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Fibrewise Decomposition of Generalized
Suspension Spaces and Loop Spaces
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Abstract

We work in the category Top} of fibrewise pointed topological spaces over B. Let
/" be a co-Hopf space (which need not be co-associative) in Top3. The /'p-suspension
space /'pX and the /"p-loop space /"X of a fibrewise pointed space X over B are defined
as generalization of the usual suspension space )X and the loop space 2X respectively.
I"p-suspension spaces and /"p-loop spaces have some properties similar to those of the
usual suspension spaces and loop spaces. This is an example of Eckmann-Hilton duality.
In this paper, decomposition Lheorems of [’g-suspension space /"X and /"g-loop space
I'$X are proved. Short exact sequences of homotopy sets involving /'p-suspension spaces
or ['p-loop spaces are obtained in the category of algebraic loops.

Introduction

The suspension space XX of a topological space X is defined by YX=
S'AX, the smash product of 1-sphere S' and the space X. The loop space of
X is 2X=map4«(S!, X), the space of base point preserving continuous maps
f:S'-X with compact-open topology.

Let I be a co-Hopf space in Top%, that is, a fibrewise co-Hopf space over
B (cf. James [7, 8]). For each fibrewise pointed space X over B, we define
the I g-suspension space I'gX of X by ['gX=I"AX and the [ 'z-loop space I'3X
of X by I'(X=mapi([", X). If B=+ and I'=S", then the /[ p-suspension space
I'3X is the usual suspension space 2X and the I"p-loop space I'$X is the usual
loop space 2X. If I'=3=BXS* of Top3, then ['pX=233X, the reduced fibre-
wise suspension space of X and I'3X=0Q3zX, the fibrewise loop space of X.
(We remark that James [7, 8] uses the symbols X2X and Q%X for reduced
fibrewise suspension space and fibrewise loop space respectively. But we use
our abbreviated symbols in this paper for simplicity, since we work only in the
category Top% of fibrewise pointed topological spaces over B.)

The purpose of this paper is to extend some of the familiar results on the
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usual suspension spaces and loop spaces to / z-suspension spaces and / z-loop
spaces in TopZ.

In §1 we review some definitions in TopZ and prove fundamental results
on decompositions of co-Hopf spaces and Hopf spaces in Top%. Hilton, Mislin
and Roitberg [5] obtained a decomposition theorem of co-Hopf spaces under
some conditions in Theorem 4.2 of [5]. The result of (2) of the following
Theorem 1.1 is a generalization of their result. We call a co-Hopf space A in
TopZ a co-looplike space in TopZ or a fibrewise co-looplike space over B if
[A, Z]% is naturally an algebraic loop for each space Z in Top3 (cf. §1).

Theorem 1.1. Let A>X-5C be a fibrewise pointed cofibration sequence of
fibrewise co-looplike spaces and fibrewise co-Hopf maps with fibrewise pointed
homotopy retraction v: X— A such that rei=gl, (r need not be a fibrewise co-
Hopf map), then the following results hold.

(1) There is a short exact sequence

7* i
of algebraic loops and homomorphisms for any space Z in Topj.
(2) There is a fibrewise pointed homotopy decomposition

X:BC\/BA.

We also prove the dual result of the above theorem. [n §2 we study /[
suspension space for any fibrewise co-looplike space I” over B. By Theorem
1.1 above we have, for example, the following result (Theorem 2.1(2));

Let 7: ACX be a cofibration in Tops. If A is ['pretractile in X (that is,
there exists a fibrewise map 7: [ pX—I'pA such that »el'si=glr,,), then we
have a fibrewise pointed homotopy decomposition

I'gX=p'g(X/sA)V sl "sA.

When B=x and I'=S"*, Theorem 2.1(2) mentioned above is a well-known result
(cf. (15.1) of Baues [1] and (6.27) of James [7]). For X=BXS!, see 4 (p. 175)
of James [8]. This enables us to prove, for example, the following decom-
positions.

Theorem 2.2. Let I be a fibrewise co-looplike space. Let X and Y be fibre-
wise non-degenerate spaces. Let M be any subspaces of X XgY such thai

XVgYCMCXXgY,

and 7:XVgY—M a fibrewise pointed cofibration. Then we have a fibrewise
pointed homotopy decomposition

FBM:B['BX\/BFBY\/BFB{M/B(X\/BY)}-
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To prove decompositions of subspaces of fibrewise product space X XY in
Theorems 2.2, 2.4, 2.5 and Corollary 2.3, the concept fibrewise non-degenerate
space of James [8] plays a very important role.

