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Highest Weight Modules and b-Functions
of Semi-invariants

By

Akihiko Gyoia*

§0. Introduction

0.1. In [8], we have given an irreducibility criterion for the generalized
Verma modules in terms of the b-functions of semi-invariants. (See (2.4) for
generalized Verma modules, (2.5) for semi-invariants, and (3.2) for b-functions.)
Thus, in order to give explicit information about the irreducibility of the
generalized Verma modules, it is necessary to calculate the b-functions of semi-
invariants. The first purpose of this paper is to develop techniques to calculate
them.

0.2. Our irreducibility criterion is far different from, and unfortunately,
less complete than the one given by Jantzen [12], since we need to assume
(at least) the anti-dominancy for a technical reason. Our second purpose is
to formulate a conjecture, which would eliminate this undesirable assumption.
(For the sake of simplicity, here in the introduction we restrict ourselves to
those induced from one dimensional representations of the maximal parabolic
subalgebras. See §3, especially (3.3), and §9 for the statement in its full
generality.)

Conjecture. Let p be a maximal parabolic subalgebra of a complex
semisimple Lie algebra g, and w the unique fundamental weight which has an
extension to the character of p. Denote the extension by the same letter w. Let
f be the semi-invariant corresponding to w, and b(s) the b-function of f. For
4eC, the generalized Verma module U(g) @ yew).iwC is irreducible if and only
if b(A—Jj)#0 for any j=1,2,---.

0.3. Let us consider the special case where g is simple, the nilpotent
radical u of p is commutative, a Levi subalgebra [ of p is normalized by the
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longest element of the Weyl group, and the generalized Verma module concerned
is induced from a one dimensional representation. Let G be a complex Lie
group such that Lie (G) = g and L the connected subgroup of G with the Lie
algebra . In this case, (L, ad, u) is known to be an irreducible regular
prehomogeneous vector space, and we can show that the b-function of the
semi-invariant coincides with the b-function of the prehomogeneous vector space
(L, ad, u) (cf. the proof of (4.2.1)). Thus, in this special case, the above
conjecture asserts a relation between the irreducibility of certain generalized
Verma modules and b-functions of the prehomogeneous vector space (L, ad, u).
This relation can be proved by a case study, and was first observed by S. Suga
[29]. In fact, it was the original motivation of the present work to explain
and generalize this observation of Suga.

0.4. Besides the purposes stated above, it would be worth noting the
importance of the microlocal analysis of semi-invariants in connection with
other problems in the representation theory. For example, a conjecture of
Kazhdan and Lusztig (see (6.2)) implies that the holonomy diagram (cf. (5.18))
would coincide with the W-graph of the regular representation given in [18]
if g is of type A4, and p is the Borel subalgebra. Thus the determination of
the microlocal structure of semi-invariants remains an important problem, even
if the b-function is determined.

0.5. This paper consists of nine sections. In §1, we review some known
facts about 2-modules associated to complex powers of regular functions. In
§2, we review some known facts about complex semisimple Lie algebras and
Lie groups. In §3, we state our main conjectures concerning the scalar
generalized Verma modules, namely the induced modules from one dimensional
representations of parabolic subalgebras. In §4, first in (4.1), we observe that
our conjectures hold for Verma modules. (This case is due to M. Kashiwara
[15].) Next in (4.2)—(4.4), we show that our conjectures hold for commutative
parabolic cases. We give two more examples (4.5) and (4.6). In §5, we give
techniques to calculate b-functions of semi-invariants. In §6, we review the
Kazhdan-Lusztig theory, and observe that it is useful for our calculation of
b-functions. In §7 and §8, we calculate b-functions for some cases using the
techniques given in §5 and §6. In §9, we discuss how to generalize the
conjectures of §3 to non-scalar generalized Verma modules.

§1. Z-modules Associated to Complex Powers of Functions

1.1. Let X be a connected smooth affine variety over the complex number
field C, 0 = Oy the sheaf of regular functions, 2 = 9, the sheaf of algebraic
differential operators, & = &y the sheaf of micro-differential operators, f;,--, f, €
I' X, 0)\C, g=[1_,f., 2 =X\g 1(0), Q' some simply connected domain
contained in Q, i =(iy,--,4)eC* & =(1,--,1)eC* and f27% a single
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valued branch of

k k
Q' x Ca(x,s) — [] fi)" ™ = [[ " g(x)".
i=1 i=1
Let 9[s] =2 ®cC[s], 4 =2[s] [***2 and A4'(4)=.1"/s.V". (Although
the function f2**2 is defined only on €', the Zariski sheaves .¢" and .¢°(4)
are defined all over X.) Let f27%:=( f2* mods.4"). Then 4°(4)=
@ [+*%%. Let T*X be the cotangent bundle of X,

W' = {(x, s grad log g(x))e T*X |se C*, g(x) # 0},
W = W(g) = W(g, X) = the Zariski closure of W’, and
Wo = Wo(g) = Wo(g, X) = {(x, £)e W(g)| g(x)¢ = 0].

We denote by Ch (.#) (resp. Ch(.#)) the characteristic variety (resp. the
characteristic cycle) of a coherent 2-module .Z.

Lemma 1.2. The Dy-module A" (resp. A'(L)) is subholonomic (resp.
holonomic). Moreover, Ch (A7) = W and the multiplicity of A" along W is one.

A 9y-module # is said to be holonomic (resp. subholonomic) if
dim Ch (#) < dim X (resp. <dim X + 1). This lemma can be proved in the
same way as in [13].

Lemma 1.3. [14,2.7]. There exist a differential operator P = P(s) =
P(s, [, A)el'(X, Zx[s]) and a polynomial b(s) = b(s, f, A)eC[s]\ {0} such
that

Pi&*(sﬂ)é — b(s)_ji“s‘-’.

Lemma 1.4. [16, Lemma 2.3]. (Cf. [7, 2.3.8].) If b(—j)#0 forj=1,2,--,
then A°(L) is naturally isomorphic to A°(A)[g~ '] with the natural 2-module
structure.

Lemma 1.5. ([10, 1.7]) (1) The characteristic cycle Ch.1(4) does not
depend on 4.
(2) The characteristic variety Ch .4 (4) is Wy(g)-

§2. Semi-invariants

2.1. Let G be a connected, simply connected, semisimple group over the
complex number field C, B a Borel subgroup of G, T a maximal torus contained
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in B, B_ the Borel subgroup such that BnB_ =T, W= Ng(T)/T, and g, b, b_
and t the Lie algebras of G, B, B_ and T, respectively. Let t¥ = Homc (t, C),
R(<= 1Y) the root system of (g, t), g(«) the root subspace of g corresponding to

®€R, R, the set of aeR such that g(@) =b, R = —R,, p=—)

{oy,++, o} the root basis contained in Ry, IT¥ = {ay,---, 0"} the set of simple
coroots, and {w,,---,w,} (resp. {wy,---,w’}) the set of fundamental weights
(resp. fundamental coweights). Then o;, w;et”, o, w;” €t, {a;, w; ) = J;; and
(), @;) = 6;;, where { ) denotes the natural pairing of a vector space and
its dual. Concerning the numbering of simple roots, we follow [3, Planches
I-IX]. For aeR., let ¥ be the corresponding coroot, r, the reflection with
respect to o, r;=r, and S = {ry,---,r;}. Sometimes we write simply i for r;.
The identity element of G or W is denoted by e, not by 1. For we W, let I(w)
be its length with respect to S. Let > denote the Bruhat order in W so that
the identity element e becomes minimal. For each a€R, we fix a non-zero
element X, of g(«), which we shall call the root vector. For each we W, we
fix its representative element in N4;(T)(< G), which we shall denote by w, or
simply by w if there is no fear of confusion. We denote the universal enveloping
algebra by U(—).

2.2. For a character, say 4, of T, we denote the corresponding character
of t by the same letter A, and vice versa for a character of t which can be
integrated to a character of T. Thus we consider an element 4 of Zf.=1Zwi
as a character of T, which we shall denote by the same letter 4. We also
denote the natural extension of the character A of t (resp. T) to b or b_ (resp.
B or B_) by the same letter .. Moreover, if 4 can be extended to a larger
algebra (resp. group) containing b or b_ (resp. B or B_), then we shall denote
such extensions also by the same letter A.

2.3. For a subset I of S, let W, be the subgroup generated by I, w, the
longest element of W, I' = wslwg(<= S), II; = {aell|r,el}, R, the root
subsystem of R generated by II;, R, . =R;NR., [=1I)=t+Y . g,
up =u. () =), 2,z 0@, and p, =p,()=I1+u,. We denote the con-
nected subgroups of G corresponding to I, u, and p, by L= L(I), U, = U, (I)
and P, = P,(I), respectively. We usually write p =p(I) and P = P(I) for
py =p,()and P, =P, (I). Put P'= P(I') etc. For subsets J and K of S,
let (W,\W/Wy), (resp. (W,\W/Wy),) be the representatives of W,\ W/ Wy
consisting of the shortest (resp. longest) element in each double coset. We
write (W/Wg), etc. for (W, \ W/ W), etc.

2.4. Generalized Verma module Let us fix a subset I of S and let p = p(I)
etc. Let A be a character of t such that {4, a¥)eZ,, for any aell;. Then
4 is the highest weight of a finite dimensional irreducible p-module
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V(4) = V(4, p). The U(g)-module M(4) = M(4, p) = U(g) Xy, V(4, p) is called
a generalized Verma module.

2.5. Semi-invariant Let / be an integral dominant weight, i.e., a character
of t such that (A, aV)eZ., for any aell. Then there exists a uniquely
determined regular function f* on G such that f*(wg) =1, and f*(bxb’) =
(wA) (DAY f*x) (b, b eB, xeG), which we shall call the semi-invariant
corresponding to A. The semi-invariant can be constructed as follows. Let
V(4) be the irreducible g-module with the highest weight 4, v(4) a highest weight
vector, V(1)Y = V(— wgd) the dual of V(1), ( > the natural pairing of V(1)
and V(4)", and v(— 4) a lowest weight vector of V(1)Y. Normalize v(— 4)
so that (v(— A)|v(A)) =1. Then f*x)={v(— A)|ws xv(d)y. Put f,=f".
Then, for A =Y|_, Lo, (; eZ>o), we have f*=[]i_, f*. More generally, we
put f*=T]._ 1f’1' for A=Y"_, Lw (,;,€C). We understand (4, x) - f*(x) as
a single valued branch on C' x @', where €' is some simply connected domain
contained in (i-,f; *(C*). Sometimes, it is convenient to consider f; (x):=
fi(wgx) and f'*(x):= f*(wex) instead of f; and f*, which we shall also call the
semi-invariants if there is no fear of confusion. They satisfy f'*(e) =1 and
f'*(b'xb) = A(bYA(b) f'*(x) for b’'eB_, xeG and beB.

Lemma 2.6. ([8, 9.9 and 9.10]) (1) A defining equation of the subvariety
Bwgsr;B of G is given by fi=0. (2) G — P'wsP =)ics— Bwsr;B. (3) For
any we (W \W/W;), — {ws}, [,cs_,/i =0 on BwB.

Lemma 2.7. ([8, 9.11]) The rational characters w; and wsw,; (i€l) of B
can be extended to those of P = P(I) and P' = P(I') = P(wgIwyg), respectively,
and we have f(p'xp) = (wsw,)(p)w;(p)fi(x) for p'eP', xe G and peP.

§3. Conjectures

3.1. Fix a subset I of S. Let S—I:{il,---,ik} and I = {iyy, .0}
(Here we used the convention “r; =i”.) Let s, --,s; be independent complex
variables, s =) . 5@, 6=) ¢ @, and C[ s] = C[s;,,s;]. Let s be
another complex variable, A" = Z[s]1f***° (le) s ,Cm), N (J)=N"/sA,
and f**%%:=(f*** modsA"). Then A'() = Dsf***. Note that f*70 =
f%7° in the notation of §1, where ¢ =(1,--,1), f =(f;,.f,), and
4 :u’iu""lik)'

Conjecture A. For ey . o ,Z.,w, there exist a differential operator
P,el(G, D;), a non-singular point peW, = W, (f°) independent of p, a
micro-differential operator Q,(s)e & ,[ s ] whose principal symbol is independent
of s and invertible at p, and a non-zero polynomial b,(s)eC[ s] such that
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Puf}t+u+06=bu(/1)fl+06 and fl+u+05=bu(/”u)Qu(l)f/l+Oé fO}’ any ;‘“EZieS—Icwi'

Remark 3.2. By [10, 6.4], the polynomials b,(s ) are uniquely determined
up to non-zero constant multiple. We call the polynomials b,(s) the b-
functions.

3.3. Assuming Conjecture 4, we make the following conjectures.

Conjecture B (Main Conjecture). The generalized Verma module M (1, p(I))
(A€). s Cw)) is irreducible if and only if b,(A—u)#0 for any uezies_llzow,-.

Conjecture C. The following conditions are equivalent for ey, _o_,Cw;.
1) <A+p,avy#0, =1, =2,--- for any aeR,. (2) b,(A) #0 for any pe
ZieS—IZzowi-

3.4. It is easy to see that Conjectures 4, B and C are equivalent to the
following Conjectures A’, B’ and C’, respectively. (Conjectures B’ and C’ have
meaning under Conjecture A4'.)

