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Classical Theta Functions and Quantum Tori

By

Alan WEINSTEIN*

Abstract

The Schwartz kernel of the multiplication operation on a quantum torus is shown to
be the distributional boundary value of a classical multivariate theta function. The
kernel satisfies a Schrédinger equation in which the role of time is played by the defor-
mation parameter # and the role of the hamiltonian by a Poisson structure. At least

in some special cases, the kernel can be written as a sum of products of single variable
theta functions.

A quantum torus is, by definition, a “space” whose (noncommutative) alge-
bra of functions is obtained by deformation of the (commutative) algebra of
functions on a torus (R/Z)¢. In this note, we observe that the Schwartz
kernels of the multiplication operators for a class of quantum tori are the (dis-
tributional) boundary values of classical theta functions, and we draw some
conclusions from this observation. In particular, we show that each of these
kernels satisfies a Schrodinger equation, in which the role of time is played by
the deformation parameter %4, and the role of the hamiltonian is played by the
Poisson structure associated with the deformation. Thus, the “evolution in
Plank’s constant” of a torus is like the time evolution of a free particle, with
the initial state (the Schwartz kernel of the operator of pointwise multiplica-
tion) being a delta function. like the initial state of a particle with certain
position and totally uncertain momentum.

This evolution equation suggests a possible answer to the question of how
a deformed product must behave after the deformation parameter A& has left
the first infinitesimal neighborhood of zero.

We note that our work seems to be quite different from Manin’s study [2]
of quantum theta functions, which are special functions on the quantum tori
themselves.
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§1. The Kernel of Multiplication on a Quantum Torus

The noncommutative multiplications on the space of functions on 7'¢ which
we will discuss in this paper are those which define the so called “noncom-
mutative tori”, or “quantum tori”, an important class of examples of noncom-
mutative differentiable manifolds, surveyed in [4]. Specifically, we consider
the “star products” #, given in terms of the basis

{en(x)=e*"""} neza
of functions on 7T¢ and the deformation parameter 2 by
@ emtnen=e "M My,

where P: R*X R“”*—R is a skew-symmetric bilinear form.
Notice that e,*e,=en.s, which is the rule for ordinary (commutative)
multiplication on 7T'¢, and

1 . .
Z.%(em*nen-'en*hem):Z-%(e_,”hp(m. ™ __enlh.P(‘m.. 71)e'm,+n

= -—27rP(m, n)em+n+0(fl):

so the Poisson structure which is the semiclassical limit of this deformation is
given by

{em: en}:_znp(m: n)em+n ’
or, equivalently,

{f, gt(x)=1/2m)P(d f(x), dg(x)).

The product defined by (1) is initially defined on the space C=(T%). The
resulting algebra is denoted by A%r or by C=(T¢p), where T¢p denotes the
“quantum manifold” on which A%p is the algebra of “smooth functions”.

Remark 1.1. The algebra C(T'¢p) of continuous functions on T'¢p is the C*
algebra obtained by completing A5p With respect to a certain norm [4]. There
seems to be no natural identification of the Banach space C(T¢p) with the
space C(T'%) of continuous functions on the ordinary torus. As Rieffel points
out in [4], the elements of C(T'¢p) are determined by their Fourier coefficients,
but the set of possible Fourier series for these elements depends on P and, just
as in the case P=0, is difficult to describe in a simple way. The results in
this paper may make it possible to explain the difference between C(7T'¢s) and
C(T'?) in terms of the singular nature of the distribution kernel for multiplica-
tion in C(T'¢p).

The product *, for 7'* may also be considered as the restriction to C=(7'¢)
of the Moyal product
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(ragio~ 5 P Do),

on C*(R?) (defining the quantum affine space RZ;), where C*(T%) is identified
with the space of C= functions on R? invariant under translation by the
lattice Z¢.

When P is nonsingular, the “inverse” of P/2m is a symplectic structure on
T¢ which we will denote by w. In this case, the product *, is also given by
the integral formula

1
e (wh)?

(@) (Frag)o=,, g eI f(y)g(2)dydz .

The improper integral in (2) can be defined as an oscillatory integral when f
and g lie in the space of functions whose partial derivatives of all orders are
each uniformly bounded, and the product belongs to the same space. (See [1]
for a proof of the closure of this and other spaces under the Moyal product.)
This fact and translation invariance allow the Moyal product to pass to C*(7T'%).

For singular P, the Moyal product can still be defined by an integral
formula, but the kernel K(x, y, z)=(mh) %e¥-v-z-2/% g no longer a smooth
function. Instead, it is a delta-distribution supported by the set of triples
(x, y, z) for which the differences x—y and x—z (and hence y—z as well) lie
in the range of the map P: (R%*—R¢ associated with the bilinear form P,
i.e. when x, y, and z all lie in the same symplectic leaf of the Poisson struc-
ture P. We will see shortly that the product for T¢p is also given by a dis-
tribution kernel, which is singular even if P is nondegenerate.

