polynomials functions of the torus $C^X \times C^X \times \dots \times C^X$. It is well known that Der A, the Lie-algebra of derivations on A is given by the linear span of

$$D^{i}(r) = t_{1}^{r_{1}} t_{2}^{r_{2}} \cdots t_{i}^{r_{i+1}} \cdots t_{d}^{r_{d}} \frac{d}{dt_{i}}, \qquad r = \sum_{i} r_{i} e_{i} \in \Gamma.$$

Define derivation D(u, r), $u \in V$, $r \in \Gamma$ by

$$D(u, r) = \sum_{i=1}^{d} u_i D^i(r), \qquad u = \sum u_i e_i.$$

(1.1) Then [D(u, r), D(v, s)] = D(w, r+s), where w = v(u, s) - u(v, r).

Let *h* be the abelian sub-algebra spanned by $D^{i}(0)$, $1 \leq i \leq d$. Clearly Der *A* is *h* weight module.

We now construct a continuous family of h-weight modules for Der A whose weight spaces are d-dimensional.

For each $r \in \Gamma$, take an isomorphic copy V(r) of V. Denote the isomorphism by $v \mapsto v(r)$. Let $V(\alpha, b) = \bigoplus_{r \in \Gamma} V(r)$ for $\alpha \in V$ and $b \in C$. We define a representation $\pi := \pi(\alpha, b)$ on $V(\alpha, b)$ for the Lie-algebra Der A.

(1.2) $D(u, r)v(n) = (u, n+\alpha+br)v(n+r) + (u, v)r(n+r).$

It is straightforward to verify that π defines a representation.

1.3 Remark. The module $V(\alpha, b)$ is isomorphic to $V(\alpha+r, b)$, $r \in \Gamma$ by sending v(n) to v(n+r).

1.4 Proposition.

(1) If $b \neq 0$ then $V(\alpha, b)$ is irreducible as der A module.

(2) If b=0 then the subspace W spanned by $(n+\alpha)(n)$ is an irreducible submodule of $V(\alpha, b)$. (3) If b=0, $\alpha \notin \Gamma$ then W is the only proper submodule of $V(\alpha, b)$.

(4) If b=0, $\alpha \in \Gamma$ then $V(\alpha, b)/W$ is not irreducible and $V(-\alpha)$ is a ddimensional trivial (only) sub-module of $V(\alpha, b)/W$.

First we prove some lemmas.

1.5 Lemma. If $b \neq 0$ then the module generated by v(n) for some non-zero v and for some n contains k(n) for all k in V.

Proof. Let W be the submodule generated by v(n). Observe that

 $D(u, -r)D(u, r)v(n) = (u, n+\alpha+br)(u, n+r+\alpha-br)v(n)-2b(u, v)(u, r)r(n).$

Choose u such that $(u, v) \neq 0$ and $(u, r) \neq 0$. (Define $\bar{v} = \sum \bar{v}_i e_i$, where $v = \sum v_i e_i$ and \bar{v}_i denote the complex conjugate of v_i . Now if $(\bar{v}, \bar{r}) = 0$ choose $u = \bar{v} + \bar{r}$. If $(\bar{v}, \bar{r}) \neq 0$ then choose $u = \bar{v}$). Then r(n) belongs to W for all $r \in \Gamma$. Now by choosing $r = e_i$, $1 \leq i \leq d$ we have $e_i(n) \in W$. By taking linear combinations of $e_i(n)$, we conclude W contains k(n) for all k in V.

1.6 Lemma. If $b \neq 0$. Let W be defined as in Lemma 1.5. Then $W = V(\alpha, b)$.

Proof. In view of Lemma 1.5 it is sufficient to prove that given $n \in \Gamma$ there is a w in V such that $w(n) \in W$.

Consider

$$D(u, r)v(n) = (u, n+\alpha+br)v(n+r)+(u, v)r(n+r).$$

Now choose u such that $(u, v) \neq 0$ and $(u, n+\alpha+br)=0$. If v is a multiple of $n+\alpha+br$ then choose a different v. It can be done in view of Lemma 1.5. Then $r(n+r) \in W$. This being true for every r we are done.

