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Oriented #, Actions without Stationary Points

By

Tamio HARA*

§0. Introduction

Let Z,. denote the cyclic group of order 2% (k=2). In [8], we have studied
the theory Wu(Z,e; Af) of almost free Z,. actions on closed Wall manifolds,
i.e., an element g%, has no fixed point on the manifolds unless g is 1 or the
unique element of order two. When k=2, such objects are the stationary point
free (“proper”) Z, actions and the above theory is denoted by W«(Z,; p).

On the other hand let Q4(Z,; p) be the theory of oriented {orientation-
preserving), stationary point free Z, actions, which has been studied in [16].
Letting Q4 be the oriented cobordism ring, then

Theorem (R.E. Stong). For the map o : Q+«(Z.; p)— 2+« which forgets actions
on manifolds, the image Im(ag) is precisely the ideal of classes a € Ry having
even Euler characteristic.

This was proved in [16] for arbitrary stationary point free Z,: actions,
but the proof is reduced to the case k=2.

In connection with this result, we treat here the restriction map »; 2x«(Z,; p)
—80«(Z,; All) induced by Z,CZ, where Q«(Z,; All) is the theory of all oriented
involutions.

In section 1, we first state some basic facts on 24«(Z,; p), and summarize
the theories W«(Z,; —) in [13] which are important to further arguments.

We show in section 2 that the image of r lies in a homology Hg(d) which
is obtained from two differentials 8 and d on the relative theory W(Z,; rel).
The kernel € of the induced map ry: 24(Z,; p)—Hp(d) consists of the images
of two types of extensions from Q4«(Z,; All) and 9, the torsion part of order
2 in 24«(Z,; p) studied in [8]. Hence an embedding r«: 2«(Z,; p)/EHp(d) is
obtained (Theorem 2.4). In conclusion of this section, we calculated the homo-
logy Hpg(d) (Proposition 2.7).

From these, in section 3 we obtain a necessary and sufficient condition for
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an element in Q4«(Z,; All) to belong to the image of » (Theorem 3.1). Using
this, we give some examples which belong to Im (») (Example 3.3) and a neces-
sary condition for an element in Q4(Z,; All) to come from the theory Q«(Z,; All)
of all oriented Z, actions (Proposition 3.4). We return to the embedding 7. in
section 2, and show an example which doesn’t belong to & (Example 3.5).
Next we consider an Q4 algebra R, generated by the standard involutions on
the complex projective spaces C P(n) and determine the ideal J.={yER«|ye
Im (7)} by using the above example (Theorem 3.7). Some torsion elements y
in Y« come from those x of order 4 in Q«(Z,; p): that is, those which don’t
belong to &. We show that such elements x also have order 4 in Q«(Z,; All)
(Theorem 3.9 and Example 3.10). Finally we give examples such that they
don’t belong to & and their restriction don’t belong to . (Proposition 3.12).
The author would like to thank the referee for his many valuable comments.

§1. Preliminaries

As an oriented analogue of the unoriented bordism theory R«(Z,; All) of
all involutions on closed manifolds in Conner and Floyd [6, Sec. 28], the theory
Q«(Z,; All) of all oriented involutions on closed oriented manifolds has been
introduced and studied by Rosenzweig [14], Conner [5], Stong {17], and
Kosniowski and Ossa [13]. The basic notations of this theory are found there,
so we omit these here. Next we summarize the theory 24«(Z,; p) of oriented,
stationary point free Z, actions, which has been studied in Conner and Floyd
[6, (45.5)] and Stong [16]. On the other hand Rowlett [15] contains some
results on this theory as a special case of even-order group actions. Detailed
results have been obtained for the corresponding theory N«(Z,; p) in the un-
oriented category by Beem [2]. In theories 2+(G; —) we denote by [M, ¢] the
bordism class of an oriented G action ¢ on a (closed) oriented manifold M in
general (here G=Z, or Z, with generator 7).

Definition 1.1. Let ¢ and s be the maps defined by e([M, AD=[Z,X2,M,
ixid] and s([M, AT)=[S'Xz,M, ixid] for each [M, AleQ«(Z.; All) where S
is the unit circle with Z, action 7=+/—1. On the other hand, let d : Q«(Z,; All)
—8Qy..(Z,; All) be the map given by d([M, A])=[S'Xz, M, —1xid]. Then the
relation r.s=d holds for the restriction map » in Introduction.

We list some basic properties of the theory Qu«(Z,; p):

(1.2) The composition e-r (resp. ree) is the multiplication by 2 in Qu(Z,; p)
(resp. 2«(Z,; All)) (cf. [15, Prop. 4.2]), hence

(1.3) e:QuZ,; ADQR, =0« Z,; p)QR, with the inverse map ¢ '=(1/2)r where
R, is the subring of @ generated by Z and 1/2.

(1.4) If x is torsion free in Qu«(Z,; p), sois r(x) in Q«(Z,; All). Equivalently,
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if y is a torsion free in Qu«(Z,; All), so is e(y) in Qu(Z,; p).
(1.5) A torsion element in 24(Z,; p) is of order 2 or 4.

By (1.3), 2«(Z,; p)@R, is freely generated (over 2+«QR,) by the class
{[Zs, 7], e(Cary2)| I} where Cozi=Copm 2 X - szmp+Z is the monomial on Cyp s
defined at (1.8) for each I=(m,, ---, m,) With m;= --- =2m,=0 (cf. {5, p. 101]).
On the other hand, the above (1.5) is obtained from (1.2) and the following:
(1.6) Any torsion element in Q4«(Z,; All) is of order 2 (cf. [14, Theorem 3.4]).

Example.
(1.7) For m=1, define an oriented Z, action T on the complex projective space
CP(2m+2) by

T([20: 21t 227 1 Zamar  Zame2d)=[Z0: —Z2: 211! —Zom-2? Zomar] .