The special cases of Theorem 2.2 and Corollary 2.3 are known when B=sx
and ['=X=S" (cf. (15.9) of Baues [1] and Lemma 1.1.5.1 of Zabrodsky [14]).
For the case Y=BXxS! in TopZ, see (22.6) of James [8].

In § 3, we study some properties of /'z-loop spaces. We prove dual formulas
of those in § 2. We may consider these results as Eckmann-Hilton duality (cf.
§ 11 of Hilton [4]). The ['p-suspension functor and the [ z-loop functor are
different from the suspension functor and the loop functor in algebraic homo-
topy theory (cf. Baues [17 or Quillen [10]). Let ¥=BXxS!. In §4 we show
that X pg-retractile implies [ p-retractile and X%-retractile implies I'%-retractile
for any co-Hopf space I" in TopZ. The author would like to thank Professor
N. Iwase for suggesting that retractile implies /'-retractile when the co-Hopf
space I" is a CW-complex in the category of topological spaces with base point.

§1. Decompositions of Fibrewise Spaces over B

Let Top be the category of topological spaces. We define the category
TopZ of the fibrewise pointed topological spaces over B following James {7]
and [8].

An object in TopZ is a pair of maps B5X2 B in Top such that pes=lg,
the identity map. For each point b= B, we regard s(b) the base point of the
subspace p~'(b), the fibre over b. We write s(b)=+#, and call *z={*,|b B} the
Jfibrewise base point.

A morphism f: (Bi»XiB)—»(BLY-q—»B) in Top% is a map f: X—Y in Top
such that feos=t and ¢-f=p. We write f:X—;Y or simply f:X—-Y for a
morphism in Top3.

Thus TopZ is a category of fibrewise pointed topological spaces and fibrewise
pointed maps. A fibrewise pointed homotopy relation is denoted by ~jp and the
set of the fibrewise pointed homotopy classes in Top% is denoted by [X, Y 4.

The fibrewise wedge sum X\ gY is a subspace of fibrewise product X X gY
by the inclusion map jp: XVaYCTXX3Y. We denote by Ay, 5: X—X XX the
fibrewise diagonal map and Vx p: XVeX—X the fibrewise folding map. We de-
note by #p: X—Y the fibrewise constant map.

Let A be a subspace of X in Top3. Then the fibrewise quotient space is
denoted by X/zA. The fibrewise smash product is defined by XAgY =
(X% gY)/s(XVgY). The fibrewise pointed mapping-space (§9 of [8]) is denoted
by map3(Y, Z) and we have an isomorphism of fibrewise homotopy sets

[XABY, Z18=[X, mapi(Y, Z)13
(cf. (9.14) and (9.25) of [8]). Let X=BxS! in Topi. Then YzX=3ApX is
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the fibrewise reduced suspension space of X and QzX=23%X=mapi(2, X) is the
Jfibrewise loop space of X.

Let S be a set with a binary operation+(not necessarily commutative nor
associative here). We call S an algebraic loop if S has two-sided identity (de-
noted by 0) and for any elements a, b of S, the equations

x+a=b and a-+y=b

have a unique pair of solutions x, yeS (cf. James [6], Rutter [11], Hilton,
Mislin and Roitberg [5]).

A map 7:S—L between two algebraic loops is called a homomorphism if
t(a+b)=r(a)+(b) holds for any a, b&S. If ¢:S—L is a homomorphism, we
have 7(0)=0. A sequence

T ag
S—L—>R 1)

of algebraic loops and homomorphisms is said to be exact if Imr=Ker¢. Let
us suppose that the sequence (1) is exact and a(b)=0(c) for elements b, c= L.
Since L is an algebraic loop, there exist unique elements, d, d’ L such that
d+b=c and b+d’=c. Since ¢ is a homomorphism and R is an algebraic loop,
we have ¢(d)=ec(d’)=0. Then there exist elements a, a’=S such that r(a)=d
and z(a’)=d’. Thus we have shown that if ¢(b)=a(c), then there exist a, a’
such that r(a)+b=c¢ and b+7(a’)=c. Especially, if S=0 then ¢ is a mono-
morphism.

By the above argument, we can use the terminology “long exact sequence”
and “short exact sequence” in the category of algebraic loops and homomor-
phisms. (cf. § 1.3 of Zabrodsky [14]).

A co-Hopf space A in TopE or a fibrewise co-Hopf space A over B is a
space with a fibrewise co-multiplication 6:A—AV A, that is, the relation
7eo0=pA, 3 holds for the inclusion map jz: AVzA—AXzA and the fibrewise
diagonal map A, z: A—AXgA (cf. §19 of [8]).

