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Fibrewise Hopf Construction and
Hoo Formula for Pairings

By

Nobuyuki ODA*

Abstract

Let /' be a fibrewise co-Hopf space over a topological space B. A /^-suspension
space rBX is a generalization of a fibrewise suspension space ZBX for any fibrewise
pointed space X over B. Making use of /'^-suspension space, we define /"s-Hopf con-
struction and prove a /"^-suspension formula which generalizes the suspension formula of
C. S. Hoo. The dual formula is also proved.

Introduction

Let Topi be the category of fibrewise pointed topological spaces over a
base space B and fibrewise pointed continuous maps over B (cf. James [4, 5]).
We write simply /: X-*Y for morphisms in Topf. Throughout this paper a
space X means a fibrewise pointed topological space over B and a map f: X—»
Y means a fibrewise pointed continuous map over B between fibrewise pointed
spaces X and Y over B.

Let F be a co-Hopf space in Topf. Then we define a ^-suspension space
FBX by F/\BX for any space X in Topf and /Vsuspension map FBa : FBA—>
FBZ by FBa=lr/\Ba\ FBA=-F/\BA-* F/\BZ=FBZ for any map a: A-+Z in
Topi (cf. [7]). This defines a /^-suspension map between fibrewise pointed
homotopy sets:

rB: LA, z]g_>[/v4, FBZ~]B
B.

Let fjt: XxBY—»Z be a pairing in Topf. Then for any maps a: A—*X and
j8: A-*Y in Topf, we can define a map a-f/3: A-*Z in Topf. On the other
hand, [FBA, FBZ~]B has a binary operation (denoted by +) induced by the
fibrewise co-Hopf structure of FBA.

A co-Hopf space F in Topf is called a co-looplike space in Topf if [F, Z~]B

is naturally an algebraic loop for any space Z in Topf. The following theorem
shows that the pairing + and the binary operation 4- are closely related.
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Theorem 3.1. Let F be a co-looplike space in Top|. Let p\ XxBY-^Z be
a pairing in Topi with axes f:X-*Z and g: Y-*Z. Then the following rela-
tion holds in \_FBA, FBZ]f for any maps a : A-^X and /3 : A-*Y in Topi :

The /VHopf construction J r,B(p) in the above theorem is defined in Definition
2.7 and AAiB: A—*AxBA is a fibrewise diagonal map over B. The /VHopf
construction Jr,B(ft) is a generalization of the Hopf construction J(fjt) of Hoo
[2, 31. If B={*\ and F=S1, then the /VHopf construction coincides with the
usual Hopf construction (e. g. on p. 502 of White head [8]). The above formula
is a generalization of Theorem 1 of Hoo [3].

In § 1 we review some properties of pairings, copairings, /Vsuspension
spaces and /Vloop spaces ([6, 7]). In § 2 we define /YHopf construction. In
§ 3 we prove TV-suspension formula and related results. In §§ 4 and 5 we
prove the dual results of §§ 2 and 3 respectively.

We use the following symbols in Topi. An isomorphism in Topi is denoted
by SB. Let X and Y be spaces in Topi. The space XVBY is the fibrewise
wedge sum over B which is a subspace of the fibrewise product XxBY over B.
We have a natural inclusion map jB: XVBYdX X BY. The fibrewise smash
product over B is defined by X/\BY=(XxBY)/s(X\/BY). The fibrewise pointed
mapping-space over B is denoted by mapiC^, Y) (cf . § 9 of [5]).

We denote by AXlB: X->XxBX the fibrewise diagonal map over B and
VZ i j B : XVsX-*X the fibrewise folding map over B. We denote by *B : X— > Y
the fibrewise constant map over B.

A fibrewise pointed homotopy relation over B is denoted by — B and the set
of the fibrewise pointed homotopy classes over B is denoted by [X, Y~\B.

Let S=BxS1 in Topi. Then IBX=I/\BX is the fibrewise reduced suspen-
sion space of X and Q BX—2%X=m'&p?B(2 ', X) is the fibrewise loop space of X.
(We remark that James [5] uses the symbol I^X for the fibrewise reduced
suspension space and QBX for the fibrewise loop space of a space X in Topi.
We use our abbreviated symbols for simplicity.)

