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A Process Associated with the Radially
Symmetric Dirac Equation

By

Brian JEFFERIES*

Abstract

The dynamical group associated with the Dirac equation with a radially symmetric
potential is represented in terms of integrals with respect to the operator valued set
functions associated with the Dirac equation in four space-time dimensions.

Introduction

It has been suggested that the Dirac equation is only of historical interest
for contemporary quantum physics. Nevertheless, V. S. Popov [PI, P2] has
argued that the Dirac equation with a Coulomb potential provides a good model
for the spectra of one electron atoms with critical nuclear charge, in whose
regime quantum electrodynamic effects are negligible. Questions concerning
the essential selfadjointness of Dirac operators seem best to be answered by
the introduction of the physically relevant term corresponding to an anomalous
magnetic moment [Be]. The present work is concerned with the path integral
representation of the dynamical group associated with a radially symmetric
Dirac operator. The mathematical phenomenon of singular perturbations present
in quantum field theory is already illustrated by the Dirac equation with a
Coulomb potential, so this is a good area to test path integration techniques—
this aspect is discussed in greater detail below.

In a series of papers by T. Ichinose and H. Tamura [II], [12], [I-T1], [I-
T2], [I-T3], the existence and support properties of a countably additive matrix
valued path-space measure for the Dirac equation in two space-time dimensions
are established. The properties required of a semigroup S and a spectral
measure Q in order that for each £>0, there be an associated countably additive
operator valued measure Mt were given in the article [J3], and the operator
valued measure associated with the Dirac equation in two space-time dimensions
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realised as an example of the general scheme outlined there. In four space-
time dimensions, the operator valued set functions Mt associated with the
Dirac equation are unbounded [12], [Z], [J4].

By representing the Dirac operator in four space-time dimensions as a direct
sum of operators unitarily equivalent to operators acting on a space of C2-valued
functions on the positive real line, T. Ichinose and H. Tamura [I-T2] also
constructed families of matrix valued path space measures, but only for short
times and restricted initial data.

The purpose of the present note is to show that the notion of integration
with respect to a closable family of set functions [Jl] may be applied to the
same representation of the Dirac operator in order to represent the dynamical
group U(t) associated with the Dirac equation with a radially symmetric
potential as an integral with respect to the operator valued set function Mt

for each £>0. The restriction to radially symmetric potentials is related to
the well-known fact that a symmetric hyperbolic system is L^-bounded for
p^2 if and only if the associated system of hermitian matrices commutes [Br] ;
this excludes the Dirac operator. The radial symmetry realises the Dirac
operator as a sum of operators unitarily equivalent to hyperbolic systems with
a single matrix coefficient of the radial derivative, at the expense of introducing
a l/r singularity at zero. The radial symmetry thereby facilitates control of
convergence in the path integral.

The term "process" mentioned in the title refers to the underlying random
process in which the operator valued set functions Mt, t>Q are used to measure
random events in place of a probability measure. The idea of associating set
functions with a general semigroup S and spectral measure Q is due to
I. Kluvanek [Klu].

Ideas similar to those of [J3, Theorem 3] and [I-T3] establish the property
that Mt is closable with respect to a family of operator valued measures
M(

t
s\ £>0 supported on the space Q of radial paths in IR3 with speed of light

c. If V is a suitable radially symmetric potential, then the dynamical group
U associated with the Dirac equation has the representation

for all £>0, in the fashion of the Feynman-Kac formula for the Wiener process.
An unfortunate consequence of the support property of the operator valued

measures Mls}, s>0 is that for the Coulomb potentials defined for each <2>0
by x r->va(x)= — a/\x , ,teR3\{0}, the function s --* V a(a>(s)\ Q^s^t is not in-
tegrable on [0, £] for a set of paths a)^Q which is non-null with respect to
the operator valued measure M\B\ s>0; these paths co first hit the origin at
some time 0<X<a, so that the integral of the function s >-> Va(a)(s)) has a
logarithmic singularity in a neighbourhood of tw. For the Dirac operator, it is
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well-known that the Coulomb potential is singular in the sense that squaring
the Dirac equation gives rise to a singularity more like k/rz in the Schrodinger
equation—it turns out that only for a< ;V3/2 is the Dirac operator with the
potential Va essentially selfadjoint on C7(K3\{0} ; C4) [W, Theorem 6.9]. In
the range V 3 / 2 < < 2 < 1 there is a "physical" selfadjoint extension which ceases
to exist in the range a^l (see [KS] and the references there).

The situation for the Dirac equation is in contrast with the Schrodinger
equation in 1R3. There the Feynman-Kac formula for the Wiener process picks
out the "physical" selfadjoint extension of — 1/2J+V in the case that the form
sum of the free Hamiltonian —1/2/3 and the potential V is bounded below.
The potential V may have singularities on a set of capacity zero.

The natural interpretation in the present context is that the Kac functional
"~ r t "i

a>^>exp |— i\ V(a)(s))ds\, a)^Q is not the right multiplicative functional to use
L Jo j

in the case of the Coulomb potential or other singular potentials associated with
physically reasonable dynamics. The situation is reflected in the P(0)2

Euclidean quantum field theory [G-J], where the construction of multiplicative
functional of the field involves "renormalisation".

General results guaranteeing the existence of bounded (S, Q, 0-set functions
on Lp-spaces are presented in section one. Properties of the semigroups as-
sociated with the Dirac operator D are established in section two. Here a
number of results concerning approximation of semigroups to be used in section
six are established.

As mentioned previously, the free Dirac operator D with mass meR may
be represented as the direct sum of operators unitarily equivalent to the dif-
ferential operators

/O -l\(gi'(r)\ / m -kr-l\/gl(r)\
(0.1) rk:g^~>( } + ( , geC?((0, oo); C2),

U 0 /W(r)/ \-6r-1 -m ]\gz(r)]

for &eZ\{0}. The operators rk are essentially selfadjoint [W, Theorem 6.9],
so we actually need to use their closures in L2((0, °°); C2). For each s>0, Mp}

is the operator valued set function associated with the family of operators (0.1)
in which the expression kr~l is replaced by kr~l for r>£ and by ke'1 for r<e.
The results of section one ensure that M£

(£) , s>0 are operator valued measures.
The diameter of the range of M f

( £ ) , e>0 diverges as s — 0 + .
In section four we establish the support property of Mrc), t>0 by writing

Mj £ ) in terms of a perturbation expansion. Section five is devoted to proving,
in the terminology of [Jl], that for each £>0, the (SD, QR, 0-set function, for
the dynamical group SD associated with the free Dirac equation in four space-
time dimensions and the spectral measure QR of multiplication by radially
symmetric Borel subsets of R3 is closable with respect to M £

( £ ) , s>0. Integra-
tion with respect to Mt is also supported by Q.
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Thus, armed with the notion of integration with respect to Mt relative to
Mp}, £>0, the representation of the dynamical group U(t\ t>Q associated with
the Dirac equation with a suitable spherically symmetric potential, in terms of
an integral with respect to Mt, is established in section six, see Theorem 6.3.

The existence of the dynamical group U is most easily verified by traditional
operator theoretic means. However, as noted above, the Dirac equation shares
features with Euclidean quantum field theory in two and three space-time
dimensions, where there is a corpus of ad hoc techniques for the construction of
dynamical groups. The systematic use of real time functional integration may
reveal some new mathematical structure underlying the current proofs of the
existence of non-trivial dynamics in two and three space-time dimensions.
Already for the Dirac equation, the need to use some multiplicative functional

r rt -j
other than the Kac functional cy-^exp —n V(o)(s))ds\, (o^Q to represent the

L Jo J
dynamical group for the Coulomb potential V is suggestive of the situation in
Euclidean quantum field theory.

§ 1. (S, Q, £)-Measures

Some facts concerning (S, Q, 0-set functions for semigroups acting on Lp-
spaces are collected in this section. First we fix some notation.

All vector space are assumed to be over the complex scalars. A locally
convex space X is said to be quasi-complete if every closed and bounded subset
is complete. In particular, a quasi-complete space is sequentially complete.
The space of all continuous linear operators on a locally convex space X is
denoted by -C(X). It is endowed with the topology of strong convergence. If
X is a Banach space, then by the uniform boundedness principle, J?(X) is quasi-
complete.

The identity operator on X is denoted by /. A semigroup S of operators is
a function S: [0, oo)->_£y0 such that S(t)S(s)=S(t+s) for all s, t^Q. A semi-
group S is called a Co-semigroup if limt^0+S(t)=I in £(X)\ this terminology
applies exclusively to a Banach space X in this work.

At some stages in the arguments of the present paper, it is necessary to
integrate vector valued functions with respect to vector or operator valued
measures. Fortunately, only the finite dimensional case is needed, so certain
technical difficulties are avoided. For example, if T: ~C(Cn}XJ7(C71) — J7(Cn)
is a norm continuous bilinear map such as (A, B)^AB, A^j:(Cn), B<=j:(Cn),
then Bartle's bilinear integral [B] is sufficient for our purposes. Another case
we need is for the example of the bilinear map (A, x)^Ax} A<^£(Cn), x<ECn.

The variation of a scalar valued set function ra is (an extended-real valued
set function) denoted by m\. The set [0, oo) is denoted by K + . The space
of all smooth C2-valued functions on (0, oo) with compact support is denoted



DIRAC PROCESS 301

by C"((0, °°), C2). The Borel <7-algebra of a Hausdorff topological space £ is
denoted by &(S).

