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Abstract

We study the Surjectivity of convolution operators on the spaces of hyperfunctions
and Fourier hyperfunctions. On the space of hyperfunctions, we give a sufficient condi-
tion (the kernel is a nonzero ultradistribution), weaker than earlier conditions. On the
space of Fourier hyperfunction, we give a new sufficient condition and new necessary
conditions for the Surjectivity. Especially in one dimensional case, they become a suffi-
cient and necessary condition. To this aim we use the Fourier analysis as in L. Ehrenpreis
[E-2] and T. Kawai [Ka-1].
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§ 0. Introduction

Let P(D) be a linear differential operator of finite order with constant co-
efficients. If we consider P(D) as an operator on the space $(Rn) of hyper-
functions, the operation of P on f<^<B(Rn} can be rewritten by using convolu-

tion as
Pf=(P(D)S)*f.

Here d is Dirac's delta function. Thus we may regard the operator P as a
convolution operator /** whose kernel /i is a distribution supported in the origin.
The operator p* makes sense not only the case where ^ is a distribution with
compact support but also a compactly supported hyperfunction. Moreover the
operator ft* can be considered as an operator on the space Q(Dn) of Fourier
hyperfunctions. (Refer to § 1.1 for their definitions.)

When /j* is a differential operator of finite order with constant coefficients,
/^* is surjective on $(Rn}. (See Harvey [H].) We will study in this paper the
surjectivity of p* in a general situation.

For the surjectivity on 3$(Rn), the following two sufficient conditions are
already known in Martineau [M] and Kawai [Ka-lJ :

1) The support of JJL is one point,
2) /j. is a non-zero compactly supported distribution.

The both conditions have been shown to be sufficient by reducing to Kawai's
abstract condition (S). (Refer to §1.5.)

The aim of this paper is to give conditions on the kernel fjt for the con-
volution operators p* to be surjective on the spaces of hyperfunctions and
Fourier hyperfunctions.

First in the second chapter, we will consider the problem on $(Rn) and
show a generalization of the sufficient condition 2) :

2}' fi. is a non-zero ultradistribution
to be sufficient. We also reduce this to the condition (S). (Refer to §2.2 and
§ 2.3.) At the end of the second chapter, we will explain by a similar argu-
ment why the condition 1) is sufficient.

In the third chapter, we will deal with the problem on Q(Dn} and give a
sufficient condition (S') and (Z7) for the surjectivity. (See Theorem 3=3. The
condition (S') is due to Kawai [Ka-1].) Moreover we will show the following:

1) (S') is a necessary condition for surjectivity, (see Theorem 3.2.)
2) In the case n = l, (Z') is also necessary, (see Theorem 3.1.)
3) Two conditions (S') and (Z') are independent, (see Theorem 3.4.)
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§ 1. Preliminaries

1.1. The sheaf Q of Fourier hyperfunctions
We review in this section and the following ones some definitions and basic

properties concerned with Fourier hyperfunctions ([Ka-1], [S]) and ultradistri-
butions ([Ro-1, 2], [Be], [Bj], [Ko-2, 3]).

We denote by Rn (resp. Cn] an n-dimensional real (resp. complex) Euclidean
space, and define the sphere at infinity by

S2-1=(/2n\{0})/~.

Here ~ is an equivalence relation in i^XJO} given by

•kx = x' for some

The equivalence class of x<=Rn\{Q} is denoted by xoo. We put Dn=RnUSZr1

and introduce the induced topology by the map

-& : Dn — > Rn

defined as

We identify Cn=RnX V17!̂ '1 with an open subset of Dn X V^IR71, and RH

with an open subset of Dn :

RH - > Dn

(1.1)

Cn - — > Dnx v'^lR'1 .

