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Classical Theta Functions and Quantum Tori

By

Alan WEINSTEIN*

Abstract

The Schwartz kernel of the multiplication operation on a quantum torus is shown to
be the distributional boundary value of a classical multivariate theta function. The
kernel satisfies a Schrodinger equation in which the role of time is played by the defor-
mation parameter 11 and the role of the hamiltonian by a Poisson structure. At least
in some special cases, the kernel can be written as a sum of products of single variable
theta functions.

A quantum torus is, by definition, a "space" whose (noncommutative) alge-
bra of functions is obtained by deformation of the (commutative) algebra of
functions on a torus (R/Zy. In this note, we observe that the Schwartz
kernels of the multiplication operators for a class of quantum tori are the (dis-
tributional) boundary values of classical theta functions, and we draw some
conclusions from this observation. In particular, we show that each of these
kernels satisfies a Schrodinger equation, in which the role of time is played by
the deformation parameter h, and the role of the hamiltonian is played by the
Poisson structure associated with the deformation. Thus, the "evolution in
Plank's constant" of a torus is like the time evolution of a free particle, with
the initial state (the Schwartz kernel of the operator of pointwise multiplica-
tion) being a delta function, like the initial state of a particle with certain
position and totally uncertain momentum.

This evolution equation suggests a possible answer to the question of how
a deformed product must behave after the deformation parameter h has left
the first infinitesimal neighborhood of zero.

We note that our work seems to be quite different from Manin's study [2]
of quantum theta functions, which are special functions on the quantum tori
themselves.
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§ 1. The Kernel of Multiplication on a Quantum Torus

The noncommutative multiplications on the space of functions on Td which
we will discuss in this paper are those which define the so called "noncom-
mutative tori", or "quantum tori", an important class of examples of noncom-
mutative differentiate manifolds, surveyed in [4]. Specifically, we consider
the "star products" *7i given in terms of the basis

of functions on Td and the deformation parameter h by

where P: Rd*xRd*-»R is a skew-symmetric bilinear form.
Notice that em*0en = 0m+n, which is the rule for ordinary (commutative)

multiplication on Td, and

so the Poisson structure which is the semiclassical limit of this deformation is
given by

(em, en} = —2nP(m, n)em+n ,
or, equivalently,

The product defined by (1) is initially defined on the space C°°(Td). The
resulting algebra is denoted by jZ£P or by C°°(Tfip)f where Td

P denotes the
"quantum manifold" on which JL^p is the algebra of "smooth functions".

Remark 1.1. The algebra C(T%p) of continuous functions on Td
P is the C*

algebra obtained by completing J%P with respect to a certain norm [4]. There
seems to be no natural identification of the Banach space C(Td

P} with the
space C(Td) of continuous functions on the ordinary torus. As Rieffel points
out in [4], the elements of C(TfP) are determined by their Fourier coefficients,
but the set of possible Fourier series for these elements depends on P and, just
as in the case P=0, is difficult to describe in a simple way. The results in
this paper may make it possible to explain the difference between C(T£F) and
C(Td) in terms of the singular nature of the distribution kernel for multiplica-
tion in C°°(nF).

The product *a for Td may also be considered as the restriction to C°°(Td)
of the Moyal product
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on C°°(Rd) (defining the quantum affine space Rd
lP}, where C^(Td) is identified

with the space of C°° functions on Rd invariant tinder translation by the
lattice Zd.

When P is nonsingular, the "inverse" of P/2n is a symplectic structure on
Td which we will denote by a). In this case, the product *h is also given by
the integral formula

(2) (/*

The improper integral in (2) can be defined as an oscillatory integral when /
and g lie in the space of functions whose partial derivatives of all orders are
each uniformly bounded, and the product belongs to the same space. (See [1]
for a proof of the closure of this and other spaces under the Moyal product.)
This fact and translation invariance allow the Moyal product to pass to C°°(Td).