We note that the only stationary point of 7 is *=[1:0:---:0]. Then TX --
XT acts on CP(2)"*' with one stationary point (%, ---, %), and the action at
this point is the same as the action at the point * of 7 on CP(2m—+2). By
excising neighborhoods of these points of CP(2m-+2) and (CP(2))™*! (suitably
oriented), and fitting together along the resulting boundaries, we get an orient-
able manifold V?™*? with the stationary point free Z, action T (cf. [6, p. 1427).
(1.8) Let C*=[CP(n), I,] be an element in Q4«(Z,; All) defined by

Li{zo:zit - tza D=[izoi 211 12, (n21),

and put C,=[CP(n), A,] in Q«(Z,; All) where A,=12.

We see that C, doesn’t come from a stationary point free Z, action. If n
is even, this follows from Theorem in Introduction. See Theorem 3.7 in general.

Next we view the bordism theories W4«(G; —) as an equivariant analogue
of the Wall cobordism ring Wy in Wall [19]. Our objects are Wall manifolds
of type (G, 1) in the sense of Komiya [11] and Stong [17]. An oriented G
action (M, t) falls into this category. Suppose that M admits an orientation-
reversing involution R which commutes with . Then
(1.9) S'XpM=S'XM/—1XR with G action idXxt¢ has the induced Wall struc-
ture of type (G,1) as B([S'XeM, idxt1))=[M,t] where B:W(G;—)—
24+ (G; —) is the Bockstein homomorphism.

This induces a universal coefficient sequence :

(L10) 0—> Q«(G; —)RZ, = WG ; —) ﬁ) Tor (244(G; —), Z) —>0
(cf. [17, Prop. 6.17).

Now we summarize the theory Wi(Z,; —) which is denoted by @@ (—) in

[131.
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(1.11) As regards (1.10) B(W«(Z,; All))=Tor «(Z,; All), the torsion part of
Q«(Z,; All) and the above 7 induces embedding 7 : Tor 24«(Z,; All)C W (Z,; All)
by (1.6).

(1.12) There is a splitting Wy(Z,; All)=Im ({x)PQ¥ as W, modules in the
usual long exact sequence (7%, fx, 0) for the triple (All, Free, (), where Im (i)
is the image of the free involutions and freely generated by [Z, —1] as a
Wy/E+« module. Here Ey is the ideal of x&W4 having even Euler characteristic,
s0 Wy/Ew=Z[w,], w,=[CP(2)] as a Z, polynomial ring. On the other hand,
Q% is the kernel of a map ¢q: W«(Z.; All)—Im (ix) with ge1=id for the inclusion
1:Im (Ge)WW(Z,; All). The definition of ¢ is as follows: q(y)=X(y)[C P(2)]"-
[Z, —1] if dim y=4n and ¢(y)=0 otherwise (Here XZ([M, AD)=X[M/A]), the
Euler characteristic modulo 2 of the orbit space M/A.) (cf. [13, Theorem 3.2,
Cor. 6.4, Cor. 7.5 and Sec. 87).

Denote the theory Wy(Z,; All, Free) by W«(Z,; rel). From the above,

(1.13) there is an embedding j.: Q¥ Wu(Z,; rel) (cf. [13, Sec. 9]), and
(1.14) the images d(Ww(Z,; All)) and B(W«(Zs; All))=Tor 2«(Z,; All) are con-
tained in Q¥ by definition and [13, Lemma 8.2].
(1.15) Ww(Z,; rel) is the free W4 module generated by the class {&,|ws]"},
§o=En, X -+ X&n,, Where I' consists of all sequences of integers w=(n,, --- n15p)
of even length with n,= -+ 2n,,>0. Here {£,/n=0} is the class such that
each &,, is the canonical line bundle over the real projective space RP(2n), and
&3n1=d(&s,) by the map d as Definition 1.1 (cf. [12, Lemma 3.4.3]). From this
d(€5,.1)=0 and d acts on &, by the derivation (cf. [9, Lemma 17, [1, Theorem
3] and {18, Prop. 3.3]). In this way the properties on d are inherited from the
corresponding unoriented theory N«(Z,; rel) via the embedding Wu(Z,; rel)c,
N«(Z,; rel). On the other hand B(£:,)=0 and B(Esns1)=E&:x (cf. (1.9)), and B also
acts on &, by the derivation (cf. [13, Theorem 4.2]). The map S commutes
with d in Ww(Z,; rel).

According to the above derivations, let H; or Hg be the homology of the
complex W(Z;; rel) with differential d or B, respectively. Then
(1.16) H;=W.[&,|m=0] as a free W, algebra (cf. [1, Lemma 7]), and
(1.17) Hg=Cy[&n., !m=0] as a free C, algebra where C is the Z, poly-
nomial ring on the class {{CP(2n)]ln=1}.

Denote by By the module of W, indecomposables in W(Z,; rel), then
W(Z,; rel)=WsxQz,B« as graded differential algebras. Thus Hp= CxQq,
Hy(Bx, B) by the Kiinneth formula since Hu(Wsx, B)=(2+/Tor 2+)RZ,=Cy (cf.
[19, Lemma 13]). Then (1.17) is obtained from H«(Bx, B)=Z,[&5n.11m=0] (cf.
[13, Lemma 5.27).

(1.18) For the class {C,} in (1.8),

(i) ].*(CZm-p-l):Egm'f'Egm*Z; and
(11) ]'*(C2m+2):$gm+l+Egm+4+5m+l
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in Wu(Z,; rel) where 0., is the part of W decomposables (cf. [13, Lemma 5.1]).

§2. On the Homology Hp(d)

In this section we study the map 7: «(Z,; p)—82«(Z,; All) induced by the
restriction Z,CZ,. We have studied the theory Wu(Z,; p) of Wall manifolds
with stationary point free Z, actions, and obtained the torsion part F, of order
2 in Q+Z,;p) as the image of the Bockstein homomorphism B: W«(Z,; p)—
Qu 1 (Z,; p) in (1.10) (cf. [8, Theorems 1.19 and 2.3]). Let ry: W(Z,; p)—
Ws(Z,; All) be the restriction as mentioned above. Then

Lemma 2.1.
L) re(W(Z,; p)=d(W(Z,; All)) hence
(2) #(T)=d(Tor R«(Z,; All)).