The sheaf of germs of holomorphic functions on Cn is denoted by O and
the one of real analytic functions on Rn by Jl. To define the sheaf of Fourier
hyperfunctions, two sheaves 0 and Q oi holomorphic functions with growth
conditions are defined on DnX V— 1RU in the following way. For an open
subset U of Dny^\/—lR1\ the spaces of sections of these sheaves on U are
given by

', sup
zeKr\cn

for any compact subset K of U and any positive e} ,

Q(U)^{f(z}^0(Ur\CTlY, for any compact subset K of U,

theres exists a positive d such that sup e5 l R e 2 l / (z) |< +
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Then 0 and Q really become sheaves and satisfy

Finally recall the definition of space 3?* of rapidly decreasing real analytic
functions,

DnCU

Remark that an element / of <?# is holomorphic in a tube domain1 Rnx
V— !(] — d, d[)n and has an estimate <? £ l R e 2 1 \f(z)\<Const. on the above domain
with some positive d and e.

Definition 1.1 (The sheaf Q of Fourier hyperfunetions). We define the
sheaf & on Rn of Sato's hyperfunctions and Q on Dn of Fourier hyperfunc-
tions by

Moreover we set

$c(R
n)={[jL^$(Rn}', supp/* is compact}.

We list up several properties of Q:
i) Q is a flabby sheaf on Dn.

ii) Q\Rn=&,
iii) An element of Q(Dn) (resp. $(Rn)) is expressed as a sum of boundary

values of sections of 0. (resp. O}.
The above definitions of 5, Q, &* and Q are due to KawaL

1.2. Topologies

We will use the theory of (FS) and (DFS) spaces which has been developed
by Grothendieck [G], S. e Silva [S], Raikov [Ra] and Yoshinaga [Y]. See also
Komatsu [Ko-1] for their definitions.

Now let U be an open subset of DnX\f=:lRn, let V be a relatively com-
pact subset of U. If / is holomorphic in Ur\Cn, then we set for

||/lk.= sup
z(

We define a Banach space XVi£ by

/ extends continuously to the closure of Vr\Cn in Cn}.

XVtS is endowed with the norm \\-\\v.e- We introduce the topologies on 0(U)
and Q(U), and regard them as locally convex spaces by
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VmU £ 4 . 0

V'mU £40

We also introduce topologies on 3?* and Jl(K) by

Here /f is a compact subset of /2?l and O(V} is a locally convex space iso-
morphic to d(V). Let K be a compact subset of Rn, and let &[_K~] denote the
space of hyperfunctions supported in K.

Under the above, &* and J.(K) become (DPS) spaces. If we express ele-
ments of Q(Dn} and -®[/f] as boundary values of holomorphic functions, this
makes Q(Dn) and &\K~\ (FS) spaces. Moreover we have dualities

1.3. Fourier transformation and convolution

First we define Fourier transformation on &* and $c(R
n). For $<=&*, the

Fourier transform (p of ^ is defined by

Then we have 0e£P*. Moreover we have an isomorphism as (DFS) spaces:

ff : ^^ ^> 5»* : y> > — >• 0 .

For {jL^{Bc(R
n), the Fourier-Laplace transform /2 of ^ is defined by

Here we used the duality ^^R^^^R71). p. becomes an entire function on Cn.
If we set

11)', there exists a positive a such that for any £>0

n); sup k-£ 'C l /(Oi < + TO for any s>0},
Cec«

we have bijections:

3 X : ^cC/271) — > Gre : • — > ft ,
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Next we define Fourier transformation on Q(D11}. For (p<=Q(Dn), we can
define the Fourier transform $ of <f> in Q(Dn) by

<$, ^>=<^, 0> for any

Then we have an isomorphism as (DFS) spaces:

EF : Q(Dn} _

Now we give the definition of convolutions. Let fjt be a hyperfunction with
compact support. For f^^(Rn), we define the convolution p*f of /j and /by

The convolutions of p and Fourier hyperfunctions are defined by using the
duality Q(Dn}*^@*. First we remark that

and that the map

p* : 5>* — > S5*

is continuous. Taking into account of this, we give

Definition 1.2 (Convolution of p and Fourier hyperfunctions). For
$c(R

n], we set

V(A;)=^(— ^)-

Then for <f>^Q(Dn}, we define the convolution of ^ and ^ in Q(Dn) by

<^«*0, y>>=<0> v*^> for any

We give a formula on the relation between Fourier transformation and
convolutions.