Lemma 1.6 proves Proposition 1.4 (1).

Proof of Proposition 1.4 (2). First note that

(1.7)
$$D(u, r)(n+\alpha)(n) = (u, n+\alpha)(n+\alpha+r)(n+r).$$

Let W be linear span of $(n+\alpha)(n)$, $n \in \Gamma$. Then from 1.7 it follows that W is an irreducible submodule of $V(\alpha, 0)$. Also it is clear that each weight space is one-dimensional.

Proof of Proposition 1.4 (3). We have b=0 and $\alpha \notin \Gamma$. Let W_0 be any submodule different from W. Then W_0 necessarily contains a vector t(n) such that t is not a scalar multiple of $n+\alpha$. Now choose u such that $(u, n+\alpha)=0$ and $(u, t)\neq 0$. Consider

$$D(u, r)t(n) = (u, n+\alpha)t(n) + (u, t)r(n+r).$$

Then it will follow that $r(n+r) \in W_0$.

Now consider

$$D(u', -r) \cdot r(n+r) = (u', n+\alpha+r)r(n) + (u', r)(-r)(n) = (u', n+\alpha)r(n) \in W_0.$$

Since $\alpha \notin \Gamma$, $n + \alpha \neq 0$ for any $n \in \Gamma$. Hence we can choose u' such that $(u', n+\alpha) \neq 0$. Hence $r(n) \in W_0$ for all $r \in \Gamma$. By choosing $r=e_i$, $1 \leq i \leq d$ we have $e_i(n) \in W_0$.

Now consider

$$D(u', r)e_i(n) = (u', n+\alpha)e_i(n+r) + (u', e_i)r(n+r).$$

Since $r(n+r) \in W_0$ we have $e_i(n+r) \in W_0$. This proves $v(n+r) \in W_0$ for all $v \in V$ and for all $r \in \Gamma$. Hence $W_0 = V(\alpha, b)$.

Proof of Proposition 1.4 (4). We have b=0, $\alpha \in \Gamma$. First note that

(1.8)
$$D(u, r)e_i(-\alpha) = (u, -\alpha)r(-\alpha+r) \in W$$

Let W_1 be the space spanned by W and $e_i(-\alpha)$, $1 \le i \le d$. Then by 1.8 it will follow that W_1 is a sub module of $V(\alpha, b)$. It will also follow that the space spanned by $e_i(-\alpha)$, $1 \le i \le d$ is a trivial sub representation of $V(\alpha, b)/W$.

Let W_0 be a submodule of $V(\alpha, b)$. Assume that W_0 is not a submodule of W_1 . Then we claim that $W_0 = V(\alpha, b)$. Since W_0 is not contained in W_1 , W_0 contains a vector t(n) such that $n + \alpha \neq 0$ and t is not a scalar multiple of $n + \alpha$. By the argument in Proof of Proposition 1.4 (3), we can deduce that $W_0 = V(\alpha, b)$.

In fact in this case $V(\alpha, b)$ is isomorphic to the well known module of differentials Ω_A .

§2. Duality

Let V be a vector space of dimension d as in section 1 with non-degenerate bilinear form (,). Let $V^*(\alpha, b) = \bigoplus_{r \in \Gamma} V(r)$, $\alpha \in \Gamma$, $b \in C$ where V(r) is an isomorphic copy of V. We define a representation $\pi^* = \pi^*(\alpha, b)$ on $V^*(\alpha, b)$ for the Lie-algebra Der A.

(2.1)
$$D(u, r)v(n) = (u, n+\alpha+br)v(n+r) - (r, v)u(n+r).$$

2.2 Definition. Let W be a der A module with finite dimensional weight spaces. That is $W = \bigoplus_{n \in \Gamma} W_n$ where each W_n is finite dimensional. Then $W^* = \bigoplus_{n \in \Gamma} W_n^*$ (where W_n^* is a vector space dual). The dual model is defined as

$$D(u, r)w^* \cdot v = w^*(D(u, -r)v).$$

2.3 Proposition. The dual module of $\pi(\alpha, b)$ is isomorphic to $\pi^*(\alpha, 1-b)$.

194

Proof. Define $e_i^*(n)$ of W^* by

$$e_{i}^{*}(n)e_{j}(m)=\delta_{i,j}\delta_{m,n}$$
.

