Oriented Z_4 Actions without Stationary Points

By

Tamio HARA*

§0. Introduction

Let Z_{2k} denote the cyclic group of order 2^k $(k \ge 2)$. In [8], we have studied the theory $W_*(Z_{2k}; Af)$ of almost free Z_{2k} actions on closed Wall manifolds, i. e., an element $g \in Z_{2k}$ has no fixed point on the manifolds unless g is 1 or the unique element of order two. When k=2, such objects are the stationary point free ("proper") Z_4 actions and the above theory is denoted by $W_*(Z_4; p)$.

On the other hand let $\Omega_*(Z_1; p)$ be the theory of oriented (orientationpreserving), stationary point free Z_4 actions, which has been studied in [16]. Letting Ω_* be the oriented cobordism ring, then

Theorem (R. E. Stong). For the map $\sigma: \Omega_*(Z_4; p) \rightarrow \Omega_*$ which forgets actions on manifolds, the image $\operatorname{Im}(\sigma)$ is precisely the ideal of classes $\alpha \in \Omega_*$ having even Euler characteristic.

This was proved in [16] for arbitrary stationary point free Z_{2k} actions, but the proof is reduced to the case k=2.

In connection with this result, we treat here the restriction map r; $\Omega_*(Z_4; p) \rightarrow \Omega_*(Z_2; All)$ induced by $Z_2 \subset Z_4$ where $\Omega_*(Z_2; All)$ is the theory of all oriented involutions.

In section 1, we first state some basic facts on $\Omega_*(Z_1; p)$, and summarize the theories $W_*(Z_2; -)$ in [13] which are important to further arguments.

We show in section 2 that the image of r lies in a homology $H_{\beta}(d)$ which is obtained from two differentials β and d on the relative theory $W_*(\mathbb{Z}_2; rel)$. The kernel \mathcal{E} of the induced map $r_*: \Omega_*(\mathbb{Z}_4; p) \to H_{\beta}(d)$ consists of the images of two types of extensions from $\Omega_*(\mathbb{Z}_2; All)$ and \mathcal{I}_2 , the torsion part of order 2 in $\Omega_*(\mathbb{Z}_4; p)$ studied in [8]. Hence an embedding $r_*: \Omega_*(\mathbb{Z}_4; p)/\mathcal{E} \hookrightarrow H_{\beta}(d)$ is obtained (Theorem 2.4). In conclusion of this section, we calculated the homology $H_{\beta}(d)$ (Proposition 2.7).

From these, in section 3 we obtain a necessary and sufficient condition for

Communicated by Y. Miyaoka, April 22, 1993.

¹⁹⁹¹ Mathematics Subject Classifications: 57R85.

^{*} Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo, Noda, Chiba 278, Japan.

an element in $\Omega_*(\mathbb{Z}_2; All)$ to belong to the image of r (Theorem 3.1). Using this, we give some examples which belong to $\operatorname{Im}(r)$ (Example 3.3) and a necessary condition for an element in $\Omega_*(\mathbb{Z}_2; All)$ to come from the theory $\Omega_*(\mathbb{Z}_4; All)$ of all oriented \mathbb{Z}_4 actions (Proposition 3.4). We return to the embedding r_* in section 2, and show an example which doesn't belong to \mathcal{E} (Example 3.5). Next we consider an Ω_* algebra \mathfrak{R}_* generated by the standard involutions on the complex projective spaces CP(n) and determine the ideal $\mathcal{J}_*=\{y\in\mathfrak{R}_*|y\in$ $\operatorname{Im}(r)\}$ by using the above example (Theorem 3.7). Some torsion elements yin \mathcal{J}_* come from those x of order 4 in $\Omega_*(\mathbb{Z}_4; p)$: that is, those which don't belong to \mathcal{E} . We show that such elements x also have order 4 in $\Omega_*(\mathbb{Z}_4; All)$ (Theorem 3.9 and Example 3.10). Finally we give examples such that they don't belong to \mathcal{E} and their restriction don't belong to \mathcal{J}_* (Proposition 3.12).

The author would like to thank the referee for his many valuable comments.

§1. Preliminaries

As an oriented analogue of the unoriented bordism theory $\mathfrak{N}_*(\mathbb{Z}_2; All)$ of all involutions on closed manifolds in Conner and Floyd [6, Sec. 28], the theory $\mathcal{Q}_*(\mathbb{Z}_2; All)$ of all oriented involutions on closed oriented manifolds has been introduced and studied by Rosenzweig [14], Conner [5], Stong [17], and Kosniowski and Ossa [13]. The basic notations of this theory are found there, so we omit these here. Next we summarize the theory $\mathcal{Q}_*(\mathbb{Z}_4; p)$ of oriented, stationary point free \mathbb{Z}_4 actions, which has been studied in Conner and Floyd [6, (45.5)] and Stong [16]. On the other hand Rowlett [15] contains some results on this theory as a special case of even-order group actions. Detailed results have been obtained for the corresponding theory $\mathfrak{N}_*(\mathbb{Z}_4; p)$ in the unoriented category by Beem [2]. In theories $\mathcal{Q}_*(G; -)$ we denote by [M, t] the bordism class of an oriented G action t on a (closed) oriented manifold M in general (here $G = \mathbb{Z}_2$ or \mathbb{Z}_4 with generator t).

Definition 1.1. Let *e* and *s* be the maps defined by $e([M, A]) = [Z_4 \times Z_2 M, i \times id]$ and $s([M, A]) = [S^1 \times Z_2 M, i \times id]$ for each $[M, A] \in \mathcal{Q}_*(Z_2; All)$ where S^1 is the unit circle with Z_4 action $i = \sqrt{-1}$. On the other hand, let $d: \mathcal{Q}_*(Z_2; All) \rightarrow \mathcal{Q}_{*+1}(Z_2; All)$ be the map given by $d([M, A]) = [S^1 \times Z_2 M, -1 \times id]$. Then the relation $r \circ s = d$ holds for the restriction map *r* in Introduction.

We list some basic properties of the theory $\Omega_*(Z_4; p)$:

(1.2) The composition $e \circ r$ (resp. $r \circ e$) is the multiplication by 2 in $\Omega_*(\mathbb{Z}_4; p)$ (resp. $\Omega_*(\mathbb{Z}_2; All)$) (cf. [15, Prop. 4.2]), hence (1.3) $e: \Omega_*(\mathbb{Z}_2; All) \otimes \mathbb{R}_2 \cong \Omega_*(\mathbb{Z}_4; p) \otimes \mathbb{R}_2$ with the inverse map $e^{-1} = (1/2)r$ where \mathbb{R}_2 is the subring of \mathbb{Q} generated by \mathbb{Z} and 1/2. (1.4) If x is torsion free in $\Omega_*(\mathbb{Z}_4; p)$, so is r(x) in $\Omega_*(\mathbb{Z}_2; All)$. Equivalently, if y is a torsion free in $\Omega_*(Z_2; All)$, so is e(y) in $\Omega_*(Z_4; p)$. (1.5) A torsion element in $\Omega_*(Z_4; p)$ is of order 2 or 4.

By (1.3), $\Omega_*(\mathbb{Z}_4; p) \otimes \mathbb{R}_2$ is freely generated (over $\Omega_* \otimes \mathbb{R}_2$) by the class $\{[\mathbb{Z}_4, i], e(C_{2I+2}) | I\}$ where $C_{2I+2} = C_{2m_1+2} \times \cdots \times C_{2m_p+2}$ is the monomial on C_{2m+2} defined at (1.8) for each $I = (m_1, \cdots, m_p)$ with $m_1 \ge \cdots \ge m_p \ge 0$ (cf. [5, p. 101]). On the other hand, the above (1.5) is obtained from (1.2) and the following: (1.6) Any torsion element in $\Omega_*(\mathbb{Z}_2; All)$ is of order 2 (cf. [14, Theorem 3.4]).

Example.

(1.7) For $m \ge 1$, define an oriented \mathbb{Z}_4 action T on the complex projective space $\mathbb{CP}(2m+2)$ by

$$T([z_0:z_1:z_2:\cdots:z_{2m+1}:z_{2m+2}]) = [\bar{z}_0:-\bar{z}_2:\bar{z}_1:\cdots:-\bar{z}_{2m+2}:\bar{z}_{2m+1}].$$

We note that the only stationary point of T is $*=[1:0:\dots:0]$. Then $T \times \dots \times T$ acts on $CP(2)^{m+1}$ with one stationary point $(*, \dots, *)$, and the action at this point is the same as the action at the point * of T on CP(2m+2). By excising neighborhoods of these points of CP(2m+2) and $(CP(2))^{m+1}$ (suitably oriented), and fitting together along the resulting boundaries, we get an orient-able manifold V^{2m+2} with the stationary point free \mathbb{Z}_4 action T (cf. [6, p. 142]). (1.8) Let $C^n = [CP(n), I_n]$ be an element in $\mathcal{Q}_*(\mathbb{Z}_4; All)$ defined by

$$I_n([z_0:z_1:\cdots:z_n])=[iz_0:z_1:\cdots:z_n] \quad (n\geq 1),$$

and put $C_n = [CP(n), A_n]$ in $\mathcal{Q}_*(\mathbb{Z}_2; All)$ where $A_n = I_n^2$.

We see that C_n doesn't come from a stationary point free \mathbb{Z}_4 action. If n is even, this follows from Theorem in Introduction. See Theorem 3.7 in general.

