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Highest Weight Modules and b-Functions
of Semi-invariants

By

Akihiko GYOJA*

§ 0. Introduction

0.1. In [8], we have given an irreducibility criterion for the generalized
Verma modules in terms of the b-functions of semi-invariants. (See (2.4) for
generalized Verma modules, (2.5) for semi-invariants, and (3.2) for b-functions.)
Thus, in order to give explicit information about the irreducibility of the
generalized Verma modules, it is necessary to calculate the ^-functions of semi-
invariants. The first purpose of this paper is to develop techniques to calculate
them.

0.2. Our irreducibility criterion is far different from, and unfortunately,
less complete than the one given by Jantzen [12], since we need to assume
(at least) the anti-dominancy for a technical reason. Our second purpose is
to formulate a conjecture, which would eliminate this undesirable assumption.
(For the sake of simplicity, here in the introduction we restrict ourselves to
those induced from one dimensional representations of the maximal parabolic
subalgebras. See §3, especially (3.3), and §9 for the statement in its full
generality.)

Conjecture. Let p be a maximal parabolic subalgebra of a complex
semisimple Lie algebra g, and w the unique fundamental weight which has an
extension to the character of p. Denote the extension by the same letter w. Let
f be the semi-invariant corresponding to m, and b(s) the b-function of f. For
/eC, the generalized Verma module t/(g) (x)^, A07C is irreducible if and only
ifb(l-j)*0for any j= 1,2,-.

0.3. Let us consider the special case where g is simple, the nilpotent
radical u of p is commutative, a Levi subalgebra I of p is normalized by the
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longest element of the Weyl group, and the generalized Verma module concerned
is induced from a one dimensional representation. Let G be a complex Lie
group such that Lie (G) = g and L the connected subgroup of G with the Lie
algebra I. In this case, (L, ad, u) is known to be an irreducible regular
prehomogeneous vector space, and we can show that the b-function of the
semi-invariant coincides with the fe-function of the prehomogeneous vector space
(L, ad, it) (cf. the proof of (4.2.1)). Thus, in this special case, the above
conjecture asserts a relation between the irreducibility of certain generalized
Verma modules and fe-functions of the prehomogeneous vector space (L, ad, ti).
This relation can be proved by a case study, and was first observed by S. Suga
[29]. In fact, it was the original motivation of the present work to explain
and generalize this observation of Suga.

0.4. Besides the purposes stated above, it would be worth noting the
importance of the microlocal analysis of semi-invariants in connection with
other problems in the representation theory. For example, a conjecture of
Kazhdan and Lusztig (see (6.2)) implies that the holonomy diagram (cf. (5.18))
would coincide with the W-graph of the regular representation given in [18]
if g is of type Al and p is the Borel subalgebra. Thus the determination of
the microlocal structure of semi-invariants remains an important problem, even
if the 6-function is determined.

0.5. This paper consists of nine sections. In § 1, we review some known
facts about ^-modules associated to complex powers of regular functions. In
§2, we review some known facts about complex semisimple Lie algebras and
Lie groups. In §3, we state our main conjectures concerning the scalar
generalized Verma modules, namely the induced modules from one dimensional
representations of parabolic subalgebras. In §4, first in (4.1), we observe that
our conjectures hold for Verma modules. (This case is due to M. Kashiwara
[15].) Next in (4.2)-(4.4), we show that our conjectures hold for commutative
parabolic cases. We give two more examples (4.5) and (4.6). In §5, we give
techniques to calculate fe-functions of semi-invariants. In §6, we review the
Kazhdan-Lusztig theory, and observe that it is useful for our calculation of
5-functions. In §7 and §8, we calculate fc-functions for some cases using the
techniques given in §5 and §6. In §9, we discuss how to generalize the
conjectures of § 3 to non-scalar generalized Verma modules.

§1. ^-modules Associated to Complex Powers of Functions

1.1. Let X be a connected smooth affine variety over the complex number
field C, 0 = 0X the sheaf of regular functions, Si = &x the sheaf of algebraic
differential operators, S = Sx the sheaf of micro-differential operators, / i , - -- , / f ce
r(X,0x)\C, flf = n*=i/i» Q = X\g~1(Q), Q' some simply connected domain
contained in Q, A = ( / 1 , - . . ,A f c )eC f c , 5. = ( l , - - - , l ) e C k and /^ a single
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valued branch of

a x c3(x, s) — -» n /•(*)"' +s = fl /«(*)*• • 0W-
i = 1 i = 1

Let 0[s] = 0(g)cC[s], ^=0[s] /*+s* and ^"(A) - ,r/s,F. (Although
the function /-+s- is defined only on Q' ', the Zariski sheaves ^ and >"(A)
are defined all over X.) Let f* + °*:=( f*+*& mods.r). Then •>"( A) =

Let r*^ be the cotangent bundle of X,

W ={(x,

W - Vf(g) = W(0, JSf) = the Zariski closure of W, and

W0 = W0(gf) - Wofo, X) = {(x, £)eWfo)|0(xK = 0} .

We denote by Ch (Jt) (resp. Ch (^)) the characteristic variety (resp. the
characteristic cycle) of a coherent ^-module JL

Lemma 1.2. The Q)x-module ^" (resp. ^(A)) is subholonomic (resp.
holonomic). Moreover, Ch (^") = W 0«d //i^ multiplicity of ,i" «/o/7^f W w 0/7^.

A ^x-module Jf is said to be holonomic (resp. subholonomic) if
dim Ch (Jt) < dim X (resp. < d i m ^ + 1). This lemma can be proved in the
same way as in [13].

Lemma 1.3. [14,2.7]. There exist a differential operator P = P(s) =

P(s, /> A)e^PC^xM) and a polynomial b(s) = b(s, /, A)eC[s]\{0} such

that

Lemma 1.4. [16, Lemma 2.3]. (Cf. [7, 2.3.8].) // b(-j) / 0 for j = 1, 2 , - - - ,
then ^(A) is naturally isomorphic to ^"(AJQ/"1] u'/r/i r/i^ natural 2 -module
structure.

Lemma 1.5. ([10,1.7]) (1) The characteristic cycle Ch.i ' (A) does not

depend on A-
(2) The characteristic variety C h , 4 ' ( A ) is W0(gf).

§ 2. Semi-invariants

2.1. Let G be a connected, simply connected, semisimple group over the
complex number field C, B a Borel subgroup of G, T a maximal torus contained
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in B, 5_ the Borel subgroup such that 5fl5_ = T, W= NG(T)/T, and g, b, fa_
and t the Lie algebras of G, B, B_ and T, respectively. Let tv = Homc(t, C),
R(a tv) the root system of (g, t), g(a) the root subspace of g corresponding to

ae.R, R+ the set of aeR such that g(a) c b, K_ = — R + 9 p = — £aeK + ^ H =

{a l 5 - - - , a j the root basis contained in K+, 77v = {a^, - - - ,^} the set of simple
coroots, and {m1,--,ml} (resp. { & ! , • • • , & } ' } ) the set of fundamental weights
(resp. fundamental coweights). Then af, t n f e t v , a f

v , m,v et, <a f , m/> = <50- and
<a f

v , tzjj) = <5f j-, where < > denotes the natural pairing of a vector space and
its dual. Concerning the numbering of simple roots, we follow [3, Planches
I-IX]. For a eR + , let av be the corresponding coroot, ra the reflection with
respect to oc,ri = rOCi and 5 = { r l 5 - - - , r j . Sometimes we write simply i for rt.
The identity element of G or W is denoted by e, not by 1. For weW, let /(w)
be its length with respect to S. Let > denote the Bruhat order in W so that
the identity element e becomes minimal. For each a eK, we fix a non-zero
element X^ of g(a), which we shall call the root vector. For each weP^ we
fix its representative element in NG(T}(a G), which we shall denote by w, or
simply by w if there is no fear of confusion. We denote the universal enveloping
algebra by £/( — ).

2.2. For a character, say A, of T, we denote the corresponding character
of t by the same letter A, and vice versa for a character of t which can be
integrated to a character of T. Thus we consider an element A of £! = i^m;
as a character of T, which we shall denote by the same letter L We also
denote the natural extension of the character / of t (resp. T) to b or b_ (resp.
B or B_) by the same letter L Moreover, if A can be extended to a larger
algebra (resp. group) containing b or b_ (resp. B or J5_), then we shall denote
such extensions also by the same letter L

2.3. For a subset / of S, let Wj be the subgroup generated by /, wz the
longest element of W^ I' = ws/ws(c: S), Ul = {ae/7|rae/}, Rj the root
subsystem of R generated by 777, RL ± = Rj n R +, I = 1(1) = t + £a6/?7 g(a),
u± = u ± ( / ) = £B6ll±ul /g(a)J and p± = p± ( / ) = I + u±. We denote the con-
nected subgroups of G corresponding to I, u+ and p+ by L= L(/), U+ = U+(I)
and P±=P+(I), respectively. We usually write p = p(/) and P = P(I) for
p+ = p + (/) and P+ = P+(I). Put P' = P(I') etc. For subsets J and K of S,
let (Wj\W/WK)s (resp. (W^W/W^) be the representatives of Wj\W/WK

consisting of the shortest (resp. longest) element in each double coset. We
write (W/WK)S etc. for (W^\WIWK)S etc.

2.4. Generalized Verma module Let us fix a subset / of S and let p = p(/)
etc. Let / be a character of t such that </, a v > e Z > 0 for any ae/77. Then
/ is the highest weight of a finite dimensional irreducible p-module



HIGHEST WEIGHT MODULES AND ^-FUNCTIONS 357

F(A) = F(A, p). The [/(g)-module M(A) = M(A, p) - l/(g) (£)„<„, K(A, p) is called
a generalized Verma module.

2.5. Semi-invariant Let A be an integral dominant weight, i.e., a character
of t such that <A, a v > e Z > 0 for any ae/7. Then there exists a uniquely
determined regular function /A on G such that /A(ws) = 1, and f*(bxb') =
(wsA)(b)A(fo')/A(x) (b, b'eB, xeG), which we shall call the semi-invariant
corresponding to A. The semi-invariant can be constructed as follows. Let
F(A) be the irreducible g-module with the highest weight A, u(A) a highest weight
vector, F(A)V - K(- wsA) the dual of F(A), < > the natural pairing of F(A)
and K(A) V , and u(— A) a lowest weight vector of F(A)V . Normalize v(— A)
so that <>(-A) i;(A)> - 1. Then /A(x) = <u(- A) w^x^A)). Put f{=fw\
Then, for A = £|- = 1 A^- (A^eZ^o) , we have /A = flUi-/^'- More generally, we
put /A - n! = i/*Al for ^ = Z!=i ̂ wi (^eC)- We understand (A, x)-»/A(x) as
a single valued branch on Cl x D', where £7 is some simply connected domain
contained in r \ l

i = 1 f i ~
1 ( C x ) . Sometimes, it is convenient to consider /.'(x): =

/i(wsx) and /'AW:=/A(vv5^) instead of /f and /A, which we shall also call the
semi-invariants if there is no fear of confusion. They satisfy f ' x ( e ) = 1 and
f'\b'xb) = A(b')A(b)/'A(x) for b ' e£_ , xeG and beB.

Lemma 2.6. ([8, 9.9 and 9.10]) (1) ^ defining equation of the subvariety
of G is given by ft = 0. (2) G - FwsP = Uies-/ Bv^sr{B. (3)

Lemma 2.7. ([8, 9.11]) The rational characters wt and wswt ( z e / ) o/ B
can be extended to those of P = P(I) and P' = P(I') = F(ws/ws), respectively,
and we have fi(p'xp) = (wswi)(p'}wi(p)fi(x) for P ^P > xeG and

§ 3. Conjectures

3.1. Fix a subset / of S. Let S — I = { i l 9 - - - , i k } and I = {ik + 1,-",il}.
(Here we used the convention "rf = f".) Let s £ l , - - - , s i k be independent complex

variables, s_ = ̂ s-isiwi> d = Z^s-/mn and CC^-] = C[V">5J- Let 5 be

another complex variable, Jf = @G\_s]f*+sd (A6^.6 S_ /Cm£), J^(A) = ^/S^\
and f*- + v*:=(fi+** modsJ^). Then yK(A) = ^G/^+0<5. Note that /A + 05 =
^ A + o 5 in the notation of §1, where 1 = (1, • • - , ! ) , £=(&,-•>&), and

A = A , - , A . .

Conjecture A. For / /e^.6 S_ IZ>0m i , //z^r^ e;v;wf a differential operator
PfleF(G, ^G), a non-singular point peW0 = W0(/5) independent of u, a
micro- differential operator Q^( s_)£<t>G,p[_s_^ whose principal symbol is independent
of _s_ and invertible at p, om/ a non-zero polynomial frJ.sJeC^] ^wc/z that
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°a and f^o'^WQW-*™ for any

Remark 3.2. By [10, 6.4], the polynomials b^(j^) are uniquely determined
up to non-zero constant multiple. We call the polynomials b^(s_) the b-
functions.