We assume that all the spaces are fibrewise pointed non-degenerated spaces
with closed section (cf. § 22 of [5]). Moreover we assume that the co-Hopf
space F is fibrewise locally compact and fibrewise regular (cf. [5]).

§ 1. Fibrewise Induced Pairings

We call a map p: XxBY->Z in Topi a pairing with the axes f:X-*Z
and g : Y-»Z if it satisfies the condition that

: X\/BY —>Z.

Such a map /* : XxBY—*Z is also called a fibrewise pairing over B or a pairing
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in Top!.
If we are given a pairing p.\ XxBY-*Z in Top!, we define a map

A-^Z in Top| for any maps a: A-+X and $ : A— >r in Topi by

The relations a + B*B= /*(«) and *B + B/3=:g*(fi) holds in [^4, Z]f. We have an
equality of maps in Top!

for any maps a : A-^X, ft : yl— >Y and 5 : Z)— >.4 in Top!.
We call a map 6 : /I— >AVsV in Top! a copairing with the coaxes /i : .4— >

X and r : A-+Y if it satisfies the condition that

j°0^B(hxBr)°AA,B: A — >XxBY

for the inclusion map /: X\/BY->XxBY. Such a map 0: A — XV BY in Top!
is also called a fibrewise copairing ouer B or a copairing in Top!.

If we are given a copairing $ : A-^VsF in Top!, we define a map a 4- Bfi :
A->Z in Top! for any maps a: X-+Z and /3 : }'-»Z in Top! by

The relations a + s*jB=/'i*(a) and *B
:r Bfi=r*(fi) hold in [/I, Z]f. We have an

equality of maps in Top!

for any maps a : X-* Z, ft : Y-^Z and £ : Z->W in Top!.
A space X in Top! is said to be a Hopf space in Top! or a fibrewise Hopf

space over B if there is a pairing fjt:XxBX--X in Top! with axes / — Bg—B^. \->
Such a pairing p. is called a fibrewise multiplication of ^. If X is a Hopf space
in Top!, then [.4, X~\B has a natural binary operation +B defined above for any
space A in Top!.

A space A in Top! is said to be a co-Hopf space in Top! or a fibrewise
co-Hop f space over B if there is a copairing 0 : ,4— AV BA in Top! with coaxes
h~Br — B\A- Such a copairing 0 is called a fibrewise co-multiplication of ,4. If
A is a co-Hopf space in Top!, then \_A, Z]! has a natural binary operation -^ B

defined above for any space X in Top!.
Let F be a co-Hopf space in Top! with a fibrewise co-multiplication j :

F-*rv BF. We write F f\BX=FBX (the Fa-suspension space of X) for any
space X in Top!. A map a : X^-Y in Top! induces a F B-suspension map FBa :
FBX-*FBYby FBa=lrABa: F/\BX^F/\BY. We see FBa°FBp=rB(a°p) for
any maps a : Y—>Z and /3 : X-^F in Top!.

We define a fibrewise pointed map ?x— H>/\B^X'- FBX-^FBXyBFBX by
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Tx : FBX=F/\BX —> (FyBF)/\Bx
(cf. (6.1) of [5]). Then FBX is a co-Hopf space in Topi with a fibrewise co-
multiplication fx for any space X in Top|. If a, ft : FBX-^Y and d : W~^X are
maps in Topi, then as maps in Topi we have

There are following isomorphisms as co-Hopf spaces in Topi (cf. (6,, 2) and
(6.1) of [5], (3.80) of [4]);

and

Dually, we define F%X—m^^(F, X) (the FB-loop space of X} for any space
X in Topi. A map a:X-> Y in Topi induces a FB-loop map /la : F*BX-»F%Y.
We see r|a°n/3=/l(a°/3) for any maps a : Y — Z and $ : X — Y in Topi.
We define a fibrewise pointed map ff^mapi^, lx) : F^XxBF^X—>F^X by

rf : mapi(r, X ) X B mapi(F, *)=-^ mapi(rv*r, X) — > mapi(r, X)

(cf. (9.19) of [5]). Then FBX is a Hopf space in Topi with fibrewise multi-
plication 7$ for any space X in Topi.