For $v \in V$, define $v^*(n) = \sum v_i e_i^*(n)$ where $v = \sum_i v_i e_i(n)$. Consider

$$\begin{aligned} D^{j}(r)e_{i}^{*}(n)v(n+r) &= e_{i}^{*}(n)(D^{j}(-r)v(n+r)) \\ &= e_{i}^{*}(n)((n_{j}+r_{j}+\alpha_{j}-br_{j})v(n)-v_{j}r(n)) \\ &= (n_{j}+\alpha_{j}-(b-1)r_{j})e_{i}^{*}(n+r)v(n+r)-r_{i}e_{j}^{*}(n+r)v(n+r) \\ D^{j}(r)\tilde{v}^{*}(n)\cdot v(n+r) &= n_{j}+\alpha_{j}-(b-1)r_{j}\tilde{v}^{*}(n+r)\cdot v(n+r)-(r, \tilde{v})e_{j}^{*}(n+r)v(n+r). \end{aligned}$$

Let $D(u, r) = \sum u_i D^j(n)$. Then

$$D(u, r)\tilde{v}^{*}(n) = (u, n + \alpha - (b-1)r)\tilde{v}^{*}(n+r) - (r, v)u^{*}(n+r).$$

This proves the proposition.

§ 3. Modules with d^2 -dimensional Weight Spaces

Let V be a vector space of dimension d as in section 1 with non-degenerate bilinear form (,). Let $\hat{V}(\alpha, b) = \bigoplus_{r \in \Gamma} V \otimes V(r)(\alpha \in V, b \in C)$ where $V \otimes V(r)$ is an isomorphic copy of $V \otimes V$. We define a representation $\hat{\pi}(\alpha, b) = \hat{\pi}$ on $\hat{V}(\alpha, b)$ for the Lie-algebra Der A.

$$D(u, r)k \otimes t(n) = (u, n+\alpha+br)k \otimes t(n+r)$$
$$-(r, t)k \otimes u(n+r)$$
$$+(k, u)r \otimes t(n+r)$$

clearly $\hat{V}(\alpha, b)$ is a weight module where each weight space is d^2 dimensional.

3.1 Proposition. (1) Let $k(n) = \sum_{i=1}^{d} e_i \otimes e_i(n)$ and let W_1 be linear span of k(n), $n \in \Gamma$. Then W_1 is a submodule of $\hat{V}(\alpha, b)$ whose weight spaces are one dimensional.

(2) Let $W_0 = \{ \sum_{i=1}^d k_i \otimes t_i(n), n \in \Gamma, \sum (k_i, t_i) = 0 \}.$

Then W_0 is an irreducible submodule whose weight spaces are of d^2-1 dimensional.

(3) $\hat{V}(\alpha, b) = W_1 \oplus W_0$.

3.2 Remark. Let $W_0(n)$ be a weight space of W_0 of weight n. Then observe that $e_i \otimes e_j(n)$, i = j and $e_i \otimes e_i(n) - e_{i-1} \otimes e_{i+1}(n)$ $1 \leq i \leq d-1$ is a vectorspace basis of $W_0(n)$. In particular $W_0(n)$ is of d^2-1 dimension and any vector $v \in W_0(n)$ can be written as

$$\sum_{i\neq j}a_{ij}e_i\otimes e_j(n)+\sum_{i=1}^da_ie_i\otimes e_i(n),\qquad \sum_{i=1}^da_i=0.$$

We first prove some lemmas.