Conjecture A'. For any ieS—1, there exist a differential operator
P,eI'(G, D), a point pe Wy = Wo(f?) independent of i, a micro-differential
operator Q;[ s1€é; [ 51 whose principal symbol is independent of s and
invertible at p, and a non-zero polynomial by(s)eC[ s] such that P f**™7% =
b(A) 39, and f**™ % = b(A)Q(A) [T for any ie) ¢ ,Cw;.

Conjecture B'. The generalized Verma module M/, p(I)) (Zeziss_ ;Cm)
is irreducible if and only if b(A—w, —pn#0 for any ieS—1 and
HEY is—1 L3 oW

Conjecture C'. The following conditions are equivalent for i€y, o ,Cw;.
(1) <A4+p,a¥>#0, =1, =2,--- for any aeR,. () bj(A+u)#0 for any
ieS—1Iand pe) o | Z.,w,.

Remark 3.5. Let us show that W, in [8, 9.12] coincides with W,(f?). Let
A=Y . ;4@. Then, on the open set (f°) 1(C*)= Nis_rfi *(C*), A'(A)
in [8,9.12] is naturally isomorphic to A7(i) defined in (3.1). Hence
N ALfi7 Y, f;7 '] in [8] is isomorphic to A (A)[(f°)~!]. But, by (1.4) and
(1.5), we have Ch 4" (A)=Ch A (A)[(f%) 1= W,(f?). Hence the characteristic
variety of A(A)[fi .-, fir 1 is Wo(f?). Thus Conjecture A would imply
that the assumptions (9.12.3) and (9.12.4) of [8] are always satisfied.

§4. Examples (1)

4.0. Here we calculate b-functions of semi-invariants for some (g, I). If
g is of type X, and S—1={ij,---,i}, we shall denote such a pair by
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(X, iy,--+,5), and indicate it graphically by colouring black the vertexes
corresponding to I of the Dynkin diagram of g. Along with the calculation
of b-functions, we also determine the set of Aezies_ ; Cm; such that M (4, p(1))
is reducible by applying the irreducibility criterion of Jantzen [12], except for
(4.1). In (4.1), we consider the case where I = ¢. The content of (4.1) is a
restatement of [15]. In (4.2)—(4.4), we consider the case where p is a maximal
parabolic subalgebra and its nilpotent radical is commutative. In (4.5) and
(4.6), we study two examples, where the b-functions can be calculated directly.

4.1. Verma modules Let us consider the case where I = ¢. In this case,
p=Db and M(4, p) is the Verma module.

Lemma 4.1.1. [15, Theorem 2.1 and Remark 2.3] For any uezisslzow,-,
there exist a differential operator P,e I'(G, D) and an invertible micro-differential
operator Q, in a neighbourhood of a generic point of the conormal bundle of B in
G, such that P, f**#*% =b (1) f**% and Q,f**#*% = b,(A) f**° with b,(}) =
[lacr, [<A+ p, a¥ D], where [x]° =1 and [x]™ = x(x + 1)+, (x + m — 1)
for m > 0.

Lemma 4.1.2. ([6, 7.6.24]) The following conditions are equivalent for
AetY. (1) The Verma module M(A, b) is irreducible. (2) (A +p, a¥ ) #1,2,---
for any aeR,. (3) b,(A—u) #0 for any pey  Z. ;.

Lemma 4.1.3. The following conditions are equivalent for Aet¥. (1)
A+p,a”>#0, =1, =2--, for any aeR,.. (2) b,(A)#0 for any pe
ZieS 7,

The verification of (2)<>(3) in (4.1.2), and (4.1.3) is easy and omitted. Thus
Conjectures 4, B and C hold for this case.

4.2. Commutative parabolic cases (1) Let us consider the case where S — I
consists of only one simple reflection r; and the coefficient of «; in the highest
root is equal to one. Then the nilpotent radical of the parabolic subalgebra
p(I) is commutative, and all such parabolic subalgebras can be obtained in
this way. We refer to these cases as commutative parabolic cases. Further
we assume that g is simple. Such (g, i) can be classified as follows:

p—1 g-1

e e, e
(Aptg-1.7) M e M ° M e A (p<9)
(Bp,1) o ® o=—>0
((”pal’) L] (] s e <—o0
(Dp, 1) o . ° °
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(Dp,p) ° ® ® °
|
o
(Eb)l) 0 ® ® ® ®
®
(Er,T) ® ® ® ° ° o
®
(Figure 1)

(Note that (A, g— > P) = (4,1 ,-1, )s (D, p) ~ (D, p— 1) and (Eg, 1) = (Es, 6))

First, in this number, we consider the cases where — wg(o;) = o;. We shall
refer to these cases as regular commutative parabolic cases. It is known that
(L(I), ad, u_(I)) ~ (L(I), ad, U_(I)) is an irreducible regular prehomogeneous
vector space. (See [25] and [7] for prehomogeneous vector spaces. See [22]
and [21] for the prehomogeneous vector spaces of this special type.) The
regular commutative parabolic cases are (4,,-;, p), (B,, 1), (Cp, p), (D, 1),
(D,,, 2p) and (E,, 7).

Lemma 4.2.1. Conjecture A holds for the regular commutative parabolic
cases.

Proof. Let by(s) be the minimal polynomial of seEndy, (Z¢[s]f’/
Ds[s1f5+Y). Since every B x B-orbit contains the identity element e in its
closure, b;(s) is also the minimal polynomial of se Endg, (Zo[s]/;’/Po[s1/°" 1),
where 9, denotes the stalk of 2, at e. (Cf. the proof of [7, 2.5.3].) Since
U_-P is an open neighbourhood of e and f;(up) = w,(p)f;(u) for any ueU_
and peP, in order to prove Conjecture A, it suffices to show the existence of
a micro-differential operator Qe &, _ such that Q(f;|U_)"! = b,(s)(f;] U_) and
invertible at some point of Wy(f;|U_, U_). (Recall the convention (2.2) and
note that @,;(p) # 0 for any peP.) By the definition of semi-invariants,

(4.2.2) Jiul™?) = (wsw; — ) () fi(w) = (= 2w) () fi(w)

for any leL and ueU_, i.e., (f;ocexp)|u_ is a relative invariant of the regular
prehomogeneous vector space (L, ad, u_). Hence we know the existence of
the desired micro-differential operator [24, 4.6].

Remark 4.2.3. The relative invariant (f;oexp)/u_ appeared in [22,
Theorem 1.4.2].

4.24. Let us determine the explicit form of b;(s). By (4.2.2), (f;cexp)|u_
is a relative invdriant corresponding to the character — 2w;. Since ad (— @;")
=1 on u_, the polynomial degree of (f;cexp)|u_ is equal to 2<w;, w; ),
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which is equal to p, 2, p, 2, p, 3 for the cases (4,,-,, p), (B,, 1), (C,, p), (D, 1),
(D,,, 2p), (E;, 7), respectively. Comparing with the degree of irreducible
relative invariants of prehomogeneous vector spaces (L, ad, u_) [25], we can
see that each (f;oexp)|u_ is an irreducible relative invariant. As is seen from
the proof of (4.2.1), b;(s) is equal to the b-function of (f;cexp)|u_, whose
explicit form is given by

(zp 1 ) bys) = (s + D5 +2) (s + p)

(B, 1) b,(s) =<s+1)<s+2"2‘1>

D) b,() =(s+1)(s+§><s+§>-~<s+%l>
(D, 1) b, (5) =(s+1)<s+2p2_2>

(D 20) bap(s) = (5 + D)5 + 35+ 2p — )

(E,, 7) b(9) = (s + (s + 5)(s +9)

See [20], also [21] and [11].

Lemma 4.2.5. Conjecture B holds for the regular commutative parabolic
cases.

We can check this assertion by a direct calculation using the irreducibility
criterion of Jantzen [12]. This assertion is essentially due to S. Suga [29],
and is the original motivation of the present work as is explained in (0.3). It
is easy to see that Conjecture C also holds for the regular commutative parabolic
cases.

43. (Es,1) O ° ° . °
®

Let G be a complex Lie algebra of type Eq, g = Lie(G), I =S — {r},
I'=wglwg, P = P(I), P'= P(I') and L' = L(I'). Put J ={1,2,3,4,5).

Lemma 4.3.1. wgeP_ - L(J)P.
Proof. It suffices to show that wge wsW,.wg- W, W, or equivalently that
4.3.2) wse W, W, W.

We can show that the coset representatives in (W, \ W), are given by the
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w
é—— O ¢—— O ¢—— ©

33
O «— O
3]

—— O

2 4 3 1
o] o o [¢]
S L
2 4 3 1
o o o o] O
Lol
3 1

1 3
O —— 0 —/8 O

Lol

1 3 4 5 6
o o 0 o o o]

(Figure 2)

(3]

diagram of Figure 2.

(It implies that (W;\W), = {e, 1, 13, 134, 1342, 1345, 13425,---} and all the
expressions of elements of (W, \ W), obtained in this way are reduced.) Hence
wg = w; - 13425431 - 65432456 € W, W, W;.

Lemma 4.33. The morphism p:P_ x L(J) x P—> G defined by the
multiplication is a submersion.

Proof. It is enough to show the surjectivity of du at (e, w, e) for
we W,. Hence it suffices to show that p_ + [(J) + (ad w)p = g, or equivalently
that (R_UR,)UR;Uw(R,UR;)=R. Since we W,, the left hand side contains
R_UR;UWR, 2 R_UR;U(R;\Rj)=R

Lemma 4.3.4. The morphism u: P_ x L(J) x P— G is smooth and surjective.

Proof. By (4.3.3), u is smooth and its image G, is an open set of
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G. Hence G— G, is a P_ x P-stable, closed subset of G which does not
contain wg (cf. (4.3.1)). Since every coset P_-gP (geG) contains wg in its
closure, G — G, is empty, i.e., u is surjective.

Lemma 4.3.5. (1) Conjecture A holds for (Eg, 1). (2) bi(s) = (s + 1)(s + 4).

Proof. Let f/(x) = filwsx). By 2.7), p*fi =o, @ (f{|L(J))®w,. Asis
easily seen, (f;|L(J))(wy'x) is the semi-invariant of L(J) corresponding to the
following white node.

1 3 4 5
(Ds, 1) O ° ° ®
®
2

By (4.3.4), we can reduce the proof to the case (D5, 1), which we have already
taken up in (4.2).

4.4. Commutative parabolic cases (2)

Lemma 4.4.1. (1) Conjectures A, B and C hold for commutative parabolic
cases. (2) The b-functions are given by

(Apsq-15P) by(s)=(s+1(s+2)(s+p) (P<qg
(D2p+1, 2P+ 1) by =(+ D +3)(s+2p—1)
(Es» 1) bi(s) = (s +1)(s +4).

See (4.2.4) for the b-functions in the regular commutative parabolic cases.

Proof. We shall reduce the proof to the regular commutative parabolic
cases as in (4.3). More precisely, by showing (4.3.2) for some J, we shall reduce
the proof as follows; (4,.,-1,P)=>(43,-1,p) (P <q), and (D34, 2p + 1)=
(D2 2D).

For the case (A,+,-1,p) (p<gq), let J={1,2,---,2p—1}, and K =
{2p+ 1,---,p+q— 1}(=I). Calculating products as permutations, we get
WiWsW; = Ws_ 5, and hence wg = wiws_ Wy = wiw,wew, e WW, W, (If g =
p+ 1, then K = ¢ and wy =e. Recall that ] =S — {p} in the present case.)

For the case (D,,.+,,2p+1), let J=5—{1}. Then wg=ww,we
W, W, W;. In fact, in the notation of [3, Planche IV],

wr wJg wr .
8 = Ept2—i T > T Epr2-i T > T § (i#2p+1), and

wI wg wr
Eap+1 T 261 T8 T 8Ep41-
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45. (C,,1) © ° ° ®

ay az [

£

Let

1 K
K=K,.=< < |eGL,©), J=< )
1 —K

g= 5pZn(C) = {XEMZn(C)|XJ + JtX = 0}5
G = 8p;u(C) = {geGL,,(C)1gJ'g = T},

a
d(a) = (

' 1 bK
S={beM,(C)|b="b}, u(b)= ( ) for beS,
1

) for ae GL,(C), d(t,,---,t,) = d(diag (t,, -, t,)),
K'a 'K

U'={(x)€eGL,(C)|x; =1 and x;=0 (i>j)},
U = {d(a)u(b)|acU’, beS}, U_ = {u|lueU},
T={d(t,,,t,)|t;€C*}, B=UT, B_={b|beB}.

Then the semi-invariant f; corresponding to the fundamental weight @, is given
by f{(x) = det (X,,)1 < p.q<: fOr x = (x,,)€G. Let us consider the b-function b, (s)
of f{. Since every (B_, B)-double coset contains J in its closure, it is enough
to consider the b-function in a neighbourhood U_ - TUJ of J. A direct calcula-
tion shows that fi(v-d(ty, -, t)d@u(—b)J)=t,fi(d@u(— b)J)=1t,(by; +
ajzbyy + -+ ayby,) for veU_,t,eC™, ae(a,)eU’ and b= (b,,)eS. Hence
Conjecture 4 holds with

bi(s)=s+1.

Now the verification of Conjectures B and C in this case is easy.