Proof. As a W, module, W«(Z,; p) is generated by the following (i) and
i)

(i) the parts Im(t) where t=e and s, the maps from Wu(Z,; All) as De-
finition 1.1,

(i) V(e 2) (=0 and 1) and V{g, 2K) for each ¢=2 and 2K=(2k,, ---, 2k,)
with 2, = -+ =k,=0.

In the above V{(e, 2) is defined by j«(V (e, 2))=t(£%) for the map j«: W«(Z,; p)
—W(Z,; p, Free) in [8, Prop. 1.11 (i)] where if ¢=0 or 1, then t=e or s, the
map from Wx(Z,; rel), respectively. Further, let 7,x—CP**=CP(2k)X --- X
CP(2k,) be the product of the canonical complex line bundles 7, j—>CP(2/e])
and let S(%.x) or D(5.x) be the associated sphere or disk bundle of %,x, respec-
tively. Then

(ii-1) V(2p+1, 2K) = D*?*2 X S(9,x)\J—(S***'X D(5:x)) Wwith an oriented,
stationary point free Z, action T)=—1X7\U—1X7, and

(ii-2) V(2p, 2K)=S'XgV(2p—1, 2K) with action idX Ty in (1.9), where R
is the reflection in the first coordinate of D?? (See [8, Def. 1.17 and Theorem
1.197. V(q, 2K) is denoted by V (5(g, 2K) there.).

It is easy to show that »(V(2p-+1, 2K)) vanishes in Q«(Z,; All) by defini-
tion, so does rw(V(2p, 2K)) in W(Z,; All) naturally. On the other hand
Tx(rwV (e, 2))=rw(t(£8))=0 in W(Z,; rel) since ryee=2xid from (1.2) and ryes
=d from Definition 1.1. Note that rw(V(e, 2))=Q$ since dim V(e, 2)=2 or 3.
These imply that »w(V(e, 2))=0 in Ww(Z,; All) by (1.12) and (1.13). Further,

rw(lm (e)) = 2W(Z,; All) = {0}. Therefore, re(W(Z,; p)) = ry(Im(s)) =
d(W«(Z,; All)) and the result (1) follows. Multiply both sides of (1) by B, then
(2) is obtained by (1.11). q.e.d.

From this lemma we see that Im (»)Cd(W«(Z,; All)) in particular. Since
B(r(x))=0 for each x=Q.(Z,; p), the image r(x) belongs to H_ﬂ(d), the homo-
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logy of the complex (d(Ws(Z.; All)), B). Hence we have natural maps
Pat Qu(Zs; p)—Hp(d) and re=jxo7x: Qu(Z,; p)—Hp(d), the homology of the
complex (d(W(Z,; rel)), B), through the map ju:Wi(Zy; Al)—Wi(Z,; rel).
The latter homology is comparatively easy to handle.

Lemma 2.2. Ker(j,: ﬁ,g(d)——»Hg(d)):d(F) where F=80«(Z,; All)/Tor is the
torsion free part of Q«(Z,; All).

Proof. 1f yeKer(ju), then j«(y)=p(d&)=d(BE) for some E€W(Z,; rel).
Therefore o(pé)sKer (d: Wy(Z,; Free)—=Wx..(Z:; Free)) in the exact sequence
in (1.12). As a free Wy module, W(Z,; Free) is generated by the class
{X2n), Yona|n=0 where Y,,,,=[S?"", —1] or d(X(2n)) in [8, Prop. 1.4].
Since d([S*"*!, —1])=0 by [9, Lemma 1], we have 0(88)=3,:0 Men [ S***, —1]
for some M,,,..cW,. Take J&W(Z,; All) such that j«(5)=pE)—
Snzo Menn£5"*?, then y=d(3) in Wi(Z,; All) since y, d(H)€QP and j«(y)=
J(d(7))=d(BE) (cf. (1.14)). Further j«(B(¥)=—2nz0 f(M2,.1)68"* and B(Mzn,1)
=0 in Wy since d-7+=0. These imply that (¥ Q¥ vanishes in Ww(Z,; All)
hence in Tor 2«(Z,; All) by (1.11). Thus 5&Q«(Z,; All). If ¥ is a torsion
element, then §=p(z) for some zeW(Z,; All). So y=d(¥) vanishes in ﬁ,g(d)
by definition. Therefore we may consider that ¥ F and this proves Ker (j+)C
d(F). Conversely, take any y=d(¥y)=d(F). The part F is generated by the
following (i) and (ii):

(i) monomials on C,,,, for m=0 (cf. (1.8)),

(ii) [Z, —1] and 7,, (mm>1) which satisfies 27,, =W [ Z, —1] for a sui-
table generator W,,=%2,, of the polynomial algebra £./Tor £,. Note that an
element as Wyn#in—Wn¥in (m>n>1) is a torsion by definition, so it is excluded
(cf. [13, Introduction and Theorem 10.17).

In the first case, we see that A,n.. in (1.8) is the reduction of the S! action
on CP(2m+2) by Z,CS*, so d([CP(2m+2), Asn.2])=[S*'XCP(2m-+2), idX Asm2]
=0 in 24«(Z,; All) (cf. [1, Theorem 5]). Further, for each monomial C,;,,=
Compaz X+ XCmez, we see that 74(d(Csr.2)) vanishes in Wu(Z,;rel) by the
derivation of d and the above. Therefore d(Cy;..)EQ$? vanishes in Wy (Z,; All)
hence in Tor Q«(Z,; All). When Cg=[pt, id], d(Cg)=[S?, id]=0. In the second
case, if y=[Z,, —1], then d(¥)=[S?, —1]=0. Finally we note that j«(rim)=
B(€) for some E€Wi(Z,; rel) since js(rum)ETor Qu(Z,; rel)=F(W(Zy; rel)) by
the relation in (ii) and [14, Theorem 3.4]. Such a & is shown in [13, Sec. 12
and 13] concretely. Hence d(r,,) vanishes in Hg(d), and this completes the
proof. g.e.d.