If a, ft : X -> F|F and £ : F" — > Z are maps in Topi, then as maps in Topi
we have

There is the following isomorphism as Hopf spaces in Topi (cf. (9.21) of
[5]);

Proposition 1.1. Let F be a co-Hopf space in Topi. Let X be a fibrewise
locally compact and fibrewise regular space and Y any space in Topi. Then the
adjoint map

is an isomorphism of sets which satisfies

ra B=Ta + BT

for any elements a, fi^[FBX, F]|. Moreover it satis fies the following relations.
( i ) r(a°rB/3)=r(a)°/3 for any elements a^\_FBY, Z]| and ^e[Z, F]|.
( i i ) r(Coa)=r|C°r(a) /or an^ elements a^\_FBY, Z]| Gwrf C^[Z, l^]i.

By (9.20), (9.25) and (6.2) of [5], we see that r:
is a bijection of homotopy sets. The statement that r is a homo-

morphism is proved by a similar argument as in the case of the usual adjoint
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map r: \_SX, Y] = [X, QY~\.
( i) and ( i i ) are direct consequences of definitions. q.e.d.

Let S be a set with a binary operation +• We call S an algebraic loop if
5 has two-sided identity (denoted by 0) and for any elements a, b of S, the
equations

=b and a-}-y=b

have a unique pair of solutions x, y^S. A map <p\ S—>L between two algebraic
loops is called a homomorphism if <f>(a-\-b)=<f>(a)+</)(b) holds for any a, b^S. If

(p p
( j ) \ S - ^ L is a homomorphism, we have </<0)=0. A sequence S — > L — * R of
algebraic loops and homomorphisms is said to be exact if Im^=Ker^.

A Hopf space X in Topf is called a looplike space in Top! or a fibrewise
looplike space over B if the homotopy set \_A, X]% is an algebraic loop with
the binary operation h B for any space A in Topf.

A co-Hopf space ,4 in Top! is called a co-looplike space in Top! or a fibrewise
co-looplike space over B if the homotopy set \_A, X^B is an algebraic loop with
the binary operation -\- B for any space X in Top!.

§2. Fibrewise AHopf Construction

If X and Y are fibrewise non-degenerate spaces over B, then the cofiber
of /: XV BY -* XxBY is fibrewise pointed homotopy equivalent to X/\BY (cf.
(22.5) of [5]). Consider a fibrewise pointed cofibration sequence

XV BY -^XxBY -0-*X/\BY — > IB(XVBY) ^> IB(XxBY) — ̂  •••

(cf. §21 of [5]). Then we have a fibrewise pointed cofibration sequence

rBj I'sq I^BO ^B^BJrB(xvBY} —> rB(XxBY] — > rB(x/\Bv) —> iBrB(x\/BY} -
for any co-Hopf space (r, 7) in Top! (cf. (20.19) and (21.2) of [5]).

Let pi : XxBY-+X and p2 : XxBY-*Y be the fibrewise projections and ^ :
X~ >XV BY and iz: Y-+X\/BY the inclusion maps. We define a fibrewise pointed
map p = p(F, X, }'): rB(XxBY)~^rB(XV BY} by

where Z=TB(X\/BY) and f '• rB(XxBY)-* rB(XxBY)yBFB(XxBY) is the fibre-
wise co-Hopf structure of FB(XxBY) induced by the fibrewise co-Hopf structure

of r.

Proposition 2.1. Let F be a co-Hopf space in Top!. Let j: XVBY-*XxBY
be the inclusion map. Then the map p : FB(XxBY) — > FB(X\/BY) defined above
satisfies a relation
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Proof. We remark that FB(X\/BY} = BFBXVBFBY (cf. (6.1) of [5]). We
have

P ° FBJ i rBx xB{*B}=p° rBj° /Vi

— L fiZi + 5*5— £./ Bll = ±

Similarly, we have p°FBj\ {*B} XBFBY — BlrB(x\/BY) I 1*2*} XBFBY.
Then the result follows. q. e. d.