4.6. (G,, 1) Oo<«<e

ag a2

Let g be the totality of the matrices

ty+t, —a, a, a3 —a, —as 0

—-b, a; a, das 0 as

b, b; t, a 0 —ay as

4.6.1) 2by  2b, 2b, 0 2a, 2a, 2a,
—b, by 0 b, —t, —a; —a,
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and G the group generated by {exp X|Xeg}, where expX =) _,X"/nl.
Then g is the isotropy subalgebra of gl, (acting on A3C7) at vy = —u; A us A Ug
Uy Al AUy Uy AUy AUy — Uy AUy Allg — U3 AU, Als and is a simple Lie
algebra of type G,. The isotropy subgroup of GL, at v, consists of 3

components G, Gw and Gw?, where w is a scalar matrix of order 3. Since
1

1

fixes vy, it belongs to G. (Compare the determinant.) Let B (resp. B_, T) be
the totality of upper triangular (resp. lower triangular, diagonal) matrices in
G. Then B and B_ are opposed Borel subgroups and T is the maximal
torus. The above element wg represents the longest element of the Weyl
group. Let t = Lie(T) and 4; be its character defined by diag (¢, + ¢, t;, t,, 0,
—ty, —ty, —t; —t;) > t;. The simple roots are «; = 4, and a, = 4; — 4,, the
Dynkin diagram is given by a,«o,, and the fundamental weights are
@y =1+ 4, and @, =24, + 4,.  Let 4;(x) = det (x,,); <p.4<: for x = (x,,)eG.
Then the semi-invariants corresponding to fundamental weights are given by
fP =4y, and f">=4,. (We also have 43 =4, ="', As=[f"2, Ag = f™
and 4, =1.) Let U be the totality of the matrices

1 —a, a, a3 3aja, 30,05 a’
1 0 a, a;+aya, al laya,
1 a a? —asz+a,a, ia,a,
U, = 1 2a, 2a, 2a;4
1 0 —a,
1 a,
1

and U, the totality of the matrices

10 0 0 —a, —as+aja, O

1 a; 0 0 0 as

1 0 O 0 a,

U = 1 0 0 0
1 —a;

0
1 0
1
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Then the open neighbourhood B_ - U,U,wg of wg in G is naturally isomorphic
to B_ x U, x U, and a direct calculation shows that f%'(b'uu,ws) = w,(b)
X (—a,a% + a,a, + a?) for b’e B_. Hence Conjecture A holds for I = {2} with
the b-function

bi(s)=(s+ 1)<s +§>

Now the verification of Conjectures B and C in this case is easy.

Remark 4.7. Although we can write down semi-invariants explicitly in
many cases, it is difficult to calculate their b-functions in an elementary way
except for a few extremely simple cases such as (4.5) and (4.6). Thus we need
an algorithm to calculate them, which we shall give in the next section.
Without to say, once the b-functions are calculated explicitly for a specific I,
the verification of Conjectures B and C for this specific case is not difficult,
and actually we can do in every example below. Unfortunately, our algorithm
to calculate the b-functions verifies only one half of Conjecture A, namely, the
existence of the micro-differential operators Q,(4). The author hopes to discuss
the differential operators P, in a different place.

§5. Holonomy Diagrams

5.0. In this section, we give a modification of the techniques developped
in [24], suitably for the calculation of b-functions of semi-invariants. The main
difficulty of the modification lies in finding codimension one intersections of
irreducible components of W,(f?) (the characteristic variety of .4#°(4)) and in
showing the local irreducibility of components. Our techniques to find
codimension one intersections are given in (5.8)—(5.13). We discuss the local
irreducibility in (5.16) and (5.17).

51. Let L,: G- G (resp. R,;: G— G) be the left (resp. right) translation,
i.e., Ly(x) = gx (resp. R,(x) = xg). For a tangent vector Xe TG at xeG and
for geG, we write gX (resp. Xg) for (L,),X (resp. (R),X). Then these
“products” are associative, i.e., g; (9,X) =(9:92.)X, (9:X)g, =¢9,(Xg,) and
(Xg1)9, = X(9,19,). Let T,G=g. Then the tangent bundle TG of G is the
totality of the “products” gX (geG, X eg). Note also that gXg~! = (ad g) X.

52. Let I be a subset of S,I'=wglwg, P=P(I), P'=P(I'), and
we (W, \W/W,),. Henceforth in this section, we fix I. Since BwB is an open
neighbourhood of w in PwP, w™!T, (P'wP)=w"!T, (BwB) = T,(w™!BwB) =
BY+b=t+ iz, 80+ D &, 8. (We write x’ =y~ 'xy and *x =yxy~ ')
Put T(P'WP)g:= Upepwp{£€ T*G|E L T,(P'wP)}, and let T(P'wP)" be its
Zariski closure in T*G, which is called the conormal bundle. Identifying g
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with its dual by the Killing form, we may consider T(P'wP)* as a subvariety
of TG. Then

(5.2.1) w T, (PwP)*: = Y g().

aew” 'R+ NR+
Consider the P’ x P-action defined by (p/, p)x = p'xp~! for p'eP’, peP and
xeP'wP. The isotropy group (P’ x P), at w can be identified with P"*nP by
PvnPsp—(*p, p)e(P’ x P),. For wXeT, (PwP): and peP'*nP, we have
w(pXp ) ="p-wX -p~!. Hence the natural action of (P’ x P), on T,,(P'wP)*
is identified with the adjoint action of P*nP on ) _ _, r.nR. 8(@). We have
PUAP =t+ ) ke URIN RS vy 8@ Since we(Wp. \ W/W)),, w 'R, _ =R,
and wR; _ = R,. Hence w '(R.UR;)N(RL,UR) =W 'R,nNR)UW 'R, _
UR; _, where the right hand side is a disjoint union.

5.3. Colocalization Given we(W,.\W/W,),. Put Rw)=w !R_nR,,
R'W)=w "Ry _UR; _, V¥(W) =)z, 8(®) (cf. (5.2.1)), G(w) = P"nP, g(w) =
Lie (Gw))(=t+ ZasR(w)uR‘(w) g(®)) and A(w)= T(BwB)* = T(P’'wP)*. Then the
colocalization [24, 4.4] of the P’ x P-action on G at w can be identified with
(G(w), ad, V*(w)) and we have g(w) =t + Y & (or-om 3()-

54. Good Lagrangian Recall that 6=Y) @, & =D[s]f*7%, A(4)
=N [sA, and f2T% = (f*" modsA') for A=) .  Aw. When we are
considering f**%°, we say that A(w) (we (W, \W/W,),) is a good Lagrangian if

(5.4.1) (G(w), ad, V*(w)) is prehomogeneous, and
(5.4.2) Aw) = Ch D45+ = W, (f9).

Then as in [10, 0.4], we can show that there exist Aoet and an element Y,
in the open G(w)-orbit of V*(w) such that (ad 4,)Y, = ¥,. By (2.6, (3)) and
by the definition of W and W,, the condition (5.4.2) is equivalent to A(w) <
Ch 24[s1f*"*° = W(f?). Fix such an element w. We know that A'(J) is
simple holonomic in a neighbourhood of a generic point of a good Lagrangian
[10, 2.8]. Hence we can consider the principal symbol and the order of f**
there. See [24] for the definitions of ‘simple holonomic’, ‘principal symbol’
and ‘order’.

5.5. Order Here we give an algorithm to calculate the order of f*#%99,
Assume that A(w) (we(W;.\ W/W))) is a good Lagrangian. Take A,et so that
(ad Ag) Yy = Y,. Then tr(ad Ay| V*(w)) = ZaeR(w)@, Aoy and dim V*(w) =
card R(w). Since f;("pxp~ ') = (wsm) (*p)w;(p~ ") fi(x) for pe G(w) = PP, f, is
a relative invariant with respect to g(w), and the value of its character at A4, is
{w lwgwm, — w;, A,y. Hence the order of f**%% at the conormal bundle
A(w) = T(P'wP)* is given by
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1
(5.5.1)  ordp, [P = wTlwsd — 4, Ag> — D, (o, Ag> + Ecard R(w),

aeR(w)
(cf. [24, 4.14] and [10, 3.3]).

Remark 5.5.2. If (G(w), V*(w)) is prehomogenous, we can consider the
right hand side of (5.5.1). If it really depends on the choice of A,, then A(w)
is not contained in Wy(f% = Ch 9, f**.

5.6. Intersection exponents Assume that A(w) is a good Lagrangian,
Y, e V*(w) lies in an orbit of codimension one, and wY, e A(w) belongs to
another good Lagrangian variety A(w’). Then dim A(w)nA(w) = dim A(w) — 1.
Assume that A(w)nA(w) is not contained in any irreducible component of
W, (f?) other than A(w) or A(w'), and that A(w) and A(w’) are locally irreducible
at wY; as analytic spaces. (Cf. (5.17).) Find an element A4, €g(w) such that
(ad 4,)Y; = Y;. Let (u:v) be the intersection exponent of A(w) to A(w)
[24, 6.4]. Let V= V*(w)/(ad g(w))Y,. If the value of tr (4, | V) is independent
of the choice of A4,, then

u

tr(A,| V)= )
u=+v

Since v and u are relatively prime, non-negative integers, they are uniquely
determined by this formula. If the value depends on A,, then p=1 and
v=0. (Note that the intersection exponents depend only on the characteristic
cycle. Hence it is enough to consider 2f° = 2[s](f°°/s2[s](f°). Since
only one function f° appears in this 2-module, the argument of [24] works
and we get the above formula.)

Lemma 5.7. [24, 6.6] Let w, w'e(W. \W/W,),, 0 = Zies_lw,- and go(w) =
{Aeg(w)|{wgd, YA> — (8, AY =0}. Assume that A(w) (or AW)) < W(f?),
Y, e V*(w), the codimension of (ad go(w))Y, in V*(w) is one, and wY,e A(W').
Then AwW)UA(W) < W(f?). Moreover, W(f°) is non-singular in a neighbourhood
of wY,.

5.8. Intersection of conormal bundles (1) In the special case wher w > w'
and [(w) —I(w)=1, we can understand the intersection A(w)nA(w’) fairly
well. First, let us consider this case. Put U, =x,(C), U, =U,— {e},
U(2) = [ 1,5 0.2a<0 Uzal= U_), for aeR and ze W. Suppose that

w=urg, lw)=Iu)+1+10)=n Ppell,
w =un, IW)=I1u)+ Ilv).
Note that uf >0, v"* >0 and BzB = BU(2)z.

Lemma 5.8.1. In a neighbourhood of W' e G, we have an isomorphism
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(BWIB, BWB, G)Z(Cll*l X {O} X {O}N—n, Cn—l X CX X {O}N_", Cn—l % C % CN_").

where N = dim G. Especially A(w) and A(w') have an intersection of codimension
one.

Proof. Since BuB = uU(u™')B, we have natural isomorphisms
uU(u™ ') x BvB ~ BuvB,
uU(u™") x BroB ~ BurvB (r:=ry),
uU(u™') x Bu™'wgBwguv ~ BwgBwguv.
Hence it suffices to give an isomorphism
(552) (BvB, BrvB, BU (u™ *wg)v) = (BU (v)v, BU (rv)rv, BU(u™ *wg)v)
~ (€™ x {0} x {OP™, €1 x €% x {0IMm Cm L x € x €M)

in a neighbourhood of v in BU(u™ 'wg)v, where m = dim BU(v)v + 1 and
M = dim BU(u *wg)v. It is easy to see that U(v) = U(u~'wy), i.e.,

(5.8.3) BU@)nBU(u™*wg) = BU(v).

Hence, in order to prove (5.8.2), it is enough to show that

(5.8.4) BU(rv)rnBU (u™ *wg) = BUZ,U(v).

Since BU (rv)rv = BrvB = BrBvB = BrBU (v)v = BrU U (v)v,

(5.8.9) BU(rv)r = BrUgzU (v).

If t #0, rp xp(t)e Txg(— )x_5(t ™ )xp(— 1) - x4(t)eBx_4(t~"). Hence
(5.8.6) BrU; = BUZ

By (5.8.5) and (5.8.6), BU(rv)r = BrU (vyUBUX,U(v). Hence in order to prove
(5.8.4), it suffices to show that

(5.8.7) BUX,U(v) = BU(u 'wg), and
(5.8.8) BrU@nBUu"'wy) = 6.

It is easy to see that U_,yU(v) = U(u™'wg). Hence we get (5.8.7), and (5.8.8)
reduces to r¢ BU(u™ 'wy), i.e., ru” *wg¢ BU(u 'wg)u™'wg = Bu~'wgB.
Lemma 5.89. Let w and w' be as above. Then

w (T, (BwB)"n T,.(BwB)') = ) g(a),

acE

where E = {aeR, |va > 0, uva > 0, va # B}.
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Proof. The assertion follows from the equalities
(uv) " 'BuwvB=v ‘U@ Yov-v 'Bv-v U)o

=] U, ] U_.- T[] U,

va>0 va<0 a<0
uva <0 va>0

and
(uv) ™' BurvB = (uv)” * BuB - BrvB = (uv) " *uU(u~')B - BU(rv)rv
=0 'U@w "B -BUX,U(v)v

=0 U@ Yo v ' Bo-v U0 0 ' U@

= J] U T Uoa- T-U%p [] Uose

voe>0 va<O0 a<0
uva <0 va>0

Here the third equality holds only in a neighbourhood of w' = uv. Cf. (5.8.4).

5.9. Next, let us consider a way to find elements in the intersection
Aw)nAWw) for general w, w e(W,.\W/W;),. Here we constantly use the
notation in (5.1).

