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Indecomposable Restricted Representations
of Quantum sl2

By

Vyjayanthi CHART1* and Alexander PREMET2*

Abstract

We construct and classify all the indecomposable restricted representations of
when q is a root of unity.

§ 1. Introduction

Let Uq(slz) be the quantum group associated to the complex simple Lie
algebra s/(2, C). The irreducible representations of £7g(s/2) are well-understood
[9], [10], essentially with a small restriction, there is upto isomorphism, exactly
one irreducible representation Vn for each non-negative integer n. If q is not
a root of unity then it is known that any finite-dimensional representation of
Uq(slz) is completely reducible [9], [14] and hence the indecomposable finite-
dimensional representations of Uq(sl2) are just the irreducible ones. If q is a
root of unity, the finite-dimensional representations are no longer completely
reducible and the study of indecomposable representations becomes an interest-
ing and natural problem [16].

The representations Vn for 0^n</ remain irreducible when regarded as a
representation of the first Frobenius kernel of quantum slz which was introduced
in [10]. They are called the restricted irreducible representations of quantum
s/2. In this paper we study the restricted indecomposable representations of
Uq(slz) when q=e is a primitive Ith root of unity. Thus we classify all inde-
composable representations of the first Frobenius kernel of quantum s/2. We
show that any indecomposable reducible retsricted module is either projective
or isomorphic to a Weyl module or to a dual Weyl module or to a maximal
submodule of a Weyl module. The representation theory of quantum groups at
roots of unity is closely related to the representation theory of Lie algebras in
characteristic p. Our results are analogous to the results for modular Lie
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algebras [2], [12], [15], although some of our techniques are different. The
results of [12] used the action of the corresponding algebraic group and the
support varieties of restricted modules introduced in [3]. In this paper we
give simpler proofs which in fact 'specialize' to the case of modular Lie
algebras.

The paper is organized as follows. Section 2 is of a preliminary nature.
In Section 3 we give explicit constructions of the indecomposable modules.
Finally in Section 4 we prove our classification theorem.

§ 2. Preliminaries

In this section we recall the basic definitions and properties of the restricted
finite-dimensional Hopf algebra Uled.

2.1. Let q be an indeterminate. For n, r<=N, let

_ _
' «~[r].![fi-r]fr

It is known that these are all elements of Z\_q, q~l~] and can be specialized by
letting q=e where e is a primitive Ith root of unity, with / odd and greater
than 1. We denote the corresponding complex numbers by [w] etc.

2.2.
Definition. #6

rgd(s/2) is the associative algebra over C with generators e,
f, k and the following defining relations :

[*,/]=- e—e

Notice that kl is central in Uled(sl^) and hence acts as ±1 on any indecom-
posable £/e

red(s/2)-module. It suffices to study the indecomposable representations
on which kl=l since the other case is obtained by twisting these with the
automorphism e-* — e, k-* — k and /—>/.

Denote by UltA the quotient of Uled(slz} by the two-sided ideal generated
by kl—l. Let £/+ (resp. U~) be the subalgebra of UT

€
ed generated by e (resp.

/) and U°f the (semisimple) subalgebra generated by k±l. As vector spaces we
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have

and hence the elements frknes, O^r, s, n^l—l form a basis of Ur
c
ed. The

Cartan involution w of Uled is defined by extending,

to an algebra automorphism.

2.3. It is well-known that UJed is a Hopf algebra with comultiplication
given by,

The antipode S is the anti-automorphism of Ur
f
ed defined by extending,

S(k)=k~1, S(e}=-ek~\ S(f)=-kf .

The counit is the algebra homomorphism that sends k to 1 and & and / to zero.

2.4. The quantum Casimir element of Uled is defined by,

It is easy to check that Q is in the centre of U r
f

e d . The following Lemma can
be proved by a simple induction.

Lemma. For any i^l, we have,

2.5. For any non-zero complex 'number //, let T ̂  : Uled-*Uled be the auto-
morphism defined by extending,

Clearly, T^-T^T^. Let T be the group {T^: ft<=Cx}. The action of T on
£7e

red defines a Z-gradation on f/ f
r e d . The subalgebras B*=U*U^ are T-invariant

subalgebras of U™d. Let <r be the anti-graded anti-involution of Uled induced

by,
*(«)=/, ff(/)=e, ff(fe)=*.

