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Operators Characterized by Certain
Cauchy-Schwarz Type Inequalities

By

Hideharu WATANABE*

Abstract

A Hilbert space operator T satisfying

either (**) | (TV, ?) 2<g (| T\£, c) (| T\ r, , -/;) for all <=, ;j e^ ,

or (*) |(7V-, £ ) | ^ ( | T | £ , =) for all ^^M

is studied. The condition (**) defines a slightly larger class than the hyponormality,
and for compact operators (**) is equivalent to the normality. The condition (*) is
characterized by using an operator whose numerical radius is less than 1, and among
other things we show that (*) and the normality are equivalent for matrices. Moreover,
we show that (*) and the normality are equivalent for trace class operators in Appendix.

§ 0. Introduction

The purpose of the present paper is to study operators T satisfying either

(**) i ere, >?)i2^(m?, ex ir >?, ?) for aii e,
or

Here, T is an operator on a Hilbert space M with absolute value T|=(T*T)1/Z.
It is obvious that (**) implies (*). Based on the Cauchy-Schwarz inequality,

one can show that (**) is equivalent to the operator inequality T* ^ | T \
(Theorem 1.1). In particular, if T is normal (i.e., TT*—T*T), then (**) holds.
In the operator theory, several extensions of the notion of the normality are
known (see, for example, [8]). One of the most important and most widely
studied classes among them is the hyponormality (i.e., TT*^,T*T) (see, for
example, [5]). Since the square root function tllz (^0) preserves the (natural)
order among positive operators ([7]), a hyponormal operator T actually satisfies
\T* ^ T (and hence (**)). Therefore, we are looking at a slightly (and
strictly ••• see the end of §1) larger class than the hyponormality.
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In § 1, we will identify the class of operators satisfying (**). We will also
show that for compact operators the validity of (**) is equivalent to the normality
based on the following result due to T. Ando ([!]): A compact hyponormal
operator is automatically normal (see also [4] and [9]).

In § 2, we will consider the condition (*). Firstly we will characterize (*)
by making use of an operator X whose numerical radius w(X) satisfies w(X)^l
(Theorem 2.1). Secondly we will also show that for (finite) matrices (dim (JO
<oo) the condition (**) actually implies the normality (Theorem 2.3). Con-
sequently, (*), (**), and the normality are all equivalent for matrices.

A beautiful characterization of an operator X with w(X)^l was obtained
by T. Ando ([2]). Based on this characterization and Theorem 2.1, in § 3 we
will show that the class of operators satisfying (*) is strictly larger than the
class of operators satisfying (**) (when dim(JO=oo).

Finally, in Appendix, we will extend to the result obtained in § 2 to trace
class operators. Based on T. Ando's factorization of a numerical contraction
X (i.e., w(X)^l) ([2]), we will show that a numerical contraction and its
adjoint have the same invariant vectors, and that for trace class operators the
validity of (*) is equivalent to the normality.

The results in Appendix were suggested by the referee, and the author
would like to thank the referee for the suggestion.

§ 1. Inequality (**)

In this section, we consider the following inequality for an operator

(**) I(T£, )?)|2^(|T|£, f)( |T|7 , y) for all £,

Theorem 1.1. For an operator Te^(^), (**) holds for all f, )?e<# if and
only if T* ^\T\.

Proof. Let T=U\T\ be the polar decomposition of T. Then, since IT*
=U\T\U*,

\(T$, r})\*=

for all £, TI^M. Therefore, if T*|;£ T , then we get (**).
Conversely when (**) is valid, by replacing f, y by £/*£, f, we get
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Hence, we conclude T* |^ jT | . q. e. d.

From the above theorem, we easily see that the normality of T implies
(**). But, in general, the inequality (**) does not imply that T is normal (for
example, an isometry). However, when T is compact, we obtain :

Theorem 1.2. Let Te^(JT) be compact. Then (**) holds for all f,
if and only if T is normal.

To prove Theorem 1.2, we need the following fact due to T. Ando ([1] •••
see also [4] and [9]):

Proposition 1.3. A compact hyponormal operator in <B(3£) is normal.