3.3. Assuming Conjecture A, we make the following conjectures.

Conjecture B (Main Conjecture). The generalized Verma module M(A, p(/))
(/le^r.eS_JCt37;) is irreducible if and only if b^l — ju)^0 for any

Conjecture C. The following conditions are equivalent for ^E^i&s_IC,wi.
(1) <A + p, O^O, -1, -2,..- /or 0flj ae£ + . (2) 6^(A) ̂  0 /0r"W fie

3.4. It is easy to see that Conjectures A, B and C are equivalent to the
following Conjectures A', B' and C', respectively. (Conjectures B' and C' have
meaning under Conjecture A'.)

Conjecture A'. For any ieS — I, there exist a differential operator
P£.er(G, ^G), a point peW0 = W 0 ( f d ) independent of i, a micro-differential

operator 6 f[_s_]e^G,p[-S.] whose principal symbol is independent of s_ and

invertible at p, and a non-zero polynomial bt(s_)eC[_ _s ] such that p./*+ro« + °* =
M for any A e ^ C m , ,

Conjecture B'. The generalized Verma module M(A, p(/)) (/te^ ieS_ /

irreducible if and only if b^A — wt — fj) ^ 0 for any zeS — /

Conjecture C'. 77z^ following conditions are equivalent for ^eZies-/^mr
(1) <A + p, av> ^0, -1, -2,--- for any a<=R+. (2) b£(A + fi) ̂  0 /or any
ieS - I and ^E^ieS_I7.^Qwi.

Remark 3.5. Let us show that W0 in [8, 9.12] coincides with W0(/d). Let
^Les-/^- Then, on the open set ( f * ) ~ l ( C * ) = (]ieS-ifi~

l(Cx), Jf'W
in [8, 9.12] is naturally isomorphic to Jf(A) defined in (3.1). Hence
^'WE/^-1,..-,/^1] in [8] is isomorphic to Jf(A) [(/5)~ *]. But, by (1.4) and
(1.5), we have Ch Jf(A) = Ch Jf (/) [(/')' x] = W0(/

5). Hence the characteristic
variety of ^W/irV-Ji'1] is W0(/5). Thus Conjecture A would imply
that the assumptions (9.12.3) and (9.12.4) of [8] are always satisfied.

§4. Examples (1)

4.0. Here we calculate 5-functions of semi-invariants for some (g, /). If
g is of type Xl and S — I = { i i , ~ - 9 i k } , we shall denote such a pair by
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(Xl9 i ! , - • - , y, and indicate it graphically by colouring black the vertexes
corresponding to / of the Dynkin diagram of g. Along with the calculation
of b-functions, we also determine the set of ^e^ i6S_ /Ctt7 I- such that M(A, p(/))
is reducible by applying the irreducibility criterion of Jantzen [12], except for
(4.1). In (4.1), we consider the case where I = 4>. The content of (4.1) is a
restatement of [15]. In (4.2)-(4.4), we consider the case where p is a maximal
parabolic subalgebra and its nilpotent radical is commutative. In (4.5) and
(4.6), we study two examples, where the fr-functions can be calculated directly.

4.1. Verma modules Let us consider the case where I = <p. In this case,
p = b and M(/l, p) is the Verma module.

Lemma 4.1.1. [15, Theorem 2.1 and Remark 2.3] For any Me^.e SZ>0 tn / ;

there exist a differential operator P^ e F(G, ^G) and an invertible micro- differential
operator Q^ in a neighbourhood of a generic point of the conormal bundle of B in
G, such that pJ*+» + 0d = b^f^08 and QJ^+li + Qd = ^(A)/A + W with b^X) =
Ooeju [<A + P, a v > ] < M ' a V >

5 where M° = 1 and [x]m - x(x + I ) - - - , (x + m - 1)
for m > 0.

Lemma 4.1.2. ([6, 7.6.24]) The following conditions are equivalent for
A e t v . (1) The Verma module M(A, b) is irreducible. (2) <A + p, av> / 1, 2 , - - -
/or any aeR + . (3) fr^/l - //) / 0 /o

Lemma 4.1.3. rfe following conditions are equivalent for A e t v . (1)
p, av> /O, -1, -2- - - , /or awj; aei^+ . (2) b^(A) ̂  0 /or

The verification of (2)o(3) in (4.1.2), and (4.1.3) is easy and omitted. Thus
Conjectures A, B and C hold for this case.

4.2. Commutative parabolic cases (1) Let us consider the case where S — I
consists of only one simple reflection rt and the coefficient of a£ in the highest
root is equal to one. Then the nilpotent radical of the parabolic subalgebra
p(/) is commutative, and all such parabolic subalgebras can be obtained in
this way. We refer to these cases as commutative parabolic cases. Further
we assume that g is simple. Such (g, i) can be classified as follows :

g-i, J>) • ----- • - o - • ----- « (p < q)

(Bp,l) o - * ----- • => •



360 AKIHIKO GYOJA

(£,„!)

(Figure 1)

(Note that (Ap+q.l9 p) ~ (Ap+q.l9 q), (Dp9 p) ̂  (Dp9 p - 1) and (£6, 1) - (£6, 6).)
First, in this number, we consider the cases where — ws(af) = oct. We shall

refer to these cases as regular commutative parabolic cases. It is known that
(L(/), ad, u_( / ) ) ~ (L(/), ad, l/_(/)) is an irreducible regular prehomogeneous
vector space. (See [25] and [7] for prehomogeneous vector spaces. See [22]
and [21] for the prehomogeneous vector spaces of this special type.) The
regular commutative parabolic cases are (A2p_1,p), (Bp, 1), (Cp, p), (Dp, 1),
(D2p9 2p) and (£7, 7).

Lemma 4.2.1. Conjecture A holds for the regular commutative parabolic
cases.

Proof. Let bt(s) be the minimal polynomial of seEnd^G (^G[s]/f
s/

^G[s]/js+1). Since every B x B-orbit contains the identity element e in its
closure, fe,-(s) is also the minimal polynomial of seEnd^0 (^0[

s]/;Y^o[s]/iS + 1)>
where ^0 denotes the stalk of Q)G at e. (Cf. the proof of [7, 2.5.3].) Since
17 _ • P is an open neighbourhood of e and ft(up) = Wi(p)fi(u) for any w e £ / _
and peP, in order to prove Conjecture A, it suffices to show the existence of
a micro-differential operator Qe£v_ such that Q(fi\ L/_) s + 1 = b£.(s)(./;.| l/_)s and
invertible at some point of W0(/f L /_ , (/_). (Recall the convention (2.2) and
note that tn£-(p) /O for any peP.) By the definition of semi-invariants,

(4.2.2) f i ( l u l ~ l ) = (wsWi - w^(l)fi(u) = (- 2wi)(l)fi(u)

for any /eL and w e C 7 _ , i.e., ( / j -oexp) |u_ is a relative invariant of the regular
prehomogeneous vector space (L, ad, u_) . Hence we know the existence of
the desired micro-differential operator [24,4.6].

Remark 4.2.3. The relative invariant (^-oexp) |u_ appeared in [22,
Theorem 1.4.2].

4.2.4. Let us determine the explicit form of bt(s). By (4.2.2), ( / f oexp) |u_
is a relative invariant corresponding to the character —2wt. Since a d ( — m f

v )
= 1 on u_, the polynomial degree of ( / ]oexp) |u_ is equal to 2 <tz7,-, w^y,
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which is equal to p, 2, p, 2, p, 3 for the cases (A2p_l, p), (£p, 1), (Cp, p), (Dp, 1),
(D2p, 2p), (£7, 7), respectively. Comparing with the degree of irreducible
relative invariants of prehomogeneous vector spaces (L, ad, u_) [25], we can
see that each ( / joexp) |u_ is an irreducible relative invariant. As is seen from
the proof of (4.2.1), bf(s) is equal to the 6-function of ( / )oexp) |u_ , whose
explicit form is given by

G4 2 p - i ,P) bp(s) = ( s+ l ) ( s + 2)-(s + p)

(Cp,p)

(D2p, 2p) b2p(s) = (s + l)(s + 3 ) - - ( s 4- 2p — 1)

(E 7) b (s) = (s + l)(s + 5)(s + 9)

See [20], also [21] and [11].

Lemma 4.2.5. Conjecture B holds for the regular commutative parabolic
cases.

We can check this assertion by a direct calculation using the irreducibility
criterion of Jantzen [12]. This assertion is essentially due to S. Suga [29],
and is the original motivation of the present work as is explained in (0.3). It
is easy to see that Conjecture C also holds for the regular commutative parabolic
cases.

4.3. (£6, 1) o • • • •

Let G be a complex Lie algebra of type £ 6 ,g = Lie(G), I = S — {rj,
/' = ws/ws, P = P(I), P' = P(I') and L' = L(I'}. Put J = (1, 2, 3, 4, 5}.

Lemma 4.3.1. w seP_ • L(J)P.

Proof. It suffices to show that w sew sH^-w s • J4jP^, or equivalently that

(4.3.2) wsEWjWjWj.

We can show that the coset representatives in (Wj\W)s are given by the
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2 4 3 1

i
O

I -1
4 3

1 •!>u 4-
1

I -I -I
O

I

2 4 3 1

3 1

1 3

•1
O

(Figure 2)

1 3 4 5 6

diagram of Figure 2.
(It implies that (Wj\W)s = {e, 1, 13, 134, 1342, 1345, 13425,---} and all the
expressions of elements of (Wj\W)s obtained in this way are reduced.) Hence
ws = wj • 13425431 • 65432456 e WjWjWj.

Lemma 4.3.3. The morphism p: P_ x L(J) x P — » G defined by the
multiplication is a submersion.

Proof. It is enough to show the surjectivity of dju at (e, w, e) for
we Wj. Hence it suffices to show that p_ + I(J) + (ad w)p = g, or equivalently
that ( K _ u K / ) U K j U w ( K + U K / ) = R. Since weW^, the left hand side contains

\Rj) = R.

Lemma 4.3.4. The morphism \JL\ P_ x L(J) x P-^G is smooth and surjective.

Proof. By (4.3.3), ^ is smooth and its image G0 is an open set of
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G. Hence G — G0 is a P_ x P-stable, closed subset of G which does not
contain ws (cf. (4.3.1)). Since every coset P_-gP (geG) contains ws in its
closure, G — G0 is empty, i.e., \i is surjective.

Lemma 4.3.5. (1) Conjecture A holds for (E6, 1). (2) b^s) = (s + l)(s + 4).

Proof. Let //(x) - /f(wsx). By (2.7), n*f[ = ml® (f( | L(J)) ® w,. As is
easily seen, (f[ |L(J))(w/1x) is the semi-invariant of L(J) corresponding to the
following white node.

1 3 4 5

(D5, 1) O • • •

By (4.3.4), we can reduce the proof to the case (D5, 1), which we have already
taken up in (4.2).

4.4. Commutative parabolic cases (2)

Lemma 4.4.1. (1) Conjectures A, B and C hold for commutative parabolic
cases. (2) The b-functions are given by

(Ap + q_l9 p) bp(s) = (s+ l)(s + 2)"-(s + p) (p < q)

(D2p+l9 2p + 1) b2p^(s) = (s + l)(s + 3)- - . (5 + 2p - 1)

(E69 1) b1(s) = (s + l)(s + 4).

See (4.2.4) for the 6-functions in the regular commutative parabolic cases.

Proof. We shall reduce the proof to the regular commutative parabolic
cases as in (4.3). More precisely, by showing (4.3.2) for some J, we shall reduce
the proof as follows; (Ap+q_^ p)=>(A2p_1, p) (p < q), and (D2p+l,2p+ !)=>
(D2p, 2p).

For the case (Ap+q_l9p) (p < q), let J = (1, 2 , - - - , 2 p - 1}, and K =
{2p + 1 , • • • > / ? + q — l}(c: /). Calculating products as permutations, we get
w /WsW/ = ws_(2p}, and hence ws - yvI\vs_{2p)wI = WjWjW^Wje WjWjWj. (If q =
p + 1, then K = 0 and wx = e. Recall that / = S — {p} in the present case.)

For the case (D2p+l, 2p + 1), let J = S-{1}. Then \VS = \VIWJ^IE
WjWjWf. In fact, in the notation of [3, Planche IV],
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4.5. (Cn, 1) o - • -----
Oil <*2

Let

/ 1\ ( K\
K = Kn=l .-• eGLn(C), / =

\ 1 / \~K I

g = 5p2n(C) = {XeM2n(C)\XJ + J'X = 0},

G = Sp2n(C) = {geGL2n(C)\gJ'g = J),

/a \
d(a) = for a e GLn(C), d(f t , • • • , tn) = d(diag (tt , - - - , t,,)),

\ K'a^K }
f 1 bK \

= 'fc}, M ( i ) = ( for feeS,

\ ! /
[/' = {(x0.)EGLn(C)|xi; = 1 and xy = 0 (i >;)},

U = {d(a)u(b)\aeU',beS}, 17 _ = { 'wlwel/},

r={rf(t1 , . . . ,g | t ieCx}, B=UT, B. = {'b\beB}.