If M is a left t/e
re<i-module then <r defines a t/t

reii-module structure on the dual
vector space M* as follows,
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(gfi(m)=f(<r(g)-m), g^U?ed, /€=Af*,
Any irreducible representation of U* is one-dimensional and so is determined
by a character, >l : £7J— >C. It is clear from the definition that %a = L Thus
Uled together with the grading induced by T and the anti-graded anti-auto-
morphism a satisfies the conditions of [5].

2.6. The Hopf algebra structure on Ur
c
ed implies that U™d is a Frobenius

algebra [8], i. e. Ur
e
ed admits a non-degenerate bilinear form < , > satisfying,

(uv, H;> = <W, vwy, for all u, v,

As a consequence we have,

Proposition [1, Thm 62.11]. Every protective module for Ur
c
ed is injective.

2.7. We conclude this section with some results on indecomposable pairs
of linear maps A, B : V—>W where V and W are distinct non-zero finite-dimen-
sional vector spaces.

Definition. We say that (A, B) is an indecomposable pair of linear maps
if there do not exist subspaces Vl} V2 of V and subspaces Wi, W2 of W such
that,

( i i ) A(VdcWi9 B(V^Wif i=l, 2,
(iii) at least one of Vl or Wl is non-zero.

Suppose that dim(F)=n-fl and dim(W)=n. Choose a basis v0, vi, • • - , vn

of V and a basis wlt wz, ••• , wn of W. It is easy to see that the maps <j>n, <pn i
V-W defined by,

^0,

i±n ,

are indecomposable.
Another example of an indecomposable pair of maps exists in the case

when dim(V)=n, dim (W)=n+l. Choose a basis v1} • • - , vn of V and a basis
w0, Wi, wz, ••• , wn of W. The pair tnt yn : V-^W defined by,

for all 1^2 fgn is indecomposable.
The next result is a direct consequence of the Kronecker-Weierstrass



INDECOMPOSABLE REPRESENTATIONS 339

theorem [4, Ch. XII].

Theorem. Let (A, B) be an indecomposable pair of linear maps from V to
W . Assume that the dimension of V is m and that of W is n. Then exactly one
of the following statements is true :

( i ) m— n— 1 and A=<f>n, B~(j}u,
( i i ) m~ ?? = — 1 and A — f]n, B = cn,
(iii) m=n and either A and B are bijective or A (resp. B] is bijective and

ker(B) (resp. ker(A)) is one-dimensional.

§ 3. Construction of Indecomposable Representations

In this section we give explicit constructions of some indecomposable re-
presentations of Ule(L.

3.1. For any non-negative integer n and for any 0<r^l—l, let V(n, r}
denote the Weyl module of dimension nl+r. More precisely, if (n, r)^(0, 0)
and m=nl+r— 1, then V(n, r) has a basis VQ, vlf ••• , vm, on which the action
of the generators of Uled is given by,

k ' V l = e"L-'llvl, (1)

e - v t = [m— /+l]y t-i , (2)

/•^[i+r^+i, (3)

where we set y_i=0 and vm+i=Q. Notice that the group T introduced in (2.5)
acts on V(n, r) as follows,

T [ l - v t = fjtr"'~zivl , /— 0, ••• , m .

The following lemma is trivial.

Lemma. Lei p denote the representation of Ul&d on V(n, r) defined above.
Then

3.2, For Q^i^l-1, let

7(72, r\={
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Proposition .
( i )

dim V(n, r\ = n+l if Q^i^r-1 ,

~n otherwise.

( i i ) The modules V(Q, r) are irreducible and each irreducible Uled-module
is isomorphic either to V(0, r) for some l<r^l—l or to V(l, 0).

(iii)
(Q-ir/2T}'V(n, r)=0,

where Er/2] = [(/+l)r/2].

Proof. To prove (i) observe that if O^z'^r— 1 the elements {vl9 vi+l, ••• ,
Vni+t} form a basis of V(n, r)l and that if r^i<l—l then the corresponding
basis of V(n, r) is {vl} vl+l, ••• , v(n-in+i}-

Part (ii) is well-known, (cf. [9]). Part (iii) is a simple calculation.

3.3. For any £/[ed-module M, the maximal semisimple submodule of M is
called the socle of M and is denoted by soc(M).

Theorem. Let n>Q.
(i) V(n, r) is indecomposable if r>0.
(ii) For l^r^l—l we have,

soc(F(?2, r))=F(0, /-r)®'1.