Proposition 1.3. For p^^Bc(R
n} and </>^Q(Dn), we have

1.4. Ultradistributions

First we recall the definitions of the classes <5(S] and £(s) of ultradiffer-
entiable functions for s>l. Let Q be an open subset of Rn. For <p(x)
/?>0 and a compact subset /f of Q, we set

Then the space of ultradifferentiable functions of class (s) and that of class {s}
are given by
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for any compact subset K of Q and any positive h} ,

e(S)(Q)={<p^C°°(Q)', for any compact subset K of Q,

there exists a positive /i such that ||^|U,/ l lS< + 00}.

Moreover we define subspaces of the above spaces consisting of functions with
compact support :

Q)', supp^ is compact},

Q); supp^? is compact}.

If we set Banach spaces YKih>s by

YK,h,s^{y^C~(Rn)', suppyxzff, \\<P\\K.*. *< + <*>},

then we can express S)(S\Q) and £){S](Q) as

<3)w(Q}=\\m Ijmr^.s,
KmQ 7i>0

3)^(Q)= Urn l inj lVft . . ,
KmQ h>o

and introduce the topologies of them.
Now we give the definitions of the spaces of ultradistributions. We define

the spaces £)(S)'(£) and £){S}'(Q} as the dual spaces of ®W(Q) and 3){S}(Q} re-
spectively. Elements of £)(S)'(Q), (resp. 3){S}'(Q)) are called ultradistributions of
class (s) (resp. {s}).

We give several remarks.
i) @(S\Q] and S)(S](Q) are not {0}. Precisely we have the inclusions with

dense images :

for
ii) The presheaf ^)(S) ' (resp. ^){S}') : Q^>£)(sy(Q) (resp. .2)(S3'(fi)) becomes a

sheaf. Moreover we have the injections :

for l<s0<Si. Thus we can define the supports of ultradistributions.

1.5. Kawai's abstract sufficient condition (S)

In this section we introduce a sufficient condition (S) for the surjectivity
on the space of hyper functions. We will utilize the expression of hyperfunc-
tions by boundary values of holomorphic functions. As far as the surjectivity
is concerned, we can prove

Claim. Let p. be a hyper function with compact support. Let Fa (<re { — 1, l}n)
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be an open subset in Rn of the form

Assume that for any Fa, the operator /** is surjective on O(Rn X A/—!/"*). Then
fji* is surjective on the space

For instance let us consider the case F={y^Rn ; yj>0, ( /=! , • • • , w)}.
Then we can regard the space O(Rn X F) as an (FS) space in a usual way, and
it is possible to make a use of the theory of locally convex spaces. In this
direction, Kawai [Ka-2] proved the following theorem.

Theorem 1.4. Let p be a compact supported hyper/unction whose Fourier-
Laplace transform ft satisfies the condition :

(S)

Ve>0, 3N£>Q, V£e=/2n with \£\>NE,

satisfying

ii)

Then the convolution operator

i
is surjective.

§2. Surjectivity of Convolution Operators with Ultradistribution
Kernel on the Space of Hyperfunctions

2.1. Statement of the theorem on the space of hyperfunctions

In this chapter we will show the surjectivity of convolution operators with
Ultradistribution kernel on the space $(Rn\ Utilizing Theorem 1.4 of abstract
nature, we give

Theorem 2.1. Let ^ be a non-zero Ultradistribution with compact support.
Then

p* : $(Rn) — > $(Rn]

is surjective.

We will prove the above theorem in the special case n = l in §2.2 and the
general case in §2.3.