Let (21, ST, /*) be a ^--finite measure space and let X be a Banach space
with norm denoted by \\-\\x- For each 1^£<°°, (Lp(fji; X), \\-\\p) denotes the
Banach space of (//-equivalence classes of) strongly //-measurable functions /:

/ p \ I/P
I^X such that | | / | | p = | / ( « j ) | | J d ) is finite- For £ = oo, (L~(/ ;Z), Mice)

denotes the Banach space of (//-equivalence classes of) strongly //-measurable
functions /: Z-+X such that the number ||/i|oo=inf {^ : \\f(a)\\x^X for //-almost
all a^I} is finite. For p=2 and X a Hilbert space, L2(// ; Jf) is a Hilbert

v(/(tf), g(0))dfjt(0), for all /, ,g-eL2(//; A7).

For the applications of section two, J^ is either C2 or C4 with a /?-norm, 1^
£^oo.

Let ^Q be a sub-#-algebra of ET and suppose that Q is the spectral measure
of multiplication by characteristic functions of sets belonging to £Te. Then for
each AG^TQ, Q(A) defines a bounded linear operator on each space Lp(//), 1^
jb^oo. The same symbol denotes the operator acting on each of these spaces.
Let IQ be a set for which Q(Ar\(S\SQfi = 0 for all A^3Q. In the case that
Q is regular, SQ is assumed to be its support.

Now suppose that iA is the generator of a Co-semigroup acting on the
Hilbert space Z/2(J«). For example, if A is selfadjoint, then 5^(0=^*, ^K is
a unitary group of operators, by Stone's theorem [R-S, VIII.8]. However, in
the examples of interest in section two, A is not selfadjoint. Let £>0 be fixed.

Denote by Q^ the collection of all functions CD: [0, oo)-*^. For any set

(1.1)
with 0 < £ i < - - - < £ n < £ , and with B l t • • • , Bn belonging to £TQ, the operators

(1.2)

act on the Hilbert space Lz(p).
The collection of all such sets E as 0<ifi< ••• <tn<t, Blt • • • , Bn and n = l,

2, ••• vary is denoted by <St. Then St is a semi-algebra of subsets of the set
Qco. The suggestive terminology is that St is the collection of elementary events
before time t. Sometimes sets in the algebra a(St) generated by St will be
referred to as cylinder sets.

The semigroup and spectral measure properties ensure that MAit, MAit* are
additive operator valued set functions on St. It follows that MA,t, MAtt* have
unique additive extensions to the algebra a(St} generated by <St. We denote the
extension by the same symbol. The set function MA,t is called the (SA, Q, t)-
set function.
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Our next aim is to give a condition for which the J?(L2(/^))- valued set
functions MA,t: a(St)-^j:(L2(fji)), MAit* : a(St}— J7(L2(^)) have bounded ranges,
in which case they are said to be bounded.

1.1 Lemma. Suppose that iA is the generator of a contraction Co-semigroup
acting on the Hilbert space LZ(JJ.) such that for each f^L1(fji)r\L2(/jt), the ine-
qualities Ik^ / l l i ^ l l / l l i and | | (e l^)*/l l i^l l / l l i hold for all f^O.

Then for each l^p<°°, there exists a unique linear operator Ap: £)(AP}—*
Lp(fjt) such that iAp is the infinitesimal generator of a Co-contraction semigroup
Tp on Lp([i) and Tp(t)f=elAtf for all f^Lp(^rM\fji} and all f^O.

For p=oof there exists a unique linear operator /!«, : ^(A^-^ L°°(/jt) such that
iA^ is the infinitesimal generator of a weak* -continuous contraction semigroup T^
on L%«) and T00(t)f=elAtf for all /eL°°(//)nL2(/j) and all ^0.

Proof. We first make a few obvious remarks. If S(t), t^O is a family of
bounded linear operators on X such that for some dense set of vectors x^X,
the equality S(t)S(s)x = S(t + s)x holds for all s, t^Q, then 5 is actually a semi-
group of operators. If, in addition, S(t), t>Q is uniformly bounded in a neigh-
bourhood of t=Q and \rnit~.Q+S(t)x = x for a dense set of vectors x^X, then S
is a Co-semigroup of operators acting on X.

Because Ll(ii)C\L\fjL) is dense in Ll([i), for each t^Q, there exist unique
operators TV*): L\IJL)-+ L1^), S^t] : L\IJL)-+ L\i$ such that T1(t)f=eiAtf and
Si(t)f=(eiAt)*f for all /eL1(/^)nL2(^). Now the measure p is not assumed to
be finite, so the space L1(l«)nL00(^)nL2(/«) need not be dense in L°°(^). Con-
sequently, an alternate argument is needed for the case of L°°(/J).

The duality between L1^) and L°°(/-0 is given by </, ^>=\ f(a)g(a)dfjt(a),

i\ g^L°°(fji). For f^Ll(fi)C\L\fjL\ ^eL°°(^)nLz(^), the inner product

of / with g is (/, g}-=\f(a}g(a)dfjL(a\ so </, gy = (f, Jg] for the antilinear

complex conjugation operator / : LZ(/LI) —> L2(^). Furthermore, <Si(0/, g> —
<(eiAt)*f, g>=((eiAt)*f, J g ) = ( f , eiAtJg)=<f, JeiAtJg*>, so the Banach space dual
operator of Sx(0: L\IJL)-*L\(JL) is JeiAtJ.

However, for any ,geL°°(^)r\L2(^), there exists gn^Ll(p.}f^L°°(^)C^L\^\
72=1, 2, ••• such that ||gnl|co^||g||oo for all 72=!, 2, ••• and gn-»g in L2(^) and p-
almost everywhere. Such a sequence may be obtained, for example, from the
martingale convergence theorem. Then for every /eL1(/«)nL2(/«), </, JelAtgny

= <5i(0/, /^§"^> — <SiGO/, /^> by dominated convergence, and </, JelAtgny —
</, /*ixtg> by convergence in L2(^). If follows that | </, JelAtg> \ = \ <S1(t)f} Jg> \
^ l l / l l i l l / ^ l l o o for all f ^ L \ f i ) C M \ f j L ) . Because Ll(fjt)r\Lz(fjt) is dense in L1^)
and / is norm preserving, it follows that l le '^^Hoo^l lg lU for all g^L°°(fjt)r\L\fji').

The Riesz-Thorin interpolation theorem [R-S, Vol. II, pp 38-39] shows that



DIRAC PROCESS 303

for each t^Q and l^p<°°, there exists a unique bounded linear operator Tp(t)
such that \ \ T p ( t ) f \ \ p ^ \ \ f \ \ p for all /eLp(//) and the equality Tp(t)f=eiAtf holds
for all /eLp(/*)nL2(/0- The remarks at the beginning of the proof serve to
show that Tp is actually a Co-semigroup acting on Lp(//). If iAp is its infini-
tesimal generator, then the operator Ap has the required properties.

For p = oo, the Banach space dual operator of /Si(0/, ^0 defines a weak*-
continuous semigroup TJif), ^0 on L°°(//) such that Teo(t)f = eiAtf for all /e

Suppose that A satisfies the condition of Lemma 1.1. Then 5^ defines a
unique continuous semigroup of operators on Lp(fj) for each l<:^<^oo. Because
Q is a spectral measure acting on Lp(/0 (for p = oo, L°°(fjt) has the weak*-
topology ff(L°°(fji), L\^}}} the operators defined in (1.2) also act on Lp(fjt) for
each l^j^oo. The same symbols are used to denote the corresponding oper-
ators acting on each of the spaces Lp(n), l^p^°°.

1.2 Lemma. Suppose that A satisfies the condition of Lemma 1.1. Then the
additive set functions MAit, MAit* are bounded in «r(L°°(/0) on the algebra a(St)
generated by <St. Moreover,

for each t>Q.

Proof. Because SA is a contraction on L°°(fji)f the result follows from [J3,
Proposition 1]. However, we distill the essential argument here for the additive
set function MAit.

Discarding //-null sets, if necessary, for any element E of the algebra a(Sj,
the additivity of MAit ensures that operator MA>t(E) maybe represented as the
sum of the operators M A f t ( E k i 3 ) with

y=l, ... , J(k\ k=l, ••• , m for 0<^< ••• <tn<t. The sets Bk
n^9Q, k=l, ••• , m

are assumed to be pairwise disjoint. Then

k) \ ??i
j E k i J ) = ̂

J ( k )

ki = SA(t~tn)Q(Bkn)MA,t

with Fk.j
If we knew that the operator Tk=MAitn({Jjlki)Fkij') had its norm bounded

by one for each k=l, ••• , m, then so would the operators l£f=iQ(Bk
n}Tk and

^f=lS(t—tn)Q(Bkn)Tk, because for all /^eL°°(//), k=l, • • - , m in the closed unit

ball of L», the inequalities |2fti(0(JB{l)/*)((j)| ^ S&il(0(fii)/*)(cr)l =
S£WCB*(f f ) l / f t ( f f ) l^ l hold for //-almost all a^S. It is clear that the proof can
now be completed by induction. The analogous argument holds for the additive
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set function MA,t*. m

1.3 Proposition. Suppose that iA is the generator of a contraction Co-semi-
group acting on the Hilbert space L\ft), N is a unitary operator acting on L\fj.} and
K^Q is a number such that for each /eL^nL2^), the inequalities \\N*eiA'Nf\\!
<eKt\\f\\i, l |W(*<A0*WVIIi^**'ll/lli hold for all t^O. Suppose also that N and
Q commute.

Then for each l^p<°o, t>Q, \\N*MA,t(E)Nf\\p<eKt\\f\\p for all /e=L%u)ri
Lz(fji) and all sets E belonging to the algebra a(St} of sets generated by St.