For singular P, the Moyal product can still be defined by an integral
formula, but the kernel K(x, y, z)=(nh)~de*i<a(x~y'x~Z)lh is no longer a smooth
function. Instead, it is a delta-distribution supported by the set of triples
(x, y, z] for which the differences x — y and x— z (and hence y—z as well) lie
in the range of the map P: (Rd)*—>Rd associated with the bilinear form P,
i.e. when x, y, and z all lie in the same symplectic leaf of the Poisson struc-
ture P. We will see shortly that the product for Td

P is also given by a dis-
tribution kernel, which is singular even if P is nondegenerate.

To find the kernel of multiplication on TflP, i. e., the distribution KhP(x, y, z)
for which

when /, ^eC°°(rd)=:CGO(Tfp), we expand / and g in Fourier series:

/(.T)=Sam*a '"m*
771

300= S M""a* •
n

Then

(/**£)(*)= S ambne-*l'lp<m'n>ez*i<m+n>x

= y \ e~2Klmy

m 7fgz<0rd

where all quanticies are considered as distributions, so that the interchange of
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summation and integration is justified. Thus, the kernel of multiplication for
our quantum torus Td

P is the distribution

Being translation invariant, the kernel can be written as KhP(x, y, z}—
LllP(y — x, z—x], where

(3) LhP(y, z}= S e-*ihp<m « ) - 2 " ( ™ w + » « ) .
m, nEiZd

It is this "convolution kernel" LhP, defined as a distribution on the group
TdxTd by the sum (3), which we will analyze in the rest of this paper.

§ 2. Differential Equation for the Kernel

Differentiating the typical term in (3) by h and writing P(m, n) as a sum
k=iPj]jnjnk, we find

__

—- ftjpt ——- _
\—2m dv' —2mdz2m dy} —2moz

Applying this result to each term in (3) and adding, we find the "Schrodinger
equation"

(4)
dh " ' 47r \dy'

Although P is skew symmetric with respect to exchange of its two argu-
ments, the operator —(l/4n)P(d/dy, d/oz) on TdxTd is self adjoint. It is the
"quantum hamiltonian" corresponding to the classical hamiltonian, quadratic in
the momenta, p(y, -q, z, C)=(1/4^)P(77, Q. If P is nondegenerate, this hamil-
tonian is the "kinetic energy" and —p(d/dy, 9/32) half the "laplacian" for a
pseudoriemannian metric of signature (d, d} on TdxTd — Tzd. (A similar state-
ment may be made when P is degenerate, except that the metric is now "co-
degenerate".)

Finally, the "initial condition" for L, when 7i=0, is just the delta function
d(y, z} at the zero element of the group TdxTd.

We may summarize the discussion above as follows:

The evolution in h of the convolution kernel of multiplication for the quantum
tori Td

P is the same as the time evolution of a quantum "free particle" on the
(ordinary] torus Tzd with indefinite quadratic hamiltonian given by the Poisson



CLASSICAL TIIETA FUNCTIONS AND QUANTUM TORI 331

structure P/2rc. This particle is initially concentrated at the zero element of Z*d

but becomes completely nonlocalized as soon as

In other words, quantization appears to be a kind of "integration" of a bid iff er-
ential operator, the Poisson structure, to a 1-parameter family ("group" in some
sense ?) of Fourier bi-integral operators, the noncommutative multiplications.

§ 3. The Quantization Kernel as a Theta Function

The formula (3) exhibits the convolution kernel LnP as a multidimensional
theta function. Here, we should think of (y, z) as a "single" variable in Rzd

and P(m, n} as a quadratic form in the variable (m, n)<=Zzd (rather than
ZdxZd). Since the imaginary part of the matrix P(m, n) is zero, we are on
the boundary of the region where the function $(l, Q) (see page 118 of [3]) is
holomorphic.

In some special situations, we can diagonalize the quadratic form P(m, n}
by a 2dx2d matrix which nearly preserves the lattice (2nZYd. This allows
us to express LhP(y, z} in terms of theta functions of a single variable.