Lemma 2.3. Ker (rs)=e(F)P(T,+5s(F)).

Proof. We first show that Ker (F«)=e(F)PT,. Note that e(F)PT,CKer (Fx)
by (1.2), (1.11) and Lemma 2.1 (2). Conversely, suppose that 74(x)=0 in Hg(d)
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for x€Q«(Z,; p), i.e., r(x)=p(dy)=d(By) for some ycW(Z,; All). Therefore
r(x)=d(By)+2z for some Q«(Z,; All) by (1.10). Then t=x—s(By)—e(z)eT, by
Definition 1.1 and (1.2), and x=e(2)+(@+s(By))se(F)PT,. Thus we have
Ker (Fx)=e(F)PT,. The result follows immediately from Lemma 2.2. g¢.e.d.

Theorem 2.4. There is an embedding ry: 2+«(Z,; p)/EHp(d) where &=
e(FYD(T ,+s(F)).

In the above, we see that only C. in (1.17) acts nontrivially on both sides
and 74 is a Cy module homomorphism.

Remark 2.5. The part s(F) in & consists of torsion elements, since [S?, 7]
is of order 4 in Q4«(Z,; Free) (cf. [10, Lemma 2.13 (i)]). For part (i) in the
proof of Lemma 2.2, note that s(C,;.,)ET, since its restriction d(C;;.,)=0 in
Q4«(Z,; All) (cf. (1.2)). We see that it never vanishes m 24(Z,; p). In fact,
by (1.18 (ii)) j#(Csr.e)=E4"""4d(2) (mod Wy decomposables) for some A where
[I|=m+ -+ +m,+p. Hence in Wu(Zs; p, Free), j«(s(Car.s)) =5(Jx(Carss))=
s(&8'") (mod W« decomposables) which doesn’t vanish there (cf. [8, Lemma 1.9
(ii) and (iii)]). Therefore s(Cy;,2)=0 in Q«(Z,; p). For part (ii), we see that
[SY, 7]=0 and belongs to 9, (cf. [8 Cor. 1.15]). On the other hand,
S( >t Mymrem) may be of order 4 for some M,,<Q4/Tor Q..

Now we calculate the homology Hp(d).

Definition 2.6. For each sequence (I; J)=(m,, -+, mp; 1y, -, ny) of non-
negative integers with m= - Zmy=n,= --- Zn,=0, put &g, = Enj
E%mp+1$§nl +&4n, In Wi(Z,; All). When p=1, each &u;n=d(Eom ibemEagn)E
dW(Zs; rel)), Iy=(m,, ---, mp), and is a class in the homology Hps(d). Since

Em;my=&m;m) in Hp(d), the above condition for (I; J) does not lose the generality.
Proposition 2.7. Hp(d)=Csx{{¢; s | [#0}} as a free Cy modules.

In the same way as (1.17), it is sufficient to prove that
Lemma 2.8. H(d(Bx), B)=Z:{{ ;0 | I#0}} as a Z, vector spaces.

Proof. For each xe=Bi, we examine the form of d(x) in H«(d(Bx), B).
For any sequence N=(n,, -, n,) of integers with n,> --- >n,>=0, define By to
be the Z, vector subspace of By generated by the monomials E:ES,}IES}LI+1
ngpfgﬁpﬂ such that (a;, b;)#(0, 0) for each ;. Then Bs«=Xy By as Z, vector
spaces and we may suppose that xe By for some N since d and § leave By
invariant by (1.15). Further, note that d and 8 preserve the length 2k=3a,
+3%b; of £&. Hence we suppose that x is a sum of monomials of the same length
2k (in By) and use induction on the length of x. For convenience, we repre-
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sent x by using the variables &,, and &;,., (here n=mn,) for example. Then x
may have the following form (i) or (ii), i.e., in (i) the length a,+b, is even and
in (ii) that is odd, since d and j never change the length a,+b, in particular:

(1) x=622n (T P-P)+E5(2Q - 9)+&5,.:(ZR-7) or
(i) x=£2(2S-5)+62ni( 2T 1)

where P-p, ---, T-t are the monomials on {&;n,, &2n,.111=5i<p}, each of which
is divided into the part P, ---, or T on the squares {3,,, 3,,.:} and the remain-
ing one p, -+, or t which never has both &,, and &;,,,. Note that d and S
act trivially on the parts P, ---, and T. For saving the trouble, we admit x is
non homogeneous on the total dimension in By. When k=1, x&By where
N=(n,) or N=(n,, n,). The former is of type (i), while the latter is of type
(i). If d(x) is a class in Hy«(d(B+), B), then d(x)=e€3, .1=¢ebm;p (eE€Z,) for
the case (i) and eBd(&zn,+1620,) Which vanishes in this homology for the case (ii).
Suppose that for any x,&By, in Bx with the length <2(k—1), d(x,) is a sum
of monomials &,y with [0 in our homology. Let x&By be an element
with the length 2% for some N=(n,, ---, np). We first consider the case (i).
Unlike (ii), note that p, ¢ and r have even length, so d commutes with 8 on
them (cf. (1.15)). Now by (i),

(2.8.1) d(%)=830:1(ZP- p)+€2nboni(DP- d(P)+E53(ZQ - d())+E5n (DR - d(r)).
The condition 0=pd(x) yields that

(2.8.2) SP-B(p)+ZR-Bd(r)=8&%,n,  and

for some n& B, by comparing the coefficient of &, with that of &§,., in Bd(x).
Moreover note that f(n)=d(n)=0 by multiplying (2.8.2) or (2.8.3) by B or d,
respectively. Then