Proof. Let 3)(B)=N*3)(A) and set B=N*AN—KL Let / be the complex
conjugation operator on L2(//) and set C—JB*J. Then iB is the infinitesimal
generator of the Co-contraction semigroup eiBt = e~KtN*eiAtN, t^Q satisfying
the conditions of Lemma 1.2. Similarly, iC is the infinitesimal generator of the
Co-contraction semigroup J(eiBt)*J', ^0 satisfying the conditions of Lemma 1.2.
The adjoint semigroup t^(eiBt)*, £^>0 is clearly weakly continuous on L\p),
but this implies that it is also strongly continuous too [H-P, 10.6.5].

Moreover, the equalities <eiBtf, g>=(eiBtf,Jg)=(ffe-iB^Jg)=<f} Je~wtjg>
valid for all /eL^/^nL2^) and g^L°°(^}r\Lz(^} ensure, in the notation of
Lemma 1.1, that iC* is the infinitesimal generator of the weak ^-continuous
semigroup eiCoot, t^Q adjoint to eiBlt, t^Q with respect to the duality between
LI(JJL) and L°°(ju). The semigroup eict, t ^ 0 also satisfies the conditions of
Lemma 1.2. An application of Lemma 1.2 to the operators B and C establishes
the inequalities sup{||MBlt(E)|U(Loo (AI ) ): E^a(St}}^l and sup {\\Mc.t*(E)\\ £&<»(?»:

E(=a(<St)}^l' It is easily checked that for each E<^a(St}, the dual of the
operator Mc,t*(E)i L°°(fj.) -* L%«) with respect to the duality <•, •> between
L\fi) and L°°(^) is MB,t(E): Ll([t)—> Ll([i), so by duality, the norm estimate
sup{\\MB,t(E)\\_c(Li(ri» ' E(=a(<St)\^l holds. An application of the Riesz-Thorin
interpolation theorem [R-S, Vol. II, pp 38-39] shows that \ \ M B , t ( E ) f \ \ p ^ \ \ f \ \ p

for all f ^ L p ( ^ C \ L 2 ( f j t ) and all sets E belonging to the algebra a(St) of sets
generated by St. According to formula (1.2), the equality MBtt(E) —
e~KtN*MA.t(E)N holds for all sets E<=St, because N and Q commute. By the
additivity of the set functions MB,t and MA, t, the equality must hold on the
algebra a(<St) generated by <St; the conclusion follows, m

Up until now, we have been concerned not with the cy-additivity of the
set functions MAit, but only with their boundedness on the algebra a(St)- For
the next statement, it is convenient to introduce a regularity assumption on
the spectral measure Q.

Let £Tm be a sub-<7-algebra of the Borel subsets of a Hausdorff space X.
Let E be a locally convex space. A vector valued measure m: 3m-*E is said
to be regular, if for every A<=%m and every neighbourhood U of zero in E,
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there exists a set 5e£Tm and a compact subset K of X such that B^K^A,
and m(C)e£7 for all Cef f m such that C^A\B.

1.4 Theorem. Le£ I be a locally compact Hausdorff space, /j. a a-finite
regular Borel measure in I. Let Q be a regular spectral measure of multiplica-
tion by characteristic functions of a sub- a -algebra of the Borel subsets of I.
Suppose that iA is the generator of a contraction Co-semigroup acting on the
Hilbert space L2(/j.) and N is a unitary operator acting on L\^JL) such that for
each /eL^HL2^), the inequalities ]|A^iAWlli^£ll/!li, i]N(e iA£)*N*/lii^
e K t \ \ f \ \ i hold for all f^O. Suppose also that N and Q commute.

Then there exists a unique a-additive operator oalued measure MAit: a(St}—>

J7(L2(^)) defined on the a-algebra a(St} generated by St such that for each E^
St, the equality MAit(E)f = MAtt(E}f holds for all f e Lz(p}. Moreover,

eKl for all

Proof. According to Proposition 1.3, for each l^p^oo and £>0, the in-
equality \\N*MA,t(E)Nf\\p^eKt\\f\\p holds for all /eLp(^)nL8(^) and all sets
E belonging to the algebra a(St) of sets generated by St. Because N is a
unitary operator acting on L2(/^), the density of Lp(^)nL2(/*) in L\fji) ensures
that \\MAtt(E)\\j;(L2(fJt»^eKt for all E^a(St), that is, MA,t is a bounded additive
set function taking values in the space J7(L2(/*)) of bounded linear operators
on L2(^).

The (T-additivity on the algebra a(3t) of subsets of Q follows from [J3,
Proposition 2], a result of Kolmogorov concerning projective limits of measures
on I1 [Ne, III. 3] and the Orlicz-Pettis theorem [D-U, 1.4.4].

The problem reduces to showing that there exists a (/-additive extension
of an operator valued measure from an algebra of sets a(St} to the a-algebra
0(<St) it generates. Any bounded subset of J7(L2(/^)) is relatively weakly compact
because L2(^«) is reflexive. An appeal to the Caratheodory-Hahn-Kluvanek ex-
tension theorem completes the proof [D-U, 1.5.2]. m

Remarks. ( i ) The results of this section can be reformulated in terms
of the spaces Lp(fj., H), l^p^oo where H is a Hilbert space.

( i i ) If eiAt, ^0 is merely a bounded group of operators on Ll(fji), then
the space LK/-0 can always be renormed so that it becomes a group of iso-
metries. However, the pleasant properties of the spectral measure Q may be
lost for this new norm. In Proposition 1.3, the renorming operator commutes
with Q. m

§2. Approximation of Semigroups Associated with the Dirac Operator

The free Dirac operator may be represented in L2(R3 ; C4) by means of
the differential expression
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3

.7=1 3 J

where c>0 is the velocity of light, ??z>0 is the mass of the particle, p3=
$Xj, and

' 0 f fA iff, 0 N

for ; = 1, 2, 3, a4=
. . O/ \0 -c

Here alt G2, o* are the Pauli matrices

aJ
Q l\ ffJ

Q -f'\ ^ J1 °\
^ \i OA *2 v OA *3 \o -i/

and ^O = (Q -f) is the 2x2 identity matrix. In the sequel, units are chosen in

which c and n are equal to one.
The space L2(R3; C4) is a Hilbert space with the inner product (/, g)=

(/(*), gW)dx for /, £GEL2(R3 ; C4). For any n=l, 2, • • • , the space Cn is
R3

assumed to be equipped with the inner product (a, b) = S?=i fl^ for a =
(ai, • • • , an) and b=(blt •••, bn) in Cn. The space Cn endowed with the £-norm

a p~(S5=i|ajlp)1 / p , a=(fli, -•, O is denoted by CJ, except as just mentioned,
when p—2 where the notation Cn is used. If vn is the counting measure on
{1, • • • , n}, then C%=Lp(vn), so the results of section one apply to the spaces
Lp(/*; Cp) which may be identified with Lp(fjt®vn) for all l^^^oo.

By virtue of the angular momentum decomposition of the Dirac operator,
there exists a family Mk,m, k = ±l, ±2, ••• and m=— \k , —1&|+1, • • • , \ k \ — 1
of mutually orthogonal subspaces of L2(R3; C4), such that L2(R3; C4) is the
Hilbert space direct sum of Mk,m, each space JCk.m is a reducing subspace for
the free Dirac operator D and in each &k,m, D is unitarily equivalent to the
closure in L2(R+ ; C2), of the operator rk defined by (0.1) on the space
C"J(R+ ; C2) of smooth C2-valued functions with compact support. The essential
self ad joint ness of the operator D with domain C?°(R3\{0} ; C4) serves to establish
the essential selfadjointness in L 2(R+ ; C2) of the operator rk for each k = ±l,
±2-". A convenient reference for these and other standard facts from the
spectral theory of differential operators is [W]. The details are laid out more
explicitly in [A]. Thus, for each k = ±l, ±2, ••• and m=—\k\, —\k\+l, ••• ,

&|-1, we have Tk=
cUk,m(D\<3{kim)cUkim* fo ra unitary operator c U* > m : Mk,m-+

L2(R+ ; C2). Here D \ J C k , m is the restriction of D to the reducing subspace
JCk.m. Let 0=X (0,oo) on R.

2.1 Lemma. Let l^£<oo. Let 3)(T±) be the collection of all functions /e
L P (R+; CJ) such that f is absolutely continuous on all bounded subinteruals of
R+, / '€ELp(R+ ; C2) and /a(0)=0 for T+ and /!(0)=0 for T_. Let T± : 3)(T±)

.; C2) be the linear operator defined by T±/=±(Q __f)f for all /e



DIRAC PROCESS 307

3)(T±). Then 7\ is the infinitesimal generator of the Co-contraction semigroup

on L P (R + ; C|) mapping / e L p ( R + ; CJ) to the function x ^((Of[)(t-t})' ^or

almost all x^>Q, and T_ is the infinitesimal generator of the Co-contraction semi-

group on LP(R + ; CJ) mapping /eLp(R+ ; CJ) to ^ /imrfwn x

for almost all x^Q.
For each t^Q, eT~teT--t = Qt} eT^eT-1 = Pt, where Qtt Pt: LP(R + ; C2

L P (R + ; C2) are fte projection operators given by (Qtg)W =(0('X~t)^
\ gz\-^J

(p'8Kx)=(o(x-t*gt(x))' for X = Q and S^LPCR+; C2). The operator T+ on

L P (R + ; C|) is the Banach space adjoint of T_ on L9(R,; C2), 1/p+l/q = 1.
Moreover, T+ is the Hilbert space adjoint of T_.

Let 1 ̂  /? < oo and for each / e L p ( E + ; C|), set (S(0/)O') =

for almost a11 ;i'"0< Then for each ^-°5 i i sw/iip=[Jj^(x +^ip
] i / p

^|| / U p , in view of the assumption that CJ is equipped

with the P-norm. Because (S(0/)8(0)=0 for all f^Lp(R+; CJ) and t>Q, if
follows that /2(0)=0 for all functions / belonging to the domain S)(T+] of the
infinitesimal generator 7\ of S. The identification of T+ follows from Lebesgue's
differentiation theorem. The identification of T_ follows in a similar manner.