Then the semi-invariant f- corresponding to the fundamental weight wf is given
by ft(x) = det (xfl^\<p,q<i for x = (xpq)eG. Let us consider the fr-function bi(s)
of//. Since every (5_, 5)-double coset contains J in its closure, it is enough
to consider the fo-function in a neighbourhood [/_ • 777.7 of J. A direct calcula-
tion shows that /t(r • d( t 1 , - - - , t n )d(a)M(-fe)J) = t1/1(rf(a)u(- fe)J) = ^(fcn +
fli2&2i +'" + aiAi) for y e C / - , t p e C x , ae(aM)eL/ ' and b = (bpq)eS. Hence
Conjecture A holds with

Now the verification of Conjectures 5 and C in this case is easy.

4.6. (G2, 1)
«1 «2

Let g be the totality of the matrices

(4.6.1)

b2 b[ t2 a1 0 —#3 #4

2b3 2b2 2b1 0 2a1 2a2 2a3

— b'4 63 0 b1 —t2 —a{ —d2

— b'5 0 —53 b2 —b\ —t1

0 b'5 b'4 63 -b2 :: -::J
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and G the group generated by {expX|Xeg}, where exp X = £*>o Xn/n\.
Then g is the isotropy subalgebra of gI7 (acting on A3C7) at v0 = — ul A u5 A w6

+ u2 A w3 A u-j + u1 A w4 A w7 — w2 A u4 A u6 — u3 A u4 A w5 and is a simple Lie
algebra of type G2. The isotropy subgroup of GL7 at f0 consists of 3
components G, Got and Gco2, where a; is a scalar matrix of order 3. Since

We = -1

fixes u0, it belongs to G. (Compare the determinant.) Let B (resp. B_, T) be
the totality of upper triangular (resp. lower triangular, diagonal) matrices in
G. Then B and B_ are opposed Borel subgroups and T is the maximal
torus. The above element ws represents the longest element of the Weyl
group. Let t = Lie (T) and ^ be its character defined by diag (t1 + t2, f1? f2, 0,
— t2, — tl5 — t1 — t2) -> rf. The simple roots are oc1 = A2 and a2 = /x — A2, the
Dynkin diagram is given by a1-^a2, and the fundamental weights are
w1 = A! + A2 and m2 = 2h1 + A2. Let zii(x) = det (xpq)i<p,q<i for x = (xM)eG.
Then the semi-invariants corresponding to fundamental weights are given by
fWl = A19 and fW2 = A2. (We also have J3 = A4 =f2w\ A5 = fw\ A6 = /mi

and A-j = 1.) Let l/s be the totality of the matrices
/ 1 -al a2 a3 ^a1a3 ^a2a3 a\

1 0 a2 a-* + a,a2 al ia9a

1 2a1 2a2 2a3

1 0 -a2

1

\ 1

and Ul the totality of the matrices

/I 0 0 0 -a; -a's + ala; 0

1 a[ 0 0 0 al

1 0 0 0 a ;

1 0 0 0

1 -a[ 0

1 0
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Then the open neighbourhood J3_ • [7sC/zws of ws in G is naturally isomorphic
to B_ x Ut x Us, and a direct calculation shows that fWl(b'usul^s) = Wi(b')
x( — ala"5 + a2a'4 + af) for b' eB_. Hence Conjecture A holds for / = {2} with
the fc-function

Now the verification of Conjectures B and C in this case is easy.

Remark 4.7. Although we can write down semi-invariants explicitly in
many cases, it is difficult to calculate their fo-functions in an elementary way
except for a few extremely simple cases such as (4.5) and (4.6). Thus we need
an algorithm to calculate them, which we shall give in the next section.
Without to say, once the fr-functions are calculated explicitly for a specific /,
the verification of Conjectures B and C for this specific case is not difficult,
and actually we can do in every example below. Unfortunately, our algorithm
to calculate the fo-functions verifies only one half of Conjecture A, namely, the
existence of the micro-differential operators QM(A). The author hopes to discuss
the differential operators PM in a different place.

§5. Hoionomy Diagrams

5.0. In this section, we give a modification of the techniques developped
in [24], suitably for the calculation of fo-functions of semi-invariants. The main
difficulty of the modification lies in finding codimension one intersections of
irreducible components of W0(/'

5) (the characteristic variety of ^(/)) and in
showing the local irreducibility of components. Our techniques to find
codimension one intersections are given in (5.8)-(5.13). We discuss the local
irreducibility in (5.16) and (5.17).

5.1. Let Lg: G->G (resp. Rg: G -> G) be the left (resp. right) translation,
i.e., Lg(x) = gx (resp. Rg(x) = xg). For a tangent vector XeTxG at xeG and
for geG, we write gX (resp. Xg) for (Lg)^X (resp. (R^X). Then these
"products" are associative, i.e., g1 (g2X) = ( g 1 g 2 ) X , (g1X)g2 = g1(Xg2) and
(Xg1)g2 = X(g1g2). Let TeG = g. Then the tangent bundle TG of G is the
totality of the "products" gX (geG, XEQ). Note also that gXg~l = (adg)X.

5.2. Let / be a subset of S, /' - ws/ws, P = P(I), Pf = P(/')9 and
we(Wr\Wi'WI)l. Henceforth in this section, we fix /. Since BwB is an open
neighbourhood of w in FwP, w"1 Tw(P'wP) = w"1 Tw(BwB) = Te(w

bw + b = t+X a e w- i J J +B(a)+I a e l { +s(a) . (We write x^y^xy and yx

Put r(FwP)i:=U^P'wp{5eT.*G|{i.r.(FwP)}s and let T(FwP)1 be its
Zariski closure in T*G, which is called the conormal bundle. Identifying g



HIGHEST WEIGHT MODULES AND b- FUNCTIONS 367

with its dual by the Killing form, we may consider T(P'wP)1 as a subvariety
of TG. Then

(5.2.1) w-1Tw(FwP)1= £ 8(a).
aew ~ 1 R + n R +

Consider the P' x P-action defined by (p'5 p)x = p'xp"1 for p'eP', peP and
xeP'wP. The isotropy group (P' x P)w at w can be identified with P / w nP by
P / wnP3p-»O, p)e(P' x P)w. For wXe Tw(P'wP)± and peP / w nP , we have
wQ^Xp'1) = > • wX • p~l. Hence the natural action of (P' x P)w on rw(P/wP)1

is identified with the adjoint action of P'wf|P on ^aew-iR+nR+ gW- We have
P'^p = t + ̂ evv-HR+uRl,]n(R+uRl}Q(x). Since we(WI.\W/WI)*l9w-*Rr.-cR +

and w R / f _ c = R + . Hence w ~ 1 ( K + U# r )n(P + UK/ ) - (w"1P+ f l P + ) U w"1^,-
UP/ , - , where the right hand side is a disjoint union.

5.3. Colocalization Given we(Wr\W/WI)l. Put R (w) - w " 1 R + n P + ,
K'(w) - w-1^,. UP,,-, F*(w) = IaeK(w)g(a) (cf. (5.2.1)), G(w) - P'wnP, g(w) -
Lie (G(w))( = t + La6R(w)u K.(w) Q(a)) and yl(w) - T(BwB}L = T(P'wP)1. Then the
colocalization [24, 4.4] of the P' x P-action on G at w can be identified with
(G(w), ad, F*(w)) and we have g(w) - t + Y.^R(^R'(

5.4. Good Lagrangian Recall that S = ̂ ies-iwi> ^ = ^ol^f^86, ^"(X)
= Jf/sJf, and /A + 0<5 = (/A+s5 mods^) for I - Zies-/^- When we are

considering /A + 05, we say that ^i(w) (we(W^. \ W/W/)i) is a ^oo^/ Lagrangian if

(5.4.1) (G(w), ad, K*(w)) is prehomogeneous, and

(5.4.2) AM cz Ch @Gf* + od = W0(/5).

Then as in [10, 0.4], we can show that there exist A0et and an element Y0

in the open G(w)-orbit of F*(w) such that (ad^0)70- 70. By (2.6, (3)) and
by the definition of W and W0, the condition (5.4.2) is equivalent to A(w) c
Ch^G[s]/A+s5 = W(/'). Fix such an element w. We know that ^(/) is
simple holonomic in a neighbourhood of a generic point of a good Lagrangian
[10, 2.8]. Hence we can consider the principal symbol and the order of /A + 0<5

there. See [24] for the definitions of 'simple holonomic', 'principal symbol'
and 'order'.

5.5. Order Here we give an algorithm to calculate the order of /A + 0<5.
Assume that A(w) (w£(Wr\ W/Wj)^ is a good Lagrangian. Take A0et so that
(adA0)Y0=Y0. Then tr (ad A0\ 7*(w)) = Ia6*(w)<a, v40> and dim 7*(w) =
cardP(w). Since f^pxp'1) = (^w^p^w^'1)^) for peG(w) = P'wnP, /• is
a relative invariant with respect to g(w), and the value of its character at A 0 is
(w~lwsWi — &i, Aoy. Hence the order of fA + 0d at the conormal bundle
A(w) = T(P'wP)1 is given by
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(5.5.1) ord^j

(cf. [24, 4.14] and [10, 3.3]).

Remark 5.5.2. If (G(w), F*(w)) is prehomogenous, we can consider the
right hand side of (5.5.1). If it really depends on the choice of A0, then A(w)
is not contained in W0(/<5) = Ch ̂ G/A + 0<5.

5.6. Intersection exponents Assume that A(w) is a good Lagrangian,
YieK*(w) lies in an orbit of codimension one, and wY1eA(w) belongs to
another good Lagrangian variety A(w'). Then dim A(w')nA(w) = dim A(w) — 1.
Assume that A(w')f}A(w) is not contained in any irreducible component of
W0(/<5) other than A(w) or yl(w'), and that A(w) and A(wf) are locally irreducible
at wYi as analytic spaces. (Cf. (5.17).) Find an element ^1eg(w) such that
(adAl)Y1 = Y1. Let (fj,: v) be the intersection exponent of A(w') to A(w)
[24, 6.4]. Let F = F*(w)/(ad g(w)) Y1. If the value of tr (Al \ F) is independent
of the choice of Al, then

V

Since v and /^ are relatively prime, non-negative integers, they are uniquely
determined by this formula. If the value depends on Al9 then {JL=\ and
v = 0. (Note that the intersection exponents depend only on the characteristic
cycle. Hence it is enough to consider @fod = @[_s](fd}s Is@\_s](f8}s. Since
only one function f& appears in this ^-module, the argument of [24] works
and we get the above formula.)

Lemma 5.7. [24, 6.6] Let w, w'e(Wr \W/Wj)h d = Y,ies-iwi and 9o(w) =
{v4eg(w)| <wS(5, M> - <5, Ay = 0}. Assume that A(w) (or A(wf)) c W(/5),
y2eK*(w), the codimension of (adg0(w))y2 in V*(w) is one, and wY2EA(w').
Then A(w)\jA(w') c= W(/5). Moreover, W(/a) is non-singular in a neighbourhood
of wY2.

5.8. Intersection of conormal bundles (1) In the special case wher w > w'
and l(w) — /(w') = 1, we can understand the intersection A(w)r\A(w') fairly
well. First, let us consider this case. Put l/a = xa(C), U^ = U(X-{e},

ria>0,za<0^a(C U -)> f°r *ER aild ZE W' SuppOSC that

w = wrjji;, /(w) = /(w) + 1 + /(t;) =:n,

w' = wy, /(w') = /(w) + /(f).

Note that wj8 > 0, u"1^ > 0 and 5z£ - 5t/(z)z.

Lemma 5.8.1. In a neighbourhood of vv'eG, we have an isomorphism
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(Bw'B, BwB, G}~(Cn~l x {0} x {0}*'", C""1 x Cx x {0}*-", C""1 x C x CN~").

where N = dim G. Especially A(w) and A(w') have an intersection of codimension
one.

Proof. Since BuB = uU(u~l}B, we have natural isomorphisms

uU(u~1} x BvB ~ BuvB,

uV(u~1} x BrvB ~ BurvB (r: = rft),

ul)(u~1} x Bu~lwsBwsuv ~ BwsBwsuv.

Hence it suffices to give an isomorphism

(BvB, BrvB, BV(u~l^s}v) = (BU(v)v, BU(rv)rv, BUfa-^wJv)

-(C"1'1 x {0} x {0}M~m, C'""1 x Cx x {0}M~m, C'"'1 x C x CM~m)

in a neighbourhood of v in BU(u~lw^v, where m = dim BU(v)v + I and
M = dim BU(u~1ws)v. It is easy to see that U(v)a [ /(M~ IWS) , i.e.,

(5.8.3) BU(v)(]BU(u-lws) = BU(v).

Hence, in order to prove (5.8.2), it is enough to show that

(5.8.4) BUWmBUfa-^s) = BU*pU(v).

Since BU(rv)rv = BrvB = BrBvB = BrBU(v)v = BrUpU(v)v,

(5.8.5) BU(rv)r = BrUpV(v).

If t / 0, rft- x f t ( t ) E T x p ( - t ) x _ p ( t ~ l ) * p ( - t) • x^eBx.^r1). Hence

(5.8.6) BrUjf = B U l f t -

By (5.8.5) and (5.8.6), BU(rv)r = BrU (v)\jBU*pU(v). Hence in order to prove
(5.8.4), it suffices to show that

(5.8.7) BU-pUW^BUfa-^s), and

(5.8.8)

It is easy to see that U - p \ j U ( v ) c C/ (M~ I W S ) . Hence we get (5.8.7), and (5.8.8)
reduces to r^ jBC/ (M~ 1 w s ) , i.e., rw~ 1 w s ^B(7(w~ 1 w s )w~ 1 w s = Bu~lwsB.