3.3 Lemma. Let \widetilde{W} be some submodule of W_0 . Then \widetilde{W} contains a vector

$$w = \sum_{i \neq j} a_{ij} e_i \otimes e_j(n) + \sum a_i e_i \otimes e_i(n), \qquad \sum a_i = 0$$

and $a_{lk} \neq 0$ for some $l \neq k$.

Proof. \widetilde{W} is a weight module being a submodule of a weight module W_0 . Hence \widetilde{W} contains weight vectors. Let $v \in \widetilde{W}$ be a weight vector and write

$$v = \sum_{i \neq j} a_{ij} e_i \otimes e_j(n) + \sum_i a_i e_i \otimes e_i(n), \qquad \sum a_i = 0$$

If $a_{ij} \neq 0$ for some $i \neq j$ then we are done. So we can assume

$$v = \sum a_i e_i \otimes e_i(n), \qquad \sum a_i = 0.$$

Consider

$$D(u, r)v = (u, n+\alpha+br)\sum_{i} a_{i}e_{i} \otimes e_{i}(n+r)$$
$$-\sum_{i} (r, e_{i})a_{i}e_{i} \otimes u(n+r)$$
$$+\sum_{i} (u, e_{i})a_{i}r \otimes e_{i}(n+r).$$

Choose $u=e_k$, $r=e_l$ for some $k \neq l$. Then

$$D(u, r)v = (u, n+\alpha+br) \sum a_i e_i \otimes e_i(n+r)$$
$$-a_i e_i \otimes e_k(n+r) + a_k e_i \otimes e_k(n+r).$$

Suppose $a_k = a_l$ for all $k \neq l$. Then it is a contradiction to $\sum a_i = 0$. Hence $a_k \neq a_l$ for some $k \neq l$. This proves the Lemma.

3.4 Lemma.

$$\begin{aligned} D(u, -r)D(u, r)k\otimes t(n) &= (u, n+\alpha+r-br)(u, n+\alpha+br)k\otimes t(n) \\ &+ (2b-2)(r, t)(r, u)k\otimes u(n) \\ &- 2b(k, u)(u, r)r\otimes t(n) \\ &+ 2(k, u)(r, t)r\otimes u(n). \end{aligned}$$

Proof. Direct checking.

3.5 Lemma. Let \widetilde{W} be some submodule of W_{\circ} and let w be a vector of \widetilde{W} such that

196

$$w = \sum_{i \neq j} a_{ij} e_i \otimes e_j(n) + \sum a_i e_i \otimes e_i(n), \qquad \sum a_i = 0$$

and $a_{ij} \neq 0$ for some $i \neq j$. Then $e_i \otimes e_j(n) \in \widetilde{W}$.

Proof. Let $u=e_i$, $r=e_j$ so that (u, r)=0. Now by Lemma 3.4 we have

$$D(u, -r) \cdot D(u, r)w = (u, n+r+\alpha-br)(u, n+\alpha+br)w + a_{ij}e_i \otimes e_j(n) \in \widetilde{W}.$$

This implies $e_i \otimes e_j(n) \in \widetilde{W}$.

3.6 Lemma. Let \widetilde{W} be some submodule of W_0 . Assume that $e_i \otimes e_j(n) \in \widetilde{W}$ for some n and for some $i \neq j$. Then

- (i) $e_l \otimes e_k(n) \in \widetilde{W}$ for all $l \neq k$.
- (ii) $e_l \otimes e_l(n) e_k \otimes e_k(n) \in \widetilde{W}$ for all l and k.

Proof. Claim 1. $e_j \otimes e_i(n)$, $e_i \otimes e_i(n) - e_j \otimes e_j(n) \in \widetilde{W}$. Let $u = e_i + e_j$, $r = e_j + e_i$. Then by Lemma 3.4 we have

$$D(u, -r)D(u, r)e_i \otimes e_j(n) = (u, n+r+\alpha-br)(u, n+\alpha+br)e_i \otimes e_j(n)$$

$$+(4b-2)(e_i \otimes e_i(n)-e_j \otimes e_j(n))$$

$$+2(e_j \otimes e_i(n)-e_i \otimes e_j(r)) \in \widetilde{W}.$$

Now by Lemma 3.5 we have

$$e_{j} \otimes e_{i}(r) \in \widetilde{W}$$

Also we have

$$(4b-2)(e_i \otimes e_i(n) - e_j \otimes e_j(n)) \in \widetilde{W} \qquad \qquad A1$$