Let A4 be a co-Hopf space in TopZ with a fibrewise co-multiplication 6 : A—
AV gA. For any maps a, 8: A—Z in Top%, we define a map a+zB8: A—~Z in
TopZ by

a+B,8:vZ,B°(a\/Bﬂ)°0 ’

where V3 5: Z\VpZ—Z is the fibrewise folding map (cf. Oda [9]).

A co-looplike space A in Top} or a fibrewise co-looplike space A over B is a
fibrewise co-Hopf space over B which induces an algebraic loop structure in
[A, Z1% with the binary operation 45 for any space Z in Topj. A fibrewise
co-Hopf map f: A— A’ between fibrewise co-Hopf spaces (A, §) and (A’, §’) is
a fibrewise pointed map which makes the diagram
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I
A Al
0 l v 0’
Vaf
AV pA A’V gA’

fibrewise pointed homotopy commutative.

An inclusion map 7: ACX is called a cojibration in Topi or fibrewise
pointed cofibration if it has the fibrewise pointed homotopy extension property
(cf. §21 of [8]).

Theorem 1.1. Let A->X%C be a fibrewise pointed cofibration sequence of
Jfibrewise co-looplike spaces and fibrewise co-Hopf maps with fibrewise pointed
homotopy retraction r: X—A such that rei=pl, (v need not be a fibrewise co-
Hopf map), then the following results hold.

(1) There is a short exact sequence

* i*

q
0—I[C 2 — X, Z]E —[4, ZJF —0

of algebraic loops and homomorphisms for any space Z in Tops.
(2) There is a fibrewise pointed homotopy decomposition

XZB C \/B A .
(It does not preserve fibrewise co-Hopf structure in general.)
Proof. (1) Consider a fibrewise pointed cofibration sequence

7 q 0 EBZ'
A—s>X—>C— I3 A

IpX —> o

(cf. §21 of [8]). Since there exists a fibrewise pointed homotopy retraction
r:X—A such that rei=pl, and hence also XpreXpi=p5ls,s, we have a short
exact sequence of algebraic loops and homomorphisms

* i

. )
0—[C, ZIE—[X, Z]IE—[A Z]§ —0

for any space Z in TopZ by a long fibrewise homotopy exact sequence.
(2) (cf. Proof of Theorem 4.2 of [5]) Let 7;,: C—CV3A and i,: A—~CV A
be the inclusion maps. Now the maps

i10g: X —> C —> CV3A and dper: X —> A—> CV3A

define a map £=(4,0q)+5(i5°7): X—CVA. We show that this map £ is a fibre-
wise pointed homotopy equivalence.
Consider the following commutative diagram
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0—I[C, Z18 (X, Z18 [A, ZJF—0

e

0—>[C, Z1 —> [CV3A, ZT§ —> [4, Z1f—>0
where ¢,: CV3A—C is a projection. The horizontal sequences are exact in the
category of algebraic loops and homomorphisms. (We remark that &* is not a
homomorphism of loops.) Since there is an isomorphism of sets [CVzA, Z]8
=[C, Z]Ex[A, Z]E (cf. §5 of [7] and § 19 of [8]), any element of [CV A, Z]&
can be written as <c¢, a) for unique elements cc[C, Z1% and a<[A, Z]5. We
see

§*(Le, ad)=<c, ayo {(ir°q)+5 (ior)}
=(e, ayedieq) (e, ayeiser)
=(coq)+z(asr).
Then using the properties of short exact sequence of algebraic loops and homo-
morphisms, we see that

§:[CVsA, Z1§ — [X, Z1} @)

is an isomorphism of sets for any space Z in TopZ.
We set Z=X in (2). Then we have a map n: CVzA—X such that

¥(p)=mneb=plx. 3
We see that
n*: [X, Z]E —> [CV A, Z1§ 4)

is also an isomorphism for any space Z in TopZ. We set Z=CVj3A in (4),
then we have a map & : X—CV A such that

N¥E)=8"n=plcyza. 6)
Since 7°§~ply by (3) and & en=plcyzs by (5), we have &=5& and hence
& is the desired fibrewise homotopy equivalence. g.e.d.

A Hopf space Z in TopZ or a fibrewise Hopf space Z over B is a space
with a fibrewise multiplication p: ZXzZ—Z such that pejz=~5Vz 5 (cf. (19.1)
of [8]).

Let Z be a Hopf space in TopZ with a fibrewise multiplication u:ZXzZ
—Z. For any maps a, 8: X—Z in Topj, we define a map a+58:X—Z in
Top% by

a+pf=p(aXpP)Ax, 5

where Ay 5: X—X XX is a fibrewise diagonal map (cf. [9]).
A looplike space Z in Top% or a fibrewise looplike space Z over B is a fibre-
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wise Hopf space over B which induces an algebraic loop structure in [A, Z1%
with the binary operation -+ for any space A in Top3.