// r=0 then V(n, 0) = F(1, 0)®*.

Proof. To prove (i), assume first that r^O. Let J. be the subalgebra of
End(V(n, r)) consisting of operators that commute with the action of Ur

c
ed on

V(n, r). Using Lemma 3.1 it is easy to see that Jl is T-stable. Since T is a
one-dimensional algebraic torus we can write,

where ^^{A^Jl: T ̂ AT-^^A] . It is immediate that Jll-Jlj(ZJii+j. Thus
jit consists of nilpotent endomorphisms for all z ^O .

We now show that JLQ consists of scalar endomorphisms. Let A^J10. Since
[4, T^]=0 we have

Avx— aivl ,

for some scalars a^C. The conditions [_A, g]=0=[^4, /] imply that

[m— i+l]ai-i = [m— i+l]at, &'+l]at+i = p+l]at ,

for all i=l, ••• , m—1. This forces,

Q:0=r ... =ai-i, OLi— "• —OLii-l, "• OLni— ••• —anl+r-l -

In addition, since
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for & — 1, ••• , n we get,
aki-i—0iki -

Thus /I=a0-^ and so J0 consists of scalars as asserted.
It is now convenient to consider JL as a Lie algebra with the Lie bracket,

Clearly, [Jlt, j^]c«-4t+; and [jZ0, Jlj]— 0. Since Ji is finite-dimensional it follows
that all T-homogeneous elements of Ji are ad-nilpotent. This implies that the
Lie algebra Ji is nilpotent by the Engel-Jacobson theorem [6, Ch. 2],

Let N denote the Jacobson radical of the associative algebra Ji. By Wed-
derburn's theorem the algebra J./N must be commutative since JI is a nilpotent
Lie algebra. Hence N coincides with the set of nilpotent elements of JI. Thus
JlLClN for all i, forcing

If the Weyl module V(n, r) is decomposable, then JI has a non-zero non-invertible
idempotent. This contradicts the fact that all non-invertible elements in JI are
nilpotent.

For part (ii) notice that for each Q<^i<^n — 1, the elements vli+r, ••• , Vii+i-i
span a submodule of V(n, r) isomorphic to 7(0, l—r). It is not difficult to see
that for any other element w^V(n, r), with e-w=Q one has fl~l-w^=Q. Thus
the socle of V(n, r) is the direct sum of n copies of 7(0, l—r). Since the
dimension of V(n, 0) is nl it follows also that V(n, 0) is completely reducible.

3.4. The dual M* of a Ur
c
ed -module M is defined by using the antipode :

(gf)(m)=f(S(g))m, for all

Fix a basis of M. Then the action of g^U™d on M* in the dual basis is the
transpose of the action of S(g) on M in the original basis. Clearly the dual
of an indecomposable representation is again indecomposable. Thus, the dual
Weyl modules form another class of indecompossable modules for Uled.

Lemma. The dual Weyl module V(n, r}* is not isomorphic to V(m, s) for
any ra^O and 0^s^/-l if n^O. The modules F(0, r) and 7(1, 0) are self -dual.

Proof. It suffices for dimension reasons to show that the modules V(n, r)
and V(nt r)* are not isomorphic. Therefore it suffices to observe that,

soc(T/(X r))s7(0, l-r)®n , soc(7(n, r)*)=*7(0, r)®(7l+1) .

The first isomorphism was proved in the preceding theorem and the second can
be proved similarly. That the modules 7(0, r) and 7(1, 0) are self-dual is im-
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mediate from Proposition 3.2 (ii).

3.5. We now give a construction of a one-parameter family of non-isomor-
phic indecomposable modules of Ule<L. These modules can be identified with a
family of maximal submodules of the Weyl modules, we shall prove this in
Section 4.

Let (VQ, Vi, ••• , vi^} be a basis of Cl. Let X, Z be elements of End (CO
defined by :

X-vl=vl-i , Z •Vi = e'Zl-vl ,

where we set v-1=vi.1. Clearly,

Xl=Zl=l ,

The elements X1Z3, Q^i, j'^l-1 form a basis of End (CO- We denote by Z1/2

the operator Z(l+1/2\

Proposition, (i) Let A^End(C!l) and l^r^l—1. The following formulas
define an action of Ur

c
ed on Cl®Cn :

j _i •«•»• \c_y-1- j

e —->* erzl/'~f"r.z""/"(gii+^^:sz<'
6 — 6 / i=o

( i i ) 77i£ module V(A, n, r) defined in (i) zs indecomposable if and only if
Cn is indecomposable as a CA-module.