Precisely, we will show that ft satisfies the condition :
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(SO)

Vs>0, 3ATfl>0, M£^Rn with \£\>NS,

satisfying

ii)

which is a slightly stronger condition than (S). We can regard (SO) as a con-
dition for functions on Rn. Moreover if / is entire and if J\RU satisfies (SO),
then / satisfies (S).

2.2. One dimensional case

First we study the case n = l. This will make it easier to study the general
case. We will show the following theorem in this section.

Theorem 2.2. Let fi be a non-zero ultradistribution with compact support of
one variable. Then ft satisfies the condition (SO).

Proof. Let fj. be as above. Then there exist constants s and a such that

ii)

iii) supp ^C[— a, a] .

Here we quote two theorems from Komatsu [Ko-3] and Boas [Bo].

Theorem 2.3 (Paley- Wiener type). Let p be an element of S)(S}'(R) and
assume supp^c[— a, a]. Then there exist constants L>0 and C>0 satisfying
the estimate

+f l I m C I } .

Remark that the inverse also holds. But we will not use it.

Theorem 2.4 (Theorem 6.3.6 of Boas [Bo]). Let f be an entire function
satisfying the estimates

lim inf r"1 log (max |/(z) | )<°o ,
r->oo \ |2|=r /

f- max(0,log|/(x)|) ^
J-=o 1 + Z2

Then f satisfies

Note that the consequence of Theorem 2.4 is equivalent to the condition:
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log I/W |

Lemma 2.5. Let f be a function on R which satisfies

then f satisfies the condition (SO).

Proof of Lemma 2.5. Assume that / does not satisfy (SO). Then there
exist sufficiently small e>0 and Sn^R (n=l, 2, • • • ) such that

f»| implies \f(i))\<e-«*»\ ,

If we set

/»=]5n-e|£nl, f n + e l f n [ (n = l, 2, • • • )
then we have

\f\<e~£^nl on Jn for any w,

Since rc^m implies /Bn/m=0, we get

Remark that
9ff2 I £ ! 2 9c2 7i-*oo 9ff2
£/c I C?i £<o '" t/c

I f n l

Thus the right hand side of the above inequalities diverges to — oo, and it con-
tradicts the assumption of this lemma, (q. e. d. for Lemma 2.5.)

Under the above preparation, we can show Theorem 2.2. By Theorem 2.3,
ft has the estimates

for some constants Cl and C2. Then ft satisfies the assumption of Theorem
2.4. Now we get Theorem 2.2 from Theorem 2.4 and Lemma 2.5. (q.e. d. for
Theorem 2.2.)

Remark 2.6. We can derive the following consequence by a similar argu-
ment. // ^ is in a non quasianalytic class, ft satisfies the condition (SO). See
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L. Ehrenpreis ([E-2] § V.6). This fact also holds even in case n^2.

2.3. General case

Let ^ be a non-zero ultradistribution with compact support of n variables.
We will show in this section that ft satisfies the condition (SO) also in the
general case n^2.

Lemma 2.7. Let Z be a subset of Sn-1={^Rn; If 1=1} satisfying that
Sn~l\Z is dense in S71'1. For a function f defined on Rn and f eS71"1, we define
a function <p$ of one variable r^R by

0>e(T)=/(rf) (re/2).

Assume that for any feSn"1\Z, <p^ satisfies the codition (SO) as a function of one
variable. Then f satisfies the condition (SO) as a function of n variables.

Proof. Take any s>0. We fix an element f of Sn~l\Z. Then it follows
from the assumption of the lemma that

with |r

satisfying

ii)
We set

and consider a family of open balls

Since S""1\Z is dense in S""1, we have

S-'c U B
fe5»-i\z

From the compactness of S71'1, we can take gl9 £2, ••• , fmeSn"1\Z such that

Now we set
NB= max Nek.B,

and take any fe-R" with | f |>Af E . Then there exists &e{l, • • • , m) such that
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Note that

Hence we can find peR such that

\p-\e\\<^\

This implies that

i£-P-e*i£ i f - i £ i -

(q.e. d. for Lemma 2.7.)