(2.8.4) SP-p=3R-d(r)+Esons1n+ A+ BR)

by (2.8.2) and the structure of Hy(By, B)in (1.17), where 2€ B« and 2 is a sum
of monomials &,4. Note that

(2.8.5) dA)==Q- pd(q)
by (2.8.3). Substituting (2.8.3) and (2.8.4) into (2.8.1), we obtain that

(2.8.6) d(x)=E2n 17+ Bd(Esn€sn 1(ZQ-9))=E3r17

in Hy(d(By), B), where y=2+B2+3Q-B(g). Since d(7)=0 by (2.8.5), 7=r:1-+d(r2)
where 7:€Bx and 7, is a sum of monomials &, ;) by (1.16). Since B(7r)=0, we
have Bd(y,)=0, i.e., d(7:) is a class in Hx(d(Bx), B) and the length of d(7,)=
2(k—1) by the definition of y in (2.8.6). Therefore d(x) is the desired form by
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induction. For the case (i), if d(x) is a class in Hg(d), then d(x)=
B8d(&2.1(XS+s)) by the same way as k£=1. Next we prove the linear indepen-
dence of the class {&., |+ @}. Suppose that

(2.8.7) 25<1.5)E<I;n>+l(%}gl 5(1,J)§(1;J)=ﬁ(d77)

for some neW(Z,; rel) where e, s, er.n €10, 1} and I(J)=q for J=(n,, -+, ny).
If I(J)=1, then E(I;J):,B(é(l;J)) where é(I;J):f(I;n)§2n1+152n15(a;J0>, ]o:(nz, “ee, Mg)
for (I; [)=(my, -+, mp; ny, -+, ng). Hence e, m&u;m=0 in Hy(Bx, B) and
e, ;=0 for any (I, ®) by (1.17). Next we represent (2.8.7) as

(2.8.8) > 5(1../)5(1;J)+ > 5(1,./)5(1;.7):,3((177)-
1(J)=1 1(J)22
The left side has the form f(x) where
(2.8.9) x= 5(1,J)é(1;J>+ > 5(1.1)5(1;4‘)-
1(J)y=1 1(J)z2

Therefore x has the form:

(2.8.10) x:d(ﬂ)+25<10.9)5(10;u>+ﬂ(77)
for some 7EW«(Z,; rel) by using H«(Bx, B) again. Multiply this by d, then
(2.8.11) 2 ea.nfanant l JE 28(1.J>5<I';J'>=.B(d77)

(JHr=z

1(J)=1
by (2.8.9) and (2.8.10), where (I"; J/)=(m,, ---, my, n1; ns, -+, ng) for the above
(I; J). Since (I"; J)={I";0) if I(J)=1, we have e,,,=0 for any (I, J) with
I(J)=1 in (2.8.11) in the same way as (2.8.7). Hence the result follows by
induction on [/(J), and this completes the proof of the lemma. g.e.d.

§3. The Restriction from Z, Actions

We first consider a condition for an element in 24(Z,; All) to come from
the theory £2«(Z,; p) by the restriction r.

Theorem 3.1. Let y be an element in Q2«(Z,; All) which lies in QP (cf.
(1.12)). In order that yelm (r), a necessary and sufficient condition is that j«(v)
=120 Ca. €+ BdQ) (Ci,neCy) in WiZy;vel), i.e., jx(y) is a class in
Hg(d).

Proof. Suppose that y has a fixed point data j«(y) as above. Put &y ,n=
d(€;,s)) as Definition 2.6 and 7=3C néu,n+pR). Then we have ye
WZ,; All) such that ju(F)=9—nzo Men:£8"** for some My, €Ws. This
implies that y=d(§) since y, d(5)eQ{’ and j«(y)=7«(d(F). I j«(¥)=pd(A),
then yeR«(Z,; All). Therefore y=r(s(¥))€Im(r) in this case (See the first
half of the proof of Lemma 2.2.). Next we suppose that j«(¥)#0 in Hg(d),
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i.e., it has terms &(;,s, with coefficients in C*. In this case, dimy is even,
i.e., dim y=0 or 2 (mod4). Consider the above s(¥)&W(Z,; p) again. Then
T(Bs(I=5(7+(BF) =s(Bn—Znz0 B(Msn.1)65"**) for the map jsx:Wu(Zs; p)—
W«Z,; p, Free) in the exact sequence in [8, Prop. 1.11 (i)]. We note that
BE ) =Eugrp Where (Lo Jo)=(mg, -+, mp; my, ny, -, ng) for (I;3])=
(my, -, mp; ny, -, ng). Therefore if p=2, £ ;7 €Im (d)=Ker (s) in Wi(Z,; rel)
(cf. [8, Lemma 1.9 (iii)]). So

B.L1) ].*(ﬁs(y)):S(JZCJDE(B;Jo)_ 43 B(Map.1)E5"*)
in WiZy; p, Free) where C; =C( ., with p=1. Put
(3.1.2) ?E:S(A_’)—(JZCJOV(Z, 2J0)— aﬂ(Man)V(z, 0))