First, let us consider the case where

w=urv, r=ry, (Bell), I(w)=I1u)+1+ I(v),
w =uv, and I[W)=Iu)+ I(v),

as in (5.8). Take representatives of u and v in N4(T), which we shall denote
by the same letters u and v, so that ux,(t)u~' = x,5(t) and v‘lx,,(t)v = X,-14(t).
Here x,(¢) denotes a one parameter subgroup of G such that x,4(0) = X 5(= root
vector). Put wy(t) = xﬂ(t’l)x_ﬁ(— t)x,,(t‘l)(teC *).  Then wy(z) represents the
clement re W. We take wy(1) as a representative element of r, and denote
wg(1) by r. Put g(t) = ux,(t)x_s(— t)x4(t)v. Then g(1) = urv =:w, g(0) = uv =:
w', and
g(t) = uxp(t — t Ywy()xg(t — t ™Mo

(5.9.1)
= X5t — t " Duwy(t)vx,-15(t —t ") e Bwx,-15(t —t ') = BwB

for t # 0. Hence if t # 0, then
9(t)" ' T,,(BwB) = T,(g(t)"* Bg(t)B) = b*> + b = (b¥ + by»*~*"", and
g(t) " T, (BWB)" = V*(wy=>¢ 71,

where y = v 4. (Cf. (5.3) for V*(w).) Hence

(59.2) W LT, (BWB)* S lim g(6) ™! T, (BwB)* = lim V*(w)+,

t— oo
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Here, for instance, the most right hand side denotes the totality of lim,_, , v(f)*®.
where v(t) is any path in V*(w) such that lim v(t)>® exists. If o, &', « + &' €R,
then it is known that [X,, X,]= N,,X,+, with some N,,eC*. Take
aew *R,NR,, and let p = p(a) (resp. g = q(«)) be the integer such that

o o+7y,-,0+pyeR and (p+ 1)y¢R.
(resp. o, & + y,---,a + qgyew *R.nR, and a+(q+ 1)y¢w 'R, NR,).
Then

J Xy(1)
t'Nay - Naw -1y, Xa3

a+jy
. Pt
(5.9.3) = tJNa.v"'Naw—l)y.vz ﬁN«+Jr-w"'Na+<j*i—m.yXa+u+i>y
» ti i=0 ¢t
= Z . . sz.y"'Na+(i—1))'.~,'Xaz+i}'eV*(W)xy(r)
i=o (i —J)!

1
for 0 <j<gq. Here we understand -~ = 0 for neZ_,. Note that

n.
| L L L
ot - * ) !
1 1 1
P-D (-2 (p—q—l)'{
Loy plp—1) i
q 1
=l o~ |1 P D= }
1 p p?
=:0(p_1i)'~ 1 p—1 (@-17> - |#0

Hence by (5.9.3), we can find elements in V*(w)™® of the form t'X, ., + (terms

of lower degree in t) for p—g<i<p. In other words X,.; + O(t ")e
V*(w)® (t - o) for p—q <i<p. Hence

(5.9.4) V= Y gla + jy) < tllm V*(w)>®,
Pl @) £ S pi@
5.9.5. In general, for a C-vector space V, denote by Grass,, (V) the totality
of m-dimensional linear subspaces of V, with the natural structure of an algebraic
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variety. For a smooth algebraic variety X over C, let T*X be the cotangent
bundle and Grass,, (T*X) = (,x Grass,, (T,*X) (disjoint union) with the natural
structure of an algebraic variety. We denote the limit in Grass, (V) or
Grass,, (T*X) (with the classical topology) by G-lim, and the limit in T*X by
lim. Let n (resp. @,) be the projection T*X — X (resp. Grass, (T*X)— X).
For a smooth irreducible subvariety Y of X (not necessarily closed), let
Grass,, ((TY)") be the Zariski closure in Grass,, (T*X) of the (disjoint) union
Uyer Grass,, ((T,Y)). Note that it is also the closure with respect to the
classical topology.

Lemma 5.9.6. If UeGrass, (TY)"), then U < (TY)*.

Proof. Let E be the subvariety of Grass, (T*X) x yT*X consisting of
pairs (U, u) such that Usu. Let Grass,, (T*X) < = L T*X be the projections.
Note that Grass,, (TY)*) is irreducible, o is a vector bundle, and B is a
projective morphism. Hence Z:= fa~! Grass,, ((TY)") is a closed irreducible
subvariety of T*X. Since n(Z)< Y and Znza YY) =(TY)'nan (YY), Z=
(TY):. This implies the asserion.

Now we return to the cotangent bundle of G. Let v be an element of
the most right hand side of (5.9.4), and v(t) a path in V*(w) such that
v(t)*® > p(t - ). Put m:=dim V*(w). Define t: C — Grass,, (g) by (t) =
V*(wy>®. Considering the normalization of the Zariski closure of 1(C), we
can show that the boundary of 7(C), or t(C) itself, consists of only one
point. Hence G-lim,., V*(w)>® exists, which we shall denote by ¥'. Then
@)™, V*(wy*®) is a path lying in {(x, V)eg x Grass,, (g)|xe V}. Hence its
limit point (v, V') also lies in the same set, i.e., ve V’. Thus

(5.9.7) lim V*(wy»® < V',

t—= 0

Put Eq=w 'R,nR, and E,={x+jylacEy, p(x) —q(x) <j<p()}. For
each «, feR, it is well known that {jeZ|o + jf€R} is an interval. Hence

Eo=U {o+jy/0<j<q®} (disjoint union)

acA

with some subset A of E,, and

Ei=U {a+jylpla)—qa) <j<p@)} (disjoint union).

aed
Hence

(5.9.8) dim V' = m = dim V*(w) = card E, = card E, = dim V",
By (5.9.4), (5.9.7) and (5.9.8), V' = G-lim,_, V*(w)>®. Hence
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WV’ = G-lim gy Vw7 = G-lim T, (BwB)* € Grass,, (T(BwB)*).
On the other hand

wV' = G—}i_{lg T, (BwB)* € Grass,, (T(Bw'B)*),

because {BzB|ze W} is a Whitney stratification of G. (By [30], {BzB|ze W}

has a refinement which satisfies the Whitney condition. Taking into account

the B x B-action, we can show that {BzB|ze W} itself is a Whitney stratification.)
Next assume that

w=urv, r=ry (fell), l(w)=I1u)+1+I),
w’ =u'v, and I(W")=IW)+ ().

Put g'(t) = u'xp(t)x_p(— t)xp()v" and ' = v 18 (>0). As in the first step,
g'(t) can be expressed as b'(t)w'x,,(t — t ') with some b'(t)e B for te C*. Then

gV =p'(w'V'x, (t — t~')eGrass, (T(BwB)*)n Grass,, (T(Bw'B)?).

As in the first step, we can show that G-lim of the left hand exists, which we
shall denote by w”"V"”. In the same way, we can determine the explicit form
of V”, and can show that

w" V" eGrass,, (T(BwB)*)n Grass,, (T(Bw'B)*)n Grass,, (T(Bw"B)*).
Repeating such an argument and using (5.9.6), we get the following algorithm.

5.10. Intersection of conormal bundles (2) Let w, we(W.\ W/ W), and
suppose that there exists a sequence w = wy, wy,---,w, =w' of elements in W
such that

Wi = Uil U; (Biell), 1w)=Iu)+ 1+ 1),
Wiy = w0, and  I(w;o ) = 1) + I(v)

for 0<i<n Note that w=wy>w, >--->w,=w. Put y,=0v;)
(0O<i<mn) and define subset E; (0<i<n) of R, as follows. (Note that
y; > 0.) First we put

Ey=wi'R.NR,.

We construct E;,; from E; as follows. For an element aeE;, let p;, = p;(2)
and g; = g;(«) be the integers such that

O(,Oﬂ+yi,"‘,0f+pi'}}i€R, 0‘+(P;+ 1)'})‘¢R,
o, 0+ Py X+ g € B, o+ (q; + 1)y ¢E;.
Define E;,; by
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Eioy={o+jyi|acE;, pi(0) — q;(2) <j < pi(@)}.
Put V=% . g(®). Then
w'V, e Grass,, (T(BwB)*)n Grass,, (T(Bw'B)*), and

(5.10.1)
w'V,  T(BwB)*n T(Bw B)*

where m = codimg (BwB).

5.11. The algorithm given in (5.10) often fails to be efficient to find
codimension one intersections of A(w)’s. Let us give a technique to make up
for this fault.

Lemma 5.11.1. Let notation be as in (59.5). If y is a normal point of
the Zariski closure of Y, then Grass,, (TY)")n=,, (y) is connected (in the Zariski

topology).

Proof. Since n,,: Grass,, (TY)*)— Y is a birational proper morphism, the
connectedness follows from Zariski’s connectedness theorem.

Lemma 5.11.2. [5, Corollary 1 in p. 85] BwB is a normal variety.

Remark. The proof of the normality given in [5] contained a gap, but the
result is valid. See the reviewer’s remark given at the end of MR 87g: 17006.

5.11.3. Let notation be as in (5.10). By (5.11.2), we can apply (5.11.1) for
X =G, Y=BwB, and y=w'. Thus X:= Grass,, (T(BwB)*)n=,(w) is con-
nected. Since {BzB|ze W} is a Whitney stratification, 2 < Grass,, (T(Bw'B)*)
nn,'(w)=w Grass, (V*(w)), and w¥,eX by (5.10.1). Thus we get the
following assertion which complements (5.10).

5.12. Intersection of conormal bundles (3) Let w, w'e(W,.\ W/W,), such
that w>w' and {¥|0<i<n}, {}/'|{0<i<n} etc. be various sequences of
subspaces of g constructed in (5.10) by taking various sequences {w;}. Then,
there exists a G(w')-stable connected subset of Grass, (V*(w')), say Z,, such
that {w'V,, w'V',---} =« w'X, < Grass,, (T(BwB)*)n Grass,, (T(Bw'B)*) and U(w'Z,)
c T(BwB)"n T(Bw' B)*.

5.13. Intersection of conormal bundles (4) If G is of type A4,, then we
may assume that G = GL,(C). (Although we have assumed G to be semisimple,
the necessary modification would be obvious.) Since (B x B, M,(C)) is a
prehomogenous vector space and GL,(C) is an open subset of M, (C), the
method given in [24, 6.2] can be used.

5.14. Intersection of conormal bundles (5) Besides the techniques to find
codimension one intersections of the irreducible components of W,, we also



HIGHEST WEIGHT MODULES AND b-FUNCTIONS 375

need a technique to show that some components do not intersect in codimension
one.

Assume that A(wynA(w') (w, w' e Wy(I)) has an irreducible component 4
such that dimA4 =dim G — 1. Let n: T*G — G be the projection and gen(4)
a point such that dim 7™ '(g9)n4 = dim 4 — dim 7(4). Take w"eW,(I)\ {w, w'}.
Since A(w") is the Zariski closure of (e bW V*(W)b = Upes BW'bV* (W'Y,
we have

g '@ M gnAw") = UV*w')’ =M.

beB
If A(w") contains 4, then
(5.14.1) g '@ g)nd) = M,

and especially

(5.14.2) dim G — 1 — dim 7n(4) < dim M.

Since 7(4) is a B x B-stable irreducible subset of G, n(4) = BzB for some
ze W. Then (5.14.2) can be also expressed as

(5.14.3) card R, — 1 — I(z) < dim M.

Therefore, if M does not satisfy one of these conditions, then A(w”) does not
contain 4.

5.15. Besides the algorithm gien in (5.14), the following simple remark is
also useful. If Bw'B does not contain 7n(4) = BzB (i.e., w' # z), then A(w")
does not contain 4.

5.16. In the notation of (5.14), even if 4 is contained in exactly two
Lagrangians A(w) and A(w'), it is still possible that the irreducible algebraic
variety, say 4(w), would have more than one branches containing 4. In order
to apply the algorithm (5.6) and also (5.20) below, we need to know the local
irreducibility of A(w) at the generic point of 4.

Assume

(5.16.1) that w', we(W.\W/W,), and w < w, that V*(w) has an open dense
G(w)-orbit and Y, belongs to it, that w' ! - (=1 (w)n4) (= V*(w')) has an open
dense G(w')-orbit, say 2, and Y, belongs to it, and that Y, and Y, belong to
the same ad (G)-orbit, say C, in g.