Theorem 1.2. Let F-> E-5Z be a fibrewise pointed fibration sequence of
fibrewise looplike spaces and fibrewise Hopf maps. If p: E—Z has a fibrewise
pointed homotopy cross-section s: Z—FE such that pes=~gly (s need not be a fibre-
wise Hopf map), then the following results hold.

(1) There is a short exacl sequence

i D
0 —> [A, F15 —> [A, ] —>[A, Z]§—>0

of algebraic loops and homomorphisms for any space A in Topj.
(2) There is fibrewise pointed homotopy decomposition

EZBFXBZ.

(It does not preserve fibrewise Hopf structure in general.)

Proof. (1) Since F- E 2 Z is a fibrewise pointed fibration sequence, we
have a long fibrewise pointed fibration sequence
Qg ) 4 b
o —>QpE —> Qg7 —>F—>FE—>Z7
(cf. Crabb and James [2]). Since p: E—Z has a fibrewise pointed homotopy
cross-section s: Z—FE such that pos=~pz1, by our assumption, we have the result

by a long fibrewise homotopy exact sequence.
(2) We define {: FXzZ—E by

(=@ p)+5(so D),

where p,: FXgZ—Fand p,: FX 3Z—Z are projections. Then the result follows
by a dual argument of the proof of (2) of Theorem 1.1. g.e.d.

§2. ['z-Suspension Space

In the following sections we assume that each fibrewise pointed topological
space has closed section so that we have natural equivalence

(XVEYINZ=pgXNBZ)V Y NBZ)

(cf. (3.80) of [7] and (6.1) of [8]).

Let I' be a fibrewise co-Hopf space over B with a fibrewise co-multiplica-
tion 7:I'—I'\/ gl through §§2 and 3. We assume that [ is fibrewise locally
compact and fibrewise regular so that we have Xzl X =3[ 32 zX for any space
X in Top% (cf. (6.2) of [8]). We do not assume that /" is co-associative (=fibre-
wise homotopy associative [7, 8]). For any space X in Top%, we define



288 NosBuyvukr Opa

I'sX=INpX (the I'p-suspension space of X).

A map f:X-Y in Top% induces a [ 'g-suspension map I zf : [ gX—I'gY. We
see I'ggolsf=I"5(g-f) for any maps f:X—Y and g:Y—Z in Topi We
define Tx: [‘BX—>FBX\/BPBX by

1x=7Aslx: PANgX —> (' g")A X = g(’' AN X))V g(I' A sX) .

Then I'pX is a fibrewise co-Hopf space with a fibrewise co-multiplication 7y
for any fibrewise pointed space X over B. We have formulas

as(B+sr)=(a=P)+p(a-y) and (B+zr)-l'pd=(8I"50)+5(1°I"50)
for any maps a:Y—Z, B, 7:I's X—Y and 0: W—X in Topj.

Remark. We assume that " is a fibrewise co-looplike space in many state-
ments in the following discussion. But, the assumption that I” is a fibrewise
co-looplike space can be replaced by the assumption that each homotopy set
[['sX, Y18 =[X, 'Y 1% which appears in our discussion is an algebraic loop
with the “addition” induced by the fibrewise co-Hopf structure of /'3X (or the
fibrewise Hopf structure of I'%Y, cf. §3). Let, for example, B=+. If [" is a
co-Hopf space and if " and X have homotopy type of connected CW-complex,
then I'zX is a co-looplike space by Saito [12] (cf. Rutter [11], Hilton, Mislin
and Roitberg [5]).

Let A be a subspace of X in Top% with an inclusion map 7: ACX. We
say that A is ['pretractile in X (or i: A—X is ['pretractile) when there exists
a fibrewise pointed map 7 : /[ pX—I"5A such that re [ 'pi=5lr 4. If A is a fibre-
wise pointed homotopy retraction of X, that is, there exists a fibrewise pointed
map 7 : X—A such that rei~z1,, then A is [ 'p-retractile in X for any fibrewise
co-Hopf space I'. We remark that when B=+and ['=3=S" (l-sphere), a sub-
space A of X is usually said to be retractile in X if 3i: XY A—2X has a homo-
topy retraction r: 2X—23 A, namely, r-Xi=1s, (cf. §3 of [6] and (6.26) of [7]).