We first prove naturality of the fibrewise pointed map p. Consider another
fibrewise cofibration sequence

i' q'
X'\SBY' — >X'XBY' — >X'/\BY'.

Then we have another fibrewise pointed map

(We use the symbols i(, p[, p' etc. for the maps corresponding to ilf pi, p etc.
respectively.)

Proposition 2.2. Let F be a co-Hopf space in Topf. The following diagram
is strictly commutative in Topf for any maps a : X'-^X and ft : Y'~-»Y in Top|.

rB(axBls) rB(a\/Bfi

Proof. We have

q. e. d.
Lemma 2.3. Let F be a co-looplike space in Topf. Then

(FBq}* : \_FB(Xf\BY\ Z]| —
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is a monomorphism for any space Z in Topi.

Proof. Consider a fibrewise pointed cofibration sequence

I^BJ l^Bq l' BOFB(xyBY) —^ FB(XxBY] — > rB(x/\BY] —> IBFB(XVBY} — > ••• .
There is a fibrewise pointed map p : FB(XxBY)-+FB(X\/ BY) such that p°FBj
~B^-rB(xvBY) by Proposition 2.1. Then by the long homotopy exact sequence
of algebraic loops and homomorphisms, we have the result.

Theorem 2.4. Let F be a co-looplike space in Topf . Then there exists a
unique element v=v(F, X, V) of \_FB(X/\BY\ FB(XxBY)~\^ such that

in I

Proof. Consider an exact sequene of algebraic loops and homomorphisms :

(/>?)*
0— IFB(X/\BY\ FB(XxBYm - > LFB(XxBY), FB(XxBY)YB

(/V)*
- > tFB(XVBY), FB(XxBY)-]B

B.

Since [FB(XxBY], FB(XxBY}~]I
B is an algebraic loop, its elements lrB(xyBYi and

FBj°p determine a unique element t<=[FB(XxBY), FB(XxBY}~]E
3 such that

Then we see (FBj)*{t + B(FBj°p)}=(FBj)*{lrBtx,BY>} • We note that

by Proposition 2.1. It follows that (t°FBj)^-BFBj=FBj as fibrewise homotopy
classes and hence t°FBj = (/V/)*(0 = 0. Hence there exists an element v of
{.FB(X/\BY\ FB(XXBY)^ such that v°rBq^(FBqY(v}=t or

{v»(FBq}} +B{(rBfrp] -lr f i(Zx f iF) -

The element v is unique by Lemma 2.3. q.e.d.

We now prove that the fibrewise pointed map v defined by Theorem 2.4 is
natural. Consider another fibrewise pointed cofibration sequence

/ q'
X'\/BY' — >X'XBYf — >X'/\BYf .

Then there exists an element vf ^[_FB(Xf f\BY'}, FB(X'XBY'}~]B
3 such that
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in trB(X'xBY'), rB(X'xBY')l$ by Theorem 2.4.

Theorem 2.5. Let F be a co-looplike space in Top|. The following diagram
is homotopy commutative in Topf for any maps a'.X'^X and ft : Y'—*Y in Topf.

Proof. We have a monomorphism

cr^o*: crfl(^'ABF'), r^xar)
by Lemma 2.3. So we show that

Now, we have

by 2.4

) by 2.4

8)«p'} by 2.2

Bj' *(>'}.
Since the above equality holds in an algebraic loop, we have

n

Consider the following diagram

rBj

We have already shown that p°rBJ—B^rB(x\jBY} (Proposition 2.1) and
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)-BlrB(xxBY) (Theorem 2.4).

Proposition 2.6. Let F be a co-looplike space in Top|. Then the following
relations hold.

( i i ) p°v

Proof. ( i ) By Theorem 2.4, we have

FBq° {(v°rBq) + B(rBj°p)} ~

It follows then that (rBq°v°rBq) + B(rBq°rBj°p)^BrBq and hence

Since (/»*: [_rB(X/\BY\ rB(X/\BY)YB-»[_rB(XxBY\ rB(X/\BY}~]B
B is a mono-

morphism by Lemma 2.3, we have rBq°v^BlrB(x/\BY)>
( i i ) By Proposition 2.1 and Theorem 2.4, we see

It follows that (p°v}°rBq — B *B°FBq and hence p°v^B *B- q.e.d.