Now we can give the proof of Theorem 2.2.

Proof of Theorem 2.2. Let ^ be a non-zero ultradistribution of n variable.
If we set

we have

= (
J

Here

and dx is the standard (n — l)-form on Rn which satisfies d%Adt=dx. Then
^ is the Fourier transform of the compactly supported ultradistribution j/5. As
a consequence of Theorem 2.2 of one dimensional case, we get

^=0, or y>£ satisfies (SO).

Since / is analytic, we get

is nowhere dense in Sn~l. Then the pair (/, Z) satisfies the assumption of
Lemma 2.7. This implies the desired result, (q. e. d. for Theorem 2.2.)
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Remark 2.8. Now let ft be a non-zero distribution with compact support.
As a consequence of Theorem 2.2, we find the operator ^* surjective on $(Rn}.

Next we begin to study the case that the support of ^ is one point. The
surjectivity of p* can be also reduced to the condition (S). First by translation,
we may assume that supp/*={0}. Moreover by an argument similar to Lemma
2.7 for the condition (S), it is sufficient to show

Claim. Let p be a hyper/unction of one variable whose support is the origin.
Then the Fourier- Laplace transform ft of p satisfies the condition (S).

If we remark that ft is contained in GJ, Claim is an easy corollary to the fol-
lowing theorem in Levin ([L] p. 21, Th. 11).

Theorem 2.9. Let f be a holomorphic function in the circle (z^C ; \z\ <2eR]
(R>ty with /(0)=1, and let 7] be an arbitrary positive number not exceeding
3e/2. Then there exists a family [Bc(zk ; rk)}f=i of circles in C such that

and that the estimate

elogi/(2)l>-(2+log|e-)log{ max
V Lf] / (\w\=zeR

holds in the domain

\ \z\<R\\\JBc(zk;rk}.

§ 3. Surjectivity of Convolution Operators on the Space
of Fourier Hyperfunctions

3.1. Statement of the theorems on the space of Fourier hyperfunctions

In this chapter we consider convolution operators on the space Q(Dn\
First we give necessary conditions for the surjectivity, one for the case n = l,
the other for the general case.

Theorem 3.1. Let jj.be a hyperfunction with compact support of one variable.
Assume that the convolution operator

is surjective. Then there exists a positive number 8 for which the set

3, #0=0}
is empty.

Theorem 3.20 Let p be a hyperfunction with compact support of n variables.
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Assume that the convolution operator

—»C(0B)

is surjective. Then the Fourier-Laplace transform ft of p satisfies the condition:

' Vs>0, 3A/X), Vfe/2" u;#/i |£ |>W.,

sa^'s/jym.g
(S')

ii)

Next let us consider an inverse of Theorem 3.1 and Theorem 3.2.

Theorem 3.3. Let p be a hyperfunction with compact support whose Fourier-
Laplace transform (i satisfies the condition (S') and the condition:

f 3<5>0, Mdf with

all the irreducible components of the analytic variety
(Z') '

| ImC|<d' , #0=0}

[ intersect with Rn.

Then the convolution operator

I** : Q(Dn) — > Q(Dn)
is surjective.

Note that in case n = l, the condition (ZJ) is equivalent to the conclusion in
Theorem 3.1.

Corollary. In case n = l, the surjectivity of p* is equivalent to (S') and (Z').

The following theorem asserts the independence of (SJ) and (ZJ).

Theorem 3.4.
i) There exists a hyper/unction /j. of one variable supported in the origin

such that ft satisfies (S') and does not satisfy (Z7).
ii) There exists a hyper function p supported in the origin such that p. satisfies

(Z') and does not satisfy (S').