Theorem 2.1. Let [’ be a fibrewise co-looplike space. Let i: ACX be a
fibrewise pointed cofibration in Topd. If A is ['g-retractile in X, then the fol-
lowing results hold.

(1) There is a short exact sequence

* i)

[I'sX, Z1%

0 —> [I's(X/3A), Z1% [['s4, Z15 —0

of algebraic loops and homomorphisms for any space Z in Tops.
(2) There is a fibrewise pointed homotopy decomposition

FBXZBFB(X/BA)\/BFBA.
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(It does not preserve fibrewise co-Hopf structure in general.)

Proof. Consider a long fibrewise pointed cofibration sequence

i q 1] Xpi
A—X —X/pA —> ZpA—> XX —> -

(cf. §21 of [8].) This implies a long fibrewise pointed cofibration sequence

-

1137. I‘Bq 35
FBA—>FBX—>FB(X/BA)"‘—>ZBFBA

Xglpi

ZBFBX —_—> .
Then the result follows by Theorem 1.1, since there exists a fibrewise homo-

topy retraction 7 : I'sX—1I"5A such that 7o/ gi=~p 1y 4 by our assumption. g.e.d.

James studied fibrewise non-degenerate space and fibrewise well-pointed space
in § 22 of [8].

Theorem 2.2. Let I" be a fibrewise co-looplike space. Let X or Y be a
fibrewise non-degenerate space. Let M be any subspace of XX Y such that
XVgYCMCXXsY,
and 7: XVgY—M a fibrewise poinled cofibration. Then we have a fibrewise

pointed homotopy decomposition

]—‘BM:BFBX\/B[‘BYv\/BFB{M/B(XVB),)}.

Proof. We assume that Y is a fibrewise non-degenerate space. (The case
that X is a fibrewise non-degenerate space is proved similarly.) Since X=
XX g{*p} is a fibrewise retraction of M and XX z{*3}—M is a fibrewise pointed
cofibration by (21.2) of [8], we have

I'gM= g I' g X\ 5" 5{M/ (X X p{*35})}

by Theorem 2.1. Let N=M/g(XX g{*5}). We remark that {xz} Xz¥—N is a
fibrewise pointed cofibration by (21.2) of [8], for 7: XV Y —M is a fibrewise
pointed cofibration by our assumption. Since Y = {x3} XY is a fibrewise retrac-
tion of N, and

N/gY =g {M/ (XX {25} )} / 5({#5} X 8Y )= sM/s(XV 5Y),
we have I'pN=IpY Vsl s(N/gY)=T5Y Vgl 5{M/5(XV5Y)} by Theorem 2.1.
Thus we have I'sM=z I 52X\ s['sY Vsl s{M/z(XV Y )}. g.e.d.

As special cases of Theorem 2.2, we have the following results.

Corollary 2.3. Let I be a fibrewise co-looplike space. Let (X, A) and (Y, D)
be any pairs of fibrewise non-degenerale spaces. Then we have the following
fibrewise pointed homotopy decompositions.
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(1) I'sXXgY)=pI'sXV el 5V Vel s(XN\BY).

2) FB{(XXB{*B})U(AXBY)}:B[‘BX\/BFBY\/B[’B(A/\BY)-

3) I's{XVeY)U(AXgD)} =5 gXVl'5Y Vsl s(AN D).

Proof. Since (1) (XX gY, XV5Y), (2) (XX p{*p} )\ J(AXEY), XVgY) and (3)

(XVY)J(AX D), X\V/gY) are fibrewise pointed cofibred pair by (22.7) and
(21.2) of [8], we have the result by Theorem 2.2. g.e.d.

Theorem 2.4. Let I' be a fibrewise co-looplike space. Let (X, A)and (Y, D)
be fibrewise pointed cofibred pairs of fibrewise non-degenerate spaces.

(1) If A is Ipretractile in X, then there is a fibrewise pointed homotopy
decomposition

TaXXgY)=p 'g(X/sA)N 5" 3 AN s[5V V 5[ p{(X /s A)N Y } V 5[ 5(ANBY ).

(2) If A is I'gretractile in X and D is I'p-retractile in Y, then there is a
fibrewise pointed homotopy decomposition

X XY= I'g(X/3A)N I"8AN 8" 5(Y /sD)V pI" 5D
Vsl s {(X/sA)N Y /8D)} V 8" s{(X /8 A) A 8D}
Ve 's{ANY /8D)} Vsl 5(AN D).