Lemma 5.8.9. Let w and w' be as above. Then

where E = {ae#+ | voc > 0, uva > 0, va
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Proof. The assertion follows from the equalities

i..- n U...T. n
vtx>Q

uvct < 0

and

ua >0 ua<0 a<0
uvcx. < 0 vet. > 0

= (uv}~lBuB • BrvB = (uv)~ l uU (u~ l)B • BU(rv)rv

= n v.m. n i / - . - r - i /V i / i - n ̂ ...
ua >0 ua < 0 a<0

uua < 0 ua > 0

Here the third equality holds only in a neighbourhood of w' = uv. Cf. (5.8.4).

5.9. Next, let us consider a way to find elements in the intersection
A(w)r\A(w') for general w, \v' e(Wr\W/WI)l. Here we constantly use the
notation in (5.1).

First, let us consider the case where

w = urv, r = rft (J8e77), /(w) - l(u) + 1 + /(u),

w' = MI;, and /(w') = /(M) + l(v),

as in (5.8). Take representatives of u and i; in NG(T), which we shall denote
by the same letters u and v, so that uxft(t)u~l = xuft(t) and ^"^^(Ou = x v - i p ( t ) .
Here ^(t) denotes a one parameter subgroup of G such that ^(0) = Xft(= root
vector). Put w^(f) = x^(rl)x_p(- t ) x p ( t ~ 1 ) ( t e C x ) . Then w^(t) represents the
element reW. We take w /?(l) as a representative element of r, and denote
W0(l) by r. Put 0(t) = u x f t ( t ) x _ f t ( - t)xft(t)v. Then gf( l ) = urv =: w, gf(0) = MU =:
w', and

for t / 0. Hence if t =£ 0, then

g(t)-lTg(l}(BwB] = Te(g(t)~lBg(t)B) = W(t) + b = (bw + b)^ ( f- f-1 J , and

where y = i;"1^. (Cf. (5.3) for 7*(w).) Hence

(5.9.2) w' - 1 Tw.(BwB}L => lim 0(t)- 1 T^BwB)1- = lim K*(w)*"(t).
f ~*0 f — > cxj
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Here, for instance, the most right hand side denotes the totality of lim^^ u(r)-Xv(f ) ,
where v(t) is any path in F*(w) such that lim v(t)Xv(t) exists. If a, a', a + %' eR,
then it is known that \_Xa, X^ = NaLta'Xa+a> with some N a < a - e C x . Take

1 j R + f l K + , and let p = p(a) (resp. q = q(a)) be the integer such that

a, a + y , - - - , a + pyeK and (p

(resp. a, a + y , - - - , a + gyew"1^ r\R + and a + (g + l)y$w~1R + O.R + ).

Then

(5.9.3) =t A f a < y ••• A'a + (j-_ 1 ) y < y 2^ —

= V _ jv . . -N / - i X J . -/^ , . . . . ^a.y J va-*-(i- l )y , } '« + ») '
'

for 0 <7 < q. Here we understand — = O f o r n e Z < 0 . Note that
n\

1 1 1

p! (P-1)!
1 1

p(p -

1 p-1 (p-1) 2

Hence by (5.9.3), we can find elements in F*(w)Xy(t) of the form tlXa+iy + (terms
of lower degree in t) for p — q<i<p. In other words Xa + iy + 0( t~ 1)e

}xv(t) ^ ^ QQ^ for p — q < i < p. Hence

(5.9.4) I/':- ^ g(a +;» c= lim

5.9.5. In general, for a C-vector space K denote by Grassm(K) the totality
of m-dimensional linear subspaces of K with the natural structure of an algebraic
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variety. For a smooth algebraic variety X over C, let T*X be the cotangent
bundle and Grassm (T*X) = (JxeX Grassm (T*X) (disjoint union) with the natural
structure of an algebraic variety. We denote the limit in Grassm(F) or
Grassm (T*X) (with the classical topology) by G-lim, and the limit in T*X by
lim. Let n (resp. nm) be the projection T*X-»X (resp. Grassm (T*X) -> X).
For a smooth irreducible sub variety Y of X (not necessarily closed), let
Grassm((TY)J-) be the Zariski closure in Grassm(T*X) of the (disjoint) union
(JyeY Grassm((Tvy)x). Note that it is also the closure with respect to the
classical topology.

Lemma 5.9.6. // l/eGrass^ry)1), then U c (TY)±.

Proof. Let S be the subvariety of Grassm(r*AT) x XT*X consisting of
pairs (U, u) such that UBU. Let Grassm (T*X) A E -* T*X be the projections.

Note that Grassm((TY)1) is irreducible, a is a vector bundle, and /} is a
projective morphism. Hence Z:= /fa"1 Grassm ((T7)1) is a closed irreducible
subvariety of T*X. Since n(Z) c Y and Z ( ] n ~ l ( Y ) = (TY^^n'^Y), Z =

This implies the asserion.

Now we return to the cotangent bundle of G. Let v be an element of
the most right hand side of (5.9.4), and v(t) a path in F*(w) such that
v(t)Xv(t) -> v(t -» oo). Put m := dim F*(w). Define T : C -> Grassm (g) by t(f) =
F*(w)*v(r). Considering the normalization of the Zariski closure of i(C), we
can show that the boundary of r(C), or r(C) itself, consists of only one
point. Hence G-lim,^ V*(w)Xv(t} exists, which we shall denote by V'. Then
(v(t)*v(t), V*(w)*v(t)) is a path lying in {(x, K)eg x Grassm (g)|xe F}. Hence its
limit point (v, V') also lies in the same set, i.e., veV'. Thus

(5.9.7) lim F*(w)^(r) c F'.
-

Put £0 = w ~ 1 ^ + n K + and E! = [a +jy\ueE0, p(a) -- q(<x) <j < p ( a ) } . For
each a, ^eJR, it is well known that {/eZ|a + j/JeK} is an interval. Hence

£o = U {^ +77 1 0 < 7 < q(oc)} (disjoint union)
oceA

with some subset A of E0, and

EI = U (a +77lp( a ) — <?(<*) ^7 ^ P(a)} (disjoint union).
aeA

Hence

(5.9.8) dim V' = m = dim F*(w) = card £0 - card El = dim V .

By (5.9.4), (5.9.7) and (5.9.8), V = G-lim^ F*(w)x-(r). Hence
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w)^(r-r"1) = G-lim 7;(f) (EwB)1 e Grass

On the other hand

' - G-lim rg(t)(5wJB)-LeGrassm(T(Bw/
JB)-L),

because {BzB\zEW} is a Whitney stratification of G. (By [30], {BzB\zeW}
has a refinement which satisfies the Whitney condition. Taking into account
the B x fraction, we can show that {BzB zeW} itself is a Whitney stratification.)

Next assume that

w' = u'r'v', r' = rp, (jS'e/7), /(w') - l(u) 4- 1 + l(vr),

w" = MV9 and /(w") = /(M') + l(v').

Put gf'(t) = uxp,(t)x_p,(— t)xp.(t)v' and y' = v'~l ft (> 0). As in the first step,
g'(t) can be expressed as b'(t)w'xy>(t — t ~ l ) with some b'(t)eB for £ e C x . Then

^'(O^'^'^"''^ = b'(t)w'V'xy. (t — t~1)eGrassm (T(Bw5)1)nGrassm (T(B'w'B)±).

As in the first step, we can show that G-lim of the left hand exists, which we
shall denote by w"V". In the same way, we can determine the explicit form
of V", and can show that

w" J/"eGrass

Repeating such an argument and using (5.9.6), we get the following algorithm.

5.10. Intersection of conormal bundles (2) Let w, w'e(P^ <\ W/WI)l and
suppose that there exists a sequence w = w0, w 1 ? - - - , w n = w' of elements in W
such that

l(wt) = l(ut) + 1 + /M,

w/ + 1 - UM, and /(w i + 1) = /(«,-) + l(vt}

for 0 < f < n. Note that w = w0 > wx > ••• > wn = w'. Put yt = v^l(($^
(0 < i < n) and define subset Et (0 < / < n) of K+ as follows. (Note that
yt > 0.) First we put

We construct Ei + 1 from Et as follows. For an element ae£ t-, let pf = p,-(a)
and g; = ^f f(a) be the integers such that

a, a + TV,a + p^-eR, a + (pf 4- l)y£-#^,

a, a + y l V - - , a + ^^6^, a + (qt + l)y^Et.

Define Ei + 1 by
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Then

w' PJ e Grassm (r(BwB)1) n Grassw (IXBw'jB)1), and

w' Vn c T(BwB)± n

where m = codimG (£w#).

5.11. The algorithm given in (5.10) often fails to be efficient to find
codimension one intersections of /4(w)'s. Let us give a technique to make up
for this fault.

Lemma 5.11.1. Let notation be as in (5.9.5). If y is a normal point of
the Zariski closure of Y, then Grassm((TY)-L)^n~1(y) is connected (in the Zariski
topology).

Proof. Since nm\ Grassm ((TY)1) -> Y is a birational proper morphism, the
connectedness follows from Zariski's connectedness theorem.

Lemma 5.11.2. [5, Corollary 1 in p. 85] BwB is a normal variety.

Remark. The proof of the normality given in [5] contained a gap, but the
result is valid. See the reviewer's remark given at the end of MR 87g: 17006.

5.11.3. Let notation be as in (5.10). By (5.11.2), we can apply (5.11.1) for
X = G, Y=BwB, and y = w'. Thus Z:= Grassm (T(BwB)L)[\n~ V) is con-
nected. Since {BzB\zeW} is a Whitney stratification, Z c Grassm(7(5w'5)1)
n7C-i(w ' ) = w'Grassm(F*(w')), and w'VneZ by (5.10.1). Thus we get the
following assertion which complements (5.10).

5.12. Intersection of conormal bundles (3) Let w, w'e(Wr \ W/WI)l such
that w > w' and {Vt\Q<i<n}, { P f ' i O < z < w } etc. be various sequences of
subspaces of g constructed in (5.10) by taking various sequences (wj. Then,
there exists a G(w')-stable connected subset of Grassm (7*(w'))? say 270, such
that {w% w'^ /,---}c=w'roc:Grassm(T(jBw5)-L)nGrassm(r(JBw'J3)1-) and V(w'Z0)

5.13. Intersection of conormal bundles (4) If G is of type Ah then we
may assume that G = GLn(C). (Although we have assumed G to be semisimple,
the necessary modification would be obvious.) Since (B x B, Mn(C)) is a
prehomogenous vector space and GLn(C) is an open subset of Mn(C), the
method given in [24, 6.2] can be used.

5.14. Intersection of conormal bundles (5) Besides the techniques to find
codimension one intersections of the irreducible components of W0, we also
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need a technique to show that some components do not intersect in codimension
one.

Assume that A(w)r\A(w') (w, w'e W0(I)) has an irreducible component A
such that dim A = dim G — 1. Let n\ T*G -> G be the projection and gtn(A)
a point such thai dim n ~ 1 ( g ) n A = dim A — dim n(A). Take w"epy0(/)\ {w, w'}.

Since A(w") is the Zariski closure of (Jb,b>eB b'w"V*(w")b = (JbeBBw"bV*(w")b,
we have

=:M.

If A(w") contains A, then

(5.14.1)

and especially

(5.14.2) dim G - 1 - dim n(A) < dim M.

Since n(A) is a B x 5-stable irreducible subset of G, TT(^) = BzB for some
zeW Then (5.14.2) can be also expressed as

(5.14.3) card R+ - 1 - /(z) < dim M.

Therefore, if M does not satisfy one of these conditions, then A(w") does not
contain A.

5.15. Besides the algorithm gien in (5.14), the following simple remark is
also useful. If Bw"B does not contain n(A) = BzB (i.e., w" ^ z), then A(w")
does not contain A.

5.16. In the notation of (5.14), even if A is contained in exactly two
Lagrangians A(w) and A(w')9 it is still possible that the irreducible algebraic
variety, say A(w), would have more than one branches containing A. In order
to apply the algorithm (5.6) and also (5.20) below, we need to know the local
irreducibility of A(w) at the generic point of A.

Assume

(5.16.1) that w', ^e(Wr\W/WI)l and w'< w, that K*(w) has an open dense
G(w)-orbit and 70 belongs to it, that w'"1 • (n~1(w')r\A) (c F*(w')) has an open
dense G(w')-orbit, say Q, and Y1 belongs to it, and that Y0 and Y1 belong to
the same ad (G)-orbit, say C, in g.