Then T(BwB)* = T(P'wP)* (resp. 4) has the open dense P’ x P-orbit
P'(wYg)P (resp. PP(WY)P). Let E={(g, h, X)eGx G xg|XeCnb?nb"},
Z(w), be the subset of = consisting of (g, h, X) such that gh~!eBwB, Z(w)

—

the Zariski closure of Z(w), in G x G x C, and p; the i-th projection of = to
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the i-th factor of Gx G xg. For geG and Xeg, gX e T(BwB)§ (cf. (5.2)) if
and only if ge BwB and Xe Cnb/nb. (In fact, gX € T(BwB); if and only if
geBwB and Xenfnn, where n=[b, b]. If g=>b'wb (b, b’ eB), then nnNn =
(m¥nn) = V*w)® = (the closure of CnV*Ww)) = CnV*w) = Cnninn= C
nb9nb.) Define the closed imbedding 1: T*G - G x G x g by 1(gX) = (g, e, X).
Then 1(T(BwB)g) = {(g, e, X)|ge BwB, Xe€ C nbsnb}. Take an open neigh-
bourhood O of Y, in g which does not intersect C\C. Then i(T(BwB)})
N(G x G x0)=p;e)n EW)on(G x G x 0), and therefore :(T(BwB)*) = p; (e)
N Z(w) in a neighbourhood of :(w'Y;). Hence the irreducibility of the germ
of analytic space (T(BwB)'~w'Y;) is equivalent to that of (p;'(e)n = (w),
i(w'Y;)). Note that Z(w)={(g, h, X)eG x G x Clgh™'e BWB, Xebinb".
(Consider the automorphism (g, h, X)—(gh™', h, X) of G x G x C, by which
Z(w), is mapped to (BwB x G x C)n{(x, h, X)eG x G x C|Xe(b*nb)"}.) Hence
(p; 1N EW) x G> Z(w) by (g, e, X) x h—> (gh, h, X"). Thus the irreducibi-
lity of (p; *(e)n Z(w), (W, e, Y;)) is equivalent to that of (£ (w), (w', e, Y})). Put
Ew, Y;) = {(g, e G x G|gh~'e BwB, Y,eb?nb"}. Note that p;: Z(w)—>C
is an (analytic) fibre bundle whose fibres are isomorphic to =(w, Y;). Hence
the irreducibility of (Z(w), (W', e, Y;)) is equivalent to that of (='(w, Y;), (W', €)).
Put I'=1(Y,)={geG|Y,eb’}. By [28,3.1,(b) and 3.3,(c)], E(w, Y;) is a
union of irreducible components of I’ x I. Hence, in order to show the
irreducibility of (T(BwB)*, w'Y,), it suffices to show

(5.16.3), (I(2), z) is irreducible

for z=w" and e. Let us consider the condition (5.16.3),. Put n = [b, b],
define ¢': G- C by ¢'(g) =Y;, and let q: ' > Cnn be the base change of
q'. Since q': G— C is a surjective open morphism and it gives an (analytic)
Zs(Y;)-principal bundle, g: ' > Cnn is also the same. From this fact, we can
show that the image of each irreducible component of I is an irreducible
component of Cnn, and that (5.16.3), is equivalent to say that

(5.16.4), (q(I(z)), °Y;) is irreducible.

5.17. Local irreducibility of conormal bundles

(1) Let C be a nilpotent class in g and YeCnn. If 2dim (ad (g)Ynn) =
dim C, then (Cnmn, Y) is irreducible.

(2) Assume (5.16.1), that

(517.1), *Q(z):={Ye*Q|(Cnn, Y) is irreducible} # ¢
for z=w" and e, and one of the following conditions.

(5.17.2) Z4(Y,) is connected.
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1.
(5.17.3) There exists a Lie subalgebra q of g such that dim (ad (q) - ’Y1)=§d1m C

for z=w" and e, and ad (q)"-*'Y,uad (q)"- Y, = b for any n.
Then (A(w), w'Y;) is irreducible.

Remark 5.174. If G = PGL,,,, Zs(Y,) is always connected. In general,
the component group of Z4;(Y;) is known [27, IV, 2.26] (classical types), [1]
(exceptional types).

Proof. (1) Understand the intersection Cnn scheme theoretically. Then
. I .
dim Ty (Cnn)=dim (T,Cn Iyn)=dim (ad (g) Ynn) = 5 dim C =dim (Cnn). (The

last equality follows from [28,4.6] and [26,(1)]) Hence (Cnmn,Y) is
non-singular, and especially irreducible as an analytic space.

(2) First recall that Q is an irreducible, locally closed hypersurface of
V*(w)=n""nn. Especially °Q cn for z=w" and e. Assume (5.16.1) and
(5.17.1), for z=w" and e. Then Q(w') and Q(e) are open subsets of Q. Hence
we can take Y, in (5.16.1) so that Y, eQw)nQ(e). Then (Cnmn,?Y;) are
irreducible for z=w' and e. Hence if (5.16.2) is satisfied, (5.16.4), are
automatically satisfied. Let I'(z) be an irreducible component of I" containing
z (z=w or e). Then q(I'(2)) is an irreducible component of Cnn containing
q(z) =?Y;. Because of the local irreducibility of Cnn, q(I'(z)) does not depend
on the choice of I'(z). If (5.17.2) is satisfied, ¢~ *q(I'(z)) is irreducible, and
hence ¢~ 'q(I'(z)) = I'(z). Thus I'(z) is unique.

Next assume (5.17.3). Let Q be the connected subgroup of G whose Lie
algebra is q. Then by the latter half of (5.17.3), Y, b for z=w' and e,
where 2°Y, = {#°Y,|qeQ}. Since every irreducible component of Cnn is of the
same dimension [26], dim q(/°(z)) =dim (Cnn). On the other hand, dim 7Y, =

1
dim (ad (q) - °Y;) = 5 dim C =dim (Cnn). Hence dim 2°Y, = dim q(I'(z)), ¢°Y; is

open dense in q(I(z)), QzZ4(Y;) is open dense in g~ 'q(I(z)), and consequently,
(g *q(I'(2)), 2) is irreducible. Thus I'(z) is unique.

5.18. Holonomy diagram To each we(W,. \ W/W,), such that A(w) = W,
associate a vertex labeled w, and connect two vertexes associated to w and w’'
if dim A(w)nA(w') =dim A(w) — 1. Thus we obtain a graph, which we shall
call the holonomy diagram of (g, I). (Sometimes we call a subgraph of the
holonomy diagram a holonomy diagram.) Sometimes we write ord,,, * beside
the vertex associated to w, and the intersection exponent (u: v) beside the edge
corresponding to the intersection. Put

Wo(l) = {we (W \W/W)),| A(w) = Wo(f)}.

Then the vertexes of the holonomy diagram are parametrized by W,(I).
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5.19. Local b-functions Let S —1={ij,--,i}, I ={ixs1, i)}, 8 =
(Siy5+,8,), weWy(I) and ieS — I. Assume that there exist a micro-differential
operator Q;(s)eé[s] =& ®cC[s] whose principal symbol is independent
of s and invertible in a neighbourhood of a generic point of A(w), and a
polynomial b, ;(s)eC[s] = C[s;,,",s;] such that f;f**%° = b, (1) Q,(4) f***°
for any A=), ¢ , 4w Such a polynomial b, ; is called the local b- function.
If A(w) is a good Lagrangian (cf. (5.4)), then such Q;(s) and b,,; (ieS — I) exist
and b, ; (ieS — I) are unique up to non-zero constant multiples [24], [10].

5.20. Calculation of local b-functions The local b-functions can be
calculated using the holonomy diagram as follows. Let A(w) and A(w') be
good Lagrangian varieties which intersect in codimension one. Let (u:v) be
their intersection exponents,

A+05 _ 7. B Ar0s g, — B
ord  y, f =Yy mi/.i—T, and ord ., f = Y mik .

ieS—1 ieS—1 2
Assume that m; < m;, that some irreducible component of A(w)nA(w'), say 4,
is not contained in any A(W")(w"e Wy(I)\ {w, w'}), and that A(w) and A(w')
are locally irreducible as analytic spaces at a generic point of 4. Then up to
a non-zero constant multiple, we have

m —m,

b, () [ 1 . . 0+ 2j TH
Tw i ord, o f* % —ord,  f*19) + —— ,
by, (%) jl=—[0 v+1 (ordacnf aon ") 2(v + )

where [x}=x(x+1)---(x+j—1) for j>0 and [x]°=1. Especially, if
(u, v) = (1, 0), then

b, (4 |: . L]
W ord e fATO — ord 4 o fATO0 + - '
bw,i()") Al )f A( )f )
(Since W, has exactly two irreducible components in the analytic sense in a
neighbourhood of a generic point of 4, we can apply [24, Theorem 7.1] to our
situation. By [10, 4.5], the remaining argument of [24, § 7], with an obvious
modification, also works in our situation.)

5.21. After submitting the first draft, the author learnt from M. Kashiwara
a way to show that an irreducible (germ of) analytic space (4, q) (= W) of
dimension dim G — 1 is contained in at most two irreducible components, say
A and A’, of (W, q). This algorithm works only if 4 and A’ regularly intersect
each other, ie., with the intersection exponent (u:v)=(1:0). Thus, for
example in (7.1) below, it does not work for the intersection of 4(121) and
A(12121), but it does work and simplifies the argument for the other
intersections.
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Here we include this algorithm by permission of M. Kashiwara, to whom
the author is very grateful.

Put H:= P'x P and Hy:= {(p’, p)e P’ x P|(wsd)(p)6(p)"* = 1}. Let 4 be
an H-stable closed subvariety of W of dimension n— 1 (n:=dim G) which
contains a dense H,-orbit H, - g;

(5.21.1) Hy-q = 4.

Let T, be a maximal torus of the isotropy group H,. As in the proof of
[24, 6.6], we can show that W is non-singular at q. Hence by [10, 3.1], we
can find a local coordinate system {x;,---,X,+} of (W, q) such that x;(q) =0
(I1<j<n+1), x;,=x,=0 on 4, and each x; is relatively Ty-invariant with
a character ¢;. Put Fi={x;=--=x,,; =0}. Then

(xy, X,): F— C? maps q to (0, 0), étale in a neighbourhood of g, and

5.21.2
( ) T,-equivariant if we consider the diagonal Ty-action diag (¢;, ¢,) on C2.

Assume that
(5.21.3) ¢i=¢5 and i, jeZ,,<==(i,j) = (0,0).

5.21.4. Let us show that there is no T,-stable analytic curve in C2
containing (0, 0), except for the coordinate axes.

Assume the contrary, and let C be a T,-stable curve in C? containing
(0, 0), different from the coordinate axes. We may assume that (C, (0, 0)) is
irreducible. Let @(x;, X3) = ), ;. o @;%i x5 be a defining equation of (C, (0, 0)).
Since any transform of ¢ by (T, e) is also a defining equation of C, ¢ is
relatively Ty-invariant. Hence ¢!¢} does not depend on the terms xxj
appearing in @. By (5.21.3), it follows from this remark that (1) any x} (j > 0)
do not appear in ¢ or (2) any x; (i > 0) do not appear in ¢. In other words,
@ is divisible by x, or x,. But ¢ !(0) = C is an irreducible curve other than
the coordinate axes. Thus we get a contradiction.

5.21.5. Let us show that there are at most two irreducible components of
(Wy, q) containing 4. Let (4, q) be such an irreducible component. Let C;
(i=1, 2) be the (local) analytic curve contained in (F, q) and defined by x; =0
(i=1,2). Thus AnF=C, or C, by (5.21.2) and (5.21.4). If ‘= C;’, then 4
contains (H, e)- C;. The latter contains C; and (4, q) = (H, e)- g, and hence is
of dimension at least n. Thus 4 =(H,e)-C; for i=1, 2.

5.21.6. To see if (5.21.3) is satisfied, it suffices to calculate {¢;, ¢,}. In
the Grothendieck group of T,-modules

[¢1] + [¢] = [T,F]1=[T,W] — [T,4]
= [(T,4)*] — [T,4] by (5.21.1)
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= [T(T*G)] — [T, 4]* — [T, 4].

As for the third equality, see the proof of [24, 6.6]. The orthogonal complement
()" is considered with respect to the canonical bilinear form on T,(T*G). The
contragradient representation and also the corresponding element of the
Grothendieck group is indicated by the superscript *. Furhter assume that 4 is
contained in a Lagrangian variety 4 which is non-singular at q. Then

[T,4] = [(T,)*] = [T(T*G)] — [T,4]*,
and hence
(6.1 + [62] = ([T,4] — [T,4))* + ([T, 4] — [T,4D).
Then ¢, = ¢;!, and (5.21.3) is equivalent to the following condition.
(5.21.7) The T,-action on T,4/T,4 is non-trivial.
Restating (5.21.1) and (5.21.7) using colocalization, we get the following.

5.22. Intersection of conormal bundles (6) Assumptions and notations be
as in (5.7). Let T, be a maximal torus of the isotropy group G(w)y,. Assume
that T, acts on V*(w)/(ad g(w)) Y, non-trivially. Then wY, is not contained in
any irreducible component of W, other than A(w) or A(w'), (4(w), wY,) and
(A(w'), wY;) are irreducible and non-singular, and their intersection exponent is

(u:v)=(1:0).
§6. Kazhdan-Lusztig Conjectures

6.0. In [18] and [19], Kazhdan and Lusztig made several conjectures,
one of which has been settled [2], [4]. Using or assuming these assertions,
we can get useful information on the micro-local structure of 2f**%. In order
to state their conjectures, we need to review [18].

6.1. Kazhdan-Lusztig polynomials The Kazhdan-Lusztig polynomials
P, () (y, we W) are polynomials in g with non-negative integral coefficients,
and P, ,(0)=1. They can be calculated in the following way [18]. (1) If
y£w then P, =0 (2 Ify<wandlIw)—I(y)<2 then P,, =1 (3) If
y<$w, then P, ,(q) can be expressed as Py‘w(q)=Z:‘:(’)—””_luy,w(i)qf with
ty w(i) € Z, where p, (i) =0 for odd i Let u(y, w)= by (W) = 1(y) = 1). If

y <sy, w<sw and seS, then

Loow -1z
Pyow=0qPy + Py, — Z u(sz, w)qz(l( ) U ) p

y.sz*

Z<SZ
y<sz<w

Thus we can calculate P, , inductively. Note that u(y, w) =0 if I(w) — I(y) is
even.
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6.2. Edges of holonomy diagrams In order to calculate holonomy
diagrams, we need to find codimension one intersections of conormal bundles
A(w). We shall find such intersections by using the technique developped in
§5. Sometimes, the following conjecture of Kazhdan-Lusztig [18, p. 167, 1/.1—
p. 168, | £.1] is useful to find candidates.

