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A Characterization for Fourier Hyperfunctions
By
Jaeyoung CHUNG*, Soon-Yeong CHUNG** and Dohan Kim*#*

Abstract

The space of test functions for Fourier hyperfunctions is characterized by two con-
ditions sup|e(x)|exp k|x|<co and sup|@(£)lexph|é|<oco for some h, k>0. Combining
this result and the new characterization of Schwartz space in [1] we can easily compare
two important spaces & and S which are both invariant under Fourier transformations.

§0. Introduction

The purpose of this paper is to give new characterization of the space &
of test functions for the Fourier hyperfunctions.

In [6], K.W. Kim, S. Y. Chung and D. Kim introduce the real version of
the space & of test functions for the Fourier hyperfunctions as follows,

|0 ¢(;r?l?xx'>kIXI <o
1l

Efz{goEC‘”lsgB for some &, h>0}.
They also show the equivalence of the above definition and Sato-Kawai’s original
definition in complex form.

Also, in [1] J. Chung, S.Y. Chung and D. Kim give new characterization
of the Schwartz space S, i.e., show that for ¢=C= the following are equivalent:

1 pEs;

(2) sup|x®p(x)| < oo, supiaﬂgo(x)i<oo for all multi-indices a and §;

(3) sup|x®p(x)| <o, sup|&PP(€)|<oo for all multi-indices @ and B.

In a similar fashion as above we will give new characterization of the space
g of test functions for the Fourier hyperfunctions as the main theorem in this
paper which says that for ¢=C> the following are equivalent:

1) eeF;

(2) suple(x)lexpk|x|<oco, sup|@(&)lexphl&| <oco for some h, k£>0.

Observing the above growth conditions we can easily see that the space &
which is invariant under the Fourier transformation is much smaller than
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Schwartz space S. Since an element in the strong dual F’ of the space & is
called a Fourier hyperfunction, the space %’ of Fourier hyperfunctions which
is also invariant under the Fourier transformation is much bigger than the
space S’ of tempered distributions.

Section 1 is devoted to providing the necessary definitions and preliminaries.
We prove the main theorem in Section 2.

§1. Preliminaries

We use the multi-index notations; for x = (xy, ---, x,), E = (&, -+, En)ER™
and a multi-index a=(ay, as, -+, a,)ENE, 0°=0%! --- 087, |a|=ay+ -+ +a, Wwith
0,=0d/0x,, and N, the set of non-negative integers.

For fe LY(R") the Fourier transform f is the bounded continuous function
in R defined by

(1.1) f<5>=§e-”~éf<x>dx, fcRr

Definition 1.1. We denote by S or S(&") the Schwartz space of all pe
C>(R") such that

1.2) sup| x#9°p(x)| < oo
for all multi-indices a and S.

We need the following characterization to compare the space & of test
functions for the Fourier hyperfunctions with the above space.

Theorem 1.2 [1]. (i) The Schwartz space S consists of all peC=(R*)
satisfying the conditions
(1.3) sgpix"go(x)l<°°,
sup | 9#¢p(x)] < oo

for all multi-indices a and .
(ii) Also, the Schwartz space can be characterized by the following two
conditions

(1.4) sup|x*p(x)| <o,
sup|&PG(E)| < oo
for all multi-indices a and (.
Now, we are going to introduce the original complex version and new real

definition of test functions for the Fourier hyperfunctions as in [6], and state
their equivalence.



FouriER HYPERFUNCTIONS 205

Definition 1.3 [6]. A real valued function ¢ is in & if p=C=(R") and if
there are positive constants 4 and k. such that

|0%¢(x)|

Hiaig ] expk|x|<co.

I<plk,h=sgg

Definition 1.4 [5]. A complex valued function ¢(z) is in P« if ¢(2) is holo-
morphic in a tubular neighborhood R"-+i{|y|<r}, for some r, of R" and if
for some £>0

[p(z)|exp k|zj<co.

su
2ERp+i {1 yIST)
Theorem 1.5 [6]. The space F is isomorphic to the space Py.

Definition 1.6. We denote by &’ the strong dual space of ¥ and call its
elements Fourier hyperfunctions.

Thus the global theory of the Fourier hyperfunctions is nothing but the
duality theory for the space &.

§2. Main Theorem

Now we shall give new characterization of the space & of test functions
for the Fourier hyperfunctions which is the main result in this paper.
First, we prove

Theorem 2.1. The following conditions for o= C*™ are equivalent :
(1) There are positive constants k and h such that

(2.1) sup [0 o) Iexplx|

a,z htelg!