Then T(BwB)^ = T(FwP)1 (resp. A) has the open dense F x P-orbit
F(wY0)P (resp. P'fwTJP). Let 3 = {(#, h, X)eG x G x g ^ e C n b ^ n b * } ,
S(w)0 be the subset of S consisting of (g, h, X) such that gh~1eBwB, 3(w)
the Zariski closure of 3(w)0 in G x G x C, and pt the /-th projection of S to
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the i-th factor of G x G x g. For geG and XE& gXET(BwB)^ (cf. (5.2)) if

and only if geBwB and XeCr\b9nb. (In fact, gXeT(B\vB)^ if and only if

geBwB and Xen9nn, where n = [b, b]. If g = b'wb (b, b'eB), then n ^ n n =

(nwnn)* - F*(w)b - (the closure of Cn F*(w)b) = C n K*(w)b - C n n ^ n n - C

n b ^ n b . ) Define the closed imbedding i: 7*G -> G x G x g by i(gX) = (g, e, X).

Then i(T(BwB)%) = {(g, e, X)\geBwB9 XeCftb'nb}. Take an open neigh-

bourhood O of Y! in g which does not intersect C\C. Then i(T(BwB)$)

( ] ( G x G x O ) = P 2 1 ( e ) n 5(w)0n(G x G x 0), and therefore /(rCBwB)1) - pj1^)
n£(w) in a neighbourhood of /(w'Yi). Hence the irreducibility of the germ
of analytic space (T(BwB)±~ w'FJ is equivalent to that of ( p 2 1 ( e ) n S ( w ) ,

z(wTi)). Note that 3(w) = {(g, h, X)eG x G x C\gh~l e B^B,

(Consider the automorphism (g, h, X)-*(gh~l, h, X) of G x G x C, by which
S(w)0 is mapped to (BwB x G x C) 0 {(x, h, X)eG x G x C \ Xe(bx n b)*}.) Hence

(p2"1(^)n 5"(w)) x G -^ ^(w) by (0, e,X)xh-* (gh, h, Xh). Thus the irreducibi-

lity of (P2l(e)fl 3(w), (w', e, yj) is equivalent to that of (£(w), (w'5 e, 7J). Put

5"(w, yj = {(^ , /z )6Gx G\gh~1E~BwB, y^Mnb*}. Note that p 3 :5 ' (w)->C

is an (analytic) fibre bundle whose fibres are isomorphic to .E(w5 yj. Hence
the irreducibility of (5(w), (wf, e, YJ) is equivalent to that of (5(w, yj, (w'5 g)).
Put r=r(y1) = {0eG|y1eb»}. By [28, 3.1, (b) and 3.3, (c)], S(w, yj is a
union of irreducible components of F x F. Hence, in order to show the
irreducibility of (T(BwB)L, wTJ, it suffices to show

(5.16.3)z (F(z)9 z) is irreducible
for z = w' and e. Let us consider the condition (5.16.3)z. Put n = [b, b],
define q' : G -» C by ^'(0) = *^, and let q:F-»C(}n be the base change of
q'. Since q': G->C is a surjective open morphism and it gives an (analytic)
ZcW-principal bundle, q: T-> Cnn is also the same. From this fact, we can
show that the image of each irreducible component of F is an irreducible
component of Cnn, and that (5.16.3)z is equivalent to say that

(5.16.4), (q(F(z)), ZY,) is irreducible.

5.17. Local irreducibility of conormal bundles
(1) Let C be a nilpotent class in g and ye Cnn. If 2 dim (ad (g)yfln) =

dim C, then (C n n, y) is irreducible.
(2) Assume (5.16.1), that

(5.17.1), zQ(z):= (yezO|(Cnn, y) is irreducible} / 0

for z = w' and e, and one of the following conditions.

(5.17.2) ZG(yl) is connected.
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(5.17.3) There exists a Lie subalgebra q of g such that dim (ad (q) • sY1) = -dim C

for z = w' and e, and ad (q)n • W'Y1 U ad (q)" • Y^ c b for any n.
Then (A(w), w'YJ is irreducible.

Remark 5.17.4. If G = PGLl + 1, ZG(yx) is always connected. In general,
the component group of ZG(71) is known [27, IV, 2.26] (classical types), [1]
(exceptional types).

Proof. (1) Understand the intersection Cnn scheme theoretically. Then

dim TY(C n n) = dim (7>C n Tyn) = dim (ad (g) Yn n) = - dim C = dim (C n n). (The

last equality follows from [28,4.6] and [26, (1)].) Hence (Cnn, 7) is
non-singular, and especially irreducible as an analytic space.

(2) First recall that Q is an irreducible, locally closed hypersurface of
F*(w') = nw ' f i n . Especially ZQ c n for z = w' and e. Assume (5.16.1) and
(5.17.1)z for z = w' and e. Then O(w') and £2(e) are open subsets of Q. Hence
we can take Yl in (5.16.1) so that YieQ(w')nQ(e). Then (Cnn, 'YJ are
irreducible for z = w' and e. Hence if (5.16.2) is satisfied, (5.16.4)z are
automatically satisfied. Let F(z) be an irreducible component of F containing
z (z = w' or e). Then q(F(z)) is an irreducible component of C f l n containing
q(z) = Z71. Because of the local irreducibility of Cnn, q(F(z)} does not depend
on the choice of F(z). If (5.17.2) is satisfied, q~lq(F(z}} is irreducible, and
hence q~1q(F(z)) = F(z). Thus F(z) is unique.

Next assume (5.17.3). Let Q be the connected subgroup of G whose Lie
algebra is q. Then by the latter half of (5.17.3), QzY1 c b for z = w' and e,
where QzYl = [qzYl qeQ}. Since every irreducible component of Cnn is of the
same dimension [26], dim q(F(z)) = dim (C n n). On the other hand, dim QzY1 =

dim (ad (q) • ZY,) = - dim C = dim (C n n). Hence dim QzYl = dim q(F(z)), QzY, is

open dense in q(F(z)), gzZG(71) is open dense in q~1q(F(z))9 and consequently,
(q~1q(F(z)), z) is irreducible. Thus F(z) is unique.

5.18. Holonomy diagram To each we(Wr\W/WI)l such that A(w) c W,
associate a vertex labeled w, and connect two vertexes associated to w and w'
if dim A(w)ftA(w') = dim yi(w) — 1. Thus we obtain a graph, which we shall
call the holonomy diagram of (g, /). (Sometimes we call a subgraph of the
holonomy diagram a holonomy diagram) Sometimes we write ordA(w)f

s beside
the vertex associated to w, and the intersection exponent (fi: v) beside the edge
corresponding to the intersection. Put

Then the vertexes of the holonomy diagram are parametrized by W0(I).
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5.19. Local ^-functions Let S — I = { i l 9 ~ - 9 i k } 9 I = { i k + l 9 - ~ 9 i i } 9 s_ =

( s f l J - - - , s f J 9 weJ^0(/) and ieS — I. Assume that there exist a micro-differential
operator Qi(s_)£$[s_]=$®cC[S-^ whose principal symbol is independent
of s_ and invertible in a neighbourhood of a generic point of A(w)9 and a
polynomial &W i i( s.)eC[s. ] = C[sf l,..-,sJ such that/JA + 05 - &w,£(A)aW/A + (W

for any A = Xi6s-/^mi- Such a polynomial bwj is called f/ze /oca/ b- function.
If yi(w) is a good Lagrangian (cf. (5.4)), then such Qt(s_) and bwj (ieS — I) exist

and bWji (ieS — I) are unique up to non-zero constant multiples [24], [10].

5.20. Calculation of local A-f unctions The local b -functions can be
calculated using the holonomy diagram as follows. Let A(w) and A(w') be
good Lagrangian varieties which intersect in codimension one. Let (/x: v) be
their intersection exponents,

or<W,.T<»= I m,.A;-^, and ord^,/^0' = - I m/A,-^.
ieS-/ 2 ieS-J ^

Assume that mt- < m-, that some irreducible component of A(w)r\A(w')9 say A,
is not contained in any A(w")(w"e W0(I)\ {w, w'}), and that yl(w) and yl(w')
are locally irreducible as analytic spaces at a generic point of A. Then up to
a non-zero constant multiple, we have

- n -Mw- - -w"") +&w,iW j = o L v + l

where [x]j f = x(x + l ) - - - ( x + j — 1) for j > 0 and [x]° = 1. Especially, if
(JJL, v) = (1, 0), then

h a\ r 1^w'.iW _ i fA + 05_ J fA + 0<5 ,- — -— — oraA(w)j ora^^^j -h -
&W.»W L 2

(Since W0 has exactly two irreducible components in the analytic sense in a
neighbourhood of a generic point of A, we can apply [24, Theorem 7.1] to our
situation. By [10, 4.5], the remaining argument of [24, §7], with an obvious
modification, also works in our situation.)

5.21. After submitting the first draft, the author learnt from M. Kashiwara
a way to show that an irreducible (germ of) analytic space (A9 q) (c W) of
dimension dim G — 1 is contained in at most two irreducible components, say
A and A'9 of (W0, q). This algorithm works only if A and A' regularly intersect
each other, i.e., with the intersection exponent ( j u :v ) = (l :0). Thus, for
example in (7.1) below, it does not work for the intersection of ,4(121) and
yi(12121), but it does work and simplifies the argument for the other
intersections.
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Here we include this algorithm by permission of M. Kashiwara, to whom
the author is very grateful.

Put H:= P' x P and H0:= {(p', p)eF x P\(wsS)(p')S(pr1 = 1}. Let A be
an H-stable closed subvariety of W of dimension n—l (n:=dimG) which
contains a dense /f0-orbit H0-q;

(5.21.1) H0-q=A.

Let r0 be a maximal torus of the isotropy group Hq. As in the proof of
[24, 6.6], we can show that W is non-singular at q. Hence by [10, 3.1], we
can find a local coordinate system {x 1 , - - - ,x n + 1} of (W, q) such that Xj(q) = 0
(1 <j < n + 1), xl = x2 = 0 on A, and each Xj is relatively T0-invariant with
a character 0,-. Put F: = {x3 = ••• = xn + 1 = 0}. Then

(x l 5 x2): F — > C2 maps q to (0, 0), etale in a neighbourhood of q, and

r0 -equi variant if we consider the diagonal T0-action diag (0 l5 (f>2) on C2.

Assume that

(5.21.3) 0'i = 0i and UeZ^^fU) = (0, 0).

5.21.4. Let us show that there is no Testable analytic curve in C2

containing (0, 0), except for the coordinate axes.
Assume the contrary, and let C be a T0 -stable curve in C2 containing

(0, 0), different from the coordinate axes. We may assume that (C, (0, 0)) is
irreducible. Let (p(xl9 x2) = Xi j>oao>;cix2 be a defining equation of (C, (0, 0)).
Since any transform of cp by (T0, e) is also a defining equation of C, cp is
relatively r0-invariant. Hence 0i02 does not depend on the terms x\xj

2

appearing in cp. By (5.21.3), it follows from this remark that (1) any x{ (j > 0)
do not appear in cp or (2) any x\ (i > 0) do not appear in <p. In other words,
cp is divisible by x1 or x2. But (p-1(0) = C is an irreducible curve other than
the coordinate axes. Thus we get a contradiction.

5.21.5. Let us show that there are at most two irreducible components of
(W0, q) containing A. Let (A, q) be such an irreducible component. Let Ct

(i = 1, 2) be the (local) analytic curve contained in (F, q) and defined by xt = 0
(i = 1, 2). Thus At]F = Cl or C2 by (5.21.2) and (5.21.4). If '= Q', then A
contains (H, e) • Ct. The latter contains Ct and (A, q) = (H, e) • q, and hence is
of dimension at least n. Thus A = (H, e) • Q for i = 1, 2.

5.21.6. To see if (5.21.3) is satisfied, it suffices to calculate {01; 02}- In
the Grothendieck group of T0 -modules

= [r,w] -
1] - \TqA] by (5.21.1)
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As for the third equality, see the proof of [24, 6.6]. The orthogonal complement
( )1 is considered with respect to the canonical bilinear form on Tq(T*G). The
contragradient representation and also the corresponding element of the
Grothendieck group is indicated by the superscript * . Furhter assume that A is
contained in a Lagrangian variety A which is non-singular at q. Then

)] - [7X1*,

and hence

W>J + W>2] = ([TqA] - [7X1)* + ([7X1

Then 4>
1 = (fr^1, and (5.21.3) is equivalent to the following condition.

(5.21.7) The T0-action on TqA/TqA is non-trivial.

Restating (5.21.1) and (5.21.7) using colocalization, we get the following.

5.22. Intersection of conormal bundles (6) Assumptions and notations be
as in (5.7). Let T0 be a maximal torus of the isotropy group G(w)y2. Assume
that T0 acts on F*(w)/(ad g(w))72 non-trivially. Then wY2 is not contained in
any irreducible component of W0 other than A(w) or A(v/)> (A(w), w72) and
(yi(w'), wF2) are irreducible and non-singular, and their intersection exponent is

§6. Kazhdan-Lusztig Conjectures

6.0. In [18] and [19], Kazhdan and Lusztig made several conjectures,
one of which has been settled [2], [4]. Using or assuming these assertions,
we can get useful information on the micro-local structure of ^/A + 0<5. In order
to state their conjectures, we need to review [18].

