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Abstract

In this paper we construct new families of representations for the Lie-algebra oi
diffeomorphisms of the torus Td and describe its sub representations.

§ 0. Introduction

In this paper we construct a continuous family of representations for the
Lie-algebra of Diff(Td). (See [L] for more details and references on Diff(Td).
Here Td is ^-dimensional torus. The case d=l is extensively studied. For
example see [KR]). It can also be obtained as the Lie-algebra of derivations
on A=C[_ti\ f f 1 , • • - , fl1]. We denote it by Der^l and it has a basis D*(r)=
t\itl*-~tli+l-tl*, l<i^d. Let k be the linear span of D*(0), l^i<d. Then
k is an abelian subalgebra of Der A and Der A decomposes under k.

We construct three types of k weight modules for Der/I with d, dz and 1
dimensional weight spaces. We investigate the submodule structure of these
modules. Let a be a d tuple of complex numbers and b be a complex number.
Then we define a Der A module n(a, b} whose weight spaces are d-dimensional.
In proposition 1.4 we prove that ;r(a, b) is irreducible Der/L module whenever
b^Q. When b=Q but somecomponent of a is not an integer then we prove
that there is a unique (irreducible) submodule. The case 6=0 and all com-
ponents of a are integers, we prove that n(ay b) is isomorphic to the well
known modules of differentials QA>

In section 2 we calculate the dual module of n(a, b).
In section 3 we construct modules ft (a, /3) whose weight spaces are d2

dimensional. In Proposition 3.1 we prove that V (a, b)=Wi@W0 where Wi is
a submodule with one dimensional weight spaces and WQ is a submodule with
dz—l dimensional weight spaces. We further prove that WQ is irreducible. In
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the next section we give conditions under which Wi is irreducible.
In section 4 we construct modules ^(a, b) whose weight spaces are one

dimensional. In Proposition 4.1 we prove ^i(a, b) is irreducible Der A module
unless a is a d tuple of integers and be{0, 1}.

In section 5 we construct modules n(k, S, a, b) whose weight spaces are of
dk dimensional. We leave it as an open problem to describe its submodules.

§ 1. Modules with ^-dimensional Weight Spaces

Let V be a ^-dimensional vector space over complex numbers C and basis
£1, #2, • • • , 0d- Let (,) be a non-degenerate symmetric bilinear form on V de-
fined by (elf ej)=di,j. Let r=Q)f=iZel the Z linear combinations of ei, ez,
••• , ed, be a lattice of V. We will assume that d^2.

Let A=C[t*1, t z 1 , ••• , ^] be the algebra of Laurent polynomials functions
of the torus CxxCxx ••• XCX. It is well known that Der A, the Lie-algebra
of derivations on A is given by the linear span of

Define derivation D(u, r), u^V, re/1 by

D(u, r)= ] M^'Cr) , u=

(1.1) Then \_D(u, r\ D(v, s)]=D(w, r+s), where w=v(u, s)-u(v, r).

Let k be the abelian sub-algebra spanned by /}*(()), l<i<d. Clearly Der^l
is k weight module.

We now construct a continuous family of A-weight modules for Der A whose
weight spaces are rf-dimensional.

For each r^F, take an isomorphic copy V(r) of V. Denote the isomorphism
by v^v(r}. Let V(a, b}=®r&rV(r} for a^V and b<=C. We define a repre-
sentation TC:= n(a, b) on V(a, b) for the Lie-algebra Der A.

(1.2) D(u, r}v(n}=(u, n + a+br)v(n+r)+(u, v}r(n+r}.

It is straightforward to verify that n defines a representation.

1.3 Remark. The module V(a, b) is isomorphic to V(a-\-r, b), r<=Fby send-
ing v(ri) to v(n+r\

1.4 Proposition.
(1) // b^Q then V(a, b) is irreducible as der A module.
(2) // 6=0 then the subspace W spanned by (n + a)(ri) is an irreducible sub-

module of V(a, b}.
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(3) // £=0, a^F then W is the only proper submodule of V(a, b).
(4) // 6=0, a^F then V(a, b)/W is not irreducible and V(—a) is a d-

dimensional trivial (only) sub-module of V(a, b)/W .

First we prove some lemmas.

1.5 Lemma. If b^Q then the module generated by v(ri) for some non-zero v
and for some n contains k(ri) for all k in V.

Proof. Let W be the submodule generated by v(ri). Observe that

D(u, —r)D(u, r)v(n)—(u, n + a+br)(u, njrrjra—br)v(n)—2b(u, v)(u, r)r(n).