Next we view the bordism theories $W_*(G; -)$ as an equivariant analogue of the Wall cobordism ring W_* in Wall [19]. Our objects are Wall manifolds of type (G, 1) in the sense of Komiya [11] and Stong [17]. An oriented Gaction (M, t) falls into this category. Suppose that M admits an orientationreversing involution R which commutes with t. Then

(1.9) $S^1 \times_R M = S^1 \times M / -1 \times R$ with G action $\mathrm{id} \times t$ has the induced Wall structure of type (G, 1) as $\beta([S^1 \times_R M, \mathrm{id} \times t]) = [M, t]$ where $\beta: W_*(G; -) \to \mathcal{Q}_{*-1}(G; -)$ is the Bockstein homomorphism.

This induces a universal coefficient sequence:

$$(1.10) \quad 0 \longrightarrow \mathcal{Q}_{*}(G; -) \otimes \mathbb{Z}_{2} \xrightarrow{i} W_{*}(G; -) \xrightarrow{\beta} \operatorname{Tor} (\mathcal{Q}_{*-1}(G; -), \mathbb{Z}_{2}) \longrightarrow 0$$

Now we summarize the theory $W_*(\mathbb{Z}_2; -)$ which is denoted by $\mathcal{O}_*^{(2)}(-)$ in [13].

(1.11) As regards (1.10) $\beta(W_*(Z_2; All)) = \text{Tor } \Omega_*(Z_2; All)$, the torsion part of $\Omega_*(Z_2; All)$ and the above *i* induces embedding *i*: Tor $\Omega_*(Z_2; All) \subset W_*(Z_2; All)$ by (1.6).

(1.12) There is a splitting $W_*(\mathbb{Z}_2; All) = \operatorname{Im}(i_*) \oplus Q_*^{(2)}$ as W_* modules in the usual long exact sequence (i_*, j_*, ∂) for the triple $(All, Free, \emptyset)$, where $\operatorname{Im}(i_*)$ is the image of the free involutions and freely generated by $[\mathbb{Z}_2, -1]$ as a W_*/E_* module. Here E_* is the ideal of $x \in W_*$ having even Euler characteristic, so $W_*/E_*=\mathbb{Z}_2[w_4]$, $w_4=[CP(2)]$ as a \mathbb{Z}_2 polynomial ring. On the other hand, $Q_*^{(2)}$ is the kernel of a map $q: W_*(\mathbb{Z}_2; All) \to \operatorname{Im}(i_*)$ with $q \circ i = \operatorname{id}$ for the inclusion $i: \operatorname{Im}(i_*) \subset W_*(\mathbb{Z}_2; All)$. The definition of q is as follows: $q(y) = \overline{\lambda}(y) [CP(2)]^n \cdot [\mathbb{Z}_2, -1]$ if dim y = 4n and q(y) = 0 otherwise (Here $\overline{\lambda}([M, A]) = \lambda([M/A])$), the Euler characteristic modulo 2 of the orbit space M/A.) (cf. [13, Theorem 3.2, Cor. 6.4, Cor. 7.5 and Sec. 8]).

Denote the theory $W_*(\mathbb{Z}_2; All, Free)$ by $W_*(\mathbb{Z}_2; rel)$. From the above, (1.13) there is an embedding $j_*: Q_*^{(2)} \subseteq W_*(\mathbb{Z}_2; rel)$ (cf. [13, Sec. 9]), and (1.14) the images $d(W_*(\mathbb{Z}_2; All))$ and $\beta(W_*(\mathbb{Z}_2; All)) = \text{Tor } \Omega_*(\mathbb{Z}_2; All)$ are contained in $Q_*^{(2)}$ by definition and [13, Lemma 8.2].

(1.15) $W_*(\mathbb{Z}_2; rel)$ is the free W_* module generated by the class $\{\xi_{\omega} | \omega \in \Gamma\}$, $\xi_{\omega} = \xi_{n_1} \times \cdots \times \xi_{n_{2p}}$ where Γ consists of all sequences of integers $\omega = (n_1, \cdots, n_{2p})$ of even length with $n_1 \ge \cdots \ge n_{2p} \ge 0$. Here $\{\xi_n | n \ge 0\}$ is the class such that each ξ_{2n} is the canonical line bundle over the real projective space $\mathbb{R}P(2n)$, and $\xi_{2n+1} = d(\xi_{2n})$ by the map d as Definition 1.1 (cf. [12, Lemma 3.4.3]). From this $d(\xi_{2n+1})=0$ and d acts on ξ_{ω} by the derivation (cf. [9, Lemma 1], [1, Theorem 3] and [18, Prop. 3.3]). In this way the properties on d are inherited from the corresponding unoriented theory $\mathfrak{N}_*(\mathbb{Z}_2; rel)$ via the embedding $W_*(\mathbb{Z}_2; rel) \subset \mathfrak{N}_*(\mathbb{Z}_2; rel)$. On the other hand $\beta(\xi_{2n})=0$ and $\beta(\xi_{2n+1})=\xi_{2n}$ (cf. (1.9)), and β also acts on ξ_{ω} by the derivation (cf. [13, Theorem 4.2]). The map β commutes with d in $W_*(\mathbb{Z}_2; rel)$.

According to the above derivations, let H_d or H_β be the homology of the complex $W_*(\mathbb{Z}_2; rel)$ with differential d or β , respectively. Then

(1.16) $H_d \cong W_*[\xi_{2m}^2 | m \ge 0]$ as a free W_* algebra (cf. [1, Lemma 7]), and

(1.17) $H_{\beta} \cong C_*[\xi_{2m+1}^2 | m \ge 0]$ as a free C_* algebra where C_* is the \mathbb{Z}_2 polynomial ring on the class $\{[CP(2n)] | n \ge 1\}$.

Denote by B_* the module of W_* indecomposables in $W_*(\mathbb{Z}_2; rel)$, then $W_*(\mathbb{Z}_2; rel) \cong W_* \otimes_{\mathbb{Z}_2} B_*$ as graded differential algebras. Thus $H_\beta \cong C_* \otimes_{\mathbb{Z}_2} H_*(B_*, \beta)$ by the Künneth formula since $H_*(W_*, \beta) \cong (\Omega_*/\text{Tor } \Omega_*) \otimes \mathbb{Z}_2 \cong C_*$ (cf. [19, Lemma 13]). Then (1.17) is obtained from $H_*(B_*, \beta) \cong \mathbb{Z}_2[\xi_{2m+1}^2|m \ge 0]$ (cf. [13, Lemma 5.2]).

(1.18) For the class $\{C_n\}$ in (1.8),

- (i) $j_{*}(C_{2m+1}) = \xi_{2m}^{2} + \xi_{0}^{4m+2}$, and
- (ii) $j_{*}(C_{2m+2}) = \hat{\xi}_{2m+1}^{2} + \hat{\xi}_{0}^{4m+4} + \delta_{m+1}$

in $W_*(\mathbb{Z}_2; rel)$ where δ_{m+1} is the part of W_* decomposables (cf. [13, Lemma 5.1]).

§ 2. On the Homology $H_{\beta}(d)$

In this section we study the map $r: \mathcal{Q}_*(\mathbb{Z}_4; p) \rightarrow \mathcal{Q}_*(\mathbb{Z}_2; All)$ induced by the restriction $\mathbb{Z}_2 \subset \mathbb{Z}_4$. We have studied the theory $W_*(\mathbb{Z}_4; p)$ of Wall manifolds with stationary point free \mathbb{Z}_4 actions, and obtained the torsion part \mathcal{F}_2 of order 2 in $\mathcal{Q}_*(\mathbb{Z}_4; p)$ as the image of the Bockstein homomorphism $\beta: W_*(\mathbb{Z}_4; p) \rightarrow \mathcal{Q}_{*-1}(\mathbb{Z}_4; p)$ in (1.10) (cf. [8, Theorems 1.19 and 2.3]). Let $r_W: W_*(\mathbb{Z}_4; p) \rightarrow W_*(\mathbb{Z}_2; All)$ be the restriction as mentioned above. Then

Lemma 2.1.

(1) $r_W(W_*(Z_4; p)) = d(W_*(Z_2; All))$ hence

(2) $r(\mathcal{I}_2) = d(\text{Tor } \Omega_*(Z_2; All)).$

Proof. As a W_* module, $W_*(Z_4; p)$ is generated by the following (i) and (ii):

(i) the parts Im(t) where t=e and s, the maps from $W_*(\mathbb{Z}_2; All)$ as Definition 1.1,

(ii) $V(\varepsilon, 2)$ ($\varepsilon=0$ and 1) and V(q, 2K) for each $q \ge 2$ and $2K = (2k_1, \dots, 2k_n)$ with $k_1 \ge \dots \ge k_n \ge 0$.

In the above $V(\varepsilon, 2)$ is defined by $j_*(V(\varepsilon, 2))=t(\xi_2^{\varepsilon})$ for the map $j_*: W_*(Z_4; p) \to W_*(Z_4; p, Free)$ in [8, Prop. 1.11 (i)] where if $\varepsilon = 0$ or 1, then t = e or s, the map from $W_*(Z_2; rel)$, respectively. Further, let $\eta_{2K} \to CP^{2K} = CP(2k_1) \times \cdots \times CP(2k_n)$ be the product of the canonical complex line bundles $\eta_{2k_j} \to CP(2k_j)$ and let $S(\eta_{2K})$ or $D(\eta_{2K})$ be the associated sphere or disk bundle of η_{2K} , respectively. Then

(ii-1) $V(2p+1, 2K) = D^{2p+2} \times S(\eta_{2K}) \cup -(S^{2p+1} \times D(\eta_{2K}))$ with an oriented, stationary point free Z_4 action $T_V = -1 \times i \cup -1 \times i$, and

(ii-2) $V(2p, 2K) = S^1 \times_R V(2p-1, 2K)$ with action $id \times T_V$ in (1.9), where R is the reflection in the first coordinate of D^{2p} (See [8, Def. 1.17 and Theorem 1.19]. V(q, 2K) is denoted by $V_{(2)}(q, 2K)$ there.).