(iii) V(A, n, r} = V(B, n, r} if and only if A and B are conjugate.
(iv) V(A, n, r)* = V(A, n, l—r).
(v) (/2-[r/2]2)-I/y, n, r)=0.

Proof. A simple checking shows that the formulas given in (i) do define
a representation of Uled. If Cn is decomposable as a C^l-module then it is
clear that the representation of Uled is decomposable. Conversely assume that
the representation of £7e

red is decomposable. Let P: V(A, n, r)-+V(A, n, r} be
the projection onto one of the submodules. Writing P as a polynomial in the
non-commuting variables X, Z with coefficients in End (Cn], we find by using
the fact that [P, fe]=0 and [P, /]=0 that P=l(gX? for some <?eEnd(Cn).
Now using the fact that [_Q, 0]=0 we see that [Q, ^4]=0. Hence A preserves
both the image and the kernel of Q and so Cn is decomposable as a CA-module.

If A and B are conjugate, say B = CAC~1, then it is easy to check that
10C defines an t/Jed-module isomorphism from V(A, n. r) onto V(B, n, r).
Conversely by using the methods involved in proving part (ii) one can show
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that any £/c
reti-module isomorphism from V(A, n, r) onto V(B, n, r) must be of

type l(g)C for some CeEnd (C'1). This forces B = CAC-1.
Using the remarks in (3.4) one can write down the explicit formulas for

the action of the generators of U™d on the dual module V(A, n, r)*. These
formulas show that V(A, n, r)* = V(Al, n, r). Since A and A1 are always con-
jugate, (iv) now follows from (iii). Part (v) is a simple calculation.

3.6. If A is a single Jordan block with eigenvalue X, denote by V(A, n, r)
the module V(A, n, r). Let V(X, n, rY denote the module obtained by twisting
the module structure on V(A, n, r) by the Cartan involution a).

Proposition. If X ± — l we have,

V(l n, r)m=v(- ^-r, n, r} .
\ A-\-± '

This can be proved by a direct calculation which we omit. The import-
ance of this proposition is that 7(— 1, n, r)w is not a module of type V(/n, n, s)
where JJL-±—\. To see that V( — l, n, r)a is not isomorphic to V( — 1, n, s) it
suffices to notice that :

d i m ( { v ( E V ( - l , n, s): e .y=0}) =

dim({z;eE7(-l, n, s}: f-v=Q\} = n.

Since it is obviously not a Weyl module, this is a new indecomposable module
which we denote by V(°o, n, r}.

3.7. The modules 7(0, 1, r) can be identified with the Verma modules over
Uc

red. Recall that for O^r^ /— 1 the Verma module M(r) is the quotient of
Ur

c
ed by the left ideal generated by e and k — e7""1. Clearly M(r) is /-dimensional.

Further, if M is any other £7 f
r ( r f- module generated by an element m satisfying,

then M is a quotient of M(r). With these comments it is now easy to check
that V(0, 1, r) = M(l-r} for any l^r<l-l. Hence M(r)*^M(l—r) by Proposi-
tion 3.5(iv). The module M(0) is isomorphic to V(l, 0) and so is irreducible.
The module F(0, r) is the unique irreducible quotient of MO) for l^r^l—1.
The following lemma can now be proved easily.

Lemma. For l^r^l — l, there exists a non-split exact sequence,

0 — > 7(0, l-r) — > MO) — > 7(0, r} — > 0 .

3.8. Our final set of examples are the indecomposable projective covers
X(r) of the irreducible modules 7(0, r} for l^r^l—1. Such projective covers
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exist by (cf. [11, §6.3]).

Proposition. Let l^r^l— 1.
( i )

[*(r):M(/)]=l if j=r or l-r,

—§ otherwise.

( i i ) dimX(r)=2L
(iii) soc(*(r))=V(0, r).
(iv) 77ig following short exact sequence of Uledr -modules is non-split :

0 — > M(/-r) — > X(r) — > M(r) — > 0 .