Now take $r=e_j$ and $u=e_i+e_j$. Then by Lemma 3.4 we have

$$\begin{split} D(u, -r)D(u, r)e_i \otimes e_j(n) &= (u, n+r+\alpha-br)(u, n+\alpha+br)e_i \otimes e_j(n) \\ &+ (2b-2)(e_i \otimes e_i(n)-e_j \otimes e_j(n)) \\ &+ 2e_j \otimes e_i(n) + (2b-2)e_i \otimes e_j(n) \in \widetilde{W} \,. \end{split}$$

Since $e_i \otimes e_j(n)$, $e_j \otimes e_i(n) \in \widetilde{W}$, it will follow that

$$(2b-2)(e_{i}\otimes e_{i}(n)-e_{j}\otimes e_{j}(n))\in \widetilde{W} \qquad \qquad A2$$

From A1 and A2 we have

$$e_i \otimes e_i(n) - e_j \otimes e_j(n) \in \widetilde{W}$$
.

This completes the proof of Claim 1. Now to see the proof of Lemma 3.5, the case d=2 follows from Claim 1. Hence we can assume $d \ge 3$. Let $k \ne i$ and $k \ne j$ and take $u=e_k+e_i$, $r=e_k+e_j$.

Consider

$$D(u, -r)D(u, r)e_{i} \otimes e_{j}(n) = (u, n+r+\alpha-br)(u, n+\alpha+br)e_{i} \otimes e_{j}(n)$$

$$+2b(e_{i} \otimes e_{i}(n)-e_{j} \otimes e_{j}(n))$$

$$+2(e_{k} \otimes e_{k}(n)-e_{i} \otimes e_{i}(n))$$

$$+2(b-1)e_{i} \otimes e_{k}(n)$$

$$-2be_{k} \otimes e_{j}(n)+2e_{k} \otimes e_{i}(n)+2e_{j} \otimes e_{i}(n)$$

$$+2e_{j} \otimes e_{k}(n) \in \widetilde{W}.$$

Now by Lemma 3.5 we have $e_k \otimes e_i(n)$, $e_j \otimes e_i(n)$ and $e_j \otimes e_k(n) \in \widetilde{W}$. By replacing the above argument for vectors $e_k \otimes e_i(n)$, $e_j \otimes e_i(n)$, $e_j \otimes e_k(n)$ in place of $e_i \otimes e_j(n)$ and l in place of k, we conclude that $e_k \otimes e_l \in \widetilde{W}$ for any $k \neq l$. This completes the first part of the Lemma. We also have

$$2b(e_{i}\otimes e_{i}(n)-e_{j}\otimes e_{j}(n))+2(e_{k}\otimes e_{k}(n)-e_{i}\otimes e_{i}(n))\in \widetilde{W}.$$

But by Claim 1 we know that $e_i \otimes e_i(n) - e_j \otimes e_j(n) \in \widetilde{W}$. Hence $e_k \otimes e_k - e_i \otimes e_i(n)$ $\in \widetilde{W}$. This completes the second part of the Lemma.

Proof of the Proposition 3.1.

(1) It is easy to verify that W_1 is an invariant subspace of $\hat{V}(\alpha, b)$. It is clear that each weight space is one dimensional.

(2) Let \widetilde{W} be a non-zero submodule of W_0 .

Claim: (1) $e_i \otimes e_i(n) \in \widetilde{W}$ for all $i \neq j$ and for all $n \in \Gamma$ (2) $e_i \otimes e_i(n) - e_j \otimes e_j(n) \in \widetilde{W}$ for all $i \neq j$ and for all $n \in \Gamma$.