It is easy to show that r(V(2p+1, 2K)) vanishes in $\Omega_*(\mathbb{Z}_2; All)$ by definition, so does $r_W(V(2p, 2K))$ in $W_*(\mathbb{Z}_2; All)$ naturally. On the other hand $j_*(r_WV(\varepsilon, 2))=r_W(t(\xi_0^2))=0$ in $W_*(\mathbb{Z}_2; rel)$ since $r_W \circ e=2 \times \mathrm{id}$ from (1.2) and $r_W \circ s=d$ from Definition 1.1. Note that $r_W(V(\varepsilon, 2))\in Q_*^{(2)}$ since dim $V(\varepsilon, 2)=2$ or 3. These imply that $r_W(V(\varepsilon, 2))=0$ in $W_*(\mathbb{Z}_2; All)$ by (1.12) and (1.13). Further, $r_W(\mathrm{Im}(e))=2W_*(\mathbb{Z}_2; All)=\{0\}$. Therefore, $r_W(W_*(\mathbb{Z}_4; p))=r_W(\mathrm{Im}(s))=d(W_*(\mathbb{Z}_4; All))$ and the result (1) follows. Multiply both sides of (1) by β , then (2) is obtained by (1.11). q.e.d.

From this lemma we see that $\operatorname{Im}(r) \subset d(W_*(\mathbb{Z}_2; All))$ in particular. Since $\beta(r(x))=0$ for each $x \in \Omega_*(\mathbb{Z}_4; p)$, the image r(x) belongs to $\overline{H}_{\beta}(d)$, the homo-

logy of the complex $(d(W_*(Z_2; All)), \beta)$. Hence we have natural maps $\bar{r}_*: \Omega_*(Z_4; p) \rightarrow \bar{H}_{\beta}(d)$ and $r_* = \bar{j}_* \circ \bar{r}_*: \Omega_*(Z_4; p) \rightarrow H_{\beta}(d)$, the homology of the complex $(d(W_*(Z_2; rel)), \beta)$, through the map $j_*: W_*(Z_2; All) \rightarrow W_*(Z_2; rel)$. The latter homology is comparatively easy to handle.

Lemma 2.2. Ker $(\tilde{j}_*: \bar{H}_\beta(d) \to H_\beta(d)) = d(F)$ where $F = \Omega_*(\mathbb{Z}_2; All)/\text{Tor}$ is the torsion free part of $\Omega_*(\mathbb{Z}_2; All)$.

Proof. If $y \in \text{Ker}(\overline{j}_*)$, then $j_*(y) = \beta(d\xi) = d(\beta\xi)$ for some $\xi \in W_*(\mathbb{Z}_2; rel)$. Therefore $\partial(\beta\xi) \in \text{Ker}(d: W_*(Z_2; Free) \to W_{*+1}(Z_2; Free))$ in the exact sequence in (1.12). As a free W_* module, $W_*(Z_2; Free)$ is generated by the class $\{X(2n), Y_{2n+1} | n \ge 0\}$ where $Y_{2n+1} = [S^{2n+1}, -1]$ or d(X(2n)) in [8, Prop. 1.4]. Since $d([S^{2n+1}, -1])=0$ by [9, Lemma 1], we have $\partial(\beta\xi) = \sum_{n\geq 0} M_{2n+1}[S^{2n+1}, -1]$ some $M_{2n+1} \in W_*$. Take $\bar{y} \in W_*(Z_2; All)$ such that $j_*(\bar{y}) = \beta(\xi) - \beta(\xi)$ for $\sum_{n\geq 0} M_{2n+1} \xi_0^{2n+2}$, then $y = d(\bar{y})$ in $W_*(\mathbf{Z}_2; All)$ since $y, d(\bar{y}) \in Q_*^{(2)}$ and $j_*(y) = Q_*^{(2)}$ $j_*(d(\bar{y})) = d(\beta\xi)$ (cf. (1.14)). Further $j_*(\beta(\bar{y})) = -\sum_{n \ge 0} \beta(M_{2n+1})\xi_0^{2n+2}$ and $\beta(M_{2n+1})$ =0 in W_* since $\partial \cdot j_*=0$. These imply that $\beta(\bar{y}) \in Q_*^{(2)}$ vanishes in $W_*(Z_2; All)$ hence in Tor $\Omega_*(Z_2; All)$ by (1.11). Thus $\bar{y} \in \Omega_*(Z_2; All)$. If \bar{y} is a torsion element, then $\bar{y} = \beta(z)$ for some $z \in W_*(Z_2; All)$. So $y = d(\bar{y})$ vanishes in $\bar{H}_{\beta}(d)$ by definition. Therefore we may consider that $\bar{y} \in F$ and this proves Ker $(\bar{j}_*) \subset$ d(F). Conversely, take any $y = d(\bar{y}) \in d(F)$. The part F is generated by the following (i) and (ii):

(i) monomials on C_{2m+2} for $m \ge 0$ (cf. (1.8)),

(ii) $[\mathbb{Z}_{2}, -1]$ and $r_{4m} (m>1)$ which satisfies $2r_{4m} = W_{4m}[\mathbb{Z}_{2}, -1]$ for a suitable generator $W_{4m} \in \mathcal{Q}_{4m}$ of the polynomial algebra $\mathcal{Q}_{*}/\text{Tor }\mathcal{Q}_{*}$. Note that an element as $W_{4m}r_{4n} - W_{4n}r_{4m} (m>n>1)$ is a torsion by definition, so it is excluded (cf. [13, Introduction and Theorem 10.1]).

In the first case, we see that A_{2m+2} in (1.8) is the reduction of the S^1 action on CP(2m+2) by $\mathbb{Z}_2 \subset S^1$, so $d([CP(2m+2), A_{2m+2}]) = [S^1 \times CP(2m+2), id \times A_{2m+2}]$ =0 in $\mathcal{Q}_*(\mathbb{Z}_2; All)$ (cf. [1, Theorem 5]). Further, for each monomial $C_{2I+2} = C_{2m_{1}+2} \times \cdots \times C_{2m_{p}+2}$, we see that $j_*(d(C_{2I+2}))$ vanishes in $W_*(\mathbb{Z}_2; rel)$ by the derivation of d and the above. Therefore $d(C_{2I+2}) \in \mathbb{Q}_*^{(2)}$ vanishes in $W_*(\mathbb{Z}_2; All)$ hence in Tor $\mathcal{Q}_*(\mathbb{Z}_2; All)$. When $C_{\mathfrak{g}} = [pt, id], d(C_{\mathfrak{g}}) = [S^1, id] = 0$. In the second case, if $\overline{y} = [\mathbb{Z}_2, -1]$, then $d(\overline{y}) = [S^1, -1] = 0$. Finally we note that $j_*(r_{4m}) = \beta(\xi)$ for some $\xi \in W_*(\mathbb{Z}_2; rel)$ since $j_*(r_{4m}) \in \text{Tor } \mathcal{Q}_*(\mathbb{Z}_2; rel) = \beta(W_*(\mathbb{Z}_2; rel))$ by the relation in (ii) and [14, Theorem 3.4]. Such a ξ is shown in [13, Sec. 12 and 13] concretely. Hence $d(r_{4m})$ vanishes in $H_\beta(d)$, and this completes the proof. q.e.d.

Lemma 2.3. Ker $(r_*) = e(F) \bigoplus (\mathcal{G}_2 + s(F))$.

Proof. We first show that Ker $(\bar{r}_*) = e(F) \oplus \mathcal{I}_2$. Note that $e(F) \oplus \mathcal{I}_2 \subset \text{Ker}(\bar{r}_*)$ by (1.2), (1.11) and Lemma 2.1 (2). Conversely, suppose that $\bar{r}_*(x) = 0$ in $\bar{H}_{\beta}(d)$

238

for $x \in \Omega_*(\mathbb{Z}_4; p)$, i.e., $r(x) = \beta(dy) = d(\beta y)$ for some $y \in W_*(\mathbb{Z}_2; All)$. Therefore $r(x) = d(\beta y) + 2z$ for some $\Omega_*(\mathbb{Z}_2; All)$ by (1.10). Then $t = x - s(\beta y) - e(z) \in \mathcal{I}_2$ by Definition 1.1 and (1.2), and $x = e(z) + (t + s(\beta y)) \in e(F) \oplus \mathcal{I}_2$. Thus we have Ker $(\bar{r}_*) = e(F) \oplus \mathcal{I}_2$. The result follows immediately from Lemma 2.2. *q.e.d.*

Theorem 2.4. There is an embedding $r_*: \Omega_*(\mathbb{Z}_4; p)/\mathcal{E} \subseteq H_\beta(d)$ where $\mathcal{E} = e(F) \oplus (\mathfrak{T}_2 + s(F)).$

In the above, we see that only C_* in (1.17) acts nontrivially on both sides and r_* is a C_* module homomorphism.

Remark 2.5. The part s(F) in \mathcal{E} consists of torsion elements, since $[S^1, i]$ is of order 4 in $\mathcal{Q}_*(\mathbb{Z}_4; Free)$ (cf. [10, Lemma 2.13 (i)]). For part (i) in the proof of Lemma 2.2, note that $s(C_{2I+2}) \in \mathcal{I}_2$ since its restriction $d(C_{2I+2})=0$ in $\mathcal{Q}_*(\mathbb{Z}_2; All)$ (cf. (1.2)). We see that it never vanishes in $\mathcal{Q}_*(\mathbb{Z}_4; p)$. In fact, by (1.18 (ii)) $j_*(C_{2I+2}) = \xi_0^{4|I|} + d(\lambda)$ (mod W_* decomposables) for some λ where $\|I\| = m_1 + \cdots + m_p + p$. Hence in $W_*(\mathbb{Z}_4; p, Free)$, $j_*(s(C_{2I+2})) = s(j_*(C_{2I+2})) =$ $s(\xi_0^{4|I|})$ (mod W_* decomposables) which doesn't vanish there (cf. [8, Lemma 1.9 (ii) and (iii)]). Therefore $s(C_{2I+2}) \neq 0$ in $\mathcal{Q}_*(\mathbb{Z}_4; p)$. For part (ii), we see that $[S^1, i] \neq 0$ and belongs to \mathcal{I}_2 (cf. [8, Cor. 1.15]). On the other hand, $s(\sum_{m>1} M_{4m}r_{4m})$ may be of order 4 for some $M_{4m} \in \mathcal{Q}_*/$ Tor \mathcal{Q}_* .