Remark. The existence of p (Proposition 2.1) and v (Theorem 2.4) corres-
ponds to the following /^-decomposition (cf. [7]):

Definition 2.7. Let F be a co-looplike space in Topf. Let //: XxBY-+Z
be a pairing in Topf. We define the FB-Hopf construction

by Jr.^fJt)=(rBfJt)°u for the element v^\_rB(X/\BY), r^XxBY)^ obtained in
Theorem 2.4.

Remark. If B={*\ and F=Sl, then the /YHopf construction coincides
with the ordinary Hopf construction (cf. §4 of Chapter XI of Whitehead [8]).

Proposition 2.8. Let [t:XxBY->Z be a pairing in Top|. Then the follow-
ing formulas hold.

( i ) Jr,B(^^=rB^Jr,B(fJt} for any map £: Z->Z' in Top|.
(i i ) Jr,B{p.<OLXB^}=rB^Jr,B(aXB^Jr,B(^°rB(a/\B^ for any maps

a : X'-*X and /3 : Y'-»Y in Top|.

Proof, ( i) Jr,B(^^
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( ii ) The first equality is a result of ( i ). We prove the second one.

by 2.5

. q.e.d.

§3. Fibre wise /^-Suspension Formula

Now we generalize the suspension formula of Hoo [3] to the case of FB-
suspemion space FBX for any space X in Top|. Consider a diagram

rBj rBq
FB(AVBA} ;=± rB(AxBA) ^=± FB(A/\BA) .

p v

In this situation we prove the following theorem.

Theorem 3.1. Let F be a co-looplike space in Top|. Let fjt: XxBY-*Z be
a pairing in Top! with axes f:X-^Z and g: Y-*Z. Then the following rela-
tion holds in {_FBA, FBZ~]% for any maps a'. A~»X and /3 : A~->Y in Top! :

(Remark. J r,B(v)°rB(a/\Bfi)°rB(q°AA,B)=J r,

Proof. Since ITB(AXBA)~(V °FBq) + B(FBj°p) by Theorem 2.4, the map
: AxBA-*XxBY-+Z induces

by the definition of Jr.s- Now, the last term is:
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since a-f B*B=/*(«) and *B-f BJ8 — g*(j8) in [^4, Z]f. We compose FB&A,B from
the right and obtain

^^

q. e. d.

Corollary 3.2. Assume the conditions of Theorem 3.1. // rB(q°&A.B) — B*B
or rB(a/\Bfi}~B*B or J r,B({A)—B*B, then the F B-suspension map FB: [A, Z]i— »
[FBA r*Z]i satisfies

Proof. By the formula of Theorem 3.1, we have the result. q.e.d.

A space A is called a co-grouplike space in Top! or a fibrewise co-grouplike
space over B if it is a homotopy associative co-Hopf space in Topi with a
fibrewise pointed homotopy inverse v : A-^A, namely,

J-4+5^— .8*5— -B^ + Blyl •

If F is a co-grouplike space in Topi, then so is FBX for any space X in Topf,
and hence \_FBX, F]| is a group for any spaces X and Y in Top|.

Theorem 3.3. Let F be a co-grouplike space in Top|. Let p
be a pairing in Topi with axes f : X—>Z, g : Y-*Z, and (Zf ', p.'} a Hopf space
in Topi. // the pairing induced by fj. is denoted by +B and the one induced by
Hf denoted by +'B, then for any maps £: Z -* Zx, a: A -^ X and fl: A — Y in
Topi, the following formula holds in \_rBA, T^ZOli :

Proof. We see by Theorem 3.1 that

It follows that
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On the other hand, by Theorem 3.1, we see

It follows from the two equations above that

°/3)}. q.e.d.

Corollary 3.4. Assume the conditions of Theorem 3.3. Then we have

if one of the following conditions is satisfied ;

(i i) rB(a/\Bfi)~B*B,
(iii)

Proof. By the formula of Theorem 3.3, we have the result.