Choose u such that (M, v)^Q and (u, r)^0. (Define v=Svi04 , where v^^ivlei

and vl denote the complex conjugate of vi. Now if (v, f)=0 choose u=v-\-r.
If (v, r)-0 then choose u—v). Then r(ri) belongs to W for all re/7. Now by
choosing r=e%, \<i^d we have el(ri)^W. By taking linear combinations of
el(ri), we conclude W contains k(n) for all k in V.

1.6 Lemma. // b^O. Let W be defined as in Lemma 1.5. Then W=V(a, b).

Proof. In view of Lemma 1.5 it is sufficient to prove that given n
there is a w in V such that w

Consider

D(u, r)v(ri)=(u, n-\-OL-\-br)v(n+r)-\-(u, v)r(n+r).

Now choose u such that (u, v)3=Q and (u, n-\-a+br)=0. If v is a multiple of
n -\-a-\-br then choose a different v. It can be done in view of Lemma 1.5.
Then r(n-\-r)<=W. This being true for every r we are done.

Lemma 1.6 proves Proposition 1.4 (1).

Proof of Proposition 1.4 (2). First note that

(1.7) D(u, r)(n+a)(n)=(u,

Let W be linear span of (n+a)(w), n<=F. Then from 1.7 it follows that W is
an irreducible submodule of V(a, 0). Also it is clear that each weight space is
one-dimensional.

Proof of Proposition 1.4 (3). We have b=Q and a£F. Let W0 be any
submodule different from W. Then W0 necessarily contains a vector t(ri) such
that t is not a scalar multiple of n + a. Now choose u such that (M, n+a)=Q
and (M, 0-£0. Consider

D(u, r)t(n)=(u, n + a)t(n)+(u, t)r(n+r).
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Then it will follow that
Now consider

D(u', -r}>r(n+r)=

Since a£F, n + o^O for any n<=F. Hence we can choose u' such that
(M', n+a)--£0. Hence r(n)^W0 for all reT. By choosing r=^, l^i^d we
have ej(n)ePF0.

Now consider

D(uf, r}ei(n}=(uf, n + d)el(n+r)+(u/
f et}r(n+r}.

Since r(n+r)ePF0 we have 0i(n+r)el/Fo- This proves v(n-\-r)^WQ for all
and for all reT. Hence WQ=V(a, b\

Proof of Proposition 1.4 (4). We have 6=0, a<=F. First note that

(1.8) D(u,

Let Wi be the space spanned by W and e t(— a), l^i^d. Then by 1.8 it will
follow that Wi is a sub module of V(a, b). It will also follow that the space
spanned by et(—a), l^i^d is a trivial sub representation of V(a, b)/W.

Let W0 be a submodule of V(a, b). Assume that W0 is not a submodule of
Wi. Then we c/flim that W0=V(a, b). Since ^F0 is not contained in W^, W0

contains a vector ?(w) such that n+a-^Q and f is not a scalar multiple of n+a.
By the argument in Proof of Proposition 1.4 (3), we can deduce that W0=
V(a, b).

In fact in this case V(a, b) is isomorphic to the well known module of dif-
ferentials QA-

§ 2. Duality

Let V be a vector space of dimension d as in section 1 with non-degenerate
bilinear form ( , ). Let 7*(a, 6)=0rer V(r), aeT, 6e(7 where V(r) is an iso-
morphic copy of V. We define a representation 7r*=7r*O, 6) on V*(a, 6) for
the Lie-algebra Der A

(2.1) D(u, r)v(n)=(u, n + a+br)v(n+r)-(r, v)u(n+r).

2.2 Definition. Let W be a der A module with finite dimensional weight
spaces. That is W=®n^r Wn where each Wn is finite dimensional. Then W*=
0ner^* (where Wt is a vector space dual). The dual model is defined as

D(u, r}w*-v=w*(D(u, —r)v).

2.3 Proposition. The dual module of n(a, b) is isomorphic to n*(a, 1—b).
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Proof. Define e$(n) of W* by

For v^V, define v*(n)—^vle*(n) where v—^ vlel(n). Consider

D>(r)e*(n)v(n+r)=e*(n)(DJ(-r)v(n+r))

Let D(u, r)=^UjDj(n). Then

D(u, r)v*(n)=(u, w + a-(&-l)r)8*(n+r)--(r, v)u*(n+r).

This proves the proposition.