Now we calculate the homology $H_{\beta}(d)$.

Definition 2.6. For each sequence $(I; J) = (m_1, \dots, m_p; n_1, \dots, n_q)$ of nonnegative integers with $m_1 \ge \dots \ge m_p \ge n_1 \ge \dots \ge n_q \ge 0$, put $\xi_{(I;J)} = \xi_{2m_1+1}^2 \dots \dots \xi_{2m_p+1}^2 \xi_{2n_1}^2 \dots \xi_{2n_q}^2$ in $W_*(\mathbb{Z}_2; All)$. When $p \ge 1$, each $\xi_{(I;J)} = d(\xi_{2m_1+1}\xi_{2m_1}\xi_{(I_0;J)}) \in d(W_*(\mathbb{Z}_2; rel)), I_0 = (m_2, \dots, m_p)$, and is a class in the homology $H_\beta(d)$. Since $\xi_{(m;n)} = \xi_{(n;m)}$ in $H_\beta(d)$, the above condition for (I; J) does not lose the generality.

Proposition 2.7. $H_{\beta}(d) \cong C_* \{ \{ \xi_{(I;J)} | I \neq \emptyset \} \}$ as a free C_* modules.

In the same way as (1.17), it is sufficient to prove that

Lemma 2.8. $H_*(d(B_*), \beta) \cong \mathbb{Z}_2\{\{\xi_{(I;J)} | I \neq \emptyset\}\}$ as a \mathbb{Z}_2 vector spaces.

Proof. For each $x \in B_*$, we examine the form of d(x) in $H_*(d(B_*), \beta)$. For any sequence $N=(n_1, \dots, n_p)$ of integers with $n_1 > \dots > n_p \ge 0$, define B_N to be the \mathbb{Z}_2 vector subspace of B_* generated by the monomials $\xi = \xi_{2n_1}^{a_1} \xi_{2n_1+1}^{b_1} \cdots \xi_{2n_p}^{a_p} \xi_{2n_p+1}^{b_p}$ such that $(a_i, b_i) \neq (0, 0)$ for each *i*. Then $B_* = \sum_N B_N$ as \mathbb{Z}_2 vector spaces and we may suppose that $x \in B_N$ for some N since d and β leave B_N invariant by (1.15). Further, note that d and β preserve the length $2k = \sum a_i + \sum b_i$ of ξ . Hence we suppose that x is a sum of monomials of the same length 2k (in B_N) and use induction on the length of x. For convenience, we repre-

sent x by using the variables ξ_{2n} and ξ_{2n+1} (here $n=n_1$) for example. Then x may have the following form (i) or (ii), i.e., in (i) the length a_1+b_1 is even and in (ii) that is odd, since d and β never change the length a_1+b_1 in particular:

(i)
$$x = \xi_{2n} \xi_{2n+1}(\sum P \cdot p) + \xi_{2n}^2(\sum Q \cdot q) + \xi_{2n+1}^2(\sum R \cdot r)$$
 or

(ii) $x = \xi_{2n}(\sum S \cdot s) + \xi_{2n+1}(\sum T \cdot t)$

where $P \cdot p, \dots, T \cdot t$ are the monomials on $\{\xi_{2n_i}, \xi_{2n_i+1} | 1 \le i \le p\}$, each of which is divided into the part P, \dots , or T on the squares $\{\xi_{2n_i}^g, \xi_{2n_i+1}^g\}$ and the remaining one p, \dots , or t which never has both ξ_{2n} and ξ_{2n+1} . Note that d and β act trivially on the parts $P, \dots,$ and T. For saving the trouble, we admit x is non homogeneous on the total dimension in B_N . When $k=1, x \in B_N$ where $N=(n_1)$ or $N=(n_1, n_2)$. The former is of type (i), while the latter is of type (ii). If d(x) is a class in $H_*(d(B_*), \beta)$, then $d(x)=\varepsilon\xi_{2n+1}^2=\varepsilon\xi_{(n_1;\beta)}$ ($\varepsilon\in Z_2$) for the case (i) and $\varepsilon\beta d(\xi_{2n_1+1}\xi_{2n_2})$ which vanishes in this homology for the case (ii). Suppose that for any $x_0 \in B_{N_0}$ in B_* with the length $\le 2(k-1), d(x_0)$ is a sum of monomials $\xi_{(I;J)}$ with $I\neq \emptyset$ in our homology. Let $x \in B_N$ be an element with the length 2k for some $N=(n_1, \dots, n_p)$. We first consider the case (i). Unlike (ii), note that p, q and r have even length, so d commutes with β on them (cf. (1.15)). Now by (i),

$$(2.8.1) \quad d(x) = \xi_{2n+1}^2 (\sum P \cdot p) + \xi_{2n} \xi_{2n+1} (\sum P \cdot d(p)) + \xi_{2n}^2 (\sum Q \cdot d(q)) + \xi_{2n+1}^2 (\sum R \cdot d(r)).$$

The condition $0 = \beta d(x)$ yields that

(2.8.2)
$$\sum P \cdot \beta(p) + \sum R \cdot \beta d(r) = \xi_{2n}^2 \eta$$
, and

(2.8.3)
$$\sum P \cdot d(p) + \sum Q \cdot \beta d(q) = \xi_{2n+1}^2 \eta$$

for some $\eta \in B_*$ by comparing the coefficient of ξ_{2n}^2 with that of ξ_{2n+1}^2 in $\beta d(x)$. Moreover note that $\beta(\eta) = d(\eta) = 0$ by multiplying (2.8.2) or (2.8.3) by β or d, respectively. Then

(2.8.4)
$$\sum P \cdot p = \sum R \cdot d(r) + \xi_{2n} \xi_{2n+1} \eta + \lambda + \beta(\overline{\lambda})$$

by (2.8.2) and the structure of $H_*(B_*, \beta)$ in (1.17), where $\overline{\lambda} \in B_*$ and λ is a sum of monomials $\xi_{(I;\mathfrak{g})}$. Note that

$$(2.8.5) d\beta(\bar{\lambda}) = \sum Q \cdot \beta d(q)$$

by (2.8.3). Substituting (2.8.3) and (2.8.4) into (2.8.1), we obtain that

(2.8.6)
$$d(x) = \xi_{2n+1}^2 \gamma + \beta d(\xi_{2n} \xi_{2n+1} (\sum Q \cdot q)) = \xi_{2n+1}^2 \gamma$$

in $H_*(d(B_*), \beta)$, where $\gamma = \lambda + \beta \overline{\lambda} + \sum Q \cdot \beta(q)$. Since $d(\gamma) = 0$ by (2.8.5), $\gamma = \gamma_1 + d(\gamma_2)$ where $\gamma_2 \in B_*$ and γ_1 is a sum of monomials $\xi_{(\mathfrak{g};J)}$ by (1.16). Since $\beta(\gamma) = 0$, we have $\beta d(\gamma_1) = 0$, i.e., $d(\gamma_1)$ is a class in $H_*(d(B_*), \beta)$ and the length of $d(\gamma_1) = 2(k-1)$ by the definition of γ in (2.8.6). Therefore d(x) is the desired form by induction. For the case (ii), if d(x) is a class in $H_{\beta}(d)$, then $d(x) = \beta d(\xi_{2n+1}(\sum S \cdot s))$ by the same way as k=1. Next we prove the linear independence of the class $\{\xi_{(I;J)} | I \neq \emptyset\}$. Suppose that

(2.8.7)
$$\sum \varepsilon_{(I,\mathfrak{g})} \xi_{(I;\mathfrak{g})} + \sum_{l(J) \ge 1} \varepsilon_{(I,J)} \xi_{(I;J)} = \beta(d\eta)$$

for some $\eta \in W_*(Z_2; rel)$ where $\varepsilon_{(I,\mathfrak{g})}, \varepsilon_{(I,J)} \in \{0, 1\}$ and l(J) = q for $J = (n_1, \dots, n_q)$. If $l(J) \ge 1$, then $\xi_{(I;J)} = \beta(\tilde{\xi}_{(I;J)})$ where $\tilde{\xi}_{(I;J)} = \xi_{(I;\mathfrak{g})} \xi_{2n_1+1} \tilde{\xi}_{2n_1} \tilde{\xi}_{(\mathfrak{g};J_0)}, J_0 = (n_2, \dots, n_q)$ for $(I; J) = (m_1, \dots, m_p; n_1, \dots, n_q)$. Hence $\sum \varepsilon_{(I,\mathfrak{g})} \xi_{(I;\mathfrak{g})} = 0$ in $H_*(B_*, \beta)$ and $\varepsilon_{(I,\mathfrak{g})} = 0$ for any (I, \emptyset) by (1.17). Next we represent (2.8.7) as

(2.8.8)
$$\sum_{l(J)=1} \varepsilon_{(I,J)} \xi_{(I;J)} + \sum_{l(J)\geq 2} \varepsilon_{(I,J)} \xi_{(I;J)} = \beta(d\eta).$$

The left side has the form $\beta(x)$ where

(2.8.9)
$$x = \sum_{l(J)=1} \varepsilon_{(I,J)} \tilde{\xi}_{(I;J)} + \sum_{l(J)\geq 2} \varepsilon_{(I,J)} \tilde{\xi}_{(I;J)} .$$

Therefore x has the form:

(2.8.10)
$$x = d(\eta) + \sum \varepsilon_{(I_0, \mathfrak{g})} \xi_{(I_0; \mathfrak{g})} + \beta(\overline{\eta})$$

for some $\bar{\eta} \in W_*(\mathbb{Z}_2; rel)$ by using $H_*(B_*, \beta)$ again. Multiply this by d, then

(2.8.11)
$$\sum_{l(J)=1} \varepsilon_{(I,J)} \xi_{(I';J')} + \sum_{l(J)\geq 2} \varepsilon_{(I,J)} \xi_{(I';J')} = \beta(d\bar{\eta})$$

by (2.8.9) and (2.8.10), where $(I'; J') = (m_1, \dots, m_p, n_1; n_2, \dots, n_q)$ for the above (I; J). Since $(I'; J') = (I'; \emptyset)$ if l(J) = 1, we have $\varepsilon_{(I,J)} = 0$ for any (I, J) with l(J) = 1 in (2.8.11) in the same way as (2.8.7). Hence the result follows by induction on l(J), and this completes the proof of the lemma. q. e. d.