Proof of Theorem 1.2. Let T=U\T\ be the polar decomposition of a com-
pact operator T. We must show that T* | ̂  T implies the normality of T.
By setting S=U\T 1/2, we observe that

SS*=U\T\U*=\T*\

^ I T | = | T 1 1/2£/*£7 1 T 1 1'2=S*S ,

i.e., S is hyponormal. Since T is compact, 5 is also compact. Thus S is
actually normal by Proposition 1.3. On the other hand, since S=U\T\1/Z is the
polar decomposition of 5, the normality of S implies UU*=U*U and U\T\1/2=
\T 1/ZU. Thus, U\T = T\U, and hence T is normal. q.e.d

The function t l / 2 (^0) is operator monotone ([7]). Therefore, the hypo-
normality (i. e., TT*^T*T) implies | T* | ̂  | T | . But I T* | ̂  I T | does not neces-
sarily imply the hyponormality of T. For example, consider the 2x2-matrices

1 0

10 0

Note that r^s and r2^s2. We set

[2 1
and s =

.1 1
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r=

" ° 1
r 0

s 0

s 0

- o
r2

s2

s2

and T*T=

r2

s2

s2

s2

Then we compute

TT*=

Therefore T*|<:|T|, but T is not hyponormal (because of ?-2^s2).

§2. Inequality (*)

In this section, we consider the following inequality for an operator

) for all

Obviously the inequality (**) implies (*), and hence the normality of T implies (*).
For an operator T ^$(M\ sup{|(Tf, £) : £^M, ||f|| = l} is called the

numerical radius of T and denoted by w(T). Then the following inequality is
standard ([6]):

Theorem 2.1. For an operator T <=$(&), (*) /w/ds /or a// fe^T if and
only if

U\T\ll2=\T\lizX

for some X<=$(M) with w(X)^l, where T=U\T\ is the polar decomposition
of T.

Related results were obtained in [3].

Proof. Suppose that (*) holds for all feJf. For each positive integer
, we define Xn<^$(M} by

Then, for all
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n)/} 1/2f , \\T\ +(l/n)/} -'"£)

=(T{ |T I

+(!/«)([/{ T

Thus, by (*) (Xnf, £) is majorized by

(|T

=({|Tl+(l/n)/H|T|+(l/«)/}-"2f, i T | +(!/«)/} -1'2?)

Therefore, we get

and

Thus, by the Alaoglu theorem, we can construct a subnet {X3}jeJ converging
weakly to some X^S(M) with 11^(1^2 from the sequence {Xn}n^N. Then, we
have w(X)^l since

Now, from the definition of {^}J6/, we get

(1) U{\T\ +(1/F(;))/| '/•= { | T |

for some mapping F: J—>N (in fact, Xj=XF<.^). Hence, we conclude

U\T\1I2=\T\1I2X

by taking weak limits of both sides of (1) (see [7]).
Conversely, assume that Z7|T| I /2=|T|1/2JSi: for some X^S(M) with w(X)

<l. Then, for all

=(|T||, f). q.e.d.

From the above theorem, we easily obtain :

Corollary 2.2. When Te&(&) satisfies (*) /or all fe^f, we
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and

For matrices (i.e., dim (J0<oo), we obtain the following characterization:

Theorem 2.3. Let M be a finite-dimensional Hilbert space. Then for
(*) holds for all feJf if and only if T is normal.

Proof. We may assume that M=Cn. Then $(M)=Mn(C] ( := {complex
nXn-matrix}). Thanks to the obvious unitary invariance, we may and do
assume that T is of the form

"f lu • • • f l l n

(i.e., T is an upper triangular matrix).
We will show that

flt;=0 if i

by induction on the size n of a matrix.
For n = l this result is trivial. Let

\a i
T=\ | and |T| =

0 B LC

Here, a = fln, je is a non-negative number, /3 and C ar^ (column) vectors in Cn,

B is an upper triangular matrix in Mn(C), and Z is a positive matrix in Mn(C}.
Then, since T*T= T\2, we have

by comparing the 1—1 components. Therefore a\^x. On the other hand,
with f=£(l, 0) in Cn+1, we have \a ^x by the assumption (*). Hence

x=\a\ and C=0 .

Furthermore, since T*T=1T|2, we have

(2) flj8*=0

by comparing the 1—2 components.
We will show /3=0 by the contradiction argument. Then, the result follows

from the induction hypothesis.
Assume /3^0, and hence x=\a =0 from (2). We choose and fix a (column)

vector f (=jg) in Cn such that
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Let ?='(/>, *£') in Cn+1 (/>>0). Since a=Q and C=0, straightforward computa-
tions show

(T^ &=kp+(B?, r )
and

Therefore (*) does not hold for p sufficiently large, a contradiction. q. e. d.

§ 3. Relation of (*) and (**)

From Theorem 1.2 and 2.3, for a finite-dimensional Hilbert space M, (*) is
equivalent to (**) (and to the normality of T). Recall that (**) implies (*).
But, in general, (*) does not imply (**) (i.e., |T*|^|T| by Theorem 1.1).