We will confine our attention to the simplest case d=2. In higher dimen-
sions, interesting problems in the "symplectic geometry of numbers" should
arise; we will not deal with them here.

In coordinates (xlf xz) (modZ) on Tz, the most general translation-invariant
Poisson structure is a constant multiple of d/dxi/\d/dxz. Since we already have
the multiplier h at our disposal, we will assume that P=d/dx1/\d/dxz. Then
P(dxi)=d/dxz and P(dxz)=—d/dx1, so P is represented with respect to the

xQ _ K
standard bases of tangent and cotangent vectors by the matrix ( A

If we denote the coordinates on TzxTz by ( y l t yz, zl} zz) and the corre-
sponding coordinates on Rz*xRz* by (mlt mz, HI, nz), then the quadratic form
P(m, n) is minz—mzni, and the convolution kernel for multiplication is

To diagonalize the quadratic form P(m, n), we introduce the coordinates
iii=m1-\-nZt Vi—ml — nz, uz=mz—nL, vz=mz-\-rii. The inverse transformation is
m^Cl/^Xtti+i'i), n1=(l/2)(va-M2), m2=(l/2)(uz+vz\ n2=(l/2)(Mi-i;1). Integer
values of (mlf mz, nlf nz) correspond to integer values of (ulf uz, vlt vz) for which
ul±vl and u2±vz are even, conditions which define a sublattice Ax A of Z2xZz.
Now we have
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We would have succeeded by the last expression in splitting LhP(y, z) into
a product of single variable theta functions were it not for the fact that the
lattice Ax A makes the variables (MI, v1} uz, v%) dependent on one another.

Still, things are not so bad, since (ujt vj) belongs to A if and only if u3

and Vj are either both even or both odd. Thus, A is the union of 2Zx2Z and
(2Z+1)X(2Z+1), and we can write LnP(y, z}, with all sums over Z, as

\

I

/ yi

\ n

Using the "half-integer theta functions" and some of the simple theta
identities given in Section 1.4 of [3] (see especially page 17), we can write :

LhP(y, z)=(i9oo(

Alternatively, we can express everything in terms of the basic theta func-
tion

$(z, r)= S e f f < B 2 r + 2 j r i B *
neZ

as :

(5) LriP(y,z)

X

§ 4. Discussion

J. J. Duistermaat has pointed out that, although the theta function (distri-
bution) can be continued from the real axis to a complex half plane, the pre-
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sence in (5) of products in which the theta function is evaluated at both h and
—h shows that the kernel LnP itself admits no such continuation. We hope
that a better understanding of the analytic properties of L can come from its
expression in terms of theta functions, not only in the simple case d—2 con-
sidered above, but also in general, where there may always be a local decom-
position similar to (5).

On the other hand, our work suggests the possibility of something even
more interesting—the application of the extensive C*-algebraic theory of quan-
tum tori (once again, we cite [4] for a survey of this theory) to derive new
results, or reinterpret old ones, about the classical theta functions. Note that
the associativity of the *ft product becomes an (integral) identity for the theta
functions. Is it interesting ? Is it known ?

A symplectic geometric construction of quantum tori was given in [5].
The symplectic groupoid structures on T*Td described in that paper may be
interpreted as the wavefront sets (or, more properly, "frequency sets", since
asymptotics in h are involved) of the kernels discussed here.

Finally, we return to the Schrodinger equation

for which K is the "fundamental solution" in the sense that KQ(x, y, z)~
d(y~x, z—x). Do all "interesting" quantizations satisfy an equation of this
nature ? (The Moyal quantization of Rd does.) Finding such an equation
would be an important step toward determining the "natural" deformation
quantizations of given Poisson structures.

A major obstacle to extending the Schrodinger equation to the general case
is that, in the expression P(d/dy, d/dz), the vectors d/dy and d/dz may live at
different points. There are, however, some interesting quantizations (notably,
the case of quantum groups), of manifolds with Poisson structures admitting a
simple expression in terms of globally defined vector fields.
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