6.1. Kazhdan-Lusztig polynomials The Kazhdan-Lusztig polynomials
Pytlv(q) (y, we WO are polynomials in q with non-negative integral coefficients,
and PyjW(0) = 1. They can be calculated in the following way [18]. (1) If
y £ w, 'then Py>w = 0. (2) If y < w and /(w) - l(y) < 2, then P,,w - 1. (3) If

y ^ w , then PytW(q) can be expressed as PytW(q) = ZlLT^'^wW'P with
^ (W(OeZ, where /^w(0 = 0 for odd i. Let ^(y, w) - /^,w(/(w) - l(y) - 1). If
y < sy, w < sw and seS, then

z<sz
y < sz < w

Thus we can calculate Py>w inductively. Note that p(y, w) = 0 if /(w) — l(y) is
even.
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6.2. Edges of holonomy diagrams In order to calculate holonomy
diagrams, we need to find codimension one intersections of conormal bundles
A(w). We shall find such intersections by using the technique developped in
§ 5. Sometimes, the following conjecture of Kazhdan-Lusztig [18, p. 167, t f. 1 —
p. 168, |/. 1] is useful to find candidates.

Conjecture 6.2.1. Assume that G is of type Ah y, we W and y < w. Then
dim A(y){\A(w) = dim A(w) — 1 if and only if fj,(y, w) / 0.

As is noted in [18], this conjecture does not hold if G is not of type
Av For example, the edges 12121-121 and 121-1 in the holonomy diagram
of (G2, 2) calculated in (7.1) below can not be predicted in this way. (For
type G2, u(y, w) = 1 if /(w) — l(y) = 1, and n(y, w) = 0 otherwise.)

6.3. The following assertion was conjectured by Kazhdan-Lusztig [18, 1.5],
and proved by Brylinski-Kashiwara [4] and Beilinson-Bernstein [2].

Lemma 6.3.1. Let Mw be the Verma module with the highest weight
-wp-p, and Lw its simple quotient. Then [Lw] - £y (- l)w + / ( w )Py t W(l) [My],
and [MJ = £yPWaW(Way(l)[Ly], where [Lw] etc. are the element of the

Grothendieck group corresponding to Lw etc.

6.4. Let X(w) = BwB/B, X = G/B and ^w - ®x ®[/(g)^w The following
assertion was originally conjectured by Kazhdan-Lusztig [19, §7] and expressed
in the following form by Kashiwara-Tanisaki [17].

Conjecture 6.4.1. // G is of type Ah then Ch (jgfj - [T^(w)1], where
1] denotes the algebraic cycle determined by TX(w)±.

Remark 6.4.2. If G is not of type Ah an analogous assertion does not
hold [17]. Cf. (7.3) below.

6.5. Vertexes of holonomy diagrams In (5.5.2) and (5.7), we have given
methods to show that A(w)aVf0(f

d) or not. Here we give another method
to predict that A(w) c W0(/5), based on (6.3.1) and (6.4.1).

Lemma 6.5.1. (1) Let ye(Wr\W/WI)l. If

(6-5-2) X (-l) lw^w(l)^0,
xeWj

then A(y) c W0(/5), i.e., y e W 0 ( I ) . (2) Let G be of type Al and assume the
validity of the conjecture (6.4.1). Then (6.5.2) is a necessary and sufficient
condition in order that yeW0(I).

Proof. By [8, 7.17], [F(w, 0, p(/))] = £„„,(- D'W[MS.J for We(W/W}),.
By (6.3.1), [K(w,0,p(/))] = Xyc(3',w)[L,], where c(y, w) = ̂ xeWi(- !)'<«> x
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d(w) = /(ws)-/(w). By [8,3.4. and 6.6], CbHc
s
d$B(0G/B)

= Zy cto w) Ch W- Since ^ is the simple <luotient of HB$IB(®GIB)> Ch W
contains the conormal bundle of ByB/B with multiplicity one. By [8, (9.11.1)],
P^^]B((9Gltt) = H^\L^ar,aGf^ in the notation of [8]. (Lg(x) = gx,
and px\ G-+G/B = X is the projection. See (5.4) for ®G/0<5.) Hence, taking
w = w5, we get

(6.5.3) Ch HlWsP(®Gfos) = £c(y, ws)

By (2.6), BwsP = P'wsP = G\Ui£s\//r1(0). Hence HJ!W,J.(®G/M) = W04)

[(/V1]. But by (1.4) and (1.5), Ch(Sc/
w)[(/iT1] = Ch0/w. Hence

(6.5.3) implies that

(6.5.4) Ch ®af
os = £c(y, ws)Ch (p*jS?,).

y

Hence, if c(j>, ws) ̂  0, then yl(y) c Ch (p$&y) c Ch (^G/05) - W0 (/'). If G is
of type Al and if we assume the validity of the conjecture (6.4.1), then (6.5.4)
becomes Ch @Gfod = ^yc(y, w) [yt(y)]. Hence c(y, w) * 0<^^(y) cz W0(/5).

§7. Examples (2)

7.0. Here we calculate b-functions of semi-invariants of some (g, /) by
applying the method developped in §5 and §6.

7.1. (G2 ,2)

(Cf. (4.0).) Let g be the Lie algebra of type G2 and / = (rj. Then /' = /
and

(Wj^W/W^ = (1, 121, 12121, 121212}.

We give the sets R(w) = w~1R + (}R+ and R'(w) = w~iRr(_ u£/ ._ in the
following table.

1 121 12121 121212

a2 a2

2a2 Baj + 2a2
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The top line gives w. The boxed part gives R(w). The second line from the
bottom gives RL-. The last line gives w~lRr _. Thus the last two lines
consist R'(w). Since F*(w) = £a6*(w) 9(a) and Lie (G(w)) = t + Iae*(w)uinw) g(a),
we can calculate the orbit structure of the colocalizations (G(w), K*(w)), a part
of which we give in the following table.

1 ^ai+«2 + ^2«i+a2 -^ai+a2 3 ( X 1 + a 2

(7-1.1) 121 X a i + a 2 *a2 + *3ai + 2a2 a i + a 2 .

12121 Xa2 0 a2

The first column gives w. The second column gives points which belong to
the open orbits of (G(w), V*(w)). The third column gives points which belong
to codimension one orbits of (G(w), K*(w)). In the present case, it happens
that each row contains only one element in the third column, but it is not a
general feature. If Yl belongs to a codimension one orbit of (G(w), K*(w)),
then K*(w)/(g(w) • Y^) is a one dimensional vector space on which {/fet |
ad(H)Y1ECY1} =:t1 operates. The last column gives the corresponding
characters of t^ (a2 etc. means a2 tl etc.)

Since each element, say 70, contained in the second column are of the
form Xyi + XJ2 + ••• with linearly independent yl5 y 2 , ~ m , we can find an element
A0 in t such that <y 1 ? Aoy = <y 2 , Aoy = ••• = 1, i.e., (ad X0)70 = y0. Since
ws = — 1 in the present case, (5.5) gives

or^(w)//
2 - - <w"1m2 + m2, ̂ 0>A 2 - £ <a, A0> + - card #(w).

aeK(w) 2

Here and below, we write /A for fx + Qd if there is no fear of confusion. Since
w2 = 3ax + 2a2, w~ 1 m 2 + m2 is equal to

6ax + 4a2 = 2 • (ax + a2) + 2 • (2ax + a2) if w = 1,

(7.1.2) 3ax + 3a2 - 3 • (ax + a2) if w - 121,

a2 = 1 • oc2 if w = 12121.

Thus in each case, w~ 1 m 2 + w2 can be expressed as a linear combination of
y's such that Xy appears in the expression of y0. Hence (w~1w2 + m2, Aoy
is equal to the sum of the coefficients appeared in the right hand sides of

(7.1.2), and independent of a special choice of A0. The sum Xa6/?(M')a ^s a^so

expressed as a linear combination of y's as above, and Za 6 R(M>)^a ' ^o) can ^e

determined in the same way. The order of f2 at /[(w) is — 4s — — if w = 1,

- 3s - - if w = 121, - s - - if w = 12121, and 0 if w - 121212.

Next, taking Y1 from the third column of (7.1.1), and assuming that
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wY1GwF*(w) c: yi(w) lies in another conormal bundle A(w') and that the
assumptions in (5.6) are satisfied, we shall calculate the intersection exponents
(ju : v) of A(w) and A(w'). Take Al et so that (ad A1)Y1 = Y1. The intersection
exponents can be calculated by <??, A^y = JLL/(JLL + v), where Y\ is the character
contained in the last column of (7.1.1). For w = 121, r\ can be expressed as
a linear combination of yeR such that Xy appears in the expression of
Y1. Hence the value of <??, A^ does not depend on the special choice of Al

2
and is equal to — if w = 121. But for w = 1 or 12121, the value of <??, A^

does depend on the choice of A±. Hence (//, v) is equal to (1, 0) if w = 1, (2, 1)
if w = 121, and (1, 0) if w - 12121.

We can show that the assumptions of (5.7) are satisfied if we take as Y2

the element of the third column of (7.1.1) for w = 1 or w = 12121.
Let us determine which A(w) and A(w') have a codimension one intersection,

i.e., which pair (w, w') is linked by an edge in the holonomy diagram. Obviou-
sly, we have an edge 12121 - 121212. Let us find elements in y4(121)n^(l)
by the algorithm of (5.10). Put w0 = 121, w1 = 12, and w2 = 1. Then y0

 = ai>
yl = a2, E0 = {a2, ax + a2, 3at + 2a2}, E1 = (2^ + a2, 3ax + a2, 3ax + 2a2},
and E2 = {2al + a2, 3at + a2, 3ax + 2a2}. Hence X2 a i + a 2 + X^+^er^1 •
( A ( 1 2 1 ) n A ( l ) ) c : F(rx). Cf. (5.10.1). As is easily seen, this element belongs to
a codimension one orbit of (G(rx), V(r±)). Since ax

v e[g(a1), g(at)], we get
rank G(r1)/[G(r1), G(rx)] < 1 and consequently, (G^), F(rJ) has at most one
orbit of codimension one. Hence Xa i+a2 (the representative of the codimension
one orbit given in (7.1.1)) and X2ai+a2 + X3ai+(X2 belong to the same
orbit. Since rr1 • C/l(121)rU(l)) (c F^^) is G^^-stable, A (I) and A(Ul) have
codimension one intersection with the intersection exponents (fj,: v) = (1 :0), as
we have already calculated. (Actually (G(rx), F^)) has five orbits represented
by XXI+CX2 + X2«1+(X2 (dim-5), X^^^ (dim = 4), Xa2 (dim = 3), X3(Xl + 2(X2

(dim - 1), and 0.)
Let us find elements in /l(12121)n^l(121) by using algorithm of (5.10)

again. Put w0 = 12121, wx = 1212, and w2 = 121. Then yx = al9 y2 = a2,
^o = {MI}' EI = {3^i + a2} and E2 = {3ax + 2a2}. Next, put w0 = 12121,
wx - 2121 and w2 = 121. Then y0 = 1212(ax) = ax 4- a2, ^ = 121 (a2) = 3at +
2a2, £0 = {a2}, .Ej = {a2}, and E2 = {a2}. Hence

(7.1.3) g(3ax + 2a2)Ug(a2) c w'~1(^t(w)nyl(w')) ,

where w= 12121 and w'= 121. By (5.12), Grass! (w'"1(/i(w)n/l(w')) contains
a G(w')-stable connected set, say Z, containing (g(3a1 4- 2a2), g(a2)}. Since the
orbits of (G(w'), F*(w')) are represented by ^a i+«2 (dim = 3), X3xi+2(X2 + Xa2

(dim - 2), *3ai + 2a2 (dim - 1), XX2 (dim - 1) and 0, the G(w')-stable subset UZ
of F*(w') should contain the orbit of codimension one. Hence A(w) and yi(w')
intersect in codimension one, and its intersection exponent is (2: 1), as we have
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(2:1) (H

u
T̂ 3

s+2

-1H*|>

-3.-|

(Figure 3)

already calculated assuming the necessary local irreducibility, whose proof we
shall give afterwards. Thus we get a holonomy diagram.
Here we have written the ratio of local b-functions besides the respective
edges. Let us show that this is the holonomy diagram. By (5.7), we can show
that W0(I) = (121212, 12121, 121, 1}. Let A be the closure of the B x 5-orbit
of 121 •C^3ai + 2a2 + X*2) in T*G. We have shown that A c 4(12121)n4(121)
and dim A = dim G - 1. By (5.15), A <£ 4(1). Obviously A £ 4(121212).
Next, let A be the closure of the B x 5-orbit of rl • (X2ttl^a2 + X3ttl+a2) in T*G.
We have shown that A c 4(121) n 4(1) and dim A = dim G — 1. Obviously
A £ 4(121212). Let us show that A £ 4(12121), using (5.14). Since ^(J) =

Br^B, we can take g = r1 in (5.14). We have dim M = dim ad (£)F(12121)

= dim ad (B) (CXJ = dim ad (B}XaL2 = dim ad (b)XB2 - dim (CX^ + CX^+OL2 +
OT3ai + 2a2) = 3 < card R+ - 1 - /(rj = 4. Thus (5.14.3) is not satisfied, and
hence 4(12121) does not contain the irreducible component A of 4(121)n4(1).