To prove the claim, in view of Lemma 3.6, it is sufficient to prove that there exists i and j, $i \neq j$ such that $e_i \otimes e_j(n) \in \widetilde{W}$ for all $m \in \Gamma$. But by Lemmas 3.3 and 3.5, \widetilde{W} contains $e_i \otimes e_j(n)$ for some n and for some $i \neq j$.

Subclaim. $e_i \otimes e_j(m) \in \widetilde{W}$, for all $m \in \Gamma$.

Consider

$$D(u, r)e_i \otimes e_j(n) + D(u, -r)e_i \otimes e_j(n) = (u, n+\alpha)e_i \otimes e_j(n+r) \in \widetilde{W}$$

Suppose $n + \alpha \neq 0$. Then choose u such that $(u, n + \alpha) \neq 0$. Then subclaim follows. Suppose $n + \alpha = 0$. Then consider

$$D(u, r)e_i \otimes e_j(n) = b(u, r)e_i \otimes e_j(n+r)$$
$$-(r, e_j)e_i \otimes u(n+r)$$
$$+(e_i, u)r \otimes e_j(n+r).$$

Choose $r=e_j+e_i$, $u=e_j-e_i$. Then (u, r)=0, $(r, e_j)=1$, $(e_i, u)=-1$ and

D/

Representations of Witt Algebras

$$D(u, r)e_i \otimes e_j(n) = -(e_i \otimes (-e_i + e_j)(n+r)) - (e_j + e_i) \otimes e_j(n+r)$$
$$= e_i \otimes e_i(n+r) - e_j \otimes e_j(n+r) - 2e_i \otimes e_j(n+r).$$

Now by Lemma 3.4, $e_i \otimes e_i (n+r) \in \widetilde{W}$. This proves the sub claim.

In view of Remark 3.2 and the claim we prove that $\widetilde{W} = W_0$. Also by Remark 3.2 each weight space of W_0 is d^2-1 dimensional.

(3) It is clear that $W_0 \cap W_1 = \{0\}$. Now $\hat{V} = W_0 \oplus W_1$ as the dimensions of weight spaces match.

§4. Modules with 1-dimensional Weight Spaces

In this section we construct modules for Der A whose weight spaces are one-dimensional. Let V_1 be one dimensional vector space with basis v. For each $r \in \Gamma$, take an isomorphic copy $V_1(r)$ of V_1 . Denote the isomorphism by $v \mapsto v(r)$. Let $W(\alpha, b) = \bigoplus_{r \in \Gamma} V_1(r)$ for $\alpha \in V$ and $c \in C$. Define Der A module $\pi_1(\alpha, b)$ in the following way.

$$D(u, r)v(n) = (u, n+\alpha+br)v(n+r).$$

It is straightforward to verify that $W(\alpha, b)$ is a Der A module.

4.1 Proposition.

(1) $W(\alpha, b)$ is irreducible Der A-module unless $\alpha \in \Gamma$ and $b \in \{0, 1\}$.

(2) If $\alpha \in \Gamma$ and b=0 then $Cv(-\alpha)$ is the only non-zero Der A proper submodule of $W(\alpha, b)$.

(3) If $\alpha \in \Gamma$ and b=1 then $W(\alpha, b)-Cv(-\alpha)$ is the only Der A proper (irreducible) submodule of $W(\alpha, b)$.

Proof. It can easily be deduced from the following well known Proposition A.

Let $d_n = t^{n+1}d/dt$ be a derivation on $C[t, t^{-1}]$ the Laurent polynomials in one variable. Let L be the Lie-algebra spanned by d_n , $n \in \mathbb{Z}$ with Lie structure

$$[d_n, d_m] = (m-n)d_{n+m}.$$

For any complex numbers a, b define

$$V_{a,b} = \bigoplus_{k \in \mathbb{Z}} C v_k$$

Now we define L- module structure $V_{a,b}$ depending on a and b.

$$d_n v_k = (k+a+bn)v_{n+k}.$$

Proposition. A [KR].