Conjecture 6.2.1. Assume that G is of type A,, y, we W and y <w. Then
dim A(y)n A(w) = dim A(w) — 1 if and only if u(y, w) # 0.

As is noted in [18], this conjecture does not hold if G is not of type
A;. For example, the edges 12121-121 and 121-1 in the holonomy diagram
of (G,, 2) calculated in (7.1) below can not be predicted in this way. (For
type G,, u(y, w) =1 1if I(w) —I(y) =1, and u(y, w) = 0 otherwise.)

6.3. The following assertion was conjectured by Kazhdan-Lusztig [18, 1.5],
and proved by Brylinski-Kashiwara [4] and Beilinson-Bernstein [2].

Lemma 6.3.1. Let M, be the Verma module with the highest weight
— wp — p, and L,, its simple quotient. Then [L,] =) (—1))?"'™P  (1)[M,],
and [Mw]=Zwasw.wsy(1)[Ly], where [L,] etc. are the element of the

Grothendieck group corresponding to L., etc.

64. Let X(w)=BwB/B, X =G/Band £, = 9% QuL,- The following
assertion was originally conjectured by Kazhdan-Lusztig [19, § 7] and expressed
in the following form by Kashiwara-Tanisaki [17].

Conjecture 6.4.1. If G is of type A,, then Ch(ZL,)=[TXW)*], where
[T X (w)*] denotes the algebraic cycle determined by T X (w)*.

Remark 6.4.2. If G is not of type A4,, an analogous assertion does not
hold [17]. Cf. (7.3) below.

6.5. Vertexes of holonomy diagrams In (5.5.2) and (5.7), we have given
methods to show that A(w) = Wy(f% or not. Here we give another method
to predict that A4(w) = W,(f?), based on (6.3.1) and (6.4.1).

Lemma 6.5.1. (1) Let ye(Wp, \W/Wy),. If

(6.5.2) Y, (= )P, (1) #0,

xeWgp

then A(y) = Wo(f9), ie., yeWo(I). (2) Let G be of type A, and assume the
validity of the conjecture (6.4.1). Then (6.5.2) is a necessary and sufficient
condition in order that ye Wy(I).

Proof. By [8,7.171, [V(w, 0, p(1)] = Y .y, (— N'P[M,,] for we(W/W)),.
By (6.3.1), [V(w, 0, p(I))] = Z_‘,c(y, w)[L,], where c(y, w) = erw,(_ 1) x



382 AKIHIKO GYOJA

Poowxwey (1), Put cd (w) = l(wg) — I(w). By [8, 3.4. and 6.6], Ch H§ %) g (Ug,5)
=Y c(y,w)Ch(¥,). Since &, is the simple quotient of HE%)5(0g,5), Ch(Z))
contains the conormal bundle of ByB/B with multiplicity one. By [8, (9.11.1)],
PEHEW 5 (Og5) = HEW (LE,e)-1 D6 %) in the notation of [8]. (L,(x)=gx,
and py: G—> G/B = X is the projection. See (5.4) for 25f°.) Hence, taking
w = wg, we get
(6.5.3) Ch HR, » (D) = Y c(y, ws)Ch (pF Z,).
y

By (2.6), BwsP = P'wsP = G\UieS\Ifi_l(O)' Hence ngsP(‘@Gfoa) =(2f%)
[(f%~']. But by (1.4) and (1.5, Ch(24f°)[(f%) ']1=Ch2f%. Hence
(6.5.3) implies that
(6.5.4) Ch D% = c(y, ws) Ch (p.2)).

y
Hence, if c(y, ws) # 0, then A(y) = Ch (p}#,) = Ch (D[ %) = Wo(f?). If G is
of type A, and if we assume the validity of the conjecture (6.4.1), then (6.5.4)
becomes Ch 2% =) c(y, w)[4(y)]. Hence c(y, w) # 0<> A(y) = Wo(f?).

§7. Examples (2)

7.0. Here we calculate b-functions of semi-invariants of some (g, I} by
applying the method developped in §5 and §6.

71. (G,,2) e€0

ay a

(Cf. (4.0)) Let g be the Lie algebra of type G, and I = {r,}. Then I' =1
and

(W \W/W,), = {1, 121, 12121, 121212}.

We give the sets Rw)=w 'R,nR, and R'(w=w 'R, _UR, _ in the
following table.

1 121 12121 121212
B %3 %) %3
oy + oy oy + 0y
200 + oy
30, + o,
3o, + 20, 3oy + 20,

— 0y — 0y — oy — oy

oy 2000 + oy oy + oy oy
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The top line gives w. The boxed part gives R(w). The second line from the
bottom gives R, _. The last line gives w™ 'R, _. Thus the last two lines
consist R'(w). Since V*(w) = ZaeR(W)g(a) and Lie (Gw))=1 + ZaeR(W)UR,(W)g(oc),
we can calculate the orbit structure of the colocalizations (G(w), V*(w)), a part
of which we give in the following table.

1 X11+az + X2a1+az2 Xac1+acz 30‘1 + *a
(7.1.1) 121 X, im Xo+ Xagivzay 4+t .
12121 X, 0 o,

The first column gives w. The second column gives points which belong to
the open orbits of (G(w), V*(w)). The third column gives points which belong
to codimension one orbits of (G(w), V*(w)). In the present case, it happens
that each row contains only one element in the third column, but it is not a
general feature. If Y, belongs to a codimension one orbit of (G(w), V*(w)),
then V*(w)/(g(w)- Y;) is a one dimensional vector space on which {Het|
ad (H)Y, eCY,} =:t, operates. The last column gives the corresponding
characters of t,. (a, etc. means «,|t; etc.)

Since each element, say Y,, contained in the second column are of the
form X, + X, 4+ --- with linearly independent y,, y,,---, we can find an element
Ay in t such that <y, Ag) ={y,, 49> =--=1, ie., (ad Ag) Yy, = ¥,. Since
wg = — 1 in the present case, (5.5) gives

1
ordy o, 72 = — W lm, + @y, Apdiy — Y, {x, Ag) + Ecard R(w).
aeR(w)

Here and below, we write f* for f*7% if there is no fear of confusion. Since
@, =30, + 20,, w '@, + @, is equal to

6o, + 4o, =2 (00, +ay) + 2oy + ay) if w=1,
(7.1.2) 30y + 30y = 3 (0 + ay) it w= 121,

o, =10, if w=12121

Thus in each case, w 'w, + @, can be expressed as a linear combination of
y’s such that X, appears in the expression of Y,. Hence {w™ 'w, + @,, 4¢)
is equal to the sum of the coefficients appeared in the right hand sides of
(7.1.2), and independent of a special choice of A,. The sum ZdER(w,x is also

expressed as a linear combination of 7’s as above, and mew)@c, Ay) can be
. . 7.
determined in the same way. The order of f5 at A(w) is —4s — 5 if w=1,

—3s—§ifw=121, —s—%ifw=12121, and 0 if w=121212.

Next, taking Y, from the third column of (7.1.1), and assuming that
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wY, ewV*(w) < A(w) lies in another conormal bundle A(w’) and that the
assumptions in (5.6) are satisfied, we shall calculate the intersection exponents
(u:v) of A(w) and A(w'). Take A, €t so that (ad 4,)Y; = Y;. The intersection
exponents can be calculated by {#, A;> = u/(u + v), where % is the character
contained in the last column of (7.1.1). For w =121, # can be expressed as
a linear combination of yeR such that X, appears in the expression of
Y;. Hence the value of (5, 4,) does not depend on the special choice of A,

2
and is equal to 3 if w=121. But for w=1 or 12121, the value of {n, A;)

does depend on the choice of 4;. Hence (u, v) is equal to (1, 0) if w=1, (2, 1)
if w=121, and (1, 0) if w= 12121.

We can show that the assumptions of (5.7) are satisfied if we take as Y,
the element of the third column of (7.1.1) for w=1 or w = 12121.

Let us determine which A(w) and 4(w’) have a codimension one intersection,
i.e., which pair (w, w') is linked by an edge in the holonomy diagram. Obviou-
sly, we have an edge 12121 — 121212. Let us find elements in A(121)n A(1)
by the algorithm of (5.10). Put wy, = 121, w; = 12, and w, = 1. Then y, = a4,
Yy =04, Eq= {0y, a; + oy, 30y + 20,5}, E; = {20, + oy, 30ty + 05, 300y + 20,},
and E, = {20, + o, 30y + 0, 30y + 20,,}. Hence X, 14, + Xsg, +00€F1 -
(A(120)n A1) = V(ry). Cf. (5.10.1). As is easily seen, this element belongs to
a codimension one orbit of (G(r,), V(r,)). Since ay €[g(a,), g(a;)], we get
rank G(r,)/[G(r;), G(r;)] <1 and consequently, (G(r;), V(r;)) has at most one
orbit of codimension one. Hence X, .,, (the representative of the codimension
one orbit given in (7.1.1)) and X,, y,, + X34,+4, belong to the same
orbit. Since r{!-(A(121)nA(1)) (< V(r;)) is G(r,)-stable, A(1) and A(121) have
codimension one intersection with the intersection exponents (u:v) = (1:0), as
we have already calculated. (Actually (G(r;), V(r;)) has five orbits represented
by Xon +a2 + X2a1+az (dlm = 5), X (dlm = 4): X (dlm = 3)5 X3a1+2a2
(dim = 1), and 0.)

Let us find elements in A(12121)nA(121) by using algorithm of (5.10)
again. Put wy = 12121, w, = 1212, and w, = 121. Then y, =0y, y, = a5,
Ey= {0y}, E; ={3a; +a,} and E, = {3a; + 2a,}. Next, put w, = 12121,
wy = 2121 and w, = 121. Then y, = 1212(x;) = oy + %5, y; = 121 (a,) = 30, +
205, Ey = {0y}, E; = {a,}, and E, = {a,}. Hence

(7.1.3) 6B + 20,)Ug(ez) = W H (AW N AW)),

oy +az o2

where w = 12121 and w’ = 121. By (5.12), Grass; (w' ~*(A4(w)n A(w’)) contains
a G(w')-stable connected set, say Z, containing {g(3a, + 2a,), g(,)}. Since the
orbits of (G(w), V*(w')) are represented by X, 4., (dim =3), X5, 12, + X,
(dim = 2), X35, 424, (dim =1), X,, (dim = 1) and 0, the G(w')-stable subset UZ
of V*(w) should contain the orbit of codimension one. Hence A(w) and A(w’)
intersect in codimension one, and its intersection exponent is (2: 1), as we have
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121212 0

s+1
@2:1) | s+hietd
G

s+2

m —4s—1

(Figure 3)

already calculated assuming the necessary local irreducibility, whose proof we
shall give afterwards. Thus we get a holonomy diagram.

Here we have written the ratio of local b-functions besides the respective
edges. Let us show that this is the holonomy diagram. By (5.7), we can show
that Wy(I) = {121212, 12121, 121, 1}. Let 4 be the closure of the B x B-orbit
of 121 - (X34, 424, + X,,) in T*G. We have shown that 4 < A(12121)n A(121)
and dimA4=dim G —1. By (5.15), 4 & A(l). Obviously 4 & A(121212).
Next, let 4 be the closure of the B x B-orbit of r; - (X 54, v 4, + X34, +a,) 11 T*G.
We have shown that 4 < A(121)nA(1) and dim 4 = dim G — 1. Obviously

4 ¢ A(121212). Let us show that A4 ¢ A(12121), using (5.14). Since n(4) =
Br,B, we can take g =r, in (5.14). We have dim M = dim ad (B)V(12121)
= dim ad (B) (CX,,) = dim ad (B)X,, = dim ad (b)X,, = dim (CX,, + CX, .,, +
CX3y 420,) =3 <cardRy —1—I(r;))=4 Thus (5.143) is not satisfied, and
hence A4(12121) does not contain the irreducible component 4 of A(121)n A(1).
Last let us show the necessary local irreducibility of A(w)’s, using
(5.17). The case where w = 121212 is trivial. Let w=12121, Y, =X,,,
w =121, and Y, = X,, + X3,,12,,- Since Y, Y,eV*(1) and they are G(1)-
equivalent, ad (G)Y, =ad (G)Y; and (5.16.1) holds. (The weighted Dynkin
diagram of this nilpotent class is 0<«1) Since ad(g)-(X,, + X34, +24,) 1S
spanned by X, for y=o; +a,, a5, 30, + 20, and by a; +¢; X3, 44,
X o a FC2 X0, vy Bty +2005)Y 4+ ¢3X _3,, -4, With some ¢;eC™, we get dim C
= dim (ad (g) Y;) = 6 and dim (ad (g) Y; nn) = 3. Taking the representative w' of
121 suitably, we may assume that 'Y, = Y¥,. Thus (5.17.1) holds. With q = b,
(5.17.3) holds. Hence we get the desired irreducibility. (By [1], Z4(Y;) is
known to be connected. Thus we can also get the irreducibility using
(5.17.2)) Let w=121, Yy = X, 4o, w =1, and Y} = X, + X, +.,- (Here we
should take a representative of the codimension one orbit of (G(1), V*(1))
different from the one given in (7.1.1)) As is seen from (7.1.1), (5.16.1)
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holds. (The weighted Dynkin diagram of the nilpotent class of X, ,,, is
1<0) In the present case, we check (5.17.1) by a direct calculation. Let o
be any matrix of the form (4.6.1) whose ij-components are zero whenever
i>j. Put