§4. Fibrewise JT*-Hopf Construction

We now study the dual constructions. Consider a fibrewise pointed fibration
sequence

a i j
QB(XxBY) — >X\,BY — >XyBY — >XxBY,

where X\?BY is the fibrewise homotopy fibre of the inclusion map /: XVBY~- >
XxBY (cf. Crabb and James [1]). Then we have a fibrewise pointed fibration
sequence

(cf. (23.2) of [5]). Since r$(Xy BY) is a Hopf space in Topi, we define a
fibrewise pointed map a=a(F, X, Y}: r%(XxBY}-*n(XV BY) by

iV/^^

where p,: XxBY-*X, i,: X-*X\/BY, pz: XxBY-+Y, iz: Y->XVBY are the
fibrewise projections and the inclusions and C = r$(XxBY). The map f is the
fibrewise Hopf structure of F^(X\/BY) induced by the fibrewise co-Hopf structure
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r: r->rv5r of r.
Proposition 4.1. Let F be a co-Hopf space in Topf. Let j: XVBY—>

XXBY be the inclusion map. Then the map a: F%(XxBY)—F^(XV BY] defined
above satisfies a relation

Proof. We remark that r$(XxBY)^Br$XxBr'BY (cf. (9.9) of [5]). Then
we have

Similarly, we have (r^p^r^c-s^p^lr*^**^. It follows that (r$j) °o

xxBY)' q.e.d.

Now we prove naturality of fibrewise pointed map cr. Consider another
fibrewise pointed fibration sequence :

Then we have another fibrewise pointed map

Proposition 4.2. Let F be a co-Hopf space in Top|. The following diagram
is strictly commutative in Top| for any maps a : X—»X' and /3 : Y— >Y' in Top|.

J a, \

Proof. We use the symbols i'lt p{, a' etc. for those maps corresponding to
»i, pi, a etc. respectively.

17. e. rf.
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Lemma 4.3. Let F be a co-looplike space in Topf. Then

(no*: \_A, rs(*h,y)]i — > [4, r%xvBYj]$
is a monomorphism for any space A in Topf.

Proof. By Proposition 4.1 and the long fibrewise pointed homotopy exact
sequence, we have the result. q. e. d.

Theorem 4.4. Let F be a co-looplike space in Top|. There exists a unique
element a)=a)(F, X, Y) of [r$(XVBY\ /l^b-Hli such that

in

Proof. Consider an exact sequence of algebraic loops and homomorphisms :

For elements Ir^xv^ and a*rij of \_r%(XV BY\ rj(^V^)]i which is an
algebraic loop, there exists a unique element t<=[_r%(XV BY\ r$(X\/BYy]B such
that

Then we see (FW*{t + B(a»FW=(F%j)*{lrxvY,}-=r%j. We note that

by Proposition 4.1. It follows then that

in trt(XVBY\ F%(XxBYm. Thus we have r$/"Mrj/)*(f)=0. Hence there
exists an element a)^[_r^(X\/BY\ FS(X]>BYy]B such that (/10*(<»)=f. It fol-
lows that

The uniqueness of <y is obtained by Lemma 4.3. q. e. d.

The element a) defined in Theorem 4.4 is natural. Consider another fibre-
wise pointed fibration sequence

r*Bif rlj'
— > F*B(X'\/BYf) — > r$(
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Then we have another element a)' of [/!(*' V*7'), r%(X'\,BY'ft% such that

in [/!(*' VaK'), F%(X'\/BY '}-}*.

Theorem 4.5. Let F be a a co-looplike space in Topf.. Let a: X—>Xf and
/3 : Y—*Y' be any maps in Top|. Then the following diagram is homotopy com-
mutative in Top|.

\ m, \

n(X'VBY')^r*B(

Proof. Consider the monomorphism

of Lemma 4.3. It is sufficient to show that

Now we see

by 4.4

(ff.rsy)} by 4.4

by 4.2

Thus we have (r|z')*{o>'°/12(aVfiJS)}=(r|z')*{/7S(a^|S)°tt>}. q.e.d.