§ 3. The Restriction from Z_4 Actions

We first consider a condition for an element in $\Omega_*(\mathbb{Z}_2; All)$ to come from the theory $\Omega_*(\mathbb{Z}_4; p)$ by the restriction r.

Theorem 3.1. Let y be an element in $\Omega_*(\mathbf{Z}_2; All)$ which lies in $Q_*^{(2)}$ (cf. (1.12)). In order that $y \in \text{Im}(r)$, a necessary and sufficient condition is that $j_*(y) = \sum_{I \neq g} C_{(I,J)} \xi_{(I;J)} + \beta d(\lambda) (C_{(I,J)} \in C_*)$ in $W_*(\mathbf{Z}_2; rel)$, i.e., $j_*(y)$ is a class in $H_{\beta}(d)$.

Proof. Suppose that y has a fixed point data $j_*(y)$ as above. Put $\xi_{(I;J)} = d(\bar{\xi}_{(I;J)})$ as Definition 2.6 and $\eta = \sum C_{(I,J)} \bar{\xi}_{(I;J)} + \beta(\lambda)$. Then we have $\bar{y} \in W_*(\mathbf{Z}_2; All)$ such that $j_*(\bar{y}) = \eta - \sum_{n\geq 0} M_{2n+1} \xi_0^{2n+2}$ for some $M_{2n+1} \in W_*$. This implies that $y = d(\bar{y})$ since $y, d(\bar{y}) \in Q_*^{(2)}$ and $j_*(y) = j_*(d(\bar{y}))$. If $j_*(y) = \beta d(\lambda)$, then $\bar{y} \in \Omega_*(\mathbf{Z}_2; All)$. Therefore $y = r(s(\bar{y})) \in \mathrm{Im}(r)$ in this case (See the first half of the proof of Lemma 2.2.). Next we suppose that $j_*(y) \neq 0$ in $H_\beta(d)$,

i.e., it has terms $\xi_{(I;J)}$ with coefficients in C^* . In this case, dim y is even, i.e., dim $y \equiv 0$ or 2 (mod 4). Consider the above $s(\bar{y}) \in W_*(Z_4; p)$ again. Then $j_*(\beta s(\bar{y})) = s(j_*(\beta \bar{y})) = s(\beta \eta - \sum_{n \ge 0} \beta(M_{2n+1})\xi_0^{2n+2})$ for the map $j_*: W_*(Z_4; p) \rightarrow W_*(Z_4; p, Free)$ in the exact sequence in [8, Prop. 1.11 (i)]. We note that $\beta(\bar{\xi}_{(I;J)}) = \xi_{(I_0;J_0)}$ where $(I_0; J_0) = (m_2, \cdots, m_p; m_1, n_1, \cdots, n_q)$ for $(I; J) = (m_1, \cdots, m_p; n_1, \cdots, n_q)$. Therefore if $p \ge 2$, $\xi_{(I_0;J_0)} \in \text{Im}(d) = \text{Ker}(s)$ in $W_*(Z_2; rel)$ (cf. [8, Lemma 1.9 (iii)]). So

(3.1.1)
$$j_{*}(\beta s(\bar{y})) = s(\sum_{J_0} C_{J_0} \xi_{(\bar{y};J_0)} - \sum_{n \ge 0} \beta(M_{2n+1}) \xi_0^{2n+2})$$

in $W_*(Z_4; p, Free)$ where $C_{J_0} = C_{(I,J)}$ with p=1. Put

(3.1.2)
$$\bar{x} = s(\bar{y}) - (\sum_{J_0} C_{J_0} V(2, 2J_0) - \sum_{n \ge 0} \beta(M_{2n+1}) V(2, \underline{0}))$$

in $W_*(\mathbb{Z}_4; p)$, where in general V(2, 2K) is defined at (ii-2) in the proof of Lemma 2.1 and $\underline{0}=(0, \dots, 0) ((n+1) \text{ times of } 0), \text{ i.e., } \eta_0 = C^{n+1} \rightarrow \{\text{pt}\}.$ Note Then $j_*(\beta \bar{x})=0$ in $W_*(\mathbb{Z}_4; p, Free)$ since that $\beta(V(2, 2K)) = V(1, 2K)$ by (1.9). $j_{*}(V(1, 2K)) = Q(1, 2K) = s(\eta_{2K})$ in [8, Prop. 1.8 (i)] and $\eta_{2K} = \hat{\varsigma}_{(g;K)}$ in $\Re_{*}(Z_{2}; rel)$ hence in $W_*(\mathbb{Z}_2; rel)$ (cf. [3, p. 446]). Therefore $\beta(\bar{x}) \in \mathcal{P} = \text{Ker}(j_*)$ in the above exact sequence. Recall that dim $\bar{x} = \dim y \equiv 0$ or 2 (mod 4). Hence in $\Omega_*(Z_4; p)$, $\beta(\bar{x})=2\alpha$ if dim $\bar{x}\equiv 0 \pmod{4}$ and $\varepsilon[CP(2)]^n[S^1, i]+2\alpha \ (\varepsilon\in\{0, 1\})$ if dim $\bar{x}\equiv 2$ (mod 4) by the structure of \mathcal{P} and (1.10). We see that α is of order 4 if 2α does not vanish. Such an element may belong to s(F) in \mathcal{E} or $\Omega_*(\mathbb{Z}_4; p)/\mathcal{E}$ (cf. Theorem 2.4 and Remark 2.5). If $\alpha \in \mathfrak{s}(F)$, then dim $\alpha \equiv 1 \pmod{4}$ and if $\alpha \in \mathfrak{s}(F)$ $\mathcal{Q}_*(\mathbb{Z}_4; p)/\mathcal{E}$, then dim $\alpha \equiv 0$ or 2 (mod 4) since $r_*(\alpha) \neq 0$ in $H_{\beta}(d)$ as $j_*(y)$ in this case. Thus, if dim $\bar{x} \equiv 0 \pmod{4}$, then $\beta(\bar{x}) = 2\alpha = 0$ and the element \bar{x} (denoted by x_1 belongs to $\Omega_*(\mathbb{Z}_4; p)$. If dim $\bar{x} \equiv 2 \pmod{4}$, we may consider the case $\beta(\bar{x}) = \varepsilon[CP(2)]^n[S^1, i] + 2\alpha$ with $\alpha = s(\sum_{m>1} M_{4m} r_{4m})$ for suitable $M_{4m} \in \Omega_*/\mathrm{Tor}\Omega_*$. Note that $2\alpha = M'[S^1, i]$ for some M' by the definition of r_{4m} (See (ii) in the proof of Lemma 2.2.). Therefore $\beta(\bar{x}) = M[S^1, i]$ where $M = \varepsilon [CP(2)]^n + M'$. Now we put

$$(3.1.3) x_2 = \bar{x} - M \cdot V(0, 2)$$

where $V(0, 2) \in W_2(\mathbb{Z}_4; p)$ is an element such that $\beta(V(0, 2)) = [S^1, i]$ (cf. [8, Def. 1.17 and Lemma 2.5]). Then $\beta(x_2)=0$ and $x_2 \in \mathcal{Q}_*(\mathbb{Z}_4; p)$. Consider now the restriction $r(x_k)$ in $\mathcal{Q}_*(\mathbb{Z}_2; All)$ for k=1 or 2. It is shown in the proof of Lemma 2.1 that $r_W(V(2, 2K))$ and $r_W(V(0, 2))$ vanish in $W_*(\mathbb{Z}_2; All)$. Therefore $r_W(x_k)=d(\bar{y})=y \in W_*(\mathbb{Z}_2; All)$ by (3.1.2) and (3.1.3), and $r(x_k)-y=2z$ for some $z \in \mathcal{Q}_*(\mathbb{Z}_2; All)$ by (1.10). Hence we have $y=r(x_k-e(z)) \in \text{Im}(r)$. The converse follows from Theorem 2.4 and Proposition 2.7. This completes the proof. q.e.d.

Remark 3.2.

(i) In the above theorem, $y \notin Q_*^{(2)}$ occurs only if dim y=4n by (1.12). In

this case, $y + [CP(2)]^n [Z_2, -1] \in Q_*^{(2)}$ and belongs to $\operatorname{Im}(r)$ if $j_*(y)$ is a class in $H_{\beta}(d)$ as above. We see whether $y \in Q_*^{(2)}$ or not by using the formula in [4, Chap. III, Theorem 4.3] for example.