in W(Z,; p), where in general V (2, 2K) is defined at (ii-2) in the proof of
Lemma 2.1 and 0=(0, ---, 0) ((n+1) times of 0), i.e., 7]2=C”“—+{pt}. Note
that B(V(2, 2K)=V (1, 2K) by (1.9). Then j«(8%)=0 in W(Z,; p, Free) since
IV (1, 2K)=0Q(1, 2K)=s(7;x) in [8, Prop. 1.8 ()] and n.x=&g;x) in Nu(Zs; rel)
hence in Wi(Z,; rel) (cf. [3, p. 446]). Therefore f(X)eP=Ker (j4) in the above
exact sequence. Recall that dim £=dim y=0 or 2 (mod 4). Hence in Q«(Z,; p),
B(x)=2a if dimx=0 (mod4) and e[CP2)]"[S, i]1+2a ({0, 1}) if dimx=2
(mod 4) by the structure of @ and (1.10). We see that a is of order 4 if 2a
does not vanish. Such an element may belong to s(F) in & or 2«(Z,; p)/& (cf.
Theorem 2.4 and Remark 2.5). If acs(F), then dima=1 (mod4) and if ac
QR«(Z,; p)/€, then dima=0 or 2 (mod 4) since r«(a)#0 in Hp(d) as j«(y) in this
case. Thus, if dim #=0 (mod 4), then B(%)=2a=0 and the element % (denoted
by x,) belongs to 2«(Z,; p). If dim £=2 (mod 4), we may consider the case
B(x)=e[C P(2)I"[SY, i]+2a with a=s(Zn51Min?1n) for suitable M, <24/ Tor L.
Note that 2a=M'[S?, {] for some M’ by the definition of r,, (See (ii) in the
proof of Lemma 2.2.). Therefore B(%)=M[S?, 7] where M=e[CP(2)]*+M’.
Now we put

(3.1.3) x,=%—M-V(0, 2)

where V(0, 2)EW(Z,; p) is an element such that B(V(0, 2))=[S?, ¢] (cf. [§,
Def. 1.17 and Lemma 2.5]). Then B(x:;)=0 and x,=2«(Z,; p). Consider now
the restriction r(x,) in 24«(Z,; All) for k=1 or 2. It is shown in the proof of
Lemma 2.1 that »»(V(2, 2K)) and »»(V (0, 2)) vanish in W(Z,; All). Therefore
rw(x)=d(F)=yEW(Z,; All) by (3.1.2) and (3.1.3), and #(x,)—y=2z for some
z&24(Z,; All) by (1.10). Hence we have y=r(x,—e(z))elm(r). The converse
follows from Theorem 2.4 and Proposition 2.7. This completes the proof. g¢.e.d.

Remark 3.2.
(i) In the above theorem, ye&Q$® occurs only if dim y=4n by (1.12). In
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this case, y+[CP2)]"[Z., —1]=@Q¥® and belongs to Im(r) if j«(y) is a class
in Hg(d) as above. We see whether yeQ4{? or not by using the formula in [4,
Chap. III, Theorem 4.37 for example.

(ii) The map 74: 2«(Z,; p)—>17,9(d) is epic from the above theorem, hence
Psi: Ru(Zy; 0)/(e(F)YDT5)=Hg(d) (cf. Lemma 2.3).

(iii) The image of the embedding ry4 in Theorem 2.4 is properly contained
in Hg(d). For example, £=£&%+&4 is the only fixed point data which includes a
class & in Hp(d). In fact j«(C,)=& But & is not a class in this homology.

Example 3.3. Take any y&lm () in 24«(Z,; All). Then
(i) if zeQ(Z,; All) has a fixed point data
Jx(2)= > Mg, néa,n+BdA)

(I.J)#(%8.9)

in Wy(Z,; rel) where M;.,,€82%, then z-y&Im (r). In particular,
(i) z*-yelm(r) for any zeR4(Z,; All) since jx(z*) has the above form by
[19, Prop. 3].

In (i), note that j«(z-v) has the form in Theorem 3.1. Since y=d(¥) for
some yEW(Z,; All) by Lemma 2.1 (1), we have z-y=z-d(¥)eQ$¥ by the
formula in [4] as mentioned above. Thus the result (i) follows. In (ii), if
dimz is even and z=[M, A], then MX M admits an oriented Z, action [ with
1’=A defined by I(a, b)=(Ab), a) for (a, b)eMXx M. Consider [MXM, [1-x&
R«(Z,; p) naturally for x€8Q+(Z,; p) with »(x)=y, then it restricts to z*-y.

Relating to the above example, let £2.(Z,; All) be the theory of all oriented
Z, actions. Then

Proposition 3.4. For the resiriction ry: 2« Z,; Al)—R(Z,; All), the fixed
point data ji«(z) of each z€lm (v,) has the form of Example 3.3 (i).

Proof. Let z=ry(x) for some x&Q.(Z,; All) and put j«(z)=7. Choose any
2 E8R4(Z,; p) such that ju(r(x,)=7,70 in W(Z,; rel) (Such an x, is given in
the next example 3.5.). Then d(%,)=0 since 7, is a class in Hg(d). Moreover
r(x-x)=nnEHp(d) since x-x,=24(Z,; p). From these 0=d(nn,)=d(%)n, and
d(9)=0 in W(Z,;rel), i.e., » is a class in the homology Hi;. Hence =
SM. n&w,n+d(G) for some 7 (cf. (1.16)). Further B()=0 implies that
SBM, 1) nslm(d). Thus (M. s)=0, i.e., M. »nE2y and d(7) is a
class in Hg(d). Hence % has the desired form by Proposition 2.7. g.e.d.

Example 3.5. For m=1, let V*"**cQ.(Z,; p) be the element in Example
(1.7). It restricts to Capi2t(Cy)™* by definition, which is torsion free in
Q4(Z,; All) (cf. the part Py in [13, Introduction]), and so is V2™*2 in Q4(Z,; p).
Further



244 Tamio Hara

(3.5.1) (VI 2)=74(Coms2)+73((Co)™ )
:(ngH+Egm+4+5m+l)+(5%+$3>m+l
___E%m+l +n +5m+1

where 7 is the sum of monomials (£2)%(&%)” and d,., is the Wy decomposable
part in (1.18 (ii)). Hence r«(V*™*%)#0 in Hp(d), and V*™*2¢e(F) by Lemma 2.3.
Note that the relation 2V?™*2=¢(Cyp.s+=(C,)™*!) holds by (1.2)

Remark 3.6. The part 0,..€Hg(d) in particular, i.e.,
Om+1= 2 Cur.néa;n+pdA)
I+8
in Wu(Zsz; rel) formally where C; ,,Cyx with dim C;,;,>0.