2y ={ola, =0, (ajay + ayas)* + 4(a,a; + a3)(aja; — a3) = 0},

2, = {a]a; =0, —2a,a5 + 2a,a; + %a% = 0}.
Then 2, and 2, are the irreducible components of ad (G)Y, nn. Then both
Yy =X,,+ X, 1, and V'Y, = X, 1, + X34, 44, lie in the non-singular locus
of 2, and not in X,. Hence (5.17.1) holds. With q={t, X_,, X _3, 24,7
(linear span), (5.17.3) holds. (In the present case, dim C = 8. Since Z4(Y;) is
connected [17, (5.17.2) is also satisfied.) Thus the local b-function at A(1) is

3 4 5

Remark 7.1.5. We can show that all the A(w)’s in the above diagram are
contained in W also in the following way. Assume for example that W does
not contain A(1). Then by [24, 7.1 (with an obvious modification suitable
for the present situation), 2f*2”2*° does not have a proper coherent
Z-submodule, if b(4, —j)#0 for any jeZ, where b(s) is a divisor of

4 5 . .
(s + 1)<s + §><s + 3-) Then, for a sufficiently large integer m,

Hiup @6/ #7*0) = D(/*™ O/ '] by (26)
= (/BT by (14)

.. . |

Hence by [8,9.4], M(4,@,, p({r,})) is irreducible if Aze,égl. But by the
Jantzen’s criterion [12], we can show that M (sw,, p({r,})) is irreducible if and
. 3 4 5 .
only if s¢{— 1+j, — 0 +Jj, = 3 +J, —3 +jli=1, 2,---}. Thus a contradic-
tion arises. In the same way we can show that a contradiction arises if we
assume some of A(w)’s is not contained in W. It is interesting that we can
get information about the explicit form of the b-function by the representation
theoretic argument.

Remark 7.2. We can determine the holonomy diagrams for (g, I) for
rank g <2 and card [ = 1.
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0 121 0

(A1) (Ag,1)
s+1 s+1
L ) (o] L]
(] -3 ~s-3
1212 0
1212 0 C2.2) s+1
(Cz’ 1) ( ’212
s+ [121]  -s-}
[F IR ——N ] ® <— O
212] -1 s+3

121212 0

s+1
(Ga,1)
R =N}

s+%

(Figure 4)
See (7.1) for (G,, 2).

Remark 7.3. For weW, let £, = 2y QuL, as in (6.4). In the case
(G,, 2), we can show that

(7.3.1) Ch (D6 [s113/5D6[51/2) = Ch (p% £L121215) + Ch (pF L12121)

by (6.54). Since Li51212 = Ox, Ch(pFL151212) = [4(121212)]. Since A(w)
(we Wy(I)) are all good Lagrangian varieties in the case (G,, 2), the left hand
side of (7.3.1) is equal to [A(121212)] + [A(12121)] + [A(121)] + [4A(1)] by
[24, 4.87. Hence

Ch (px L1121 = [4(1212D] + [4(12D)] + [4(1)].

Especially, the characteristic variety of %,,,,; is not irreducible. This
phenomenon can be also explained as follows. Generally, assume that good
Lagrangians A(w) and A(w') have an intersection of codimension one,

7 , ' , :
ordA(w,fs=—ms—E, ord,,(wr)fs=—ms—%, and m'>m. Then in a

neighbourhood of a generic point of A(w)nAW"), &[s]f*/(s — x)&[s]f* does
not have a proper coherent &-submodule if the polynomial b, (S)/b4 . (s)
does not vanish at o + j for any jeZ [24, 7.1]. In the present case, since the
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characteristic variety of p%¥.#,,,,, contains A(12121), it also contains A(121)
and A(1). Such a phenomenon was observed by Kashiwara-Tanisaki [17, 5.4,
Example].

74. (A, 1,1]) (=3 o ® ® 0

ay az oy

Let g be the Lie algebra of type 4, (I >3) and I =S\ {1,l}. Then I' =1
and

(W \W/W), = {Wu Wrugyps Wrows Wsti, Wst'y, Wshy, Ws}-

We give the sets R(w) and R'(w) in the following table.

Wi RLAR, R, UR, _(=R) 21
Wiugn R, \R;,q, Ry +UR, -

Wi R\R; R, +UR; _

Wsrit {oy, o} R L UR; - 2
Wsr'y {os} riR, UR, _ 1
WsT1 {o} rRp +URy - 1

Ws ¢ R +UR; _(=R) 0

Here I, ={1,2,---,1 — 2} and I, = {3, 4,---,1}. The contents are from the left
w, Rw)=w™ 'R, nR,, R(w)=w 'R, _UR, _ and card R(w). We have left
blank the last column for w = wy,(;, and wy,; since we do not need them. The
orbit structure of the colocalization (G(w), V*(w)) is partly given in the following
table.

Wy X2+ Xa044 X1+ X300 %
Wruggy X241 Xia+ X34(=3) oy +a3(l=3)
Wrom X3 X+ X,(1=3) oy + o, (l=3)
WsT P X+ X401 X, %
Xii+1 %y
WTy X, 0 oy
WgTy X141 0 o
Wg 0

Here we realize G as SL,.,(C), X;; denotes the matrix whose ij-component is
1 and others are 0, and ¢ denotes the character of t defined by
diag (t,,---,t,.1) > t;. The meaning of this table is the same as (7.1.1).
Codimension one orbits do not exist for w=w;,,, or w=w,,, unless
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I =3. There are two codimension one orbits for w = wgr,r,. Let Y, be the
element in the second column for w, and find an element A4, in t such that
ad (49)Y, = Y,. By (5.5),

OrdA(w)fl;”flM = - i1<W_1wz + @y, Ag) — )~1<W-1w1 + @y, Ay

1

— Y (o, Agy + —card R(w).
aeR(w) 2

The characters w™'w, + w,, w~ '@, + @, Zaemw)a and the order of f{' f* at

A(w) are given in the following table from the left in this order, where the
most left column gives w.

21+ 1

Wi €1~ &+1 €1 — &41 1&g —&4q) —251—231—T
Wiviy €1 —&i+1 & — &4
Wivy €1 — &2 €1 — &4
WsPFil & — & g—&41 (E1— &)+t —¢&r1) —s—5,—1

1
Wely & — & 0 € — & — 5 =3

1
WsT 0 & —&+1 & &4y ”‘51—5
Wg 0 0 0 0

We have left blank the last two columns for w = w; ., and w;,, since we
do not need them. In fact, as in (7.1), we can show that <w™ '@, + w,, 4,
really depends on the choice of A, for these w. Hence wy .y, Wiy & Wo(I).
(Cf. (5.5.2).)

Let us find elements in A(w;)n A(wgr,r;) by using (5.10). As is easily seen,
(G(wy), V(wy)) has 6 orbits represented by X, + X,, ..., (dim=2]—1),
X, + X, (dim=2[-2), X, (dim=1), X, (dim=1), X, ;..., (dim=1) and
0. Here we calculate the case [ = 5, since it has an enough general feature. In
this case wgrir; =rywgr, = 21.321.4321.5432, and w, =2.32.432. Put w,=
21.321.4321.54---(i+ 2) (0<i<3), w,=21.3214321, ws=21.321432, we=
21.32.432 and w, = 2.32.432. Theny; =o;,, (0<i<3)and y;,, =0, + -+ o
(1<i<3). Hence Eq={ay, as}, Ejvy={o+ -+ oy, a5} 0<i<1=1-4),
Es(=E,_)={oay+ - +oug, 04 +as}, Eg={oy+ - +as,0,+ %5} =Es=E;g
= E;(= E,;_;). In this way we can show in general that X, ., ew ~'(4(w)
NnA(w'"), where w = wgr;r, and w' =w;. As is easily seen, X, ., and X,

belong to the same G(w')-orbit, and hence g(a;) + g(o; + -+ + o)) (= G(W)X,,)
is contained in the above intersection. Considering the automorphism of the

Dynkin diagram, we can show that g(o;) + g(et; + -+ + ;) is also contained in
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sy +si+1
—281 —281 —2—12:L1
(Figure 5)

the same intersection. By (5.12), Grass, (W' ~!(A(w)nA(w'))) contains a G(w')-
stable connected set, say Z, containing g(o;) + g(o¢; + - + o) (i =1, 1). Because
of the orbit structure of (G(w'), V*¥(w')), UZ should contain the orbit of
codimension one. Hence A(w) and A(w') intersect in codimension one.

By (5.8.1), we get edges ws—wgr,—wgr,r, and we—wgr—wgr; . A direct
calculation shows that all the codimension one intersections obtained above
have intersection exponents (1 :0), if we assume the necessary local irreducibility,
whose proof we shall give afterwards. Thus we get a holonomy diagram.
Let us show that the above diagram is the holonomy diagram. By (5.7), we
can show that Wy(I) = {wg, wgr,, wgr,, wsryr,, wi}. Obviously, the edges
ws—wgr,, and wg—w; are not contained in the holonomy diagram. Consider-
ing the automorphism of the Dynkin diagram, it remains to show that the
edge wgr;—w; is not contained in the holonomy diagram. Since the
semi-invariant f; is given by f/(x)=x;;(x =(x,)€eSL;.;), Bwsr;B is a
non-singular hypersurface of G (cf. (2.6, (1)). Thus the fibre of A(wgr,) at any
point is a one dimensional vector space. Since the codimension of W =P(I)
in G is greater than one, dim (A(wgr;)NA(w;)) <dim G — 1, ie., the edge
wgr;—w; is not contained in the holonomy diagram.

Last let us show the necessary local irreducibility of A(w)’s, using
(5.17). Let w= wgr,r, and w = w,. (The remaining cases are obvious from
(5.8.1)) Since we can take Y, =Y, =X, + X;;+,, (5.16.1) holds. Let us
check (5.17.1),. Since ad(g):(X,, + X, ,.,) is spanned by X, (i# 2,1+ 1),
Xi,l+1 (1 # 2= I+ 1)’ le(j # 1: l)’ le(j # la l)’ X11 - XZZ’ Xil - X2.l+17 Xll -
Xiv12, and X — X, 1,41, we get dimC=dim(ad(g)Y;)=4/—4 and

dim (ad (g) Y; nn) = 2] — 2. Thus we get (5.17.1),. Since
1

Q= {(xij)l Z X1 X141 =0, (X12, X13,77, %)) # (0,---,0),

i=2
(x2,1+1a X3041s" 5 Xp141) F (Oa"'ao)}a
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v = Q. and hence we also get (5.17.1),.. Thus the local b-functions at A(w;)
are given by

bi(sy, s) =(sy + V(s +5,+ 1),
bi(sy, s) = (s, + 1) (sy + 5, + ).

75 (43,12) O——0——
Let g be the Lie algebra of type 45 and I = {3}. Then I' = {1} and
(W \W/W,), = {121321, 12321, 12132, 1232, 1213, 123, 13} = Wy(I).

The holonomy diagram is

s1+17 Tsa+1 o 5149242

s2+1
—§1—83— 1 —sl-—sz —8§1—252—2
81+82+2 381+92+2 s1+1
—251—25-;—
(Figure 6)

The local b-functions at A(123) are given by
bi(sy, 52) = (51 + 1) (s; + 5, + 2),
by(s1, 82) = (55 + 1) (s; + 5, + 2).

7.6. 1If (g, p) is the complexification of a real simple Lie algebra of (real)
rank one and its minimal parabolic subalgebra, then (g, I) is given by one of
the following diagrams.

(A1, 1,0) ) ° ° o
(B1,1) 0 . e =>0
(C1,2) ° o . . e<—e (123
(D1, 1) o ° ° e
.
(Fy,4) ° e—o o

(Figure 7)
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wg |0 wg |0

s+1 s+1
1
(Br1)  [wsl]-s-3 (D) [wsl]-e-3
S+‘212—1 S+zlz—z

ws |0 wg |0
s+1 s+1
]} (o] 4
(Cl, ‘_),) s+2 (F’47 4) s+4
[ws2132] -26-% wg43213234 | 20—
(25+21—1)(25+210) (2s+11)(2s5+12)
wry —43—4—13:—1- wyr —45—%
(Figure 8)

The holonomy diagrams are given in Figure 8.

See (7.4) for (4,, 1,1). In these cases, A(w,) appears at the bottom of the
holonomy diagram. The local b-function there is the product of all the factors
attached to the edges.

§8. Examples (3)

8.0. In this section, we give examples which need calculation more
complicated than those of Section 7. We start with a slight improvement of
our algorithm.

Lemma 8.1. Let I,J S, ;=Y ¢ ,@;, and D(J, I) {ue Wi, |<{u, B¥>
<0 for any Pell;}. (1) The mapping ¢ = @;: w—>w~ 1, gives a bijection
W\ W/ W), > B, D). Let we(W,\W/Wy). (2) w 'R, _={aeR. w4,
a¥>=0}. 3) Rw)=w 'R.nR; ={aeR,|[{w i, a")>0}.