(ii) The map $\bar{r}_*: \Omega_*(\mathbb{Z}_4; p) \to \overline{H}_{\beta}(d)$ is epic from the above theorem, hence $\bar{r}_*: \Omega_*(\mathbb{Z}_4; p)/(e(F) \oplus \mathbb{T}_2) \cong \overline{H}_{\beta}(d)$ (cf. Lemma 2.3).

(iii) The image of the embedding r_* in Theorem 2.4 is properly contained in $H_{\beta}(d)$. For example, $\xi = \xi_1^2 + \xi_0^4$ is the only fixed point data which includes a class ξ_1^2 in $H_{\beta}(d)$. In fact $j_*(C_2) = \xi$. But ξ is not a class in this homology.

Example 3.3. Take any $y \in \text{Im}(r)$ in $\Omega_*(\mathbb{Z}_2; All)$. Then (i) if $z \in \Omega_*(\mathbb{Z}_2; All)$ has a fixed point data

$$j_{*}(z) = \sum_{(I,J) \neq (\mathfrak{g},\mathfrak{g})} M_{(I,J)} \xi_{(I;J)} + \beta d(\lambda)$$

in $W_*(\mathbb{Z}_2; rel)$ where $M_{(I;J)} \in \Omega_*$, then $z \cdot y \in \text{Im}(r)$. In particular,

(ii) $z^2 \cdot y \in \text{Im}(r)$ for any $z \in \Omega_*(\mathbb{Z}_2; All)$ since $j_*(z^2)$ has the above form by [19, Prop. 3].

In (i), note that $j_*(z \cdot y)$ has the form in Theorem 3.1. Since $y = d(\bar{y})$ for some $\bar{y} \in W_*(\mathbb{Z}_2; All)$ by Lemma 2.1 (1), we have $z \cdot y = z \cdot d(\bar{y}) \in Q_*^{(2)}$ by the formula in [4] as mentioned above. Thus the result (i) follows. In (ii), if dim z is even and z = [M, A], then $M \times M$ admits an oriented \mathbb{Z}_4 action I with $I^2 = A$ defined by I(a, b) = (A(b), a) for $(a, b) \in M \times M$. Consider $[M \times M, I] \cdot x \in$ $\mathcal{Q}_*(\mathbb{Z}_4; p)$ naturally for $x \in \mathcal{Q}_*(\mathbb{Z}_4; p)$ with r(x) = y, then it restricts to $z^2 \cdot y$.

Relating to the above example, let $\mathcal{Q}_*(Z_4; All)$ be the theory of all oriented Z_4 actions. Then

Proposition 3.4. For the restriction $r_0: \Omega_*(\mathbb{Z}_4; All) \rightarrow \Omega_*(\mathbb{Z}_2; All)$, the fixed point data $j_*(z)$ of each $z \in \text{Im}(r_0)$ has the form of Example 3.3 (i).

Proof. Let $z=r_0(x)$ for some $x \in \Omega_*(\mathbb{Z}_4; All)$ and put $j_*(z)=\eta$. Choose any $x_0 \in \Omega_*(\mathbb{Z}_4; p)$ such that $j_*(r(x_0))=\eta_0\neq 0$ in $W_*(\mathbb{Z}_2; rel)$ (Such an x_0 is given in the next example 3.5.). Then $d(\eta_0)=0$ since η_0 is a class in $H_\beta(d)$. Moreover $r_*(x \cdot x_0)=\eta\eta_0 \in H_\beta(d)$ since $x \cdot x_0 \in \Omega_*(\mathbb{Z}_4; p)$. From these $0=d(\eta\eta_0)=d(\eta)\eta_0$ and $d(\eta)=0$ in $W_*(\mathbb{Z}_2; rel)$, i.e., η is a class in the homology H_d . Hence $\eta=\sum M_{(\mathfrak{g},J)}\xi_{(\mathfrak{g};J)}+d(\bar{\eta})$ for some $\bar{\eta}$ (cf. (1.16)). Further $\beta(\eta)=0$ implies that $\sum \beta(M_{(\mathfrak{g},J)})\xi_{(\mathfrak{g};J)} \in \mathrm{Im}(d)$. Thus $\beta(M_{(\mathfrak{g},J)})=0$, i.e., $M_{(\mathfrak{g},J)}\in \Omega_*$ and $d(\bar{\eta})$ is a class in $H_\beta(d)$. Hence η has the desired form by Proposition 2.7. q.e.d.

Example 3.5. For $m \ge 1$, let $V^{2m+2} \in \mathcal{Q}_*(\mathbb{Z}_4; p)$ be the element in Example (1.7). It restricts to $C_{2m+2} \pm (C_2)^{m+1}$ by definition, which is torsion free in $\mathcal{Q}_*(\mathbb{Z}_2; All)$ (cf. the part P_* in [13, Introduction]), and so is V^{2m+2} in $\mathcal{Q}_*(\mathbb{Z}_4; p)$. Further

TAMIO HARA

(3.5.1)
$$r_{*}(V^{2m+2}) = j_{*}(C_{2m+2}) + j_{*}((C_{2})^{m+1})$$
$$= (\xi_{2m+1}^{2} + \xi_{0}^{4m+4} + \delta_{m+1}) + (\xi_{1}^{2} + \xi_{0}^{4})^{m+1}$$
$$= \xi_{2m+1}^{2} + \eta + \delta_{m+1}$$

where η is the sum of monomials $(\xi_1^2)^a (\xi_0^2)^b$ and δ_{m+1} is the W_* decomposable part in (1.18 (ii)). Hence $r_*(V^{2m+2}) \neq 0$ in $H_\beta(d)$, and $V^{2m+2} \notin e(F)$ by Lemma 2.3. Note that the relation $2V^{2m+2} = e(C_{2m+2} \pm (C_2)^{m+1})$ holds by (1.2)

Remark 3.6. The part $\delta_{m+1} \in H_{\beta}(d)$ in particular, i.e.,

$$\delta_{m+1} = \sum_{I \neq \mathcal{B}} C_{(I,J)} \xi_{(I;J)} + \beta d(\lambda)$$

in $W_*(\mathbb{Z}_2; rel)$ formally where $C_{(I,J)} \in C_*$ with dim $C_{(I,J)} > 0$.

Let \mathfrak{R}_* be an \mathfrak{Q}_* algebra generated by the class $\{C_n \mid n \geq 2\}$ in $\mathfrak{Q}_*(\mathbb{Z}_2; All)$. We examine $\mathcal{J}_* = \{y \in \mathfrak{R}_* \mid y \in \mathrm{Im}(r)\}$. Note that it is an ideal in \mathfrak{R}_* since any element in \mathfrak{R}_* comes from $\mathfrak{Q}_*(\mathbb{Z}_4; All)$ (cf. (1.8)). By (1.2), $2\mathfrak{R}_* \subset \mathfrak{J}_*$ and so it is sufficient to study an ideal $\mathcal{J}_* \otimes \mathbb{Z}_2$ in $\mathfrak{R}_* \otimes \mathbb{Z}_2$.

Theorem 3.7. $\mathfrak{R}_* \otimes \mathbb{Z}_2$ is a free $\mathfrak{Q}_* \otimes \mathbb{Z}_2$ polynomial algebra on the class $\{C_n\}$, and $\mathfrak{I}_* \otimes \mathbb{Z}_2$ is an ideal generated by the class $\{C_{2m+2} - (C_2)^{m+1} | m \ge 1\}$.

Proof. For each pair $I=(m_1, \dots, m_p)$, $J=(n_1, \dots, n_q)$ of sequences of integers with $m_1 \ge \dots \ge m_p \ge 0$ and $n_1 \ge \dots \ge n_q \ge 1$, the fixed point data of the monomial $C_{2I+2}C_{2J+1}$ has the following form by (1.18):

$$(3.7.1) j_*(C_{2I+2}C_{2J+1}) = (\xi_{2m_1+1}^2 + \xi_0^{4m_1+4} + \delta_{m_1+1}) \cdots (\xi_{2m_p+1}^2 + \xi_0^{4m_p+4} + \delta_{m_p+1}) \\ \times (\xi_{2n_1}^2 + \xi_0^{4n_1+2}) \cdots (\xi_{2n_q}^2 + \xi_0^{4n_q+2}) \\ = \xi_{(I;J)} + \eta + \lambda + \delta$$

in $W_*(\mathbb{Z}_2; rel)$ where η is the sum of monomials except $\xi_{(I;J)}$ which contain some $\xi_{2m_{j+1}}^2$ (and so do some $(\xi_0^2)^a$), λ ; the sum of monomials $(\xi_0^2)^b \xi_{(\mathfrak{g};J_0)}$ with b>0, $J_0 \subseteq J$ and δ is the W_* decomposable part. Thus the elements $\{C_{2I+2}C_{2J+1}\}$ correspond to those $\{\xi_{(I;J)}\}$ which are linearly independent (over W_*) in $W_*(\mathbb{Z}_2; rel)$. Hence $\{C_{2I+2}C_{2J+1}\}$ is an $\Omega_*\otimes\mathbb{Z}_2$ base for $\mathfrak{R}_*\otimes\mathbb{Z}_2$ by the embedding $\Omega_*\otimes\mathbb{Z}_2\subset W_*$ in (1.10). Next we suppose that in $\mathfrak{R}_*\otimes\mathbb{Z}_2$ an element y= $\sum_{(I,J)} M_{(I,J)}C_{2I+2}C_{2J+1} (M_{(I,J)}\in\Omega_*\otimes\mathbb{Z}_2)$ belongs to $\mathrm{Im}(r)=\mathcal{I}_*\otimes\mathbb{Z}_2$. Here we consider the homology H_d (cf. (1.16)). Then $i_*(y)$ is a class in H_d and vanishes there by Lemma 2.1 (1). More precisely, let an integer t with $t\geq 0$ be fixed and put $S_t=\{(I,J) \mid \text{the total dimension of } \xi_{(I;J)}=t\}$. We then have

$$(3.7.2) 0 = j_{*}(y) = M_{(g;g)} \cdot 1 + \sum_{t>0} \left(\sum_{(I,J) \in S_{t}} M_{(I,J)}(\xi_{(I;J)} + \eta + \lambda + \delta) \right)$$