Corollary. There exists a non-zero hyperfunction fj. supported in the origin
such that the convolution operator

is not surjective.

Note that a convolution operator with a kernel supported in the origin be-
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comes a local operator, i.e., a differential operator of infinite order with con-
stant coefficients.

We give some remarks.
(i) The condition (S') is due to T. Kawai [Ka-2]. He introduced this

condition as a sufficient condition for surjectivity on Q(Dn). But his proof
seems to have forgotten to estimate the domain of holomorphy of functions
divided by ft. In general, we need the condition (SJ) for surjectivity. More-
over in case n = l, we deduce the condition (S') and (Z') as a necessary and
sufficient condition for surjectivity of //*. But it seems difficult to the author
to get a necessary and sufficient condition in case 72^2, since analytic varieties
of codimension 1 never have isolated points.

(ii) Theorem 3.3 also holds under weaker conditions (S') and (Z") by the
same proof. Here

3<5>0, V<5' with

all the irreducible components of the analytic variety
(Z")

a', /KC)=0}

intersect with Rn with finite exceptions.

This fact is suggested by Prof. A. Kaneko.

3.2. Proof of the theorems

In considering convolution operators on the space Q(Dn), we can develop
Fourier analysis exactly; that is, we can transform a convolution operator

I**: Q(Dn) —

into a multiplication operator

by Fourier transformation. Thus the surjectivity of ^* is equivalent to that of
ft • , and we rewrite the theorems in the last section in terms of multiplications
by holomorphic functions.

Theorem 3.1'. Let /(Q be an dement of G1. Assume that the multiplication
operator

J - :

is surjective. Then there exists a positive number d for which the set

{CeC;0<|ImC|<3,/(0=0}
is empty.

Theorem 3.2'. Let /(£) be an element of Gn. Assume that the multiplication



182 YASUNORI OKADA

operator

is surjective. Then J satisfies the condition :

Vs>0, 3N£>Q, V£e;/2n with \%\>NE,

satisfying
(S')

ii)

Theorem 3.3'. Let 7(0 be an element of Gn and satisfy the condition (S')
and the condition:

(Z')

3<5>0, V<5' with

all the irreducible components of the analytic variety

{CeCn; ImC|<«' , 7(0=0}

. intersect with Rn.

Then the multiplication operator

is surjective.

Theorem 3.4?
0

i) There exists J ^G\ which satisfies (S') and does not satisfy (Z').
ii) There exists J^G™ which satisfies (Z') and does not satisfy (SJ).

We prepare several lemmas. First we cite two lemmas from the theory of
(FS) and (DFS) spaces. See Komatsu [Ko-1] for their proof.

Lemma 3.58 Let X be a (DFS) space and Y be the strong dual space of X,
which is an (FS) space. Let T : X^X be a linear continuous operator and T' :
Y— »Y be the dual operator of T. Then the following three conditions are equi-
valent.

i) T' is surjective.
ii) T is injective and the range R(T) of T is closed subspace of X.

iii) T : X-^R(T) is an isomorphism between two locally convex spaces.

Lemma 3.60 Let Xj (/=!, 2, • • • ) be Banach spaces, ijiXj-»XJ+1 (j=l, 2, • • • )
injective linear compact maps, and X the inductive limit of the system {Xj, ij}3<=N>
Thus we can regard Xj as subspaces of X, Then the following two conditions
for a sequence (xk}™=l in X are equivalent.

i) xk— »0 in the strong topology (resp. weak topology) of X,
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ii) For some j, { x k } k is contained in X3 and xk-^Q in the strong topology
(resp. weak topology] of Xj.

In our situation, the (DPS) space ff* is expressed as the inductive limit of
Banach spaces :

Here X/s are Banach spaces endowed with norms \\-\\j ( j — l , 2, ••-):

extends continuously to the closure of Rn X \i^lBRn\Q ; — J in Cn\,
j

||^)]|;-= sup expf — | Re £| Wo •

Next we quote two lemmas from the theory of holomorphic functions.