Proof. (1) -Let we(W,\ W/W,;),, BelIl, and w = w'ry.  Then (w14, B¥>
= — {A;, wBY)> <0. Hence ¢ is well-defined. The isotropy subgroup, say
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Z, of W at A; is generated by reflections with respect to aeR such that
{d;,a¥) =0, ie, a€eR;. Hence Z =W, Thus (W,\W),> Wi,;, whose
restriction ¢ is injective. Let we(W,\W), and w™'4,e®(J, I). It suffices to
prove that we(W,\W/W),. Put K = {rsel|{w™'4,, ") =0}. Take w'e
(W/Wy), so that wWy=wW,. Then w >w, w 'A;=w"'1;, and hence
Wyw = W,w'. Since we(W,\W),, w>w". Thus w=we(W/W),. For rze
INK (8>0), we have {4i;, wB¥>=<(w 4, "> <0, wB¥ <0, and hence
wry < w. Thus we(W/ W), n(W,\W), = (W, \W/W,),, and we get the surjectivity
of . (2) If a>0 and 0=<w ', a¥)> =<4, wa¥), then waeR, _. The
converse is similar. (3) Leta > 0. If {i;, waV) > 0 (resp. < 0), then wa¥ > 0
(resp. < 0). Together with (2), we get (3).

Remark 8.1.1. 1In (8.1), we may replace A, with any ),
every [; is positive.

ies—y li@; such that

8.2. Here we indicate how to calculate the inverse of ¢ in (8.1). For the
sake of simpicity, we consider only the type A,. Represent an element
U= z,ujwj by attaching p; to the j-th vertex of the Dynkin diagram. Apply r;
if i-th label is negative, noting that r,(} @) = Y, ;1 >y 0 + (i1 + @)@,
— ww; + (Ui + w)w; 4, (Here wyg =w,.; =0.) Repeat this until no nega-
tive labels remain. Let A, =) Aw; be the element given by the final
diagram. For example, let us calculate ¢~ !(u) for p=w, — 2w,:

p=120 512 112 112 o011 =4, I={1}.

Here n denotes —n. The product of r;s in this order (e.g., 2132 in this
example) gives the shortest w’ such that w'i; = u. Hence ¢; *(u) = (W'w;) " L.

83. Put V(w) =) . gw8(—®). A root —a belongs to R\(w™*(R, UR;)
URLUR))=w Y R_\Rp)N(R_\R)) if and only if

(8.3.1) >0, we>0, a¢R;, and wa¢R,.

Let we(W;. \W/W,),. If aeR; or waeR,., then exactly one of a and wa is
positive. Hence (8.3.1) is equivalent to say that « >0 and woa>0. Thus
g=VwW®@p"*+p). Putd=)  ,o and f=f° Define the function f,
on g by f,(X) = f(wexp X). Since V*(w)=(p"™ + p)*, V*(w) is the dual space
of V(w). Hence the cotangent bundle of V(w) can be identified with
V(w) x V*(w), in which W(f,,| V(w)) is contained.

Lemma 84. ([24, 69]) A(w) < W(f) if and only if 0xV*w)c
WS V(w).

Proof. Let p” be a subspace of p’ such that g=VWwW) @®p"™ @ p.
Put x =exp (A" )wexp (X)exp(4) for A"ep”, XeV(w) and Aep. Then
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(x, e grad - x 4log f(x)) = (x, e grad» x 4 (Ws4)(4") + log £, (X) + A(A4))) = (x,
e(wgd, grad logf,,(X), 4)) for ee C. Here we write (g, X) for gX € T*G (cf. (5.1)).
Hence the set of the limits of above points when ¢, 4", X, A —» 0 is equal to
the set of the limits of (w, (0, ¢ grad logf,,(X), 0)) when ¢, X - 0. Since A(w) =
W(f) if and only if wV*(w) =« W(f), we get the assertion.

85 (C,i) e ® o @ e—eo

oy 243

Using [12], we can show that the generalized Verma module M (iw;,
p(S — {r;})) is reducible if and only if the following condition is satisfied:

1
(1) Ifi=1, then 1€{0,1,2,---}. (2) If ie2Z and 2] > 3i, then ).e{—z X
1 .
QRI—i+1)+], —5(21—i+2)+jlj= 1, 2,---}. (3) Ifie{3,5, 7,---} or 21 < 3i,
then Ae{—%@l— i) +J, —%(21— i+1)+jlj=1, 2,--}. On the other hand,

it seems that the b-functions are given by the following formula.
ﬂi=1(5+v)-ni+=23<s+l—i+§>, if ie2Z and 21> 3i

bi(s) = Hizl(s+v)-ni“;g<s+l—i+§>, if i€2Z +1 and 21> 3i

v=1

. . \J .
-2 . Hlvw;13<s +1l—i+ §>, otherwise.

Let us explain how to determine W;(I) and ord,,, f;*. See (8.5.3), (8.5.4), (8.5.6),
and (8.5.7) below for our result.

In the present case, ] =1'=S — {i}. If we realize the root system as in
A B C

[3], @(1', I) (cf. (8.1)) consists of p(w) =(—1,---, —1,0,---,0, 1,--, 1, —1,-+-, —1,
J‘—-\
0,---,0) such that 4 + B+ C =iand B=D. We sometimes write ¢(j) or simply
j for g;, [A] for [1, A], [B] for [A+ 1, A + B], etc. We write elements of
[4] by a, a',---, those of [B] by b, b’,---, etc. By (8.1),
(8.5.1)
Rw) ={b—d,c—d,c—eb+c,c+c,c+e}, and
Rwy={a—d,b—b,c—c,d—d,e—¢e,a—d, b—e,
a+c,c+d,b+eb+b,e+¢€,
—a+b, —a+c,—b+c,—d+e —d—d,—d—e, —e—¢}.

The action of G(w) on V*(w) is expressed by the following diagram.
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c+d
N

c+d, —b+c
4

!

c+d

For instance, [b —d | — [ b + c ] means ad (X(c + d))X(b — d)eC* X (b + ¢).
The diagram on the right is the same as the one on the left, but is expressed
in terms of matrix, e.g., [P] means the linear span of the root vectors in
V*(w) to which correspond the vectors of the dual basis of V(w) lying in the
block p of the matrix (8.5.6) below. Put Y; = ZbE[B]X(s(b)— e(b + B+ C)).
Consider the sum Yy of

(Figure 9)

X(@E(A+B+1)—e(A+B+C+D+1)+ X(e(A+B+2)+e(A+B+C+D+1)),
XE(A+B+3)—e(A+B+C+D+2)+X(e(A+B+4)+e(A+B+C+D+2),--.

If C < 2E and C is even (resp. odd), then we understand that this sum ends with

X<8(A+B+C—1)—8<A+B+C+D+%>>

C
+ X<8(A+B+C) + 8<A+B+C+D+E>>

<resp. X<8(A+B+C)—8<A+B+c+D+¥>>>.

If C > 2E, we understand this sum ends with
X(e(A+B+2E—-1)—¢(A+B+C+D+E))
+X(e(A+B+2E)+¢(A+B+C+D+E)).
In the case C > 2E, we consider the additional sum Y;” of
X(E(A+B+2E+1)+e(A+B+2E+2)),
X(e(A+B+2E+3)+e(A+B+2E+4),---.

We understand this sum ends with
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X(Ee(A+B+C—1)+¢eAd+ B+ C)) (resp. X(2¢(4 + B + ())),
if C is even (resp. odd). Put Y, =Yy + Y5 (+ Y"). Then we can show that

(8.5.2) Y, belongs to an open orbit of (G(w), V*(w)).
By (5.5.1), (8.5.1), and (8.5.2),

(8.5.3) ord,,f’
1 3 . '
—(B+2C)S—E(B(B+2C)-I—EC(C+1)+2(l—z)C),
if C<2E and C is even,

—(B+C+2E)s—%(B(B+2C)+%C(C+ D+2E(C+142(1-1)),

if C>2E,
and, by (5.5.2)
(8.5.4) Aw) ¢ W if C <2E and C is odd.
We realize sp,, replacing K = K, with the identity matrix 1, in (4.5). Then

1,
Ly
K¢
1y
lg
w =
-1,
—1,
Kc¢
—1,

—1,

and V(w) is the totality of
P q

(8.5.5) X=X(p,qrstu= ,

s’ -

st u' —-q —r
u
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where - stands for zero, ' denotes the transposed matrix, t =t', and 1st and
6th blocks from the left (resp. from the top) contain A colums (resp. rows)
etc. Then

p q

[ X (P, g, 7, 5, 1, u)i= (— DATETCCTDI2 f(ywexp X) = , ,
s t4+ur—ru

We know that f, (X(p, 0,r, 0,0, u) =|p|-|ur—rulis a relative invariant of a
regular prehomogeneous vector space whose Hessian is not identically zero, if
C<2E and C is even [25, §7, I (13)]. Hence the linear span of
{X(c+e), X(b—d)} is contained in the set of the limit of & grad logf,, (X)
(&, X = 0), ie, X(cxe), X(b—d)e(0x V¥(w))NW(f,) [24, 4.6]. Since Y, is
a linear combination of {X(c £ e), X(b —d)}, 0 x V*¥(w) = W(f,). By (8.4),

(8.5.6) Aw)c W if C<2E and C is even.

Last let us consider the case where C > 2E. Here we need to make explicit
the pairing of V(w) and V*(w) by which V*(w) is considered as the dual space
of V(w): We define the pairing by (X, X*) = tr (XX*) (X e V(w), X*e V*(w)).

0 0 0 1 0 0
Then grad = <—, — e, — (#]), = —, ———> Put
opi; 0q;; oty 2 0ty Ouy

uo = (1g, Og, Og.c—2p)»

ro = (Og, 15, Og.c—2p)s

to = diag (0g, Og, 1o 5p).

(Here 0,5 denotes the A x B-matrix whose entries are all zero, and
0z = Ogxg.) Then, a direct calculation shows that lim,_, ¢ grad logf, (X (g)) =
‘X (1), for X(e)=X(elg, 0, erg, 0, ety, €uy). Since ‘X (1)eV*(w) is G(w)-conjugate
with Y, 0 x V*(w) = W(f,). Thus

(8.5.7) AWy e W if C>2E.

Remark 8.6. In (8.5), the relative invariant f, is not a homogeneous
polynomial except for some special cases. Hence (G(w), V(w)) is often
non-prehomogeneous [25, §4, Proposition 3], although its dual (G(w), V*(w))
is always prehomogeneous (cf. (8.5.2)). Thus most of the prehomogeneous
vector spaces (G(w), V*(w)), which are essential in our calculation, are not
regular [25, §4, Definition 7].

87. 0., 1,34 O—®—0



398 AxiHIKO GYOJA

Using [12], we can show that the generalized Verma module M(4,@, +
A3@s + Aymy, P({r,})) is reducible if and only if (1) 4,€{0, 1, 2,---}, or (2) 43+ 4,
e{—2, —1,0,--}, or 3) A, + A3+ 2,e{—=3, =2, —1,0,---}, or (Ay, A3, 44)
satisfies one of the conditions S;-conjugate with (1) or (2). On the other
hand, it seems that the b-functions coincide with the local b-functions at A(w)
and they are given by

bi(sy, 83, 84) =0(s; + 1)(s4 +5; +3)(s; + 53 +3)(s5; +53+54+4),
by(sy, S3, 54) = (3 + 1)(s; + 53 + 3) (53 + 54 + 3)(s; + 53 + 54 + 4),
by(sys 83, 84) = (54 + 1)(s3 + 54 +3)(s4 + 51 +3)(51 + 53 + 54 +4).

§9. Beyond the Scalar Generalized Verma Modules

9.0. From [8, 9.13] and from the examples given in the previous sections,
it would be safe to assume the validity of the conjectures A, B, and C concerning
the scalar generalized Verma modules. Let us consider how they should be
generalized for the generalized Verma modules which are not necessarily scalar
ones.

9.1. Let notation be as in (3.1). For pe) ¢ ,Z.,w; and M€Y s L5 oW,
consider the functional equations of the form

P(s)(f*fs™) =b(s)f*f*,

where P(s)e%9;[s] and b(s)eC[s]. The existence of such a functional
equation with b(s) # 0 is guaranteed by (4.1.1) or (more generally for a wider
class of functions f;) by [23] and [9]. Let %(u, 4,, I) be the totality of such
polynomials b. The author considers that Conjectures 4 and B should be
generalized to the following.

A", Bu, 44, I) is a principal ideal of C[s].
Let b,(s + 4y =b,(s + 4, I) be its generator.

B’. The generalized Verma module M (4, p(I)) (/lezies_ ;Co; + Z
is irreducible if and only if b,(A— u) #0 for any uezies_llzowi.

Z,,m)

iel

Remark 9.2. By [10, 6.4], %(u, 0, I) is a principal ideal if Conjecture A
holds.

Remark 9.3. A generalized Verma module M (4, p) is irreducible if and
only if the contravariant form [12] is non-degenerate, i.e., its discriminant is
non-zero. Hence, by [12, Lemma 6, (i)], the set {1.€) ¢ ,Cw,|M(4 + 4,) is
reducible} for a fixed 1,€),, Z.,w; is a union of hypersurfaces of
Y ws—; Cm. Thus, if we assume that the irreducibility of a generalized Verma
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module is controlled by b-functions, it is natural to expect A”. The author
hopes to discuss B” in a different place.

Acknowledgement. The author is profitted much from conversation with
A. Fujiki, to whom the author would like to express his hearty thanks.
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