P7'00f. (1) PB(XXBY)"—"B['BX\/BFBY\/BFB(X/\BY)
~p I'g(X /AN I AN g sY NV 5(I" X))\ gY
=~ I'g(X /AN gl AN s"sY NV p{I"5(X /5 A)V sl g A} \ Y
~=p I'g(X /AN 5l AN 5" 5Y N/ 5 5{(X /s A)ABY } Vs 5(ANBY).
(2) is obtained similarly. g.e.d.
Theorem 2.5. Let I' be a fibrewise co-looplike space. Let (X, A) and (Y, D)
be fibrewise pointed pairs of fibrewise non-degemerate spaces. Let (XX gD)\J
(AXgY) be a subspace of X XY .
(1) Let (X, A) be a closed fibrewise cofibred pair. If A is a fibrewise

pointed homotopy retraction of X, then there is a fibrewise pointed homotopy
decomposition

[ {(XX DY J(AX Y )}~ 5 g AN gI'8Y N I (AN BY)
Vel'5(X/sA)N " s{(X/sA) N\ sD}.

(2) Let (X, A) and (Y, D) be closed fibrewise cofibred pairs. If A is a
fibrewise pointed homotopy retraction of X and D is a fibrewise pointed homotopy
retraction of Y, then there is a fibrewise pointed homotopy decomposition
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I gliX X sgD)J(AX Y =5 ' gAN gl gDV gl 5(AN D)
Vsl 5(X /AN sl 5(Y /8D)
Vsl s{ANBY /5D)}V I 8{(X/8A)N 5D}

Proof. (1) Let M=(XXxgD)\J(Axp}). Since AXzl isa fibrewise pointed
homotopy retraction of M and AX 3 —M is a fibrewise pointed cofibration by
(20.7) and (21.2) of [8], we have

IpM= g I's(AX gY)V I 5{M/ 5(AX 5Y)}
=5 I'g(AX gY)V 5" p{((X/5A)X D)/ s({* 4} X D)}
=g g AN g 8Y NV sl 5(AN Y )V 5 5(X /5 AV 8l 5{(X/A) N\ 8D} .

(cf. Proof of Theorem 2.2.)
(2) is obtained similarly. q.e.d.

In the rest of this section we consider examples of [ p-retractile subspaces
of a fibrewise product space.

Let M be any subspace ol XX z}” which contains XV Y and 7: XV gV —AM
the inclusion map.

Proposition 2.6. Let 1" be any fibrewise co-Hopf space. Lelt M be any sub-
space of XX gY which contains X\/gY. Then X\ gY is I"pg-retractile in M, that
is, there exists a fibrewise pointed map o=p(, X, Y, M): [ gM—I" XV gY)
such that ool gj=51r gxvgn-

Proof. We define a map p=p(", X, Y, M): I'sM—I"3XV3zY) as follows.
Let p;: XX Y —X and p.: XXp}Y' —Y be the projections and 7, : X—XV g} and
7,1 Y —XV3gY the inclusion maps. Let p,=p,|M: M—X and p,=p,|M: M—Y
be the restrictions of the projections. Then define

p:vZ‘B"{FB(Z.1°‘51)\/B[,B(1-2°232>} °?:FB(Z'1°§1)+BFB(Z.Z°]52)7

where Z=1"p(XV3Y) and 7: [ 'sM— [ gM\/ 5l M is the fibrewise co-Hopf struc-
ture of /"'3M induced by the fibrewise co-Hopf structure 7: /7 —I"\/ gl of [
We remark that ['p(X\VeY)=pl XV el'gY (cf. (6.1) of [8]). It follows
then that
ool 5711 pX X p{5} =g lrpxven | I'sBX X p{x5} and
of’

s | (¥} X8l 8Y = 5 L1 pexvr | (x5} X[ '6Y . q.e.d.

I

If the inclusion map j7: XVl —M is a fibrewise pointed cofibration, then
there is a long fibrewise pointed cofibration sequence
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7 7 3 X7
XV Y —> M —> M/y(X\ Y) —> S 4 XV 5Y) > M —> ...

We have the following result for the map 6 in the above sequence.
Corollary 2.7. 6~g*g: M/gXV V) =2 xXVgY).

Proof. Set '=X=BXS" in Proposition 2.6, then we have a map p: 2 zM
—>ZB(X\/BY> such that ,5"237—"131:3(3'\/51/). Then we see 5:133(“'\/3}')"5:
(,5°F37)°0;:)6°(25j°5):3 ﬁe*B:*B. q. e.d.

Corollary 2.8. Let I' be a fibrewise co-looplike space. If 7:X\VgYCM is
a fibrewise pointed cofibration, then the following results hold.
(1) There is a short exact sequence

(rga)* (Ce7)*
0 — [I's{M/s(XNVY)}, Z1§—— [['sM, Z15 —— [['s(XV3sY), Z1§—>0

of algebraic loops and homomorphisms for any space Z in Tops.
(2) There is a fibrewise pointed homotopy decomposition

M= I3 XV pI"sY /I 5 {M/ 5(XV Y )}.