Pr00/. By (2.5) the algebra £7Jed satisfies all the conditions of [5]. Theo-
rems 4.5 and 5.1 of [5] now imply that each X(r) admits a filtration in which
the corresponding quotients are Verma modules and the following formula holds :

Parts (i) and (ii) are now immediate from (3.7).
By Proposition 2.6, X(r) is an injective module over Uled. Using the argu-

ments of [7, pp. 50-52] one can show that an injective Uled -module is inde-
composable if and only if its socle is simple and that two injective modules
are isomorphic if and only if their socles are isomorphic. This yields soc (X(r)}
= V(Q, r). Part (iv) is now immediate.

3.9. We now give an explicit basis of the modules X(r}.

Proposition, dim Ext^MM, M(/-r))=l.

Proof. By Proposition 3.8 we know that Ext1(M(r), M(l—r)) has dimension
greater than 0. Consider a short exact sequence of £/e

rerf-modules,

/3
0 — > M(l-r) — > N — > M(r) — > 0 .

Let VQ, Vi, ••• , vi-i be a basis of M(l—r) such lhat

k-vl=el~r~l~2ivi) /•v1 = [*'+l>t+i , e>v0=Q .

Choose w0<=N such that,

k-wQ=er~1wQ} p(

Since the ^-eigenspaces of M(l—r] are one-dimensional and e-wQ<=M(l—r) it
follows that,

If ^0=0 then it is clear that the subspace spanned by the elements {Wi—
(/*/[*'] !)-M>o:0^^/- l} is preserved by U'ed. Since /3(i^HO we get, N^
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M(r)®M(/— r) contradicting the fact that our sequence is non-split. Thus
and by rescaling the wl we can and do assume that ^0=1. It is now easy to
calculate the action of e on the wx, namely,

where /*, = [/— r— l+i ; z] and as usual i>, and wl are zero if z<0 or *>/—!.

Corollary, (i) X(r) is a 21 dimensional module with basis {v0, v1} ••• , z^

WQ, Wi, ••• , u > z _ i } on which the generators of Ur
c
ed act as follows,

where ^l~[l—r — \.Jri', i] and we assume as usual that vl and wl are zero if z'<0
or i>l-l.

( i i ) The action of Q on X(r} is not semisimple.
(iii) X(r)*

Proof. Part (i) is immediate from Proposition 3.9. Part (ii) is a computa-
tion. To prove (iii), observe that the non-split exact sequence in Proposition
3.8(iv) induces a non-split exact sequence of the dual £/f

recZ-modules,

0 — > M(r)* — > X(r)* — > M(l-r)* — > 0 .

Since M(r)* = M(l—r], (cf. (3.7)) we have a non-split exact sequence,

0 — > M(l-r) — > X(rY — > M(r) — > 0 .

Applying Proposition (3.8)(iv) and (3.9) yields the desired isomorphism X(r) =

Remark. The modules X(r) were defined in [13].

§ 4. Classification of Indecomposable Representations

We state and prove our main theorem in this section. We begin with the
following simple proposition.

4.1.
Proposition. Let M be an indecomposable representation of U™d. There

exists 0^r^(/ — 1)/2 such that,

// r=0, Q is zero on M.
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Proof. Since kl = l on any £/e
red-module M, the action of k on M is semi-

simple and the eigenvalues of k are contained in {e* : O^z^ /— 1}. Using Lemma
2.4 we get,

u-n /2a- n (fl-ij/2]2)2-M=o. (4)
t=i

As a result any eigenvalue of Q must be of the form [//2]2 for some 0^*5j
(/— 1)/2. Further since M is indecomposable £? has only one eigenvalue on M,
say [r/2]2, for some O^r^/— 1. In particular the operators (Q— [z/2]2) are
invertible on M for all O^z^ /— 1, z'^r, /— r, The proposition now follows.

4.2. For 0^r^(/— 1/2) let Cr denote the category of £/£
red-modules M with the

property,

For 0^z'^/-l set, Mt={m^M: k?n=er-?l-l-m}. The main result of this
paper is,

Theorem. Let M be an indecomposable object of Cr.
( i ) // r—Q then M is isomorphic to V(l, 0).
( i i ) // r>0 and Q is semisimple then M or M* is isomorphic to precisely

one of V(n, i), V(A, m, i) where i—l—r or r, n is any non-negative integer, m is
any positive integer and ^eCU{°°}.

(iii) If Q is not semisimple on M then r>0 and M is isomorphic to X(r}.

The rest of the section is devoted to proving this theorem.