§ 3. Modules with d2-dimensional Weight Spaces

Let V be a vector space of dimension d as in section 1 with non-degenerate
bilinear form ( , ). Let V (a, b)=®rerV®V(r)(ae=V, b^C) where V®V(r} is
an isomorphic copy of V®V. We define a representation ft (a, b)=ft on V
(a, b) for the Lie-algebra Der A.

D(u,

clearly V (a, b) is a weight module where each weight space is d2 dimensional.

3.1 Proposition. (1) Let k(n)= 2^=i el®el(n) and let W^_ be linear span of
k(ri), n^F. Then Wi is a submodule of V (a, b} whose weight spaces are one
dimensional.

(2) Let W0={S?-i k&tt(n\ n^T, ^(kl} 0=0} .
Then W0 is an irreducible submodule whose weight spaces are of d2—! dimen-

sional.
(3) V («, b)=W,®W0.

3.2 Remark. Let WQ(n) be a weight space of WQ of weight n. Then ob-
serve that e^§§ej(n'), i^j and el®el(ri)— ei^l®el+l(ri) l<Li<d— 1 is a vectorspace
basis of W0(ri). In particular W0(w) is of d2—! dimension and any vector v&
W0(n) can be written as
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d d
S fli.7^(g)^(w)+ S alel®el(n\ S a*=0 .

i^j 1 = 1 i=i

We first prove some lemmas.

3.3 Lemma. Le£ W" be some submodule of W^. Then W contains a vector

w= S al]ei®ej(n)+^ alel®el(n}, S ^=0
«*.?

anJ fl^^O /6>r some l^k.

Proof. W is a weight module being a submodule of a weight module WQ.
Hence TF contains weight vectors. Let v<=W be a weight vector and write

If alJ^Q for some z^/ then we are done. So we can assume

v—^alel®el(n}, ^al—§.
Consider

D(M, r)v=(u,

Choose M— 0*, r=g^ for some ^-F/. Then

D(u, r)v=(u, n

Suppose ak = ai for all k=t=l. Then it is a contradiction to ^ial—Q. Hence
for some &-£/. This proves the Lemma.

3.4 Lemma.

D(u, -r)D(u,

+(26-2)(r, 0(r, u

-2b(k, u}(u, r)r®t(n)

+2(k, u}(r,t}r®u(n}.

Proof. Direct checking.

3»5 Lemma. Let W be some submodule of W0 and let w be a vector of W
such that
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w — S flt^t(g)^(7i)+S alel®el(n), 2 flt=0
i*j

and du — Q for some i£j. Then el®eJ(ri)^W.

Proof. Let u—el, r—e3 so that (u, r)=0. Now by Lemma 3.4 we have

D(u, — r}-D(u, r)w=(u,

This implies el§§e3(n}^W.

3.6 Lemma. Let W be some submodule of W0. Assume that el®eJ

for some n and for some *'=£/. Then
(i) e^e^n^W for all l^k.
(ii) ei®ei(n)—ek®ek(n}^W for all I and k.

Proof. Claim 1. ej®el(n}, el®el(n}—ej®eJ(n}^W.
Let u=el + ej, r—ej+el. Then by Lemma 3.4 we have

D(u, —r)D(u, r)el(&ej(n)=(u, n+r-\-a—br}(u,

Now by Lemma 3.5 we have

Also we have
- Al

Now take r—ej and u=el-\-eJ. Then by Lemma 3.4 we have

D(u, —r)D(u, r)el®ej(n)~(u,

-2)el®eJ(n)^ W .

Since e&e^ri), ej®el(n}^W, it will follow that

(2b-2)(el®el(n)-e]®e](n)}^W - A2

From Al and A2 we have

This completes the proof of Claim 1. Now to see the proof of Lemma 3.5, the
case d=2 follows from Claim 1. Hence we can assume d^3. Let k=ri and
k^j and take u~ ek + el, r=ek+ej,

Consider
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D(u, -r)D(u, r)gt(

Now by Lemma 3.5 we have ek®el(ri), ej®el(n) and ej®ek(n}^W. By replac-
ing the above argument for vectors ek®el(n\ e^e^n), ej®ek(n) in place of
0i®ej(n) and / in place of k, we conclude that ek®ei^W for any k^l. This
completes the first part of the Lemma. We also have

But by Claim 1 we know that el®ei(n}—e]®ej(n)^W. Hence ek®ek~el®el(n)
^W. This completes the second part of the Lemma.

Proof of the Proposition 3.1.
(1) It is easy to verify that Wi is an invariant subspace of V (a, b). It is

clear that each weight space is one dimensional.
(2) Let W be a non-zero submodule of WQ.