To find the kernel of multiplication on T'¢p, i.e., the distribution K,p(x. v, z)
for which

o=\, Kurs, v, DFg@dydz

when f, geC(T4)=C>(T%p), we expand f and g in Fourier series:

f('\‘): z a”beznlmr
m

g(x): 2 bnezﬂ‘llll' .
n

Then
(f*/LG)(x): 2 ambne—mhl’(m,n)ezwi(mﬂl.)m
(=]
m.nczd
_.m nZ}EZdSTde—zm,myf(y)dySTde—'znwzzg(z)dze~m'/zP(‘nL 71)ezni(m+n)z

—TLhP(m,n)—-2xt(M(Yy—T)+n(z—1)) f(v)g(z)dydz ,

=

where all quanticies are considered as distributions, so that the interchange of

Ta~Td m, nczd
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summation and integration is justified. Thus, the kernel of multiplication for
our quantum torus T'¢p is the distribution

KhP(x; v, Z): Z e—th(m.11)—2;:L(m(y—x)+n(z—z)) .
m.nezd

Being translation invariant, the kernel can be written as K,p(x, y, 2)=
Lyp(y—x, z—x), where

(3) th(y, Z): E e—m:hP(m n)y-2xi(my+mnz) .
m.nezZd

It is this “convolution kernel” L,p, defined as a distribution on the group
T¢xT? by the sum (3), which we will analyze in the rest of this paper.

§2. Differential Equation for the Kernel

Differentiating the typical term in (3) by 4 and writing P(m, n) as a sum
3¢ k=1 Pyem,ny, we find

d

dh

e—:rihP(m. n)y-2zi(my+nz) — —7!'2'P(7’Il n)e—-th(m, n)y-2xi(my+nz)
b

d
=—71 E P]kﬂl]nke_ﬁlhp(m” ny=2wi(my+nz)
k=

; l a 1 a —mihP(m.n)=-2n1(my+nz)

__mP(—an' 0y’ —Zm'az>e :
Applying this result to each term in (3) and adding, we find the “Schrodinger
equation”

5 1 o8 8
Z%LILP<3I’ Z)'—'—"Z;P<E: a—Z>LhP(3’; 2)-

Although P is skew symmetric with respect to exchange of its two argu-
ments, the operator —(1/4zw)P(0/0y, d/0z) on T*XT*? is self adjoint. It is the
“quantum hamiltonian” corresponding to the classical hamiltonian, quadratic in
the momenta, p(y, p, z, )=(1/47)P(y, {). If P is nondegenerate, this hamil-
tonian is the “kinetic energy” and —p(d/0y, 0/0z) half the “laplacian” for a
pseudoriemannian metric of signature (d, d) on T¢XT%=T"?¢. (A similar state-
ment may be made when P is degenerate, except that the metric is now “co-

4)

degenerate”.)

Finally, the “initial condition” for L, when A=0, is just the delta function
o(v, z) at the zero element of the group T2XxT¢.

We may summarize the discussion above as follows:

The evolution in k of the convolution kernel of multiplication for the quantum
tori Tip is the same as the time evolution of a quantum “free particle” on the
(ordinary) torus T*® with indefinite quadratic hamilionian given by the Poisson
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structure P/2m. This particle is initially concentrated at the zero element of Z*°
but becomes completely nonlocalized as soon as h+0.

In other words, quantization appears to be a kind of “integration” of a bidiffer-
ential operator, the Poisson structure, to a 1-parameter family (“group” in some
sense ?) of Fourier bi-integral operators, the noncommutative multiplications.

§3. The Quantization Kernel as a Theta Function

The formula (3) exhibits the convolution kernel L,p as a multidimensional
theta function. Here, we should think of (y, z) as a “single” variable in R**
and P(m, n) as a quadratic form in the variable (m, n)eZ?® (rather than
Z%x Z%). Since the imaginary part of the matrix P(m, n) is zero, we are on
the boundary of the region where the function 9(2, Q) (see page 118 of [3]) is
holomorphic.

In some special situations, we can diagonalize the quadratic form P(m, n)
by a 2dX2d matrix which nearly preserves the lattice (2xZ)*¢. This allows
us to express L,p(v, z) in terms of theta functions of a single variable.

We will confine our attention to the simplest case d=2. In higher dimen-
sions, interesting problems in the “symplectic geometry of numbers” should
arise ; we will not deal with them here.

In coordinates (x,, x,) (mod Z) on 7%, the most general translation-invariant
Poisson structure is a constant multiple of 9/0x;A\d/0x,. Since we already have
the multiplier 2 at our disposal, we will assume that P—90/0x,A\d/0x,. Then
ﬁ(dm:a/axz and ﬁ(dxg):—a/axl, so P is represented with respect to the
standard bases of tangent and cotangent vectors by the matrix ((1) ﬂ(l))

If we denote the coordinates on T*XT? by (y:, Vs, 21, z) and the corre-
sponding coordinates on R¥XR? by (m,, m,, n,, n,), then the quadratic form
P(m, n) is myn,—m,n,, and the convolution kernel for multiplication is

Lyp(y, z2)= o TR (Myng=many)=2TL(M Y+ MaYpt N2t Ng2e)
(my.nymg, np)EZ?