The remainder of the statement involves straightforward calculations. M

Remark. Neither eT-t nor eT^1 is a contraction semigroup on LP(R+ ; C2)

for p=£2. For example, for p>2, \\eT+/4(yL1/2>1}}\\p=2lfZ-1/p>l. The case 1^
\A-CO, 1/2)/

p<2 follow by duality. P5S

Let N=1/ V
X 2(J |). Then 2]V*(J ~^)w=(o _°i)- Let ^+) be the

collection of all functions /eL 2(M+ ; C2) such that / is absolutely continuous
on all bounded subintervals of K+l / 'eL2(]R+; C2) and (N*/)2(0)=0. Let ^}(r_)
be the collection of all functions /eL2(R+ ; C2) such that / is absolutely con-
tinuous on compact subsets of R+, / 'eL2(R+; C2) and G/V*/)i(0)=0. Let r± :

^)(r±)->L2(Rr; C2) be the operator ±

2.2 Lemma. 77ze operators zr± are Z/ie generators of Co-semigroups on
LP(R+ ; C|) gzugn by e"-t=NeT^tN* such that l ]^ r ± i | b (L p (R + ; c2) )^2 for all f^O.

Proof. The resolvents of the semigroups t^eir±t, t^Q and t
^0 are equal, so the equality of the two semigroups follows from the uni-
queness theorem for Laplace transforms [H-P, Theorem 6.2.3]. By Lemma 2.1,
the norm inequality | | 0 < r - t C | | j : ( L p ( H + ; c ) ) ^ l l ^ l l ^ ( c ) I I A 7 * | | j : ( c 2 ) ^ 2 holds. ^
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2.3 Proposition,, Let q: R+-*R be locally square integrable on(Q, oo). Let
<3)(H+] be the collection of all functions /eL 2(R+; C2) absolutely continuous on
all bounded subintervals of R+, such that (A/"*/)2(0) = 0 and H+f = r+f—qf^
L2(R + ; C2). Similarly, let 3)(H.) be the collection of all functions /eL2(R + ; C2)
absolutely continuous on all bounded subintervals of R+, such that (Af*/)i(0)=0
and #_/EEEr_/+<7/eL2(R+ ; C2).

Then iH+ is the infinitesimal generator of the Co-contraction semigroup eiH+t

on L 2(R+ ; C2), such that eiH+l maps /eL2(RT ; C2) to the function

for almost all

Similarly, iH_ is the infinitesimal generator of the ^-contraction semigroup QiH-
such that eiH-1 maps /eL2(R+ ; C2) to the function

exp -

for almost all
expl

Proof. The statement is verified for H+. The rest of the conclusion for
//_ follows in the analogous manner.

Dominated convergence and the local integrability of q ensures that the
expression defining eiH+t gives a Co-semigroup of operators on L 2 (R + ; C2). Let

S
oo
e~ueiH+tdt of the Co-semigroup

0
0**+*, f^O. The range S) is independent of /leC, Re(^)>0. Let /eL2(R+; C2)
and set g=N*f. Then for x>a>Q,

W x i roo r ru ~]
q ( s ) d s \ e * x \ e - / [Mexp — i\ q(s)ds \gi(ii)du.

a J Jx L Ja J

The function (A/r*J/?(^)/)1eL2(R+ ; C
2) is plainly absolutely continuous on bounded

subintervals of R+. A similar argument applies to C/V*/?(^)/)2. Because
(JV*e<H+7)a(0)=0 for all ^>0, we have (N*/?(^)/)2(0)=0 as well. A straight-
forward calculation shows that H+R(X}f=r+R(^)f-qR(^f^Lz(^+} C2), so 3>g
&(H+) and the restriction of //^ to ^) is the infinitesimal generator of eiH+t.
Integration by parts shows that iR(X)H+f = AR(X)f—f for all / e 3)(H+), so

+)^9) and //+ is actually the infinitesimal generator of eiH+t. H

For every e ̂  0, let /7^,s(r) = __r-i ~_ for ^^£ and U k t S ( r ) =

\ — k 'l ~~— e ) ^or ®<r<e- Then L / ^ f t i £ is a bounded function with values in
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the 2x2 hermitian matrices. According to [K, Theorem IX.2.1],
and i(t-—Ukt£} are the generators of Co-semigroups on LP(R+ ; CJ) for each
£>0 and l^p<°o. In the case p=2, the operators ^(T+

J^Uk,e) and i(T.—Uk.s)
are the generators of Co-contraction semigroups on L2(R + ; C2) for each £>0.

The following results are stated for the operator r+, but the analogous
statements also hold for r_. Let r*.e = r++£/ kiS. The same symbol eilk-£t, t^Q
is used on each space LP(R+ ; C|). By virtue of [K, Theorem IX.2.1], the
mapping e-*^7*.*', £>0 is continuous on the open interval (0, oo), in the strong
operator topology of J7(L2(R + ; C2)), uniformly for t in compact subsets of [0, oo).

The operator rk defined by (0.1) is essentially selfadjoint ; its closure in
L2(R + ; C2) is denoted by the same symbol. A result of Trotter [T, Theorem 5.2]
ensures that \ime^Qeirk>£t = eirkt in the strong operator topology of J?(L2R+; C2)),
uniformly for t in compact subsets of [0, oo). The operator r k , o is set equal to rk.

2.4 Lemma. The norm \\N*eiT*>*LN\\ of the operator N*eiT*-<tN on L1(K+ ;
Cf) is bounded by e ^ m + } k } / s ^ . Similarly,

Proof. A calculation shows that N*Uk.e(r)N=(_ir£_k/r
 m~k/r^ for

r>£ and N*Uk..(r)N = __ im~k/ for r^£, so \\N*U k ,£

+ \k\/r for r>£ and \\N*Uk.*(r)N\\cl^m+\k\/s for r ^ e. Because N*T+N =

T+, N*elT*.*'N, f^O is the Co-semigroup generated by T++N*U k.s(r)N. As noted
in Lemma 2.1, T+ is the generator of a contraction semigroup on LJ(]R+ ; C?),
so the result follows from [K, Theorem IX.2.1]. The estimate for the adjoint
operator is proved similarly. $g

2.5 Lemma. Suppose that q : R+— >R is locally integrable on [0, oo) and locally
square integrable on (0, oo). Let qn—Q^-\q\^n, n = l, 2, ••• . Then for every /1>0,
the function s >— > (1— z ( r f e i £ — qn)Y

l* 0 ^ £ ^ 1 is continuous in the strong operator
topology of J7(L2(R+ ; C2)), uniformly for n=l, 2, ••• . Furthermore, as e — * 0+,
e*ct*.«-«n>'-»0 l<**-«»>' in the strong operator topology of J7(L2(R+ ; C2)), uniformly
for n = l, 2, ••• and t in compact subsets of [0, oo).

Proof. Let X be the Banach space of all continuous functions /: [0, 1]— >
L 2 (R + ; C2) with the norm ll/IU^supo^ill/MIU. For each f^O and f^X, set
(S(0/)(s)=eiT*.«£/(e) for all O^e^l. Then S(t)fs=X and S(s)S(0=Sa+s) for
all s^O. Moreover, as noted above, £ •— > elrk>st, 0 ^ £ ^ 1 is continuous in the
strong operator topology, uniformly for t in compact subsets of [0, oo). It fol-
lows that t*-*S(t), t^O is a Co-semigroup acting on X.

Now Uk,£ is a bounded operator on L2(R+ ; C2), so by Proposition 2.3 and
[K, Theorem IX.2.1], the operator i(rk,s—q] is the generator of a Co-semigroup
on L 2(R+ ; C2), and as before, the mapping £ -» ei{rk>*~q)t, £>0 is continuous on
the open interval (0, oo), in the strong operator topology of J7(L2(R+; C2)),
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uniformly for t in compact subsets of [0, oo).
The function q is assumed to be locally integrable, so according to [Be,

Lemma 3], rk— q is selfadjoint. Another appeal to Trotter's convergence
theorem [T, Theorem 5.2] ensures that lim9^Qel<r*> •-*>*=€*<**-*>' in the strong
operator topology of J7(L2(R+; C2)), uniformly for t in compact subsets of [0,
oo). For each f^O and f^X, set (Sff(0/)(s)=ei(T*.«-fl)'/(s) for all O^s^l. The
same argument as before shows that t*-*Sq(t\ t ^ 0 is a Co-semigroup acting
on X.

The set C"((0, oo), C2) is a core for rk— q [Be, Lemma 3] and, as is easily
verified, the set C([0, 1])<8>C~((0, oo), C2) of all finite linear combinations
/(e)W = S5=i£,(e)/iyM, 0 ̂  s ^ 1, r^O of functions g, e C([0, 1]) and h,<=
C"((0, oo), C2), /=!, • • • , 72, 72=1, 2, ••• is a core for the infinitesimal generator
of Sq. Moreover, ( r A , e — #J/(e)— > ( r * . e — #)/(e) uniformly for 0 ^ e <J 1 for any
such /e C([0, 1])®C?((0, oo), C2). Again, [T, Theorem 5.2] implies that as
n-*oo, Sqn(t)~>Sq(t) in the strong operator topology of J?(X), uniformly for t in
compact subsets of R+.