Let Ry be an Q4 algebra generated by the class {C,|n=2} in Q«(Z,; All).
We examine Jx={ySR«|yIm(r)}. Note that it is an ideal in R since any
element in Ry comes from Q«(Z,; All) (cf. (1.8)). By (1.2), 2R«CIx and so
it is sufficient to study an ideal JxXZ, in R+QZ,.

Theorem 3.7. R.RZ, is a free 2.QZ, polynomial algebra on the class
{C.}, and I«QRZ, is an ideal generated by the class {Cym.s—(Co)™ ' m=1}.

Proof. For each pair I=(my, ---, my), J=(n, ‘-, ny) of sequences of integers
with m,= --- Zm,=0 and n,= --- Zn,=1, the fixed point data of the monomial
Cs14+2Cs7.1 has the following form by (1.18):

(38.7.1) ].*(C21+2C2J+1):(E%m1+1+§$m1+4+5m1+1) (fgmpu +§3mp+4+6mp+1)
X (E3n, +E6"172) -+ (630, +6570"7)
:E(I;J>+7]+X+5

in Wy(Z,; vel) where 7 is the sum of monomials except &(;.,, which contain
some &3n;. (and so do some (£5)%), A; the sum of monomials (£3)°6¢s;s, With
b>0, J,&J and 0 is the W4 decomposable part. Thus the elements {Cy;,:Car.1}
correspond to those {&(;,,} which are linearly independent (over W) in
Wx(Z,; rel). Hence {Cy;,:Car.y} is an 24+XRZ, base for R+QZ, by the embed-
ding 2+QZ.c.Wx in (1.10). Next we suppose that in R4+®Z, an element y=
S M, 5 CarisCosis My, 5y E82+RZ,5) belongs to Im (r)=9:RZ,. Here we
consider the homology H, (cf. (1.16)). Theni«(y) is a class in H,; and vanishes
there by Lemma 2.1 (1). More precisely, let an integer ¢ with =0 be fixed
and put S;={(I, /) | the total dimension of &,,,=t}. We then have

(3.7.2) 0=7x(y)=Mg; 8- 14 3 ( Es M. nEa,n+n+2-+0)

t>0 (I.J)eS;
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in Hy by (3.7.1) where 1=&4.5. Hence My, 5 =0. Further, if t>0, then &,
with I+#0, » and d belong to Im(d) by definition and the fact that each 0m;.:
eHp(d) (cf. Remark 3.6). Therefore

(3.7.3) O=7:(=>21{ X s M, 5E 0 +2)

>0 (8.J)ES;

+ 2 M(I,J)(E?)HIHE(B;J)_I-})}

a,Hes?

in H, where S{={(I, J)&S.|I#0}, |I|=m+ --- +m,+p and 7 is the remaining
part of 2. For each >0, consider the part {---}. Then it vanishes in H; by
definition. First we have My ,,=0 in Wi hence in 24+QZ, for each J'.
Further, put S(u, J)={I|(I, J)&S}? with || I|=u} for each positive integer u and
the sequence /. Then the coefficient of &4%E(s.s)+2, Dses.s) M., =0 for
any (u, J) since the length of each monomial in 7 is greater than that £§%&4,,.
We write y=33; y. where y,=>;, es, M1.5)Cer+2Cor.i. Then y,=0 as men-
tioned above and for each >0,

(3.7.49) ye=2( 2 A/-’<1.J)(Czl+z—Czlo+z)C2J+x)

(u.J) IeSu.J)

for suitable I,&S(u, J). Since Carro—CarypraEVx, the ideal in RxQZ, generated
by the class {Cypn.a—(Co)™ ' m=1}, we see that yeVy and J:KZ.C V4. On
the other hand, consider the element V?"*? in Example 3.5. Then »(V®™*?)=
Comrz—(C)™*! in R+RZ,. In general an element V?™*2C2K+2C2L+1 in Qu(Z,; p)
restricts to (Comie—(Co)™ ) Cax.2Coryy In Vs where C?X-% or C**! is a mono-
mial on the class {C?*i*%} or {C?*1}, respectively (cf. (1.8)). Hence ViC
Im (r)=9+XRZ,. This completes the proof. qg.e.d.

Corollary 3.8. For a class {(I, )} with J #0, let us consider a ilorsion ele-
ment y=>V1.5y Mc1.711Co142Cassy in Ry. Then y comes from a (torsion) element
in Q(Z,; p) if and only if it is a sum of the polynomials (3.7.4) in Ry. In this
case, any counter-image x of v isof order 4 if and only if some M, 5, itn (3.7.4)
is a torsion free element such that i(M ;. ;,)#0 where i: Q4—Cy is the projection

(cf. (1.17)).

Proof. Note that C,y,,&Tor Q«(Z,; All) since there is an orientation-
reversing conjugation on each C P(2n,+1). Therefore, the above theorem applies
to this case in Rs (without tensoring Z,) by (1.6) and the first half follows.
By (1.4), any counter-image x of y is a torsion element in Q«(Z,; p). If such
x is of order 2, then rx«(x)=j«(y)=0 in Hg(d) by Lemma 2.3 and so is j«(¥.)
for each t by the definition of y,. Therefore i(M;,;,)=0 in Cx for any M,
in (3.7.4) since the terms {(Cas;,2—Cary2)Cosiil of y. correspond to those
{Ea;n—Eaynt Wwhich are linearly independent (over Cx) in Hg(d) by (3.7.1)
and Proposition 2.7. We see that the counter-image r~'(y) consists of torsions
of order 2 (or order 4) if j«(y)=0 (or #0) in Hs(d), respectively by Lemma 2.3
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and (1.5). Hence the second half follows. g.e.d.

Further, any element x in the above corollary is also of order 4 in
Qu(Z,; All) (cf. [15, Sec. 4]). More generally,

Theorem 3.9. If x is a torsion of order 4 in Qu(Z,; p) such that ry(x)=+0
in Hg(d), then it is also of order 4 in Q2w(Z,; All).