Consider the following diagram :

r*i i '* ?
r*B(X\>BY) ^ r$(XVBY) ^=L r*B(XxBY).
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We have already shown that F^j^a — B^F%(XXBY^ (Proposition 4.1) and
tf) (Theorem 44).

Proposition 4.6. Let F be a co-looplike space in Top|. Then the following
relations hold.

( i i ) co°ff~B*B.

Proof. ( i ) By Theorem 4.4, we have

It follows then that F%i=(F%i°<D<>r%i} + B(a°r*Bj«r%i) and hence

r#=(r&'<o* rso t B **^ *r# •<»« r#
Since (F|/)* : [F|(Z^F), rB(^b^]i^[F5(*bn /V*V*r)]g is a monomor-
phism by Lemma 4.3, we have Ir^cxb^D — B^^F^i.

(i i) By Proposition 4.1 and Theorem 4.4, we see

It follows that r%i°(t)°G — B*B=r%i°*B and hence a)°a~ B*B. q.e.d.

Remark, The existence of such a) and a with the relations mentioned
above corresponds to the fibrewise pointed homotopy decomposition (cf. [7]):

Definition 4.7. Let F be a co-looplike space in Top|. Let 6: A-»X\/BY
be a copairing in Top^. Then we define r^-Hopf construction

by Jf>B(0)=<*><>r$0 for the element <oz=\:r$(XVBY), r$(X\>BYTlS obtained in
Theorem 4.4.

Proposition 4.8. Let F be a co-looplike space in TopJ. Let 0: A-*XVBY
be a copairing in Top|. Then the following formulas hold.

( i ) J*.B(0*d)=n,B(6)°r%d for any map d: D-»A in Top|.
(i i ) n.B{(aVB^e} = n,B(a\/B^rW^n(a}fB^n,B(e) for any maps

a : X-»Xf and ft : F->F' in Top|.

Proof, (i) jflB(0*d)=&'r&ff'3)=w'rz0*r&=j
( i i ) The first equation is the result of ( i ) . We now prove the second one.



FIBREWISE HOPF CONSTRUCTION 277

= /Ka|»aJ8).a»..rS(0) by 4.5

)../ju0).
q. e. d.

§ 5. Fibrewise /^-Suspension Formula

Consider a diagram

In this situation we prove the following theorem.

Theorem 5.1. Let F be a co-looplike space in Topi. Let 0 : A-+X\/BY be
a copairing in Top$ with coaxes h: A-^X and r: A—>Y. Let a: X-^Z and jS :
Y-*Z be maps in Topf. Then we have the following formula in [_F*A, F^Z']".

(Remark.

Proof. We have lr*B<zvBz)=(F%i°(o') + B(a°r%j) by Theorem 4.4, and hence

Now we see that the last term is :

Composing with F^JZ:B from the left, we have
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q. e. d.

Corollary 5.2. Assume the conditions of Theorem 5.1. // /"KVz.s-z') — B*B
or rS(a|,Bj8)=B*a or /£a(0) = s*fl, then the F-loop map r$: [A, Z]$-+
[_r%A, riZ]f satisfies

Proof. By the formula of Theorem 5.1, we have the result. q.e.d.

Theorem 5.3. Let F be a co-grouptike space in Topf. Let 0 : A — > XV BY
be a copairing in Topf with coaxes h: A^X and r: A—>Y. Let (A', 6') be a
co-Hopf space in Top!. If the pairing induced by 0 is denoted by + B and the
one induced by 0' denoted by + 'B, then for any maps d: A'-^A, a: X-+Z and
P: F->Z in Topi, the following formula holds in [T£(4'), /lZ]f.

Proof. We see

ri(a+Bp)=
by Theorem 5.1. Then composing with T*5 from the right, we have

On the other hand, by Theorem 5.1, we have

It follows that

q.e.d.
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Corollary 5.4. Assume the conditions of Theorem 5.3. Then the formula

holds if one of the following conditions is satisfied :

( i )
( i i )
ail)
Proof. By the formula of Theorem 5.3, we have the result.
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