To diagonalize the quadratic form P(m, n), we introduce the coordinates
Uy=My+ Ny, V1=M,— N2, Uy=W,—MN,, Vs=M,y+n,. The inverse transformation is
my=1/2)(u+11), ni=1/2)ve—us), my=1/2)(us+vs), n,=(1/2)u;—v,). Integer
values of (m,, m,, n,, n,) correspond to integer values of (u,, us, v,, v,) for which

u;+v, and u,+v, are even, conditions which define a sublattice 4x A of Z*xX /2.
Now we have
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LnP(y Z): g(—niﬁ/4)(u%—v?-fu%—v%)—rri(ul(y1+z2)+u2(y2—zl)+vl(y1—zz)+v2(y2+z1))
)

(21.01. Ug. g)EAAA

— e~7zihu?/4—niu1(yl*zl)ezimﬁ/‘t—m‘vl(yl—zg)
(21,01, ug, v3)EA 4

@ _ A S
W g~ TIRUG/A-TiU (Yp=21) p IRV /4= T iV (YgT21) |

We would have succeeded by the last expression in splitting L,z(y, z) into
a product of single variable theta functions were it not for the fact that the
lattice 41X A makes the variables (u;, v;, u,, v,) dependent on one another.

Still, things are not so bad, since (u;, v;) belongs to 4 if and only if u,
and v; are either both even or both odd. Thus, 4 is the union of 2Zx2Z and
(2Z41)x(2Z+1), and we can write L,p(y, z), with all sums over Z, as

- 2-973 ihn2-2mi -
(Z e wihn?-2zxin(y1+zg) 2 emhn 2zin(y1-22)
n n

4 E e—nih(n+1/2)2—2ﬂi(n+1/2)(y1+22) 2 eziﬁ(n+1/2)2—27ri(n+1/2)(yl—zz))
n n

-z 2- i - i 2. i
X( Z e zTihnl-2ain(Yg—21) Z ernhn 2nin(Yg+zy)
n n

+ E e—xin(n+1/2)2—27ri(n+1/2)('yz—zl) E enih(n+1/2)2—2ni(n+1/2)(y2+zl)>
n n

Using the “half-integer theta functions” and some of the simple theta
identities given in Section 1.4 of [3] (see especially page 17), we can write:

Loy, 2)=3o(y1+ 22, —)G0o(¥1—2s, h)+z9m(y1+22, —‘;1)1910(3/1—22, %))
X (Soo(ye—21, —)F0o(yet2z1, B)+Fo(ye—2z1, —R)F(Yet21, 7).

Alternatively, we can express everything in terms of the basic theta func-
tion
19(2, ,z.): > eﬂ:in2r+2frinz
nez

as:
(®) Lar(y, 2)

=(90n-+2, ~R91—20, Mo =019 yr bzt h, —h)I(3i—z—sh, 7))

><(19(y2——21, B (yetzi, h)+e‘2“y219(y2——zl—i——;—h—,ﬁ)x‘)(yg—i-zl-—ih, h))

2
§4. Discussion

J. J. Duistermaat has pointed out that, although the theta function (distri-
bution) can be continued from the real axis to a complex half plane, the pre-
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sence in (5) of products in which the theta function is evaluated at both # and
—% shows that the kernel L,p itself admits no such continuation. We hope
that a better understanding of the analytic properties of L can come from its
expression in terms of theta functions, not only in the simple case d=2 con-
sidered above, but also in general, where there may always be a local decom-
position similar to (5).

On the other hand, our work suggests the possibility of something even
more interesting—the application of the extensive C*-algebraic theory of quan-
tum tori (once again, we cite [4] for a survey of this theory) to derive new
results, or reinterpret old ones, about the classical theta functions. Note that
the associativity of the *, product becomes an (integral) identity for the theta
functions. Is it interesting ? Is it known ?

A symplectic geometric construction of quantum tori was given in [5].
The symplectic groupoid structures on T*T¢ described in that paper may be
interpreted as the wavefront sets (or, more properly, “frequency sets”, since
asymptotics in £ are involved) of the kernels discussed here.

Finally, we return to the Schrddinger equation

for which K is the “fundamental solution” in the sense that Ky(x, v, z)=
o(y—=x, z—x). Do all “interesting” quantizations satisfy an equation of this
nature ? (The Moyal quantization of R? does.) Finding such an equation
would be an important step toward determining the “natural” deformation
quantizations of given Poisson structures.

A major obstacle to extending the Schrédinger equation to the general case
is that, in the expression P(d/0y, 0/0z), the vectors 0/0y and 0/0z may live at
different points. There are, however, some interesting quantizations (notably,
the case of quantum groups), of manifolds with Poisson structures admitting a
simple expression in terms of globally defined vector fields.
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