- (1) $V_{a,b}$ is reducible as L-module if and only if $a \in \mathbb{Z}$ and $b \in \{1, 0\}$.
- (2) If b=0 and $a \in \mathbb{Z}$ then Cv_{-a} is the only proper submodule.

(3) If b=1 and $a \in \mathbb{Z}$ then $V_{a,b} \setminus \{Cv_{-a}\}$ is the only proper (irreducible) submodule.

§ 5. Modules with d^{k} -dimensional Weight Spaces

In this section, for every positive integer k, we construct a continuous family of modules whose weight spaces are d^k dimensional. Let V be a vector space of dimension d with non-degenerate bilinear form (,) defined in section 1. Let $W = V \otimes \cdots \otimes V(k \text{ times})$. Let $V(k, \alpha, b) = \bigoplus_{n \in \Gamma} W(n)$ where W(n) is an isomorphic copy of W. Let S be any subset of $\{1, 2, \dots, k\}$. Define Der A module $\pi(k, S, \alpha, b)$ in the following way.

$$D(u, r)v_1 \otimes \cdots \otimes v_k(n) = (u, n+\alpha+br)v_1 \otimes \cdots \otimes v_k(n+r)$$

+ $\sum_{i \in S} (u, v_i)v_1 \otimes \cdots v_{i-1} \otimes r \otimes v_{i+1} \cdots \otimes v_k(n+r)$
- $\sum_{i \notin S} (r, v_i)v_1 \otimes \cdots v_{i-1} \otimes u \otimes v_{i+1} \cdots \otimes v_k(n+r).$

It is straightforward to verify that $\pi(k, S, \alpha, b)$ defines Der A module. We leave it as an open problem to describe its submodules.

The above modules are motivated by vertex operator representations constructed in [EM].

5.1 *Remark.* (1) It can easily be verified that the dual of $\pi(k, S, \alpha, b)$ is isomorphic to $\pi(k, S^{\perp}, \alpha, 1-b)$ where $S^{\perp} = \{1, 2, \dots, k\} \setminus S$.

(2) Let σ be a permutation of $\{1, 2, \dots, k\}$ such that $\sigma(S) \subseteq S$. σ acts on W in an obvious way and commutes with π action. So that each σ -eigenspace of W is a subrepresentation. In particular W is reducible. Such σ exists in all cases except in two cases (and its duals) discussed in section 1 and 3.

5.2 Remark. The modules considered in Proposition A are the only known modules for L with property.

(1) irreducibility

(2) dimension of weight spaces are bounded by uniform constant. The other known modules for L are highest weight and lowest weight modules. It has been conjectured by Kac in [K] that these are the only modules for L with finite dimensional weight spaces.

Now coming to the Der A the only known modules are the one constructed in this paper. The concept of highest weight modules does not go through for Der A as there is no canonical positive and negative subalgebras.

In [EM] some modules for an abelian extension (infinite) for Der A are constructed. It may be said that Der A has no non-trivial central extensions. [RSS].

References

- [EM] Eswara Rao, S. and Moody, R.V., Vertex Representations for N-Toroidal Lie algebra and a generalization of the Virasoro algebra, Comm. Math. Phys. 159, 239-264 (1994).
- [K] Kac, V.G., Some problems of infinite-dimensional Lie algebras and their representations. Lie algebras and related topics, 117-126, Lect. Note. in Math. 933, Springer, 1982.
- [KR] Kac, V.G. and Raina, A.K., Bombay Lectures on Highest weight representations of infinite dimensional Lie-algebras, World Scientific, 1987.
- [L] Larsson, T.A., Multi-Dimensional Virasoro Algebra, Phys. Lett. B, 231 (1989), 94-96.
- [RSS] Ramos, E., Sah, C.H. and Shrock, R.E., Algebras of diffeomorphisms of the N-torus, J. Math. Phys., 31 (1990), 1805-1816.

Added in proof: Recently, we have become aware of a paper by T.A. Larsson, Conformal fields: A class of Representations of Vect(N), Internat. J. Modern Phys. A, 7, No. 26 (1992), 6493-6508 where he defines modules similar to our § 5.