For each h^L\~R+; C2) and n=l, 2, ••• , the function

is just the mapping £>— >(^— /(r*, e— tfn))"1/^ where the function identically equal
to one on [0, 1] has been denoted by 1. As 72 — > oo, these functions converge
uniformly on [0, 1] to the function e^(^—i(rk^—q}Ylh, O^e^l. This implies
the first conclusion. The second follows from the existence of the limit
limn^Sqn(t)lh=Sq(t)lh in X. m

2.6 Corollary. Let qn, n = l, 2, ••• be as in Lemma 2.5. For any bounded
linear operators T1} ••• , Tk on L2(K^ ; C2) and any numbers Si, ••• , s*>0,
limn^coII*«iCe*(T*'*"9n)^^]=II*=iC^(T*'8"fl)'^] in the strong operator topology of
J7(L2(R+; C2)), uniformly for l^s^l.

Proof. This follows from the Banach-Steinhaus theorem, and the observa-
tion that \Jozs*i,nei(l/i'£~qn)sJK, O^s^l is precompact for any precompact subset
K of L2(R+ ; C2). m

2.7 Lemma. Let q\ R+-^]R be a bounded Borel measurable function. Then
as n-*oo, the operators [ e ~ i q t / n e i T k ' s t / n ~ ] n , n = l, 2, ••• converge to ei(Tk^~q}t in the
strong operator topology of J7(L2(R+ ; C2)), uniformly for Q<e<a, for each a>Q,

Proof. The statement is a version of Trotter's product formula with the
convergence uniform as the parameter s>0 varies. The operators T k i £ , £>0
have a common domain ^}(r+) and the function e*-*Tk.ex, s>0 is continuous for
each %e^)(r+), so the conclusion follows from [J2, Theorem 1]. m

Let C0(]R+J C2) be the space of all continuous functions /: R+-*C2 such
that /(#)— >0 as x— »oo. The bilinear integrals referred to in the next statement
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are to be understood in the sense of Bartle [B], as mentioned earlier, or more
simply, componentwise. The equivalence class of a Borel measurable function
g: EL-^C2 with respect to Lebesgue measure is denoted by [#].

2.8 Proposition. There exists a unique semigroup T k i B on C0(R+, C2) such
that \Tk.*(t)n = ^7*'£l[/] for all /eC0(R+, C2) and ^0. Furthermore, there
exists a unique 2x2-matrix valued function (t, x, B}>-^pt(x, B}, £ ^ 0, x>Q, Be
^?(R+) with the following properties:

( i ) for each f^O and *>0, B*-*pt(x, B), B^&(R+) is a 2x2-matrix valued
measure,

( i i ) for each 5e.S(R+), the function (f, x)*-+pt(x, B}, t^Q, x>0 is jointly
Borel measurable,

(iii) for each t, s^O, x>Q and £e.0(R+), pt+s(x, B) = \°°ps(x, d y } p t ( y , B),
Jo

and

(iv) for each t^Q, x>Q and /eC0(R+, C2), (T*,./)(^)=("/>£(x, djO/(;y).

Proof. The dual estimate from Lemma 2.4 shows that the semigroup ellk>*L

on L~(R+ ; C£) satisfies ||AfVrMW/||^g^ + i * l / £ > £ | | / | U for all /eL°°(R,; C2)
and ^0. If /eC~(R+, C2), then it is easily verified that e i r*.«£/eC0(R+, C2)
(in the sense that there exists a unique continuous representative of eiTk>stf), so
continuity ensures the existence of the stated linear operators T k t B ( t ) : C0(R+, C2)
->C0(R+, C2) for each ^0 and the semigroup property for Tk £ follows from
the semigroup property of eiTk-^, t^Q on L°°(R+ ; C£).

The existence and properties of the matrix valued "transition function"
(t, x, B)^>pt(x, B), ^eR, x>Q, B^$(R^) are proved in the manner analogous
to that for Feller semigroups, only now we deal with matrix valued measures
rather than probability measures. Put simply, the Riesz representation theorem
ensures that the Banach space dual operator TkiS(tY of T k , 8 ( t ) maps the space
of C2-valued Borel measures on R+ into itself. Then for each £eR, %>0 and
5e^(R+), set p t ( x , B)v=[Tk s(tYdxv^(B] for each vector yeC2. Here dx is
the unit point mass at jeeR + . Then (t. x, B)*-*pt(x, B), f eR , .r>0, 5e^(R+)
has the stated properties. •

§ 3. Existence of the Spherically Symmetric Dirac Cut-off Measures

Denote the semi-algebra of all sets E of the form (1.1) with 2'=R+ by &.L
and set /7

00=^co>00). For each t, £>0, the associated (elr'*s', Q, f)-set function is
denoted by ^J* - s ) : a(Slt)-->-C(L*(R+ ; C2)). Here Q is the spectral measure of
multiplication by bounded Borel subsets of R+, acting on the Hilbert space
L2(R+ ; C2).

According to Lemma 2.4 and Proposition 1.3 we have the following result.

3.1 Lemma.
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Moreover, it follows from Theorem 1.4 that ^p > £ ) has a unique cr-additive
extension to the <7-algebra a(3tt} generated by Sit.

For each &eZ\{0}, let Tk be the unitary group of operators defined on
L2(R+ ; C2) by Tk(t)=e"*1 for all ^R. For each t>0 there exists, according
to formula (1.2), an operator valued set function R(

t
k} : &t -> J7(L2(R + ; C2))

defined on the semi-algebra &t of all sets E of the form (1.1) with S=H+ and
Foo^I*0 00), such that the restriction of Rik} to SLt is the (Tk, Q, 0-set function.
Here Q is the spectral measure acting on L 2 (R+; C2) of multiplication by Borel
subsets of R^. It will prove useful to formulate this observation in terms of
an Revalued process whose distributions are operator valued set functions
acting on L2(R3 ; C4).

Now let £?oo be the space of all paths CD: [0, oo)-»R3. Let ^R be the sub-
tf-algebra of the Borel sets in R3 consisting of radially symmetric Borel sets,
that is, <BR is the collection of all sets {xeR3: *|e£}, 5e.S(R+).

The spectral measure acting on L2(R3 ; C4) of multiplication by charac-
teristic functions of sets belonging to ^R is denoted by QR. For each £>0,
the semi-algebra of all sets of the form (1.1) with the sets B1} ••• , Bn belonging
to <BR is denoted by St. Let SD& be the Co-semigroup of operators acting on
L2(R3 ; C4) and defined by SDe(t)=eiD^ for all f^O, where £.=S*,m0^*.m*(r+

+Uk,e)
cUkim. Then iD£ is the generator of the Co-contraction semigroup SDe(t)

= S*.™ (&eUk.m*eir*-*tcUk,m acting on L2(R3 ; C4), but Ds is not selfadjoint.
Moreover, D£-+D in the strong resolvent sense.

3.2 Theorem. Let St be the semi-algebra of elementary events in Q^. For
each t>0, there exists a unique a-additive operator valued measure Mj ( e ) : a(St}
-* j:(L2(R3; C4)) such that the restriction of M|8) to St is the (SDf, OR, t)-set
function.

Proof. Let W: Q^— R+
c° °°} be defined by (?f(a>))(0=|a>(OI for all ^0 and

all <ye,Oo. Then for any f>0, <St={V-1(E): E^&t}.
Let Q be the spectral measure of multiplication by characteristic functions

of Borel sets, acting on L2(R+ ; C2). Then for all indices k, m, the spectral
measure QR satisfies

mf, for all 5e^(R.) and

with respect to the unitary operators °Uk,m defined earlier, so a simple calcula-
tion shows that for all t>Q and E^3tt, the (SDsQR, f)-set function MJ0 is given
by Mp(W-\E))=^fc,m®cUk,m*Rik's>(E)cUk.m. The result follows immediately.

n

Remarks. ( i) The notation L*(RT ; C?) used in Lemma 2.4 is not just
pendantry. It was noted earlier that neither T+ nor T_ is the generator of a
contraction semigroup on Ll(H+, C2). This difficulty actually precludes us from
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deducing the boundedness of the (SD, QR, 0-set functions as follows : if, say,
T+ were perturbed by iU for an hermitian matrix multiplication operator U(r),
and if eT+t

y t^O were a contraction semigroup on L !(TR+ ; C2), then the ine-
quality | | (0 r + t /V^ / n) n |UcL i (R+ ; C2,) ^ 1 would obtain for all n=l, 2, ••• . If, in
addition, the range of the operator X—i(T++U) were dense in L1(1R+ ; C

2), then
general results on semigroup convergence [T] would ensure that the closure
of T++U generates a contraction semigroup on LX (RT ; C2). A slight variant
of Proposition 1.3 would then allow us to conclude that the (SD, QR, 0-set func-
tions acting on L2(R3 ; C4) are actually bounded; the use of the appropriate
norms on C71 is therefore crucial.

i , i i ) Proposition 2.8 show that for each &eZ\{0} , there exist matrix
valued measures P(

t
k r > £ ) : a(&t) -* =£(C2), x > 0 such that for each bounded

measurable function /: jR,.— >C2 with compact support and each bounded,
scalar valued, cylinder function F, the equality

holds for almost all ;t>0. Here rr
0o=]R+

c° 00). The sum of the operator valued
measures <Uk,m*Rik S ) C U * , ™ , /seZ\{0} converges in J7(L8(K3 ; C1)), but there is
no corresponding result for the matrix valued measures P\k-x £). ®

§ 4. The Support of the Spherically Symmetric Dirac Cut-off Measures

In this section, we show that there is a distinguished subset Q of the set
<Qoo of all paths in R3 such that for any A^a(St) disjoint from Q, M t

( e )(£)=0
for all sets B^a(St} such that B^A and all s>0. It follows that for each
£>0, the operator valued set function At~\Q ̂ M(

t-
}(A), A^a(St] is well defined

and (7-additive. It is in this sense that Q is the support of M\£\
In this section the operator r+ defined in section two is merely denoted by

r. The following argument is similar to that of [I-T2, Lemma 4.4]. By iterat-

ing the formula e
i(r +**'*>' = ellt+i (" ciT(i~a}U h £e

l^u^^ada it follows that the
Jo

"Dyson series"

(4.1) e* ( T-U I 7*.* ) £ = e l r £+ f]
j=i Jo

converges in the uniform operator norm (see the proof of [K, IX. 2.1]).