4.3.
Lemma. Let M be an indecomposable object in Cr.
( i ) The restriction of fe (resp. ef) to Ml is invertible if z'^0, r (res/). ii=

r—l, / — I). // in addition Q acts semisimply on M, the restriction of fe (resp.
ef) to M0 and Mr (resp. Mr_! and M z_i) is identically zero.

( i i ) The map / : M?— >M l+i (resp. e : Ml— *Mz_i) is injective if i^r—l, l — l
(resp. z'~~0, r).

(iii)
dim (Ml)=dim (M0) if Q^i^r-1 ,

=dim(M z_i) if r<i<l-l .

Proof. Since Me£r and the restriction of fe to Mz is (Q— [_(r— 2z')/2]2),
the proof of part (i) follows. Parts (ii) and (iii) are now immediate.

4.4. We now prove part (i) of Theorem 4.2. Let r=0. By Lemma 4.3
(ii) e is injective on every eigenspace Mlt i~Q. Since el=Q it follows that
c-M0=Q. Let {mi, ••• , mn} be a basis of M0. Clearly for each O^s^n the
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subspace M(s) of M spanned by {f%-ms : O^z^ /— 1} is an irreducible submodule
of M. Applying Lemma 4.3(ii) again we see that M=©?=i M(s). Since M is
indecomposable this means that n = l and hence M=F(1, 0) by Proposition 3.2(ii).

4.5. Assume now that (8— [r/2]2)-M=0 for some r>0 and that M is in-
decomposable and reducible.

Proposition. The pair of maps e, f1'1: M0— *Mj_i is non-zero if and only if

the pair f, el~l : M z _i— >M0 is zero.

Proof . Suppose first that both pairs are zero. Using Lemma 4.3 one deduces
easily that the subspaces @t=j M-, and 0^V Ml are submodules of M. Since M
is indecomposable this means that Mt=0 either for all ze{l, ••• , r—1} or for
all fe{r, • • - , /—I} . Proceeding as in the proof of Theorem 4.2(i) we see that
M must be irreducible contradicting our assumption.

For the converse assume that the pair e, f1'1 is non-zero when restricted
to M0. Let Fi=ker (g)nker (fl~l)i~\M0 and let Wl be a subspace of M0 com-
plementary to Vl (notice that I^^O). Let F2 and W2 be subspaces of Mz_i
defined similarly by interchanging e and /. Set,

N=S/ lV r i® I"S1eW2 , (5)
t=o i=o

jv^s/'^e's''^^. (6)
i=o i=o

By Lemma 4.3 M—N@N'. Suppose in addition that N and N' are submodules
of M. Since M is indecomposable and N'^O it follows that AT— 0. In parti-
cular 1^2=0 and so,

Thus to complete the proof of the proposition, we must show that A^ and
N' are submodules. We show now that N is a submodule, the proof for N' is
similar and left to the reader. By definition V\ and Wz are contained in eigen-
spaces of k. As Q acts semi-simply on M one checks easily that,

for all z'e{0, • • - , r—1}, /e {0, • • - , /—r—1} . Thus, to prove that e and / pre-
serve N it is enough to show that,

By Lemma 4.3 this is equivalent to,

el'W,C.Vlf fl~l

The second inclusion is obvious since fl~1Vi=Q. The first can be deduced
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from the fact that el=Q and the following easy consequence of Lemma 2.4,

/'- V-Wa= n ([r/2]2-[(2/+r+2)/2]2)-^2-0 .
1=0

The proof of the proposition is now complete.

Corollary. // the pair e, fl~l (resp. f, e1'1) is non-zero on MQ (resp. Mz_i)
then it is indecomposable in the sense of Definition 2.7.

Proof. Assume that the restriction of e, f1'1 to M0 is non-zero and that
M0=Vr

1©y2, M^^W&W* with e, fl~l(V JaW „ i±j. Let N and N' be de-
fined as in equations (5) and (6) above. Since the pair /, e1'1 is zero on MI_I,
it follows as before that N and N' are submodules of M. Hence either N or
N' is zero proving that the pair e, f1"1 is indecomposable. The case when /,
el~l is a non-zero pair can be treated similarly.