244

in H_d by (3.7.1) where $1 = \xi_{(\mathfrak{g};\mathfrak{g})}$. Hence $M_{(\mathfrak{g};\mathfrak{g})} = 0$. Further, if t > 0, then $\xi_{(I;J)}$ with $I \neq \emptyset$, η and δ belong to Im(d) by definition and the fact that each $\delta_{m_i+1} \in H_{\beta}(d)$ (cf. Remark 3.6). Therefore

(3.7.3)
$$0 = j_{*}(y) = \sum_{t>0} \{ \sum_{(\boldsymbol{g}, J') \in S_{t}} M_{(\boldsymbol{g}, J')}(\xi_{(\boldsymbol{g}, J')} + \lambda') + \sum_{(I, J) \in S_{t}^{0}} M_{(I, J)}(\xi_{0}^{4 \parallel I \parallel} \xi_{(\boldsymbol{g}, J)} + \bar{\lambda}) \}$$

in H_d where $S_t^0 = \{(I, J) \in S_t | I \neq \emptyset\}$, $||I|| = m_1 + \dots + m_p + p$ and $\overline{\lambda}$ is the remaining part of λ . For each t > 0, consider the part $\{\dots\}$. Then it vanishes in H_d by definition. First we have $M_{(\mathfrak{g},J')} = 0$ in W_* hence in $\mathcal{Q}_* \otimes \mathbb{Z}_2$ for each J'. Further, put $S(u, J) = \{I | (I, J) \in S_t^0$ with $||I|| = u\}$ for each positive integer u and the sequence J. Then the coefficient of $\xi_0^{4u}\xi_{(\mathfrak{g};J)} + \overline{\lambda}$, $\sum_{I \in S(u,J)} M_{(I,J)} = 0$ for any (u, J) since the length of each monomial in $\overline{\lambda}$ is greater than that $\xi_0^{4u}\xi_{(\mathfrak{g};J)}$. We write $y = \sum_t y_t$ where $y_t = \sum_{(I,J) \in S_t} M_{(I,J)} C_{2I+2} C_{2J+1}$. Then $y_0 = 0$ as mentioned above and for each t > 0,

(3.7.4)
$$y_t = \sum_{(u,J)} (\sum_{I \in S(u,J)} M_{(I,J)} (C_{2I+2} - C_{2I_0+2}) C_{2J+1})$$

for suitable $I_0 \in S(u, J)$. Since $C_{2I_{2}} - C_{2I_{0+2}} \in \mathcal{O}_*$, the ideal in $\mathfrak{R}_* \otimes \mathbb{Z}_2$ generated by the class $\{C_{2m+2} - (C_2)^{m+1} | m \ge 1\}$, we see that $y \in \mathcal{O}_*$ and $\mathcal{J}_* \otimes \mathbb{Z}_2 \subset \mathcal{O}_*$. On the other hand, consider the element V^{2m+2} in Example 3.5. Then $r(V^{2m+2}) =$ $C_{2m+2} - (C_2)^{m+1}$ in $\mathfrak{R}_* \otimes \mathbb{Z}_2$. In general an element $V^{2m+2}C^{2K+2}C^{2L+1}$ in $\mathfrak{Q}_*(\mathbb{Z}_4; p)$ restricts to $(C_{2m+2} - (C_2)^{m+1})C_{2K+2}C_{2L+1}$ in \mathcal{O}_* where C^{2K-2} or C^{2L+1} is a monomial on the class $\{C^{2k_j+2}\}$ or $\{C^{2l_j+1}\}$, respectively (cf. (1.8)). Hence $\mathcal{O}_* \subset$ $\operatorname{Im}(r) = \mathcal{J}_* \otimes \mathbb{Z}_2$. This completes the proof. q. e. d.

Corollary 3.8. For a class $\{(I, J)\}$ with $J \neq \emptyset$, let us consider a torsion element $y = \sum_{(I,J)} M_{(I,J)} C_{2I+2} C_{2J+1}$ in \mathfrak{R}_* . Then y comes from a (torsion) element in $\Omega_*(\mathbb{Z}_4; p)$ if and only if it is a sum of the polynomials (3.7.4) in \mathfrak{R}_* . In this case, any counter-image x of y is of order 4 if and only if some $M_{(I,J)}$ in (3.7.4) is a torsion free element such that $i(M_{(I,J)}) \neq 0$ where $i: \Omega_* \to C_*$ is the projection (cf. (1.17)).

Proof. Note that $C_{2J+1} \in \text{Tor } \Omega_*(\mathbb{Z}_2; All)$ since there is an orientationreversing conjugation on each $CP(2n_j+1)$. Therefore, the above theorem applies to this case in \mathcal{R}_* (without tensoring \mathbb{Z}_2) by (1.6) and the first half follows. By (1.4), any counter-image x of y is a torsion element in $\Omega_*(\mathbb{Z}_4; p)$. If such x is of order 2, then $r_*(x)=j_*(y)=0$ in $H_\beta(d)$ by Lemma 2.3 and so is $j_*(y_i)$ for each t by the definition of y_i . Therefore $i(M_{(I,J)})=0$ in C_* for any $M_{(I,J)}$ in (3.7.4) since the terms $\{(C_{2I+2}-C_{2I_0+2})C_{2J+1}\}$ of y_t correspond to those $\{\xi_{(I;J)}-\xi_{(I_0;J)}\}$ which are linearly independent (over C_*) in $H_\beta(d)$ by (3.7.1) and Proposition 2.7. We see that the counter-image $r^{-1}(y)$ consists of torsions of order 2 (or order 4) if $j_*(y)=0$ (or ± 0) in $H_\beta(d)$, respectively by Lemma 2.3 and (1.5). Hence the second half follows.

Further, any element x in the above corollary is also of order 4 in $\Omega_*(\mathbb{Z}_4; All)$ (cf. [15, Sec. 4]). More generally,

Theorem 3.9. If x is a torsion of order 4 in $\Omega_*(Z_4; p)$ such that $r_*(x) \neq 0$ in $H_{\beta}(d)$, then it is also of order 4 in $\Omega_*(Z_4; All)$.

Proof. Let $r_*(x) = \sum_{I \neq g} C_{(I,J)} \hat{\xi}_{(I;J)}$ with $C_{(I,J)} \neq 0$ in C_* by assumption. Consider $x \cdot x$ in $\mathcal{Q}_*(\mathbb{Z}_4; All) \times \mathcal{Q}_*(\mathbb{Z}_4; p) \subset \mathcal{Q}_*(\mathbb{Z}_4; p)$. If x is of order 2 in $\mathcal{Q}_*(\mathbb{Z}_4; All)$, so is $x \cdot x$ in $\mathcal{Q}_*(\mathbb{Z}_4; p)$ and $r_*(x \cdot x) = \sum_{I \neq g} C^2_{(I,J)} \hat{\xi}_{(I,I;J,J)} = 0$ in $H_{\beta}(d)$ by Theorem 2.4. This implies that $C_{(I,J)} = 0$ for any (I, J) since the elements $\{\xi_{(I,I;J,J)}\}$ are linearly independent over C_* by the remark in Definition 2.6. This is contrary to the assumption and the theorem follows. q.e.d.

Example 3.10. An element $V^{2m+2}C^{2K+2}C^{2L+1}$ has order 4 in $\Omega_*(\mathbb{Z}_4; All)$ where $m \ge 1$, $K = (k_1, \dots, k_p)$ and $L = (l_1, \dots, l_q)$ with $k_1 \ge \dots \ge k_p \ge 0$, $l_1 \ge \dots \ge l_q \ge 1$ and $q \ge 1$.

We obtain similar examples from y in the second half of Corollary 3.8 in general.

Finally we consider the torsion free part \Re_F in \Re_* , i.e., $\Re_F = (\mathcal{Q}_*/\operatorname{Tor} \mathcal{Q}_*)[C_{2n+2}|n \ge 0]$ as a polynomial algebra over $\mathcal{Q}_*/\operatorname{Tor} \mathcal{Q}_*$ (cf. [13, Introduction]). Then $\Re_F \otimes \mathbb{Z}_2 = C_*[C_{2n+2}|n \ge 0]$ which is isomorphic to $H_*(P_*^{(2)}, \beta)$ where $P_*^{(2)} = W_*[C_{2n+2}|n \ge 0]$ in the same way as (1.17). Using this, we describe the complementary part $\mathcal{A} = \mathcal{Q}_*(\mathbb{Z}_2; All) \otimes \mathbb{Z}_2/\Re_F \otimes \mathbb{Z}_2$ as an additive group. The map $j_*|_{P_*^{(2)}} : P_*^{(2)} \to W_*(\mathbb{Z}_2; rel)$ provides an isomorphism $j_* : P_*^{(2)} \cong j_*(P_*^{(2)})$ by (3.7.1) when $J = \emptyset$. In [13, Sec. 5], $j_*(P_*^{(2)})$ is denoted by $P_*^{(2)}(rel)$. Then we have

(3.11)
$$j_*: \mathfrak{R}_F \otimes \mathbb{Z}_2 = H_*(P_*^{(2)}, \beta) \cong H_*(P_*^{(2)}(rel), \beta) \cong H_\beta$$

through the isomorphism $i_*: H_*(P_*^{(2)}(rel), \beta) \cong H_\beta$ by [13, Theorem 5.3] (cf. (1.17)). Let $j'_*: \Omega_*(\mathbb{Z}_2; All) \otimes \mathbb{Z}_2 \to H_\beta$ be the natural map, then $j'_*|_{\mathcal{R}_F \otimes \mathbb{Z}_2} = j_*$ and $\mathcal{A} = \text{Ker}(j'_*)$ by (3.11). Any torsion element belongs to \mathcal{A} while the torsion free element r_{4m} also belongs to \mathcal{A} (cf. Proof of Lemma 2.2).