Proof. Consider the following fibrewise pointed cofibration sequence

I's] I'gq I'po Sl
FB(X\/BY> — I BM'——> FB<M/B(X\/3Y)> —> ZBFB(X\/BY)—‘—" ZBFBM.

Then we have the result by Proposition 2.6 and Theorem 2.1.

§3. ['z-Loop Space
Let " be a fibrewise co-Hopf space over B. For each XeTop%, we define
I X=mapi(I", X) (the I'g-loop space of X).

A map f:X-—Y in TopZ induces a ['z-loop map I'5f:[(X—I"5Y. We see
gl f=I%g-f) for any maps f: XY and g:Y—Z in Tops. Let y:/'—
I'VVgI" be the fibrewise co-multiplication of I'. We define y¥=mapi(y, lx),
namely,

7¥: map3(l, X)X gmapd(l", X)=pmapi(I' V[, X) —> mapi([’, X).

(cf. (9.19) of [8].) Then ['}X is a fibrewise Hopf space with a fibrewise multi-
plication 7% for any space X in Tep%. There is a following isomorphism as
fibrewise Hopf spaces

T¥XXgY )= TEXX[8Y
(cf. (9.9) of [8]). We have formulas
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Ca-(B+ar)=%a°B)+5U sacr) and (B457)0=(80)+ 5(7°0)

for any maps a:Y—Z, B, 7r: X—I'}Y and d: W—X in Top:.
A map p: E—Z in Topf is said to be [§-retractile if ['§p: ['5E—1%Z
has a fibrewise pointed homotopy cross-section s: ["3Z—/[%FE, namely, (['§p)es

=B lr’;,z-

Theorem 3.1. Let [' be a fibrewise co-looplike space. Let FLESZ bea
fibrewise pointed fibration sequence wn Toph. If p: E—Z is [§-retractile, then
the following results hold.

(1) There is a short exact sequence

I5i)x (%)«

0—[A, I'3F1E (A, I'3E1E

(4, 321§ —0

of algebraic loops and homomorphisms for any space A in Tops.
(2) There is a fibrewise pointed homotopy decomposition

['};EzBFEFXBf}“,Z.
(It does not preserve fibrewise Hopf structure in general.)
Iw* 1 r+ 2

B B
Proof. Since ['§F — I'(E — ' Z is a fibrewise pointed fibration sequence,
we have a long fibrewise pointed fibration sequence

Qgl%p 156 rH 1'%

b
Qpl'37 —> I'SF —> I'SE —> I'$Z

(cf. Crabb and James [2]). Since [¥p:/[3E—I%Z has a fibrewise pointed
homotopy cross-section s: ["¥Z—/"%E such that (I'§p)es=~53 1r7z by our assump-
tion, we have the result by Theorem 1.2. g.e.d.

Proposition 3.2. Let " be a fibrewise co-looplike space. Let M be any sub-
space of X XgY which contains X\ gY. Let 7: M—XXgY be lhe inclusion map.
Then 7 is [ %retraciile, that is, there exists a fibrewise pointed map &=
o', X, Y, M): I"EX X gY)—I"*M such that (I'§j)ea=plr¥cx. v

Proof. Since ['$M is a fibrewise Hopf space, we can define a map
G=F A5G 1o p )X gl 5@ 5o po)} o Ac. 5=1"$5G 1o p1)+ 5 I 50 20 o)

where p;: XX gY —X, p,: XX gY—Y are projections and i, : X—M, i,:Y—M are
inclusions and C=I"%XX3zY). The map 7 is the fibrewise Hopf structure of
I'%M induced by the fibrewise co-Hopf structure 7: I'—I'V gl of I

We remark that I 5(XxgY )=z ['3XX['%Y. Then we have
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55N =DFpro I { $G1o )+ L5 50 Do)}
:rﬁ(ﬂ“jﬁl"h)fﬂ D5 preojoise ps)
=I"$p1+5%p =5 F§p1:<rﬁp1>°lr*3()z><3y>-

Similarly, we have (['$p2)s(I"$7)°6=5("$po)°lrix.pm. Then we have
(I87)°6 =5 1rycxwgn- g.e.d.

M
Let XpzY be the fibrewise homotop}f fibre of the inclusion map j: M—
XXgY (cf. [2] or §23 of [8]). Let i:XhzY—M be the inclusion map.