Let V^(t)=elTt and Vjs\t)=(t--\azeir^-a^Uk , ••• elT(a^a^Uk g e i r a i r fa i ••• da,
Jo Jo

for all f>0 and ;=1, 2, ••• . Then
The equality g*< T + * t f* . 8 x« + «> = e^'^k,B)tei^zukt^ is true for all

[K, IX. 2.1]. Equating the coefficients of zm, m=Q, 1, 2 - - - ensures that

(4.2) S Vr
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for all s, t>0. The sum is over integers /, /^O. If we set

(4.3) RW(E)= s F}^^-
for each set E of the form (1.1) and /=0, 1, 2, ••• , then it follows from equa-
tion (4.2) that the set function R\k

t'f is well denned and additive on the semi-
algebra 3lt of subsets of R+

c°'00) . The sum is over integers /0, ••• , /n^0. By
(4.1), the equality

(4.4) Rlk-'>(A)= S iJRl*-j8\A)
J = 0

holds for all A^a(&t). The convergence is in the uniform operator norm.
Furthermore, it follows as in Proposition 1.3 that for each /=0, 1,

that the additive set function Rtf'j* is bounded on a(3lt} with norm
^) \\R\krf\E)\\j: (L2(H + ; C2» < ajtj/j !, where a =

Because each set function R{
t*'j\ £>0, / = 0, 1, 2, ••• is bounded on the

algebra a(<Rt), it follows as in the proof of Theorem 1.4, that R\k,'f is the
restriction to a(S(.t) of a unique J?(L2(EL ; C2))-valued measure on a(&t), which
is denoted by R^'f as well. To examine the support properties of the Rtk,'/\
some additional notation is needed. In this context, it is sometimes useful to
consider set functions defined on 31 1, a(3it\ 0(&t) as being defined on subsets
of TR+

:° ' i ] instead of ]RJ0i00). Because there is a one-to-one correspondence be-
tween the semi-algebras &t and £.tr\H+

LO>^, we shall pass from set functions
defined on one family of sets to the other without further mention. The same
cavalier attitude is adopted for the algebras and tf-algebras they generate.

For each /=!, 2, ••• , let Jj be the collection of all /-tuples (si, ••• , s/) of
numbers such that Q<s1<---<sJ^t. Let 3j be the collection of all maps f :
{0, 1, ••• , /}-> {0, 1}. Define the map Aj : R+X djXSj-* WQ'°°> for *>0, (Sl, • • - ,
sj) e Aj and f e 3j by A j ( ( x , (slt ••• , sj), £)) = r» where 7 : [0, oo) -> R is the
polygonal path defined by f(s)=x+(— lY(0)s for O^s^Si and

for s J+i^s^s^+2 , y=0, ••• , /—I, with s j+i defined to be £. Let j0, • • • , /7i be
non-negative integers and T(/0, ••• , jn\t\, ••• , £n) the set of all (si, ••• , sj) such
that

with the appropriate inequality omitted if j'k = 0. Writing T = T(j0, ••• , /„ ;
^i, ••• , ^«), we have
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(4.5) Vftd-

xPk(aJo+...+Jk_1+l, ••• , a^^j^daj. •

If /fc-^0, the operator valued function Pk is equal to

otherwise it is equal to the constant e*T t*+i, for all k=Q, ••• , n.
As mentioned earlier, there exists a 2x2 unitary matrix N such that for

each £GEL 2 (R+ ; C2), N*et*tNg=ft where /£(*)i=£(*+0i for a11 *^°> /«(*)*=
g(x-t\ for all x^f and / t(jc)a=0 for 0^^;^^. It follows that if 5lf • • - , £?7

are Borel sets and t\, ••• ,tn are times such that there is no path coe,/[j(R+x
(7\/o, • • • , Jnl t l t • • - , f n)XiS I^)) /^JR+

i : o > 0 0 ) such that co^^B,, ••• , a)(tn)^Bn, then
the integrand on the right hand side of (4.5) is identically zero for all values
of (ffi , ••• , aj)^T(j0, ••• , j n ' , ti, ••• , tn) — the integrand may be written as a
finite matrix sum over paths belonging AjCR+X(T(j0, ••• , jn\ tlf ••• , tn)x3j))r\
]R^C O > 0 0 ) and passing through the sets Bl, ••• , Bn at times tl, ••• , tn. The re-
presentation (4.3) shows that for any set E of the form (1.1) disjoint from
yl t /(R+xJ[7x5' t7)nK+

co '00), the operator Rfrj8>(E) is the zero operator, and the
additivity of R\k

t^ ensures that R^'je\A)=Q for any set A belonging to the
algebra a(3lt) generated by sets of the form (1.1), which is disjoint from

i :o>no)

We summarise this discussion in the next statement.

4.1 Lemma. For any set A<=a(3tt) disjoint from Aj(R+X J j X £ 1 j ) +

The map Aj : K+xJJx5'/-*C([0, tj) is uniformly continuous, so it has a
unique continuous extension to the closure R^X 3jX3j of JR+X A j X E j in R+X
*RJx3j. The extension is denoted by the same symbol. Moreover, no new
paths are introduced by the continuous extension. It follows that for every
compact subset C of R+, the set Aj(CxdjX3j)=Aj(CxdjX3j) is is a com-
pact subset of C([0, /]). We give Aj(^ + x d j X S j } ) the relative topology of
C([0, *]).

Any vector valued Borel measure m on complete separable metric space X
is regular, in the sense that for any neighbourhood U of zero in the vector
space, and any Borel set A in X, there exists a compact subset K of A such
that m(J3)e£7 for all Borel subsets B of A\K[§, Theorem 9, p 122], [K-K, III
Theorem 1].
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4.2 Lemma. There exists a unique J7(L2(]RT ; C2))-valued Borel measure
R?,'f : -S(^XK + xJJx5' l7)nR+

co-00))-^(L2(R+ ; C2)) such that R\k,>f(Ar\Aj(R+x
) for all

Proof. The spectral measure Q is (/-additive in J7(L2(R+; C2)), so for any
function /eL2(R+ ; C2)and d>0, there exists a compact subset C§ of R+ such
that||/?£/>(£n{<»:aM^
If A^a(SLt) is disjoint from Aj(Cdx J l/x5 t7)nR+

t:o '00)
J then An{ft>: o>(0)eC5}

is disjoint from Aj(R+x J,/X^'/)nRT
co '00). It follows from Lemma 4.1 that

ll^f'/CWIU^ for all B^A.
For any g^L 2 (R h ; C

2), \\g\\t ^ 1, the variation VF-> \(R(
t
k
t'ff, g)\(W\

a(SLt) of the scalar set function (RWf,g)\W^(Rl*-j<\W)f,g\ W
satisfies the inequality \(R\k,'f f , g}\(W)<± sup^^^OO/IUCD-lI, I.I. 11]. In
particular, for any set Aea(^.£) disjoint from the compact set Aj(C8X A j X S j )
r \R+

C O l 0 0 ) , the inequality \(R(
t
k,'ff, g)\(A)^4d is valid for all ^eL2(R+ ; C2)

with ||g|U^l.
The set function \(Ri*'j}f, g)\ is therefore cylindrically concentrated on

compact subsets of C([0, ^]) [S, p 188]. An application of Prokhorov's theorem
[S, Theorem 21, pp 74-75] (which has a direct extension to scalar valued set
functions) to the measure (Rtk,'f f, g) yields a regular Borel measure on ylj(R+
xJjX5(7)nR,co '00) for each ,geL2(R+; C2). The L2-bound in g and the Orlicz-
Pettis theorem give the required Borel measure Rtk,'j} '. It is unique because the
sets Ar\Aj(R+xAjXBj\ A<=&t generate the Borel a-algebra of Aj(

'^ES, Lemma 18, p 108]. m

We give the Fa-subset r = \J"=i^XR+ X Aj X Ej^RJ0'00* of the space
C([0, £]) the relative topology.

4.3 Theorem. There exists a unique J7(L2(R+ ; C2))-valued Borel measure
/ ? { * • * > : ^(D-J:(L2(R+ ; C2)) such that Rik'^(Ar\n=R(

t
k'£\A) for all

Proof. It follows from Lemma 4.2 and equation (4.4) that for any set
disjoint from F, R(

t
k'£\A) = Q. Thus, the set function Af^F ^> R(

t
k'£\A),

is (7-additive and it has a uniquely defined extension R l k > £ ) to the
Borel subsets of F, such that for all A^&(F\ Rlk's\A)^J^==QiJR(

t
k
t'

Denote the space of real valued continuous functions on [0, oo) by C([0, oo)).
It is endowed with the topology of uniform convergence on compact subsets of
[0, oo). It is easily verified that the closure of the set U*>oU!/U Aj(R+xAjX
jEj)P,R+

co °°} in the space C([0, oo)) is the set of all continuous functions /:
[0, oo)->[0, oo) such that |/(r)-/(s)|^|r-s| for all r, s^O.
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Remarks. The argument of Theorem 4.3 provides an alternate proof and
a generalisation of the main result of [I-T3]. In the situation considered in
[I-T3], for each J=l, 2, ••• , the subset of Ej consisting of alternating functions
is used. E

Now let Q be the space of those paths (o: [0, oo)-*R3 for which there
exists a unit vector v e R3 such that a ) — v o ) and a) e/1. It follows that
\\o)(s)\ — \<t)(t)\\^\t—s for all t, s^O. The space Q has the topology of uniform
convergence on compact subsets of [0, oo). By the triangle inequality, the space
Q' of all paths a): [0, oo)->R3 such that \o)(s)-a)(t)\ < t—s\ for all t, s^O would
do as well, in that it contains the former space. Let Xs: Q —> R3 denote the
evaluation map Xs(a))=co(s\ co(=Q, s^O.