(ii) There are positive constants C, k and h such that

(2.2) sgp}go(x)]expklxl<°o,
(2.3) sgp]@“go(x)]éCh'“'a!.
(iii) There are positive constanis k and h such that
(2.4) sgplgo(x)|expk!x!<°0,
(2.5) sup| G(§)|exph |§] <o

Proof. The implications (i)=> (ii), (i) = (iii) are trivial. So it suffices to
prove the implications (iii) = (ii) and (ii)= (i) in order.
(iii) = (ii): By the inequality (2.5) we have
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8°0(5) | = s | 16°116(@1de

M

(2n)nSI5"“‘exp( h1&1)dé

(27L')” p ex e
p(h|€1/2)

<CA"“al

[exp(—n1¢1/22a

for some positive constants M, A and C. Thus, we obtain the condition (2.3)
which completes the proof of the implication (iii) = (ii).

(ii)=(i): First, we can assume that ¢ is real valued. By integration by
parts we obtain that

Ixbagn)lta= ||, 0 b0 g lptr)dx .

Note that the boundary terms tend to zero by Theorem 1.2. Therefore, apply-
ing the Leibniz formula we have, for some constant A,

xPa%p(x)] 22

é&n,%(?)(zf ) 1 TTE o) ()| dx

<z (% )7 28—y A1 ) expb 51 0 () exp(—k x| /2)dx
£

<Cmint (2‘8>(2,8)'A‘Zﬂ HMChYT1(2a—7)

IV\ \Il\
—mh

where ClzgR exp(—k|x|/2) and M Z=sup;lp(x)lexpk|x|. Here we use the
inequality
x*Zalexp|x|

for any acN?%. If we choose positive constants A, A~>1 if necessary, and use

the inequalities
(a!P<Q2a)!=n?*(al)

we have, for some C,
[ xf0% )32 < Con'*1 2181 (2a) Y(2B) 1AZ'F L h21a
SCyn Ay (nvnh) « (a X(B ).
Thus we obtain that for some positive constants C,, C, and C, such that

[ 260%p(x)]| 12

C|ﬂ|‘3| =CiCi*al.
9 H

Therefore, summing up with respect to 8 we can choose a positive constant
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k such that
0%(x) expk!x|[Le=CoCi*'a!.

By the Cauchy-Schwarz inequality there exists a positive constant C; such that

k 1/2
dg(x)expy x|, < 13%0(x) expk| x| s [exp(— k| x| )dx
< CiCi*'al.

Also, there exist positive constants 2 and C, such that

[0%¢p(x) expkvI+1x[*| 1= CoCl*'a!.
Hence

|0%p(x)expkv/1+|x |2

Szn_..S:al o Bn(0%0(x) eka\/mdxl

[0, 0.0@0%0) expbvTFT2T?
+8%0(x)- 8, (expkvIT | x[D]dx ‘

<[ 200, 8,,0°0)11G,,., 85, exprVTF AT dx

where the summation is taken over all »=0,1, ---, n and {j;, -, 7.} is a
permutation of {1, ---, n}.
We can prove by induction

(9, -+ 8;,) expk v/ I+ x 2 < P(k) expkvI+[x®
where P.(k) is a polynomial of % of »-th degree. Hence we derive that
|8*¢p(x) expkv/1+x|?|
<[CSIP (011G, 0, )0 lexplvIFx dx
SCE| Pror(B) CoCi** " (atB) !
<C(k, n)C{*'a!
where B is a multi-index with !8|=r. Therefore, using the relation

expk|x| < expkvI1+Ix[*<e* expk|x|
we obtain
sup|9%p(x)expk| x| <C(k, n)Ci*'a!

which completes the proof.
Now we can rephrase Theorem 2.1 as follows.
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Theorem 2.2. The space F of test functions for the Fourier hyperfunctions
consists of all locally integrable functions such that for some h, k>0

Sgpl¢(x)|expk;x|<oo,
Sgp!sﬁ(S)IeXph!EKw.

Remark. Combining Theorem 1.2 on the Schwartz space S and Theorem 2.2
on the space ¥ we can easily compare the spaces S and & which are both
invariant under the Fourier transformations as follows:

(i) The space S consists of all C* functions ¢ such that ¢ itself and its
Fourier transform ¢ are both rapidly decreasing.

(ii) The space & consists of all C~ functions ¢ such that ¢ itself and its

A

Fourier transform (¢ are both exponentially decreasing.
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