We will consider an operator T of the form

"TH

0
ai 0

az 0

to explain this phenomenon. Here, an's are positive numbers to be fixed later.
We note that

0

and | T l = j|T*| =

Therefore, if the sequence {an\ is strictly decreasing, then JT* |^ |T | (i.e.,
(**)) does not hold. On the other hand, Corollary 2.3 indicates that, if {an\
decreases too rapidly, then (*) does not hold either. Thus, we are forced to
choose a slowly decreasing sequence {an\ so that T does not satisfy (**) but (*).

We set

By using this sequence {en} (of positive numbers converging to 0), we set

«!=! and «n+1=

Then {an\ is obviously decreasing, and it remains to show that (*) holds. For
this purpose, we need the following result due to T. Ando ([2]): w(Y)^l if
and only if Y=(I+A)1/2B(I-A)l/z with -I^A^I and ||B||^1 (we actually
need just the easier half).

We define the sequence {an}d[_— 1, 1] (in fact, a r ae[— 1, 0)) by
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and we set

X=

with
"0

u VI—a*

1 0
1 0

In fact, the above U is the partial isometry appearing in the polar decomposi-
tion of T. Then, by T. Ando's result, we have w(X)<.l. It is straightforward
to see

0_
~~ 0_

~~ 0x=

thanks to

It is also easy to see
U\T\^z=\T\l/2X.

Therefore, we see that T satisfies (*) by Theorem 2.1.

Since 2 en is convergent, so is
71 = 1

Therefore, liman^0, and the above T is not compact.
n

The author does not know whether the condition (*) and the normality are
different for compact operators (in fact, we can confine ourselves to the case
T is compact quasi-nilpotent according to the way used in Theorem 2.3), and
this problem seems to deserve further investigation.

Appendix

Theorem 2.3 is extended to trace class operators, that is, for them the
condition (*) is equivalent to the normality. We show this by the a method
different from that of Theorem 2.3.

Lemma. Let X^<B(4() be a numerical contraction, i.e., w(X)<l. Then
=% implies X*£=£.
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Proof. By T. Ando's factorization of a numerical contraction ([2]), there
exist a self-adjoint contraction A^&(3t) and a contraction B^^(M) such
that

and B is isometric on the range of I— A. Since

=(£,£),
we have

(3)

for some scalar c and

(4)
From (4), we have

Since 5 is isometric on the range of (I—A), we have from (3)

by the polarization identity. Therefore

(£, 5)=((/-^)f, £)=c(A*£, f)

=c(f, 6)

and hence c=l and X*f=|— ^4f. But since

we obtain X*£ =£ . q. e. cl.

Theorem. Let T^$(M) be of trace class. Then (*) holds for all
and only if T is normal.

Proof. By Theorem 2.1, there exists a numerical contraction
such that
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where T=U\T\ is the polar decomposition of T. The space £2W of Hilbert-
Schmidt class operators becomes a Hilbert space with the inner product </f, L>
=Tr(L*K) for K, L^C2(M). We define the operator 0 on C2(M) by 0(K)=
U*KX. Then 0(|T \"*)=U*\T \1/2X= \T 1'2.

Now, by T. Ando's factorization, we are led to the representation

X=(I+Ay/2B(I-A}1/2

with a self-adjoint contraction A^^(M) and a contraction B<^$(M}. Then

= /? (/ -A) 1/2 ° I/O"*0 ̂ 5° R (I + 4) 1/2

Here, L0 and RD are the left- and right-multiplication operator on Cz(&) induced
by D<^$(M} respectively. Again by T. Ando's result, we get w(0)^l. By
virtue of the above lemma, we have 0*(\T\l/2)=U\T\l/2X*= T 1/2 and hence

U*\T\1/Z=\T\1/2X* .

Therefore, we get Re(I7)|T 1 / 2=|T|1 / 2Re(Z) and lm(U)\T\^2= T\1/2lm(X).
Let {£Re(jn(S) * S is a Borel subset of R] and {E^&(X}(S}: S is a Borel sub-

set of R] be the spectral projections of Re (U) and Re (X) respectively. Then,
since Re ([/) | T 1 1'«= | T | 1/a Re (Z), we have ERc«7>(S) | T 1 1/«= | T 1 1/2£Re(^)(S). This
implies

But ERe(m(S)\T\ERe(m(S)^\T\ is possible only when ERe(^)(S) commutes with
| T | . Therefore, we are led to the commutativity of Re (U) and | T . In a
similar fashion, Im (C7) commutes with T \ . Hence, we obtain

U\T\ = \T\U ,

i.e., T is quasi-normal. Since T is of trace class, T is normal by Proposition
1.3. q . ed .
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