4.6.
Lemma. Let M and N be two modules in Cr. Then M=N if and only if

there exist isomorphisms of vector spaces rcl : Ml—>Nli=Q, I— I such that,

and

Proof. Given TTO and TT^ define maps Kt : Mi-^Ni by setting,

Kl(f
im)=finQ(m) , for

and
^ t(ez" i-1m /)=ez-*-1^z.1(m /), for

Using Lemma 4.3 it is easy to check that 0^ : M—N is an isomorphism of
£/7"ed-modules. -p^ converse statement is trivial.

4.7. We can now prove part (ii) of the Theorem. By the results of Section
4.5 exactly one of the pairs of maps e, f1'1 : Af0— >Mz_i, /, e1'1 : M£_I— >M0 is
non-zero and the non-zero pair is indecomposable. Consider the case when the
first pair of maps is non-zero, the other case is similar and we omit the details.
By Theorem 2.7 dim M0— dim Mj_i is either ±1 or 0. If the difference is one
then by Theorem 2.7(i) there exist bases of M0 and M z _j such that,

where w=dimM z _i . The Weyl module V(n, r} is indecomposable and satisfies
all the above assumptions. Thus one can define linear maps TTO and TT^I satis-
fying the assumptions of Lemma 4.6 and so one may conclude that V(n, r)=M
as £/Jed-modules.
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The case when the difference is —1 can be dealt with similarly by using
Theorem 2.7(ii) and we find that V(n, /-r)*^M.

Now suppose that dim M0— dim Mt^ = n. By Theorem 2.7(iii), either fl~l

or e is bijective on M0. If fl~l is bijective, choose a basis mlf ••• , mn of M0.
Since /: Mt-*Ml+l is injective if /=£/—! the elements,

from a basis of M. In other words M^Cl®Cn with the action of £ and /
given by :

where X, Z are the elements of End (CO defined in Section 3. The action of e
on M can be determined by writing e as a polynomial in the non-commuting
variables X and Z and imposing the defining relations of U r

c
e d . It is not hard

to see that the action of e is exactly as in Proposition 3.5. Hence we see that
M is isomorphic to V(A, n, r) for some 1. If the restriction of fl~l to M0 has
a non-zero kernel then the restriction of el~l to Mz_i is injective. Now using
the Cartan involution w one shows that M^V(oo} n, r).

The proof of part (ii) is now complete.

4.8. The proof of part (iii) proceeds as follows. We first prove that if Q
does not act semisimply on M, then M contains a 2/-dimensional submodule N.
Next we show that N corresponds to a non-trivial element of either Ext1(M(r),
M(l-r)) or Ext\M(l-r\ M(r)). Propositions 3.8(iv) and 3.9 then imply that
N^X(r) or N^X(l-r). By Proposition 2.6 N is projective and injective and
so a direct summand of M. Since M is indecomposable, M=N and the Theo-
rem follows.

Choose N to be any submodule of M of minimal possible dimension on
which Q does not act semisimply. Notice that this implies that Q acts semi-
simply on every submodule of N. Since Q does not act semisimply on N it
follows from Lemma 4.3 that Q does not act semisimply on either NQ or Nt^,
say on AT0. Let m<=JV0 be such that,

(Q- [r/2]2) - m ̂ 0 , (Q- [r/2]2)2 • m=0 , (7)

or equivalently,
fe-m^Q, (fe)*-m=Q. (8)

By applying Lemma 2.4 it is easy to see that :
(i) for i>l, the element fiei-m is a linear combination of m and /e-?n,
(ii) /'-'-m-^O.
Since Uled-mCLN is a submodule on which £? does not act semisimply, we

have N=U{ed-m (by the minimality of N). We now prove that dim Af— 21.
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By Lemma 4.3 it is enough to prove that N0 and NI^ have dimension 2. Since
NO is spanned by fiei-m it follows from (i) that dim NQ=2. As an immediate
consequence of this, we find by using Lemma 4.3 that,

(£-[r/2]2)./r-1m^O. (9)

The elements e-m, f l ~ l - m of NI-I must be linearly independent since f l - m
=0 whereas fe-m^Q. So dimJVz_1^2. If Q acts semisimply on A^_i then
(ef)e*m=Q by Lemma 4.3. It is now easy to check that the span of {f^-m,
/V-m : O^f^ /— 1} is a submodule of N on which Q does not act semisimply
and hence is equal to N. Since dimJV^2/, we conclude that dim N=2L

We claim that Q must act semisimply on A^_I. Assume for a contradiction
that it does not. Then reasoning as before one can prove dimAT z_i=2. Since
the maps e, fl~l : NO-+NH are non-zero, one of the following possibilities must
occur :