Lemma 3.7. Let f(z} and g(z) be holomorphic functions defined in a neigh-
borhood of {\z\<R} with the estimates

\f(z)\<A, \g(z}\<B , (\z\^R),

for some positive constants A and B. Assume that f(z)/g(z) is holomorphic on
the same domain. Then we get the estimate

See Kawai [Ka-1].

Lemma 3.8. Let {zk}^i be a sequence in C with the estimate

We set

Then the infinite product converges on any compact subset of C\{zk}k, and f be-
comes an entire function with the properties'.

i) / is contained in GJ,
ii) the zero set of f coincides with {zk} k.

See Levin [L].
From now on, we will give the proof of the theorems.

Proof of Theorem 3.1'. We will prove this theorem by contradiction.
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Assume that there exists a sequence {£*}?=! in C satisfying

2) /(C*)=0

Then on account of Lemma 3.5, it is sufficient to construct a sequence {<pk\
$>* such that

i) the sequence {<pk} does not converge in 3V
ii) the sequence {J-(pk\ converges to 0 in 3V

For this purpose we put

Then it is easy to see that ^'s are contained in 3V Moreover taking into
account of the domains of holomorphy of (pk's, we can deduce from Lemma 3.6
that the sequence {<pk} does not converge in 3V

On the other hand, the sequence {J-(pk} converges to 0 in 3V In fact,
/(0/C~C* is entire, and there exists a positive constant C for which
{/(0/C— C*}* satisfy the estimate

/(C)
e-c*

on {CeC; ImCKl}. Thus

is entire and is estimated on the same domain as

- 8

^^ fL- .g - .ReCi .

From this estimate and Lemma 3.6, we obtain the desired result, (q. e. d. for
Theorem 3.1'.)

Proof of Theorem 3.2'. We will prove this theorem by contradiction. As-
sume that there exists a sequence {£*}£=! in Rn and positive number s<l such
that

2) /(C)^exp{-2e8if*|} on the ball 5c»(f*; 2ne) (/fe=l, 2, • • • ) .

Then taking into account of Lemma 3.5, we find it sufficient to construct a
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sequence {<pk\ in &* with the properties
i) the sequence {<pk} does not converge in &*,

ii) the sequence {J-(pk} converges to 0 in £P*.
For this purpose we put

/C)=le-.^,(C-^,2

Note that ^*'s are entire and contained in 9?*.
First we will show that {<pk\ does not converge in 3?*, Assume that {<pk}

is a convergent series. Then by Lemma 3.6 we can take a constant <5>0 such
that

{ sup Je"R e C l -p*(C
l | I m C ' < 0

is bounded. But we have <pk(£k)=l/k fr>r anY k. Hence we get the estimate

s u p l ' - ' ^ C O I ^ ' ' - I T| l m £ i < 3 T T k

The third side of this inequalities diverges.
Next we will show that {J-<pk} converges to 0 in 3**. For this, we will

estimate |/(0'P*(OI in the domain {^Ctl; | Im£|<s}. Since / belongs to G",
we have on the above domain

for some constant C. If Re£— £*1^2s and Im^Ke, we have

If !ReC-f A |>2£ and | I m C I < e , we claim

l/(0-^(OI^C<r c ? | R e C l (* = 1, 2, • • • ) .

In fact we can easily get this from the estimate :

if

-3s2 If, if ReC-6,l>2s

After all we get the estimate in the domain {^Cn ; |Im

\J(Q-k<pk(Q\<C'e-**^ (£ = 1,2, --)

for some constant C' independent of k. Thus we have
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and this implies J '-<pk converges to 0 in <?#. (q. e. d. for Theorem 3.2'.)

The idea of this proof was suggested by Prof. T. Oshima.

Proof of Theorem 3.3'. By Lemma 3.5 we find it sufficient to show that
the multiplication operator

is a linear topological isomorphism. We can show this from the following
claim, (q.e.d. for Theorem 3.3'.)