As defined earlier, _$R is the sub-d-algebra of the Borel sets in R3 consist-
ing of radially symmetric sets. The spectral measure acting on L2R3 ; C4) of
multiplication by characteristic functions of sets belonging to ,@R is denoted by
QR. For each £>0, the semi-algebra of all subsets of Q of the form (1.1) with
the sets B1} ••• , Bn belonging to ^R is denoted by St. Let SD be the unitary
group of operators acting on L2(R3 ; C4) defined by SD(t}=eiDt for all £eR.
The (SD, QR, 0-set function is denoted by Mt.

Because the formula M(
t
s)(W-\E)} = ^k,m © ^.TO*/? t

(*-s>(E)<U*. m from the
proof of Theorem 3.2 works for Borel subsets E of P as well as cylinder sets,
the following result is immediate.

4.4 Theorem. Let St be the semi-algebra of elementary events in Q. For
each t>0 and s>0, there exists a unique operator valued measure Mc

(e) : <r(<St) —»
J7(L2(R3; C4)) such that the restriction of M££ ) to St is the (SDf, QR, t)-set function.

The operator valued set function Mt is the limit of the tf-additive valued
measures M i £ ) in the sense that, as s-^0+, MiB\A}-*Mt(A} in the strong operator
topology for each A belonging to the algebra a(St] generated by the collection
St of elementary events.

§5. Integration with Respect to Mt and <Mj (£)>£>0

The operator valued set function Mt is the strong operator limit of the
family <M|S)>£>0 of operator valued measures on the algebra a(St)- It is there-
fore natural to view integration with respect to Mt as being controlled by the
measures <Mp}>£>0; this is the viewpoint adopted in [Jl] in the context of the
Schrodinger equation. What results in the present context is a quasi-complete
space Ll(Mi, Mt) of functions integrable with respect to Mt, relative to the
family <M£

(£ )>£>0 of operator valued measures. The payoff is in the next section,
whose results are proved as if Mt were actually a ^--additive operator valued
measure.
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The few facts and definitions we need concerning integration with respect
to vector measures are given in [K-K]. For example, in the present context,
all bounded measurable functions are integrable [K-K, II.3 Lemma 1]. A set
N is a null set with respect to a vector measure m with values in a locally
convex space X, if and only if N is null with respect to the variation |<ra, %'>!
of the scalar measure <m, #'> for each x' belonging to the continuous dual X'
of X [K-K, p 22]. The usual terminology concerning properties occurring
"almost everywhere" with respect to m then has a meaning.

Throughout this section £>0 is a fixed number. An St-simple function s is
a finite linear combination S?=i Cj1Ajt c}^C of characteristic functions of sets
Aj€=St, /=!, • • • , n, n=l, 2, ••• . The set function sMt: cS,->^(L2(R3; C4)) is
defined by sM,(^)=S5=1c,MtCAn4,) for every AtE<St. Set Mt(s)=sMt(Q).

Let /: Q—*C be a cr(cSt)-measurable function. The collection of all functions
g such that the set {w^Q: g(co)^/(o>)} is M£

(e)-null for every £>0 is denoted
by [/]+. Let LJ«M£

(e)>s>0) denote the collection of all equivalence classes [/]+
of <7(<St)-measurable functions / which are integrable with respect to Mis) for
every s>0. Then L1«M t

(£)>£>0) has the vector space structure defined by [/] +
+ [£]+ = [/+£]+, a[/L = [fl/L ^r all [/]„ [gLeL^MJ-'Xx) and aeC.
For every £ >0 and c^eL 2 (R 3 ; C4), let /\PI£ be the family of measures
{|(Af, ( s )0, 0)| : ||0||2^1}. The space L1(<M{S)>B>0) is given the locally convex
topology defined by the family { / > i , ^ , £ : £ > 0, 0eL2(R3; C4)} of seminorms,

defined for each s>0and ^eL2(S3; C4) by j& t.#.e([/]+)=sup|f | / | r f^ : ^ertl#.e}
for each [/LeL^Mp')^).

A subset A of a Borel set N for which [%#]+=0 is said to be Mi-null. A
property which obtains off an Mf-null set is said to be satisfied Mi-almost
everywhere (briefly, Mi-a.e.). A function / such that [/]+eL1(<M£

(£)>£>0) is
said to be Mt-integrable. The space L1«Mt(£)>£>0) will sometimes be written,
more briefly as Ll(Mi}.

5.1 Proposition. The locally convex space Ll(Mi) is quasi-complete.

Proof. A small modification of the proof of [K-K, Theorem IV.7.3] shows
that it is enough to exhibit a finite measure /*: <7(<Sf)—*[0, °o) such that M t

(£)

is absolutely continuous with respect to p for each s>0, for then the associated
measure algebra is complete. The conclusion of quasi-completeness rather than
completeness is related to the observation that the space J?(L2(1R3; C4)) of
bounded linear operators acting on LZ(W; C4) is only quasi-complete.

First we construct a related operator valued measure acting on L^R^; C2).
Let T denote the operator T+ defined in section two. Then for the matrix

N = l/V~2(j |Y the equality N*rN=T obtains and we have N*Uk,£(r)N =
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^s. Let ffi= and set ^e)(s)=^rs and

for all s>0, / = !, 2, ••• and &eZ\{0}. Then \\W^(s)\\ ^ (m+\k |/e)V/y !. If
we set

Ri*'jB}(E)= S W#(f-OQ(Sn)^^
>o+"'+^n=i7

for each set £ of the form (1.1) and /=0, 1, 2, ••• , then it is a simple matter
to check that the sum Rik'^=^j=0K^ defines an J^L^R. ; C2))-valued Borel
measure, as in section four. Moreover, if 6<=L1(M+; C2) has real, non-negative
components, then 0^(£j* £)0, (j>)^(R(

t
k'8)(f>, 0) for all 0<d^£ and if N*0 has

non-negative components, then \(Rik-*>$, <j>)\(A)^(R(
t
k-s>N*6, N*<f>)(A) for all

In the notation of section four, Mi£\W~l(E'}} = Sa.
for all E^a(3Lt\ Let <f>k.m.j, /—I, 2, ••• be an orthonormal basis of the ortho-
gonal subspaces J f f e , m which reduce D, introduced in section two. Then by
the preceding observations, each of the measures Mp}, s>0 is absolutely con-
tinuous with respect to the finite measure fjt with

for all
normalised with

x, _r i / ( f e , i / r a ) q 7 ./j 07 ^
Uj,k,l,m,n — L l V - ^ - t uk,m*pk.m,j> u k, myk, m, l)

5.2 Lemma. MJ£)(^4)-^Mj(y4) m the strong operator topology as s-^0+, for
each

Proof. The limit \\mB^eiD**=eiDs exists in the strong operator topology
of J7(L2(R3 ; C4)), uniformly for s in compact subsets of [0, oo), so the result
follows from formula (1.2) by the Banach-Steinhaus theorem, m

If s is any cSrsimple function, then sMiB}(A)—*sMt(A) in the strong operator
topology as s-^O"1" for every A^St. It follows that the map [s]+i->sM£, defined
for all cSrsimple function s is well-defined. Then the subspace sim[cSj]={[s]+ :
s is cSr simple} of Ll(M^) may be endowed with the locally convex topology
r(Mt) defined by the family {qt^.A- A<=St, 0eL2(R3; C4)} of seminorms with
^«.95,X[s]+) = supo<egi|((sM£

(s)Xyl)^ 6)\, [s]Tesim[^t], for each A^<St and ^e
L2(R3; C4).

The next assertion shows that the identity map on sim[«St] is a closable
linear map from Ll(Ml} to the completion sim[«5«] of sim[c5£] with respect to
the topology r(Mt}.
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5.3 Lemma. // <[SZ]+>ZG/ is a net in [_St~] converging to zero in Ll(Mt)
and <[sz]+>ze/ is a Cauchy net in r(Mt), then limze/[sz]+=0 in

Proof. That <[sz]T>ze/ is a Cauchy net in r(Me), means that the net
G4)0, <£)>zeEi converges uniformly for all 0<e^l, for each A^St and
; C4). But the limit must be zero, because <[sz]+>ze/ converges to 0

in L'CMf), so limze/[sz]+=0 in r(M£). m

It follows from Lemma 5.3 that the linear space of all bounded Cauchy nets
of elements of sim[<St] in the locally convex topology determined by the family
&t={Pt.$,e+qt.t.A. £>0, 0eL2(R3; C4), A^St\ of seminorms can be identified
with a subspace Ll(Mi, Mt) of Ll(Mt). The locally convex space Ll(M~t, Mt}
has the topology determined by the family of seminorms 5»t. We note here an
obvious consequence.

5.4 Proposition. The locally convex space Ll(Mt, Mt) is quasi-complete.

5.5 Lemma. For each [/LeL^Mf, Mt) and A<=St, the limits fMt(A}—
lim£_0/M|s)04) and (fMt)*(A) = lim^oE/Mp^)]* exist in the weak operator
topology. Moreover, fMt : St - ^(L2(R3 ; C4)) and (/M,)* : St - J7(L2(R3 ; C4))
are additive set functions.

A function /: Q -> C such that [/]+eL1(M?, Mt) is said to be Mt-Mt-

integrable. The conventional notation \ f(a))dMt((o) is sometimes used for the
j -4

operator fMt(A\ A<=St. The limit lim£^0[/M|£)(^)]* also exists in the weak

operator topology, so we write this as fMt*(A)=\ f(<s))dMt*(a)).
J A.