Last let us show the necessary local irreducibility of 4(w)'s, using
(5.17). The case where w - 121212 is trivial. Let w - 12121, Y0 = XX2,
w' = 121, and Yl = X^ + *3ai + 2a2. Since 70, y leK*(l) and they are G(l)-
equivalent, ad (G) Y0 = ad (G) Y1 and (5.16.1) holds. (The weighted Dynkin
diagram of this nilpotent class is 0-^1.) Since ad (g) • (X^ + X3oLl + 2(X2) is
spanned by Xy for y = ax + a2, a2, 3aA + 2a2 and by a2

v + c 1AT 3 a i + a 2 ,
X_ a i +c2*2ai.ra2, (3aA +2a 2 ) v + c 3 X _ 3 a i _ a 2 with some c f e C x , we get dim C
= dim (ad (g) 7J = 6 and dim (ad (g) Y1 0 n) = 3. Taking the representative w' of
121 suitably, we may assume that w 'Y^ = Yl. Thus (5.17.1) holds. With q = b,
(5.17.3) holds. Hence we get the desired irreducibility. (By [1], ZG(Y±) is
known to be connected. Thus we can also get the irreducibility using
(5.17.2).) Let w = 121, YQ = Za i+o t2, w' = 1, and Yl = X«2 + Xai+ol2. (Here we
should take a representative of the codimension one orbit of (G(l), V*(l))
different from the one given in (7.1.1).) As is seen from (7.1.1), (5.16.1)
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holds. (The weighted Dynkin diagram of the nilpotent class of ^ai^2 is
1-^0.) In the present case, we check (5.17.1) by a direct calculation. Let a
be any matrix of the form (4.6.1) whose i/'-components are zero whenever
i > j. Put

Zl = [a\al = 0, (a[a4 + a2a3)
2 + 4(a2a4 + aQ(a[a3 -a^) = 0},

. ~ . 3 ,
= <(T\a[ = 0, -

Then Zl and Z2 are the irreducible components of ad (G) Y1 n n. Then both

YI = ^«2 + *ai + a2 and w' ' Y1 = ^2a i+a2 + *3a1 + a2 ^ in the non-singular locus
of Zl and not in Z2. Hence (5.17.1) holds. With q = <t, X_ a i , J f_ 3 a i _ 2 a 2 >
(linear span), (5.17.3) holds. (In the present case, dim C = 8. Since Z^YJ is
connected [1], (5.17.2) is also satisfied.) Thus the local ^-function at A(l) is

(7.1.4) 62(s) = (s + l)(s + |)(5 + ̂ )(5 + f

Remark 7.1.5. We can show that all the yl(w)'s in the above diagram are
contained in W also in the following way. Assume for example that W does
not contain A(\). Then by [24, 7.1] (with an obvious modification suitable
for the present situation), ^/A2n72 + 0 does not have a proper coherent
^-submodule, if b ( A 2 — j ) ^ Q for any y'eZ, where b(s) is a divisor of

(s + l ) ( s H — ) ( s ^ — )• Then, for a sufficiently large integer m,

ll by (2.6)

Hence by [8,9.4], M(l2w2, p({rj)) is irreducible if A 2 £ — Z. But by the

Jantzen's criterion [12], we can show that M(sw2, p ( { r 1 } ) ) is irreducible if and

only if s $ < — 1 + j, --- \-j, --- h j, --- h j \ j = 1, 2, • • • >. Thus a contradic-
l 2 j j J

tion arises. In the same way we can show that a contradiction arises if we
assume some of /i(w)'s is not contained in W. It is interesting that we can
get information about the explicit form of the ^-function by the representation
theoretic argument.

Remark 7.2. We can determine the holonomy diagrams for (g, /) for
rank Q <2 and card / = 1.
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m o [T211 o
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11212 o

s+l

f1212 -,-1

(Figure 4)

See (7.1) for (G2, 2).

Remark 7.3. For weW; let J§?w = S»x (8)c/(a)Lw as in (6.4). In the case
(G2, 2), we can show that

(7.3.1) Ch(^G[s]/2V5^G[S]/|) = Ch(p*^f121212) + Ch(p*^12121)

by (6.5.4). Since J&?121212 = 0X, Ch(pJJ?121212) = [yl(121212)]. Since /l(w)
(weV^(/)) are all good Lagrangian varieties in the case (G2, 2), the left hand
side of (7.3.1) is equal to [^(121212)] + |>((12121)] + \_A(U\)~\ + [/!(!)] by
[24,4.8]. Hence

Especially, the characteristic variety of «Sf12121 is not irreducible. This
phenomenon can be also explained as follows. Generally, assume that good
Lagrangians /t(w) and /i(w') have an intersection of codimension one,

orcU(w)/5 — ~~ ms -- •> or^A(w')fs — ~~ m's -- -> and m' > m- Then in a

neighbourhood of a generic point of A(w)nA(w'), <$[_$] f s / ( s — ̂ )^M/S does
not have a proper coherent ^-submodule if the polynomial bA(w>} (s)/bA(w}(s)
does not vanish at a +j for any jeZ [24, 7.1]. In the present case, since the
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characteristic variety of p* =^12121 contains A(12121), it also contains A (121)
and A ( l ) . Such a phenomenon was observed by Kashiwara-Tanisaki [17, 5.4,
Example] .

7A (Ah 1, /) (I > 3) o - • ----- • - O
«i a2 «z

Let g be the Lie algebra of type Al (I > 3) and / = S\ {1, /}. Then /' = /
and

(Wj^W/Wj^ = {w/5 w/u{1}, w /u{Z}, W^TI, wsr1; wsrz, ws}.

We give the sets #(w) and £'(w) in the following table.

w7 K + \ ^ RL+(^RI(=RI) 21-1

(aj r j J R ^ + U K / . - 1

wsrt (aj r ^ K ^ + U ^ / , - 1

ws 0 « / < + U^/ . _ ( = « / ) 0

Here I± = {1, 2 , - - - , l — 2} and /2 = (3, 4, • • - , / } . The contents are from the left
w, R(w) = w~1R+r\R^, Rf(w) = w~lRj.f_uRL_ and card jR(w). We have left
blank the last column for w = w /u{1} and w /u{/} since we do not need them. The
orbit structure of the colocalization (G(w), V*(w)) is partly given in the following
table.

W/ ^12 + ^2J+l ^12 + ^3J+1 al

2J + 1 X^ + X^(l = 3) a2 + a3(/ = 3)

ws 0

Here we realize G as SLZ+1(C), AT^ denotes the matrix whose //-component is
1 and others are 0, and ef denotes the character of t defined by
diag (t ! , - • - , tz + x) -> tf. The meaning of this table is the same as (7.1.1).
Codimension one orbits do not exist for w = w / u l l } or w = w / u ( / } unless
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I = 3. There are two codimension one orbits for w = w^r^. Let Y0 be the
element in the second column for w, and find an element A0 in t such that
ad(^0)y0-70 . By (5.5),

ordA(w)/i
Al./;Al = - A^w'X + tn 19 Aoy - kl(w~lwl + wh A0>

- £ <a> Ao> + -
<ze£(w) 2

The characters w lwl + ml5 w lwl + wh XaeR(w)a anc^ ^e OI"der °f /isi/isr at

yi(w) are given in the following table from the left in this order, where the
most left column gives w.

_ - 2s - 2s - 2 / + 1

w/ufl} £1 ' °

~~ Sl ~~ S2 ~~

- 51 - -

~~ si ~~ ~

0

We have left blank the last two columns for w = w /u{1} and w / u ( I } , since we
do not need them. In fact, as in (7.1), we can show that (w"1^ + tn l 9 Aoy
really depends on the choice of AQ for these w. Hence w ju(1}, w /u{,}£ W0(I).
(Cf. (5.5.2).)

Let us find elements in A(wI)riA(v^srlrl) by using (5.10). As is easily seen,
(G(w7), F(w7)) has 6 orbits represented by XXl + XOL2 + ...^0,l (dim = 21 — 1),
Xai + XXl (dim = 21- 2), Xai (dim = /), Xai (dim - /), Xai +...+ai (dim - 1) and
0. Here we calculate the case I = 5, since it has an enough general feature. In
this case wsrlrl = r1\vsr1 = 21.321.4321.5432, and w7 = 2.32.432. Put wf =
21.321.4321.54-(i + 2) (0 < i < 3), w4 = 21.321.4321, w5 = 21.321.432, w6 =
21.32.432 and w7 = 2.32.432. Then y£ - oc£ + 2 (0 < i < 3) and y3 + l- = ax H- ••• + af

( l < i < 3 ) . Hence £0 = {ai,a5}, £ i+1 - {a! + ••• + ai + 2, a5} ( 0 < i < l - / - 4 ) ,
^s(= ^-2) = {«i + '•• + a4> a4 + a5}5 £4 = {a! + ••• + a5, a4 + a5} = E5 = E6

= E7(= £21-3). In this way we can show in general that X a , l _ l + ( X l e ^ ' ~ l ( A ( w )
)), where w = wsrlrl and w' = Wj. As is easily seen, Xai_l+aLl and Xai

belong to the same G(w')-orbit, and hence g(az) + g(ax + ••• + az) (c= G(w')Xai)

is contained in the above intersection. Considering the automorphism of the
Dynkin diagram, we can show that g(ax) + g(ax + ••• + oLt) is also contained in
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(Figure 5)

the same intersection. By (5.12), Grass2 (w'~1(A(w)r\A(w'))) contains a G(w')-
stable connected set, say Z, containing g(af) + g(a: + ••• + az) (i = 1, /). Because
of the orbit structure of (G(w'), F*(w')), UZ should contain the orbit of
codimension one. Hence A(w) and A(w') intersect in codimension one.

By (5.8.1), we get edges w s—w sr±—w sr lr l and ws—wsrz—ws
riri- A direct

calculation shows that all the codimension one intersections obtained above
have intersection exponents (1 : 0), if we assume the necessary local irreducibility,
whose proof we shall give afterwards. Thus we get a holonomy diagram.
Let us show that the above diagram is the holonomy diagram. By (5.7), we
can show that W0(I) = (ws, w sr l 5 wsrh wsr1rh Wj}. Obviously, the edges
ws—wsr1r l and ws—w7 are not contained in the holonomy diagram. Consider-
ing the automorphism of the Dynkin diagram, it remains to show that the
edge wsr1—wf is not contained in the holonomy diagram. Since the

semi-invariant // is given by f{(x) = xll(x = (xpq)ESLl + 1), Ew^^ is a

non-singular hypersurface of G (cf. (2.6, (1)). Thus the fibre of A(wsr±) at any

point is a one dimensional vector space. Since the codimension of BwjB = P(I)

in G is greater than one, dim (A(wsr1)nA(wI)) < dim G — 1, i.e., the edge
wsri—w/ i§ not contained in the holonomy diagram.

Last let us show the necessary local irreducibility of /l(w)'s, using
(5.17). Let w = wsr1r^ and w' = w7. (The remaining cases are obvious from
(5.8.1).) Since we can take Y0 = Y1 = X12 + Xltl+l, (5.16.1) holds. Let us
check (5.17.1)z. Since ad (g) • (X12 + -X'/.^i) is spanned by Xi2(i ^ 2, I + I),
Xu + 1 (i / 2, / + 1), X , j ( j * 1, /), Xtj(j * 1, /), X^ - X22, Xu - X2tl + i, Xn -
Xl + lt2>

 and Xn —Xl + 1J + 1, we get dim C = dim (ad (g)Yi) = 4/ - 4 and
dim (ad (g)^ nn) = 21 - 2. Thus we get (5.17.1)e. Since
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W'Q = Q. and hence we also get (5.17.1)w,. Thus the local ^-functions at yl(wj)
are given by

bi(sl,sl) =

7.5. (A3, 1,2) o - O

Let g be the Lie algebra of type A3 and / = {3}. Then /' = {!} and

(WJA W7W/)i = {121321, 12321, 12132, 1232, 1213, 123, 13} - W0(I).

The holonomy diagram is

1 123121 1 o

_Sl_i2-i 11231
/

51+52+2 51+S2+2 5i+l

(Figure 6)

The local b-functions at A(123) are given by

bi(s1,s2) = (s1 + I)(s1 +s2 + 2),

b2(si,s2) = (s2 + 1)(5! +52 + 2).

7.6. If (g, p) is the complexification of a real simple Lie algebra of (real)
rank one and its minimal parabolic subalgebra, then (g, /) is given by one of
the following diagrams.

(Ai,l,l) o • • « o

(Bi, 1) o « • => •

(C/,2) 9 o • • •«=• ( / > 3 )

(Di, 1) o * • .

•
(F4,4) • •=>• o

(Figure 7)
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5 + 1

WSl -5-

+ 2/-l
2

I ws I o

s+1

\Wj -2*-^
2J-1

, 21-2

2 -25-
2/-2

i u>s\ o \WS\Q

5 + 1 5 + 1

5+2 (F4,4)

(25+2/-l)(25+2/)

5+4

(2s+ll)(2s+12)

29

(Figure 8)

The holonomy diagrams are given in Figure 8.

See (7.4) for (A /s 1, I). In these cases, A(wf) appears at the bottom of the
holonomy diagram. The local 6-function there is the product of all the factors
attached to the edges.