Claim. Let d be a positive constant and J an element of Gn with the prop-
erties :

i) / satisfies the condition (S'X
ii) for any positive <5'(<d), all the irreducible components of the zero variety

of J in KeC71; |ImC|<3'} intersect with Rn.
For a positive s. with 6s <d and a real analytic function <p(£), we assume,

iii) J-<p extends holomorphically to the domain D=RnxV—lBRn(Q;6e),
iv) 17(0^(01 ̂ -6£|ReCl on D.

Then cp is holomorphic in D and there exists a constant C independent of <p for
which (p satisfies the estimate

\(p\<Ce-£lR^{ ( | I m C <e).

Proof of Claim. The part about the domain of holomorphy of <p is clear
from the assumption ii). Since /eG7i, there exists a positive number d with
the estimate

Since / satisfies (S'), there exists a positive N such that for any f <=Rn with
we can take a point f]^Cn satisfying

a) l f -%!<e,

b)

Now we apply Lemma 3.7 to the pair (J-<p, /) on Bcn(r}%; 4s). On BCn(fj^\ 4s),
we have the estimates

Hence we have on BCn(r]^ ; 2s)
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< g - 6 s i £ ! + 3 0 s 2 > ^Z

We remark that Scn(|; s)cBCn(5?f ; 2s), and obtain the estimates

04 1 £ 2-e-£ | R e C ; on 5C»(£; e).

Put C2=Cfe41e2. Then we have

on the domain {CeC"1 ; |Re£ >Af, | Im£|<<5}. We must estimate |y>(OI on
, | ImCI<3}- We set

= max l / O ) ! for

Since /(|)>0 and {f e/2n ; | f | ^ A T } is compact, we have

min/(f)>0.
\S\ZN

Then from Lemma 3.7 we can also deduce the estimate

on

for some constant C3 independent of (p. Put C=max{C2, C3esjvr}. We obtain
the estimate

Re" on

which is the desired result, (q.e. d. for Claim.)

Proof of Theorem 3.4'.
For i): We put

On account of Lemma 3.8, / belongs to GJ, and {3* + V— l/k}k^N are the zeros
of /. Then we find out that / does not satisfy (ZJ). We will show that /
satisfies (S'). It is sufficient to estimate/(O when Re£>0. For £>1, we take

with S^1^<3^. Then

log !/(«!= Slog 1-;

-

= 2+ S +
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The first term is non-negative and the third term is estimated by

IkS+ilog

Then the third term is bounded from below by some constant C independent
of f and N. The second term is estimated by

log

N-l

+ log 1

After all we can take some constants Cl and C2 such that

iii) — ,

This implies the desired result.
For ii): We will construct / with desired properties in case n=L If we

regard / as a function of n variables, / also enjoys desired properties in the
general case. We take C*,eC for k^N with

ii) ReC*>0,

kz

and put

If we remark the above condition iii), we can prove the following claim which
shows the desired properties, (q.e. d. for Theorem 3.4'.)

Claim. / becomes an entire function and has the properties
a) for any s>0, there exists a positive constant CB such that

17(01 ̂

b) 7 has no zeros in the domain
c) we can take positive constants d and K such that

Proof of Claim, a) and b) are clear from Lemma 3.8 and the estimate
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To prove c), first remark the estimate with a fixed k ;

log I/(OI =233''log 1

= I G ^ &

The second term is estimated as

if 1C—G <kz- The first term is estimated as

C-C*3*'-log
L>& « '

if 1 C — C f e | < & 2 - Hence we have on Bc(^k\ kz) the estimate

logi/(C)l<-IC*l{log3-(l+3-*2)}

In this situation, it suffices to take d and /C so that

0<<5<log--3-*2.e

(q.e. d. for Claim.)

This example in Theorem 3.4 ii) is due to Prof. T. Oshima.
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