The next section is devoted to a class of MY-Mrintegrable functions. For
the moment, we have the following

5.6 Proposition. Let FI, ••• , Fn be radially symmetric, bounded, Borel mea-
surable functions on 1R3. Let to^ti<~-<tn?S=t. Then the function f :a)*-^F1(o)(ti))

is Mt- Mt-integrable and \ f d M t = eiD«-'»> QR(Fn) •••

Proof. Suppose that F is a radially symmetric bounded Borel measurable
function. Then there exists radially symmetric simple functions sn, n=l, 2, •••
on M3 such that sn-*F uniformly on R3 as n->oo. Then QR(sn)-*Q(F) in the
strong operator topology and uniformly on precompact sets as n — > oo0 In parti-
cular, as n-^oo, QR(sn)e

iDes<f>-*Q(F)eiD£s<f> uniformly for 0<sgl and for $ rang-
ing over a precompact subset of L2(R3; C4). The conclusion follows by in-
duction. m
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The following convergence results are immediate consequences of the de-
finitions and the corresponding convergence results for vector measures [K-K,
II.4 Theorem 2J.

5.7 Proposition. Let fn, n = l,2,~- be Mt-Mt-integrable functions for
which there exists a function g^Q with [g] + eL1(Mt') and \fn ^gMf-a.e. for
all n=l, 2, ••• . // fn, n—\, 2, ••• converges Mt-a.e. to a function f, and for
each A^St, the operators fnM

(
t
£)(A\ n = l, 2, ••• converge in the weak operator

topology, uniformly for s > 0, then f is M^-Mt-integrable and \ f d M t —
j A

lim^ool fndMt in the weak operator topology for each A^St.
J A

5.8 Proposition. Let fn, n = 1, 2, ••• be a sequence of M^-Mfintegrable
functions, increasing M^-a.e., for which supn |(M£

(£)0, <j>}\(fn)<°° for every c6e
L2(R3 ; C4) and e>0. If fn, n=l, 2, ••• converges Mt-a.e. to a function /, and
for each A^St, the operators fnMis)(A), n=l, 2, ••• converge in the weak operator

topology, uniformly for s > 0, then f is M^-Mt-integrable and \ fdMt =
j A

fndMt in the weak operator topology for each

Remark. It is unreasonable to expect that the seminorms q$iA could be
replaced by, say, q9lA([_s~\+)=\\(sMt)(A)<!)\\, [s]+esim[cSt], for each A<^St and
0<=L2(R3 ; C4), that is, setwise convergence on St, because eim is convolution
with a distribution of order one. A similar phenomenon occurs with the
Schrodinger equation, although the relevant kernel ^i— >(27rzY)~3 /Vm2/2 t , %e!R3

is a distribution of order zero.

§6. Path Integral Representation of the Dynamical Group

Now that the notion of integration with respect to the operator valued set
functions Mt, t>Q is established, the representation of the dynamical group for
the Dirac equation with a spherically symmetric potential follows in a straight-
forward way from dominated convergence, Proposition 5.7.

A function V : R3-*]R is said to be spherically symmetric if there exists a
function q\ [0, oo)->R such that V(x)=q(\x\) for all xeK3.

By [K, V.4.3], for any bounded function V : R3->R, the operator D— V is
selfadjoint on the same domain for which D is selfadjoint (the Sobolev space

6.1 Lemma. Let V : R3— >R be a bounded, continuous, spherically symmetric

function. Then the function cw— »exp — n V(a)(s))ds , co^Q is Mt-Mt-integrable.

Proof. If V is bounded and continuous, then for each a)<=Q, the function
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is continuous, so the Riemann sums ^^iV^tj /n})t/n, n —

S t
V(a)(s))ds, so by dominated convergence, IT/=i exp[— iV°

0
Xtj/ntM-* expl -A'V'Xsds} in Ll(M^) for each s>0.

It is enough to show that as n-^oo, the operators \ TI5=iexp[— iV^Xtjlnt/n}

dM(
t
s\ n=l, 2, ••• converge in the strong operator topology of J7(L2(]R3; C4)),

uniformly for 0<£^1, for then, the same statement holds for the operators

[ Tl^iQ^L-iV-Xtj/nt/n^dM^, n=l, 2, ••• , E<=St by virtue of formula (1.2).
jE

It then follows from the definition of the family 9>t of seminorms in section

[ rt "I
— i\ V*Xsds .

Now M\*\W-l(E)} = 2*.m®^*,m*/?f
(* ieWi7*.,n, E <= ff(3tt) for the map W:

£-^]R+to,°o) defined by (W(o)))(s)=\a)(s)\ for all s^O and all w^Q, so by virtue
of the spherical symmetry of V(x)=q(\x\), xeR3, it is enough to show that

for each &eZ\{0}, the operators LlT?=i exp [ —iq - XtJ/nt/n~] dR(
t
k'£> =

^e-iqt/n6iiktSt/n-^n^ n — \^ 2, ••• converge in the strong operator topology of

J7(L2(K+ ; C2)), uniformly for 0 < e ^ 1 ; this follows from the conclusion of
Lemma 2.7. m

6.2 Lemma. Let V : R3 — > C be a bounded, spherically symmetric Borel
measurable function. Then for every (o^Q and t>Q, the function s*-*V(o)(s)),

Q<^s^t is integrable, and the function o>^->exp ±i\ V((o(s))ds\, co<=Q is Mt-Mt-
• r r r* iintegrable. Furthermore, the equalities el(D V}t —\ exp — n V(o)(s}}ds \dMt(<o)

1 ]Q L J° J

and e-w-v>* = \ e x p f V((o(s))ds \dMf(a)) hold for all

Proof. The function s—>V(fl>(s)), O^s^^ is bounded and Borel measurable,
so it is integrable for every co^Q and £>0. It follows from the assumption of

spherical symmetry that the function w^exp ±i\ V(a)Xs))ds , (o^Q is bounded

and tf(cS;)-measurable, so it is M?~-integrable [K-K, II. 3 Lemma 1]. It is Mt-
Mt- integrable by virtue of Lemma 2.7.

The conclusion follows from Lemma 2.7, however, the following proof is

more integration theoretic, see [Si, p 50] for the case of Wiener measure. Let
£>0. Suppose that /, ^eL2(R3; C4). For every 0<s^ and f>0, let

Denote the Lebesgue measure on [0, t~] by L The function

(ft>, s) H-> F(ft>(s)) expl"— ff
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is bounded and ^(<St)®^([0, £])-measurable, so it is integrable with respect to
the product (M^f, g)®l of the scalar measure (M(

s
£)f, g) with L Then ac-

cording to Fubini's theorem

' , s)

>, s)

=(u(t\ g)-(SDs(t)f,

s.

From this equation, we deduce that t^>u(t), t>Q is continuous in L2(lK3 ; C1)
and it has the same "Dyson series" expansion as e l ( D e ~ v ^ f f see, for example,
[K, Theorem IX. 2.1]. The analogous argument holds for e-^

Ds~v^m jn the limit,

6.3 Theorem. Let V: !RD-»C be a function such that V(x)=q(\x\), Jc
/or so?7ie locally integrable function q\ [0, oo) -> R which is also locally square
integrable on (0, oo). TVien /or eyerj ^>0, ^g function s*—>V((o(s)\ Q^s^t is

integrable for all aj^Q and the function a*"— »exp — n V(a)(s))ds \, a)^Q is Mt-

Mt-integrable.
Futhermore, D—V is essentially self-adjoint on C"(R3, C1) and

Proof. Let Fn(^)=F(jc) for all x^W such that |F(jc) |^??, and let V n(x)
r e t " i

=0 otherwise. Then by dominated convergence, as n— >oo j exp — n T/
7i(<w(s))o's

r r* i L Jo j
— exp — n F(o>(s))^s for Mf -almost all a>efi. On an appeal to Lemma 6.2,

r fi -,
we see that the function /„ : co^exp — 1\ Vn((o(s))ds , a) ̂  Q is Mt-ML-

L Jo j

integrable, and e^D-rn^ = \ fn(a))dMt(o)) for all t>0.

As mentioned in Lemma 2.5, TA— <? is essentially selfadjoint on C"((0, oo), C?)
for each k^Z\{0\, so .D-F is essentially self-adjoint on C~(R3, C4). Corollary 2.6
and dominated convergence, Proposition 5.7, ensure that the functions /„,

w=l, 2, ••• converge in L\Mj, Mt} to the function /: <o>—. >exp — A V(a)(s))ds\,
L Jo J

(D^Q. In particular, the operators \ /7l(ft))^M£((y)=et(jD-T/«)t, n = l, 2, ••• converge

in the strong operator topology to \ f((o}dMt(a))=el(D~Vn. m
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The treatment of the Coulomb potential requires a multiplicative functional
r r« i

other than the Kac functional <w->exp — n V((o(s})ds , because there is a non-
L Jo J

M {"-negligible set of paths which hit the origin.

In view of the observation of [I-T] that for certain /, geL2(R3; C4), the

set function (Mtf, g} may actually be the restriction to St of a scalar measure,

we state the following simple consequence of the dominated convergence the-

orem and [K, VIII.1.6].

6,4 Proposition. Let f, ^eL2(R3; C4) be functions for which (Mtf, g) is

the restriction to St of a scalar measure and let V : R3-*R be a spherically sym-

metric Borel measurable function in L2ioc(R3\{0}), such that for every t>Q, the

function s^V((t)(s')\ Q^is^t is integrable for (Mtf, g)-almost all ax=Q. Then

[ ft ~|
— i\ V ( a ) ( s ) ) d s \ , co^Q is ( M t f , g)-integrable.

Jo J
Furthermore, if D—V is essentially selfadjoint on C~(R3, C4), then

for all f>0.
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