(a) im(e)CLim(f1-1),
(b) im(fl

(c) im(fl

The first case cannot occur since fe-m=£Q. The scond implies that

Since Q preserves each summand this would force Q to be semisimple on A/z_ i
contradicting our assumption. Since e-m and f l ~ l - m are linearly independent
the third possibility implies that e is an isomorphism from N0 onto A r

z_ i. One
proves similarly that /: A^_i— NQ is injective. By Lemma 4.3 Q does not act
semisimply on Af r_i and Nr. Working with these subspaces we conclude as
before that e:Nr-*Nr_i and f : Nr_i—>Nr are injective. But then Lemma 4.3
implies that e and / are injective on the entire module contradicting el = fl=Q.
Hence Q must be semisimple on AT z _i .

Consider the element 7n' = el~r-m. By Lemma 4.3 m'=rQ and e-m' = el~r+l-?n
=0. Further using Lemma 2.4 and equation (9) we get,

The results of Section 3.7 imply that the £7Jgd -submodule generated by m' is
isomorphic to M(l—r}. By Lemma 2.4,

J=0

and the operators in the product are invertible on A^. Therefore
= M(l—r). Since all the ^-eigenspaces of M(l—r) are one-dimensional, this forces
fl-1-m£Ufed-m'. Hence, the quotient module N/M(l—r} has dimension / and
is generated by the image m" of m with e-m"=Q and fl~1-mff-^Q. Thus we
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may conclude as before that N/M(l—r) = M(r). Since Q does not act semi-
simply on N the short exact sequence,

0 — > M(l-r) — > ,V — > M(r) — > 0 ,

is non-split and so N corresponds to a non-trivial element of Ext1(M(r), M(l—r)\
The proof of the Theorem is now complete.

4.9. To conclude the paper we now use our classification theorem to prove
that the modules V(X, n, r] can be identified with maximal submodules of the
Weyl module V(n, r).

Let {vt : O^z^ /— 1} denote the basis of Cl from Section 3.5. It is easy to
see that one can choose a basis { w l : Q^j<l—l} of Cn such that, the action
of Uled on V(l, n, r) is given by extending,

where O^z '^/f— 1, 0^/^n— 1 and w^=Q.
The following Lemma can be proved by a straightforward verification.

Lemma. Let neZ, n^O, 0<r^/— 1,
( i ) The following formulas define a deformed action of Ur

e
ed on V(n, r) :

( i i ) Let Vl(n, r} be the deformed Weyl module defined in (i). The assign-
ment vl®Wj-»vl+Ji defines an isomorphism of Y(X, n, r} onto the submodule of
V\n, r) spanned by {VQ, v1} ••• , vni-i] .

(iii) Q act on V\n, r) as \jl2J-id.
(iv) dim V x ( n , r)Q = n + l and dim V*(n, r\.^ = n.

Proposition.
(i) V*(n, r) = V(n, r).
(ii) V(oo, n, r} is isomorphic to the submodule of V(n, r} spanned by
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Proof. It is clear from the definition of V*(n, r) that the pair of maps
/, e1'1: V*(n, r)i-i—>V*(n, r} is zero. Also, it is not hard to check that the
subspace of Hom(V ;(n, r\, Vx(n, r) i_i) spanned by the maps e, f l ~ l : V*(n, r)0

-*Vx(n, r) z_i contains the maps <j>n, <pn defined in Section 2. This implies that
the pair e, f1'1 is indecomposable.

By Lemma 4.9 and Theorem 4.2 we can conclude that V*(n, r) is isomor-
phic to either V(n, r) or to V(n, r)*. Since the submodule of Vl(n, r) spanned
by iv, vr+1, ••• , vi-i is isomorphic to F(0, /— r) it follows from Lemma 3.4 that
V*(n, r}^V(n, r}.

Recall that F(oo, n, r)=V(-l, n, r)". By Lemma 4.9(i), V(-l, n, r} is iso-
morphic to the submodule of V(n, r} spanned by {v0, ••• , f n z - i } - Hence FC°°, n. r)
is isomorphic to a submodule of V(n, r)01. To complete the proof of (ii), it is
enough to note that there exists a £/e

red-module isomorphism 7] : V(n, r^— >F(n, r}
such that, 7][Cvt)—Cvm-i for all O^z'^ra.
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