Theorem 3.3. Let " be a fibrewise co-looplike space. Let M be any subspace
of XX gY which contains X\ gY. Then the following results hold.
(1) There is a short exact sequence

(I§)s (I )«

0—1[4, Fﬁ(XﬁbIBY)]S—> (4, I'EM1E—— [A, I'EXXpY)]E—>0
of algebraic loops and homomorphisms for any space A in Tops.
(2) There is a fibrewise pointed homotopy decomposition

M= 5 T5X X 5 TV X5 T5X 35V ).

Proof. By Theorem 3.1 and Proposition 3.2 we have the result.

§4. JXp-Retractile and 2'%-Retractile

Let p: 2pRsX—X be the fibrewise adjoint of the identity map lo,x: 25X
—Q:X. Sunderland [13] called the map 7:X—232zX in Top3 a fibrewise
coretraction when it satisfies poy~ply. He generalized a result of Ganea [3]
to the category TopZ, i.e. he showed that there is a bijection between fibrewise
pointed homotopy classes of fibrewise coretractions X—2 323X and fibrewise
pointed homotopy classes of fibrewise co-Hopf structures X—XV X (cf. Theo-
rem 1.1 of Ganea [3]). We use this result in the proof of the following pro-
positions.

Proposition 4.1. If A is XYpretractile in X, then A is ['gretractile in X
for any fibrewise co-Hopf space I.

Proof. Letr:3zX—2X3A be a fibrewise pointed map such that reXpi=p5 15,4
Since [" is a fibrewise co-Hopf space, there is a fibrewise pointed space
W(=R5zI') and fibrewise pointed maps k: [—XzW and ¢: XYgW—1 such that
gek=p1r by the result of Sunderland [13].

Define 7: I'sX—1"'sA by 7=(qApla)>(AwApr)(kAply):

F/\BX—"9ZBW/\BXSBW/\BZBX‘—>W/\BZBAEBZBW/\BA——>['/\BA.
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Then we have 7o/ 'si=p1,,4 by naturality. q.e.d.

Propesition 4.2. If p: E—Z is X§-retractile, then it is [§-retractile for
any fibrewise co-Hopf space I.

Proof. Let s:Y5Z—2%E be a fibrewisep ointed map such that X% pes=plys .
Using the fibrewise pointed maps %: /=2 W and ¢: 23W—/" in the proof of
Proposition 4.1, we define §: ['5Z—1"%E by

*7

Wis
'3z —>( BWEZ =g WHI%EZ) —>W (Z"‘E)“’B(ZBW)BE 25 [’“E

Then we have r§p°5231["’ez by naturality. (We used the notation: X} =
mapi(X, V). g.e.d.

Remark. ['pretractile does not imply 2 p-retractile in general. (For example,
consider the case B={x} and /'=2X? the double suspension.) But the question
of partial converse of Propositions 4.1 and 4.2, due to Iwase, Sunderland and
others, is still open: Does I g-retractile imply X g-retractile for some I'(=2) and
some class of fibrewise pairs (X, 4)?

References
1! Baues, H.J., Algebraic homotopy, Cambridge University Press, Cambridge. 1989.
(2] Crabb, M. and James, L. M., Fibrewise homotopy theory, to be published.
37 Ganea, T., Cogroups and suspensions, [fuvent. Math., 9 (1970), 185-197.
(4] Hilton, P., Homotopy theory and duality, Notes on Math. and its Appl., Gordon

and Breach, New York, London. Paris, 1965.

{5 ] Hilton, P., Mislin, G. and Roitberg, J., On co-H-spaces, Comm. Math. Helv., 53
(1978), 1-14.

{671 James, .M., On H-spaces and their homotopy groups. Quart. J. Math, Oxford., 11
(1960) 161-179.

L7 General lopology and homotopy theoryv, Springer-Verlag, New York, 1984.

[8] ————, Fibrecwise topology. Cambridge University Press, Cambridge, 1989.

[9] Oda, N.. Pairings of homotopy sets over and under B. Canad, Math. Bull., 36
(1993), 231-240.

[107 Quillen, D.G., Homotopical algebra, Lect. Note. :n Math., 43, Springer-Verlag,
Berlin, Hidelberg, New York, 1967.

117 Rutter, J. W., The suspension of the loops on a space with comultiplication. Math.
Ann., 209 (1974). 69-82.

[121 Saito. S., Note on co-H-spaces, J. Fac. Sci. Shinshu Univ., 6 (1971), 101-106.

“13] Sunderland, A.M., Preprint.

(147 Zabrodsky, A.. Hopf spaces, North-Holland Math. Stud., 22, North-Holland Publish-
ing Company. Amsterdam. 1976.