Claim'. (1) ei§§ej(ri)^W for all i^pj and for all
(2) el§§el(n}—ej§t)ei(ri)(=W for all i^j and for all n<=F.

To prove the claim, in view of Lemma 3.6, it is sufficient to prove that
there exists i and /, i=£j such that el®ej(n)^W for all meF. But by Lemmas
3.3 and 3.5, W contains el®ej(n) for some n and for some

Subclaim. ei®ej(m)^W, for all

Consider

D(u, r}el

Suppose n+a^O. Then choose u such that (u, n+a)^0. Then subclaim fol-
lows. Suppose n+a— 0. Then consider

D(u,

Choose r=ej+elt u — ej—e^. Then (M, r)=0, (r, 6j)—l} (el} u)——1 and
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D(u, r)

Now by Lemma 3.4, e&e^n+rf^W. This proves the sub claim.
In view of Remark 3.2 and the claim we prove that W—W0. Also by

Remark 3.2 each weight space of WQ is d2— 1 dimensional.
(3) It is clear that W0r\Wi={0}. Now V=W0®W1 as the dimensions of

weight spaces match.

§4. Modules with 1-dimensional Weight Spaces

In this section we construct modules for Der A whose weight spaces are
one-dimensional. Let Vl be one dimensional vector space with basis v. For
each re/7, take an isomorphic copy Vi(r) of Vi. Denote the isomorphism by
v^v(r). Let TF(a, fc)=©rer V^r) for a^V and ceC. Define Der A module
7Ti(a, b) in the following way.

D(u, r)v(n)—(u, n-{-a+br)v(n-i-r),

It is straightforward to verify that W(a, b) is a Der A module.

4.1 Proposition.
(1) W(a, b) is irreducible Der A-module unless a^F and b^{Q, 1} .
(2) // a<=F and b=Q then Cv(—a) is the only non-zero Der A proper sub-

module of W(a, b}.
(3) // a^F and b=l then W(a, b)—Cv(—a) is the only Der A proper (irre-

ducible) submodule of W(a, b).

Proof. It can easily be deduced from the following well known Proposi-
tion A.

Let dn=tn+ld/dt be a derivation on C[t, r1] the Laurent polynomials in
one variable. Let L be the Lie-algebra spanned by dn, n^Z with Lie structure

For any complex numbers a, b define

Va.b = @kGzCvk .

Now we define L— module structure Va,b depending on a and b.

Proposition. A [KR].
(1) Va,b is reducible as L— module if and only if a^Z and 6e{l, 0}.
(2) // 6=0 and a^Z then Cv-a is the only proper submodule.
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(3) // b=l and a^Z then Va,b\{Cv-a} is the only proper (irreducible) sub-
module.

§5. Modules with d ̂ -dimensional Weight Spaces

In this section, for every positive integer k, we construct a continuous
family of modules whose weight spaces are dk dimensional. Let V be a vector
space of dimension d with non-degenerate bilinear form ( , ) defined in section
1. Let VV=V® ••• ®V(k times). Let V(k, a, b)=@n^rW(n) where W(n) is an
isomorphic copy of W. Let S be any subset of {1, 2, ••• , k}. Define Der A
module 7i(k, S, a, b) in the following way.

D(u, rM® •

It is straightforward to verify that n(k, S, a, b) defines Der ^4 module. We
leave it as an open problem to describe its submodules.

The above modules are motivated by vertex operator representations con-
structed in [EM].

5.1 Remark. (1) It can easily be verfiied that the dual of n(k, S, a, b) is
isomorphic to n(k, S1, a, l—b) where S^fl, 2, • • - , k}\S.

(2) Let a be a permutation of {1, 2, ••• , k} such that a(S)^S. a acts on
W in an obvious way and commutes with n action. So that each ff-eigenspace
of W is a subrepresentation. In particular W is reducible. Such a exists in
all cases except in two cases (and its duals) discussed in section 1 and 3.

5.2 Remark. The modules considered in Proposition A are the only known
modules for L with property.

(1) irreducibility
(2) dimension of weight spaces are bounded by uniform constant. The other

known modules for L are highest weight and lowest weight modules. It has
been conjectured by Kac in [K] that these are the only modules for L with
finite dimensional weight spaces.

Now coming to the Der A the only known modules are the one constructed
in this paper. The concept of highest weight modules does not go through for
Der A as there is no canonical positive and negative subalgebras.

In [EM] some modules for an abelian extension (infinite) for Der^l are
constructed. It may be said that Der A has no non-trivial central extensions.
[RSS].
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