Proof. Let r«(x)=>31.06 C1.00é.y Wwith C, 5y #0 in Cy by assumption.
Consider x-x in Qu(Z,; AIDXQuZ,; p)CTR«(Z,; p). If x is of order 2 in
Q*(Z4;All), so is x-x in Q«(Z,; p) and r(x-x)=r1.s C%I,J)S(I,I;J.J)ZO in
Hpg(d) by Theorem 2.4. This implies that C(;,,,=0 for any (/, J) since the
elements {£.1,s,.»} are linearly independent over Cy by the remark in Defini-
tion 2.6. This is contrary to the assumption and the theorem follows. g¢.e.d.

Example 3.10. An element V?2m*2C2E+2C2L*1 has order 4 in Qx«(Z,; All)
where m=1, K=(k,, -, kp) and L=, -, ly) With =by= - 2k,20, L;= -+ =,
=1 and ¢=1.

We obtain similar examples from y in the second half of Corollary 3.8 in
general.

Finally we consider the torsion free part Ry in Ry ie., Rp=
(24/Tor ) Cyn.2ln=0] as a polynomial algebra over Qx/Tor £« (cf. [13,
Introduction]). Then RpQZ,=Cx[Csr.2|n=0] which is isomorphic to H«(P¥, 8)
where P{®=W4[C,,..In=0] in the same way as (1.17). Using this, we describe
the complementary part A=82x(Z,; Al)QRZ,/Rr-KZ, as an additive group. The
map Jx| P;za:P,f’—»W*(Zz;rel) provides an isomorphism 7.«: P& =7«(P$) by
(3.7.1) when J=0. In [13, Sec. 5], j«(P$) is denoted by P (rel). Then we
have

(3.11) Jx: ReQZy=HW(PL, B)=Hx(P¥ (rel), B)=Hp

through the isomorphism 7y : Hx(P{(rel), B)==Hs by [13, Theorem 5.3] (cf.
(1.17)). Let ji: Q«(Z,; Al)QZ,—Hg be the natural map, then ji|aez,=7+ and
A=Ker (j%) by (3.11). Any torsion element belongs to A while the torsion free
element r,, also belongs to A (cf. Proof of Lemma 2.2).

By Theorem 3.7 and the above, each element in (RNIx)RZ, is a sum of
terms C,r,o—Caryee (here [ I]|=]| L) with coefficients in Cx. Thus, for example
an element Copiot+23s MiCoryo (M;eCy and dim M;>0) in RzQRZ, doesn’t
belong to JxQZ,, i.e., it doesn’t come from 2«(Z,; p).

Proposition 3.12. For each m=1, there is a torsion free element

y2m+2:CZm+Z+ ? MI CZI+2+a
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in Qu(Zy; All) such that it comes from Qu(Z,; p)/E and does not belong to J.
where X1 M;Csr.o is a decomposable element as mentioned above and ac .

Proof. For each m=1, put Pop....=RP(E™"1 X&), the projective space
bundle associated to £™*!X &, with an involution R,,...,. induced by the reflec-
tion idX—1 on &™*1x&, (¢ {0, 1}). Note that B(Pm:2)=Fim.1- Put Yame.=
A(Pams2X Pomsy) In Wyn.oo(Z,; All). Then its fixed point data is as follows:

@.12.1) Fe(Vame)=0(Emer+EEE ) Eom +E™D)

=& m1 8IS
in Wy(Zs;rel) by (L15). Since ju(f(yen.a)=0 in Wi(Zy;rel), f(yan)EQ8
vanishes in Wy (Z,; All) hence in Tor Q«(Z,; All). Therefore Von,.:E2imi(Z,; All)

and also belongs to Q¥ by definition (cf. (1.14)). Hence it comes from
SOME Xopi o€ R4nai(Z,; p) by (3.12.1) and Theorem 3.1. On the other hand,

(312.2) ]'>{=(C2m¢2):§-§m+1+ %MKE(K;B)

in Hg for some MycC, with dim Mx>0 by (1.18 (ii)) and (1.17). From this,
for each sequence K=(k,, -+, k,) with 2, = - =k,=0,

(3.12.3) T(Cogra)=Ex; o+ ZL}MLE(L;m

in Hs for some M;eC, with dim M;>0 by the product of ]‘;[:(Czkj4_2). Let | K]
=k;+ - +k,+p. Then |L||<]|K]| for each L in the above. Let p,=max{| K|}
for the class {K} in (3.12.2) and let {K,} be the subset of {K} with ||K,||=p,.
Then

(3-12-4) ].*(C21n+2_ KZ MI(0C2K0+1):E§17L+1+ ZS MSE(S; 8
0

in Hp for some Ms=Cy with dim Ms>0 by (3.12.2) and (3.12.3) when K=K,.
Then ||S||<p, for each S. By easy induction on ||-||, we obtain ¥,p,..=Csp.s
+331 M;Csrys such that ju(Fem.s)=En.1 (in Hg) for some I with 1<[/I] < p, and
M;=Cy with dim M;>0. Put a=Ysm.s—Fomss then jxl@)=0 in Hg, ie., acd
by construction and (3.12.1). Since r«(Xom+2)=7%(Vem+2)#0 in Hg(d) by (3.12.1),
we see that x,,.,#& by Theorem 2.4. Since ji(Vom+2)=J#(Fom-2)#0 in Hg by
(3.11), Vams» is a torsion free element and so iS Xsm.e in Qx(Z,; p). Assume
that Yom..EIxRZ,, then it is a sum of terms (Ciryo—Coarpe2)Carsn With co-
efficients in Cs by Theorem 3.7. If J+0, then such terms belong to .. So
Fems2e=T (mod A) where T is a sum of terms Cs7,,—Cs .2 With coefficients in
Cy by the definition of @. Hence in Rp®Z,, Fom..=7T by (3.11), i.e., Fon2E
I«QZ,. This is a contradiction. Hence y,,.:&IxXZ, and SO Voo & s
g.e.d.
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