§8. Examples (3)

8.0. In this section, we give examples which need calculation more
complicated than those of Section 7. We start with a slight improvement of
our algorithm.

Lemma 8.1. Let /, J c S, /, = Zies-j^' and 0(J, /) = {peWkj <//, j6 v >
<0 for any fiellj}. (1) TTze mapping cp = cpj'. w -> w~1AJ gives a bijection

(WjXW/W^^^J,!). Let we(WJ\W/WI)l. (2)

av> = 0}. (3) K(w) = w - 1 R + n J R +

Proof. (1) • Let we(WS\ W/W,),, fiel!, and w = w'rft. Then (w'1^, ^S v >
= — <Aj, w')9v> < 0. Hence q> is well-defined. The isotropy subgroup, say
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Z, of W at Aj is generated by reflections with respect to ae# such that

<^, av> = 0, i.e., aejR, . Hence Z = W,. Thus (W^V^^W^ whose

restriction cp is injective. Let we(WJ\W)l and w~1AJG0(J, I). It suffices to
prove that we(WJ\W/WI)l. Put K = {r^e/| (w^, )S V > = 0}. Take w'e

so that w'WK = wWK. Then w' > w, w"1^ = w'"1^, and hence
w'. Since we(Wj\W)l9 w > w'. Thus w = w'e(W/Wk),. For r^e

/\K (]8>0), we have </ij5 w£ v > - (w"1^ ] B V > < 0, w£v < 0, and hence
wr^ < w. Thus w£(W7Wi) ,n (WS\WO z

 = W W/^/)z> and we get tne surjectivity
of cp. (2) If a > 0 and 0 = (w"1^, av> - <A J 5 w a v > , then waetf, , , . The
converse is similar. (3) Let a > 0. If <A J 5 wa v > > 0 (resp. < 0), then wav > 0
(resp. < 0). Together with (2), we get (3).

Remark 8.1.1. In (8.1), we may replace Aj with any X;6s-j^m; suc^ tnat

every l{ is positive.

8.2. Here we indicate how to calculate the inverse of cp in (8.1). For the
sake of simpicity, we consider only the type At. Represent an element
)U = X^'^j ^ attaching ^ to the j'-th vertex of the Dynkin diagram. Apply rt

if i- th label is negative, noting that r^.^Wj) = ̂ u-i\>i^jwj + fe-i + /^M-i
— faWi + (^ + 1 + Hi)wi + l. (Here m0 = m Z 4 - i = 0.) Repeat this until no nega-
tive labels remain. Let /L7 = Y.^twi ^e ^ne element given by the final
diagram. For example, let us calculate <p'l(^) for n = wl—2w2'.

Here ~ri denotes — n. The product of rf 's in this order (e.g., 2132 in this
example) gives the shortest w' such that w'A.j = fj.. Hence (pf1^) = (w'w/)"1.

8.3. Put 7(w) = XaeK (w)9(- ^. A root - a belongs to R\(w~1(R+ uRr)
(j(R+URI)) = w-1(R_\Rr)f](R_\RI) if and only if

(8.3.1) a >0, wa > 0, a^/5 and woc^Rr.

Let we(^\wyw^) z . If a e R j or waeR r , then exactly one of a and wa is
positive. Hence (8.3.1) is equivalent to say that a>0 and wa > 0. Thus

g = 7(w)©(p / w + p). Put 6 = Y.tes-iwi and f = f6- Define the function /w

on g by fw(X) = /(w exp X). Since 7*(w) = (p'w + p)1, K*(w) is the dual space
of 7(w). Hence the cotangent bundle of F(w) can be identified with
K(w) x 7*(w), in which W(/w | K(w)) is contained.

Lemma 8.4. ([24,6.9]) A(w) c= W(/) z/ awrf owfy z/ 0 x K*(w) c
W(/w |K(w)).

Proof. Let p" be a subspace of p' such that g = F(w) © p"w © p.
Put x = exp (A")w exp (X) exp (4) for X" e p", JT e F(w) and A e p. Then
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) = (x, B f f a d A , t X t A ( ( ^ ) ( A f r ) + lo&fw(X) + ^(A))) = (x,
e(wsA, grad log/w(X), A)) for seC. Here we write (g, X) for gXeT*G (cf. (5.1)).
Hence the set of the limits of above points when e, A", X, A -»0 is equal to
the set of the limits of (w, (0, e grad log/w(.Af), 0)) when e, X -> 0. Since A(w) a
W(/) if and only if wF*(w) c W(/), we get the assertion.

8.5. (Ch i) ® - ••• - ® - o - • - ••• - ® <= •

Using [12], we can show that the generalized Verma module
p(S-{rJ)) is reducible if and only if the following condition is satisfied:

(1) If i= 1, then xe{0, 1, 2 , - - -} . (2) If ie2Z and 2 Z > 3 i , then Ae] - - x
1 1 t

( 2 / - i + l ) + 7 , _ (2/ - i + 2 ) + 7 l 7 = l ,2 , - f . (3) If ie{3, 5, 7 , - - - } or 2 / < 3 i ,
f 1 1 J )

then A e < - -(21 -0+7, --(21- / + l )+ j | ;= 1, 2 , - - - > . On the other hand,

it seems that the b-functions are given by the following formula.

if ie2Z and 2 / > 3 i

if iG2Z + l and 2 / > 3 i

+ v) • ns + / - f + ' °therwise-
Let us explain how to determine W0(I) and ord^^,/^. See (8.5.3), (8.5.4), (8.5.6),
and (8.5.7) below for our result.

In the present case, I = I' = S — { i } . If we realize the root system as in
£ B C D

[3], <£(/', /) (cf. (8.1)) consists of <p(w) = (^T^T^l, O^TB, C^Tl, - 1,̂ 7̂  1,
£

0, • • • , ( ) ) such that A + B + C = f and B = D. We sometimes write e(/) or simply

7 for e,., [X] for [1, ^], [5] for [X + 1, ̂ i + £], etc. We write elements of
by a, a ' , - - - , those of [B] by b, & ' , - • - , etc. By (8.1),

(8.5.1)

JR(w) = (b — rf, c — rf, c — e, b + c, c + c', c + e}, and

R'(w) = {a - a', b - b', c — c',d — d',e — e', a — d,b — e,

a + c, c + d,b + e,b + b' , e + e ,

— a + b, — a 4- c, — b + c, — rf + e, — d — d', — d — e, — e — e'}.

The action of G(w) on K*(w) is expressed by the following diagram.
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(Figure 9)

For instance, \b-d\ -^ I b + c | means ad (X(c + d))X(b - d ) e C x X ( b 4- c).
The diagram on the right is the same as the one on the left, but is expressed
in terms of matrix, e.g., \jT\ means the linear span of the root vectors in
K*(w) to which correspond the vectors of the dual basis of V(w) lying in the
block p of the matrix (8.5.6) below. Put YQ =^be[B]X(e(b) - e(b + B + C)).
Consider the sum 70" of

If C < 2E and C is even (resp. odd), then we understand that this sum ends with

C
+ X[

C+l
resp.

If C > 2jE, we understand this sum ends with

In the case C > 2E, we consider the additional sum YQ" of

We understand this sum ends with
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X(e(A + B + C - 1) + e(A + B + Q) (resp. X(2e(A + B + C))),
if C is even (resp. odd). Put Y0 = YQ + YQ(+ Y0'"). Then we can show that

(8.5.2) 70 belongs to an open orbit of (G(w), K*(w)).

By (5.5.1), (8.5.1), and (8.5.2),

(8.5.3) ordA(w)//

-(B(B + 2C) + |c(C+l) + 2(/-z)C),

if C<2E and C is even,

-(5(5 + 2C) + -C(C+l) + 2£(C+l+2(/-i))) ,

if C>2£,

and, by (5.5.2)

(8.5.4) A(w) <£ W if C < IE and C is odd.

We realize sp2n replacing K = Kn with the identity matrix !„ in (4.5). Then

-1,

and V(w) is the totality of

(8.5.5) X = X(p, q, r, s, t, u) =

' s' -p' •

s t • u' • • • —q' —r'
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where • stands for zero, ' denotes the transposed matrix, t = t', and 1st and
6th blocks from the left (resp. from the top) contain A colums (resp. rows)
etc. Then

,
s t + u r — r u

We know that fw(X(p, 0, r, 0, 0, u)) = \p\ • \ur — r'u\ is a relative invariant of a
regular prehomogeneous vector space whose Hessian is not identically zero, if
C < 2E and C is even [25, §7, I (13)]. Hence the linear span of
[X(c ± e), X(b — d)} is contained in the set of the limit of & grad log/wpO
(e, X->0), i.e., X(c ± e), X(b - d)e(0 x F*(w))nW(/J [24, 4.6]. Since Y0 is
a linear combination of [X(c ± e), X(b - d)}, 0 x F*(w) c W(/J. By (8.4),

(8.5.6) A(w) c= W if C < 2E and C is even.

Last let us consider the case where C > 2E. Here we need to make explicit
the pairing of F(w) and F*(w) by which F*(w) is considered as the dual space
of F(w): We define the pairing by <X, **> = tr(XX*) (XeF(w), X*eF*(w)).

f d d d I d d \
Then grad- — , — ,-, — (f * j), - — , - — . Put

\flp0. dqtj dttj 2 dta duijj

£, 0£, lc-2s)-

(Here 0^B denotes the A x ^-matrix whose entries are all zero, and
QE = ®EXE-) Then, a direct calculation shows that lim£^0 e grad log/w(J^(e)) =
1 X ( \ ] , for X(s) = X(slB, 0, sr0, 0, er0, ew0). Since tZ(l)eF*(w) is G(w)-conjugate
with 70, 0 x F*(w) c: W(/J. Thus

(8.5.7) / t (w)cW if C>2£ .

Remark 8.6. In (8.5), the relative invariant /w is not a homogeneous
polynomial except for some special cases. Hence (G(w), F(w)) is often
non-prehomogeneous [25, §4, Proposition 3], although its dual (G(w), F*(w))
is always prehomogeneous (cf. (8.5.2)). Thus most of the prehomogeneous
vector spaces (G(w), F*(w)), which are essential in our calculation, are not
regular [25, §4, Definition 7].

8.7. (£>4, 1, 3, 4) o - • - O

O
a4
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Using [12], we can show that the generalized Verma module
/3m3 + /I4tn4, p({r2})) is reducible if and only if (1) /l^efO, 1, 2 , - - - } , or (2) A3 + /t4

e{-2, - 1, 0 , - - -} , or (3) 1, + A3 + /L4e{- 3, - 2, - 1, 0 , - - -} , or (/L l 5 A3, A4)
satisfies one of the conditions S3-conjugate with (1) or (2). On the other
hand, it seems that the ^-functions coincide with the local fc-functions at A(WJ)
and they are given by

MSI, s3, s4) = (Sl + I)(s4 + Sl + 3)(Sl + s3 + 3)(Sl + s3 + s4 + 4),

b3(sl9 53, 54) = (s3 + !)(«! + s3 + 3) (53 + s4 + 3)(Sl + s3 + s4 + 4),

b4(sl9 s3, s4) = (s4 + I)(s3 + s4 + 3)(s4 + s1 + 3)(Si + s3 + s4 + 4).

§9. Beyond the Scalar Generalized Verma Modules

9.0. From [8, 9.13] and from the examples given in the previous sections,
it would be safe to assume the validity of the conjectures A, B, and C concerning
the scalar generalized Verma modules. Let us consider how they should be
generalized for the generalized Verma modules which are not necessarily scalar
ones.

9.1. Let notation be as in (3.1). For /w6^ f e S_ /Z>0 tu l- and ldeYJieS^>owi^
consider the functional equations of the form

where P(S_}E£$G[S_~] and b(s_)EC[s_~]. The existence of such a functional
equation with b(s_) =£ 0 is guaranteed by (4.1.1) or (more generally for a wider

class of functions ft) by [23] and [9]. Let ^(^ /ld, I) be the totality of such
polynomials b. The author considers that Conjectures A and B should be
generalized to the following.

A". «^(^, Ad, I) is a principal ideal of C[^].

Let b^(s_ + Ad) = b^^ + Ad, /) be its generator.

B". The generalized Verma module M(/l, p(/)) (^^Y^ies-i^wi +
is irreducible if and only if b^(A — u) ^ 0 for any

Remark 9.2. By [10, 6.4], ^(^, 0, /) is a principal ideal if Conjecture A
holds.

Remark 9.3. A generalized Verma module M(/t, p) is irreducible if and
only if the contravariant form [12] is non-degenerate, i.e., its discriminant is
non-zero. Hence, by [12, Lemma 6, (i)], the set {Ace£.6S_ /Ctz7I-|M(/c + Ad) is
reducible} for a fixed Ade£.6/ Z>0oj f is a union of hypersurfaces of

Thus, if we assume that the irreducibility of a generalized Verma
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module is controlled by fo-funetions, it is natural to expect A". The author
hopes to discuss B" in a different place.

Acknowledgement. The author is profitted much from conversation with
A. Fujiki, to whom the author would like to express his hearty thanks.
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