By Theorem 3.7 and the above, each element in $(\mathcal{R}_F \cap \mathcal{J}_*) \otimes \mathbb{Z}_2$ is a sum of terms $C_{2I+2} - C_{2I_0+2}$ (here $||I|| = ||I_0||$) with coefficients in \mathbb{C}_* . Thus, for example an element $C_{2m+2} + \sum_I M_I C_{2I+2}$ ($M_I \in \mathbb{C}_*$ and dim $M_I > 0$) in $\mathcal{R}_F \otimes \mathbb{Z}_2$ doesn't belong to $\mathcal{J}_* \otimes \mathbb{Z}_2$, i.e., it doesn't come from $\mathcal{Q}_*(\mathbb{Z}_4; p)$.

Proposition 3.12. For each $m \ge 1$, there is a torsion free element

$$y_{2m+2} = C_{2m+2} + \sum_{I} M_{I} C_{2I+2} + \alpha$$

246

in $\Omega_*(\mathbb{Z}_2; All)$ such that it comes from $\Omega_*(\mathbb{Z}_4; p)/\mathcal{E}$ and does not belong to \mathcal{I}_* where $\sum_I M_I C_{2I+2}$ is a decomposable element as mentioned above and $\alpha \in \mathcal{A}$.

Proof. For each $m \ge 1$, put $P_{2m+1+\varepsilon} = \mathbf{R}P(\xi_0^{2m+1} \times \xi_{\varepsilon})$, the projective space bundle associated to $\xi_0^{2m+1} \times \xi_{\varepsilon}$ with an involution $R_{2m+1+\varepsilon}$ induced by the reflection id $\times -1$ on $\xi_0^{2m+1} \times \xi_{\varepsilon}$ ($\varepsilon \in \{0, 1\}$). Note that $\beta(P_{2m+2}) = P_{2m+1}$. Put $y_{2m+2} = d(P_{2m+2} \times P_{2m+1})$ in $W_{4m+4}(\mathbf{Z}_2; All)$. Then its fixed point data is as follows:

(3.12.1)
$$j_*(y_{2m+2}) = d((\xi_{2m+1} + \xi_1 \xi_0^{2m})(\xi_{2m} + \xi_0^{2m+1}))$$
$$= \xi_{2m+1}^2 + \xi_1^2 \xi_0^{4m}$$

in $W_*(\mathbf{Z}_2; rel)$ by (1.15). Since $j_*(\beta(y_{2m+2}))=0$ in $W_*(\mathbf{Z}_2; rel)$, $\beta(y_{2m+2}) \in Q_*^{(*)}$ vanishes in $W_*(\mathbf{Z}_2; All)$ hence in Tor $\Omega_*(\mathbf{Z}_2; All)$. Therefore $y_{2m+2} \in \Omega_{4m+4}(\mathbf{Z}_2; All)$ and also belongs to $Q_*^{(2)}$ by definition (cf. (1.14)). Hence it comes from some $x_{2m+2} \in \Omega_{4m+4}(\mathbf{Z}_1; p)$ by (3.12.1) and Theorem 3.1. On the other hand,

(3.12.2)
$$j_{*}(C_{2m+2}) = \xi_{2m+1}^{2} + \sum_{K} M_{K} \xi_{(K;g)}$$

in H_{β} for some $M_{K} \in C_{*}$ with dim $M_{K} > 0$ by (1.18 (ii)) and (1.17). From this, for each sequence $K = (k_{1}, \dots, k_{p})$ with $k_{1} \ge \dots \ge k_{p} \ge 0$,

(3.12.3)
$$j_{*}(C_{2K+2}) = \xi_{(K; \mathfrak{g})} + \sum_{L} M_{L} \xi_{(L; \mathfrak{g})}$$

in H_{β} for some $M_L \in C_*$ with dim $M_L > 0$ by the product of $j_*(C_{2k_{j+2}})$. Let $||K|| = k_1 + \cdots + k_p + p$. Then ||L|| < ||K|| for each L in the above. Let $p_0 = \max\{||K||\}$ for the class $\{K\}$ in (3.12.2) and let $\{K_0\}$ be the subset of $\{K\}$ with $||K_0|| = p_0$. Then

(3.12.4)
$$j_{*}(C_{2m+2} - \sum_{K_{0}} M_{K_{0}}C_{2K_{0}+1}) = \xi_{2m+1}^{2} + \sum_{S} M_{S}\xi_{(S;g)}$$

in H_{β} for some $M_{S} \in C_{*}$ with dim $M_{S} > 0$ by (3.12.2) and (3.12.3) when $K = K_{0}$. Then $||S|| < p_{0}$ for each S. By easy induction on $||\cdot||$, we obtain $\bar{y}_{2m+2} = C_{2m+2} + \sum_{I} M_{I}C_{2I+2}$ such that $j_{*}(\bar{y}_{2m+2}) = \xi_{2m+1}^{2}$ (in H_{β}) for some I with $1 \leq ||I|| \leq p_{0}$ and $M_{I} \in C_{*}$ with dim $M_{I} > 0$. Put $\alpha = y_{2m+2} - \bar{y}_{2m+2}$, then $j'_{*}(\alpha) = 0$ in H_{β} , i.e., $\alpha \in \mathcal{A}$ by construction and (3.12.1). Since $r_{*}(x_{2m+2}) = j_{*}(y_{2m+2}) \neq 0$ in $H_{\beta}(d)$ by (3.12.1), we see that $x_{2m+2} \notin \mathcal{E}$ by Theorem 2.4. Since $j'_{*}(y_{2m+2}) = j_{*}(\bar{y}_{2m+2}) \neq 0$ in H_{β} by (3.11), y_{2m+2} is a torsion free element and so is $x_{2m+2} \in I_{1} \otimes \mathbb{Z}_{2}$, then it is a sum of terms $(C_{2I+2} - C_{2I_{0}+2})C_{2J+1}$ with coefficients in C_{*} by Theorem 3.7. If $J \neq \emptyset$, then such terms belong to \mathcal{A} . So $\bar{y}_{2m+2} = T \pmod{\mathcal{A}}$ where T is a sum of terms $C_{2I+2} - C_{2I_{0}+2}$ with coefficients in C_{*} by the definition of α . Hence in $\mathcal{R}_{F} \otimes \mathbb{Z}_{2}$, $\bar{y}_{2m+2} = T$ by (3.11), i.e., $\bar{y}_{2m+2} \in \mathcal{J}_{*} \otimes \mathbb{Z}_{2}$. This is a contradiction. Hence $y_{2m+2} \notin \mathcal{J}_{*} \otimes \mathbb{Z}_{2}$ and so $y_{2m+2} \notin \mathcal{J}_{*}$.

q.e.d.

References

- [1] Beem, R.P., The action of free G-bordism on G-bordism, Duke Math. J., 42 (1975), 297-305.
- $\begin{bmatrix} 2 \end{bmatrix}$ _____, On the bordism of almost free Z_{2^k} actions, Trans. Amer. Math. Soc., 225 (1977), 83-105.
- [3] Beem, R. P. and Wheeler, E. R., The image of unitary bordism in unoriented bordismthe equivariant case, *Proc. Amer. Math. Soc.*, 45 (1974), 445-449.
- [4] Bredon, G.E., Introduction to Compact Transformation Group, Academic Press, 1972.
- [5] Conner, P.E., Lectures on the Action of a Finite Group, Lec. Note. in Math., 73, Springer-Verlag, 1968.
- [6] Conner, P.E. and Floyd, E.E., Differentiable Periodic Maps, Erg. Math., 33, Springer-Verlag, 1964.
- [7] Hara, T., On Wall manifolds with (ε)-free involutions, Publ. RIMS, Kyoto Univ., 22 (1986), 571-582.
- [8] ____, On Wall manifolds with almost free Z_{2^k} actions, Tokyo J. Math., 15 (1992), 461-474.
- [9] Hoo, C.S., Remarks on the bordism algebra of involutions, Proc. Amer. Math. Soc., 17 (1966), 1083-1086.
- [10] Katsube, Y., Principal oriented bordism algebra Ω_{*}(Z_{2k}), Hiroshima Math. J., 4 (1974), 265-277.
- [11] Komiya, K., Oriented bordism and involutions, Osaka J. Math., 9 (1972), 165-181.
- [12] Kosniowski, C., Actions of Finite Abelian Groups, Pitman, 1978.
- [13] Kosniowski, C. and Ossa, E., The structure of the bordism module of oriented involutions, Proc. London Math. Soc., 44 (1982), 267-290.
- [14] Rosenzweig, H.L., Bordism of involutions on manifolds, *Illinois J. Math.*, 16 (1972), 1-10.
- [15] Rowlett, R. J., The fixed-point construction in equivariant bordism, Trans. Amer. Math. Soc., 246 (1978), 473-481.
- [16] Stong, R.E., Stationary point free group actions, Proc. Amer. Math. Soc., 18 (1967), 1089-1092.
- [17] -----, Wall manifolds, Trans. Amer. Math. Soc., 251 (1979), 287-298.
- [18] Su, J.C., A note on the bordism algebra of involutions, Michigan Math. J., 12 (1965), 25-31.
- [19] Wall, C.T.C., Determination of the cobordism ring, Ann. of Math., 72 (1960), 292-311.