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Gerard F. HELMINCK* and Aloysius G. HELMINCK**

Abstract

In this paper we present a geometric realization of infinite dimensional analogues of the finite
dimensional representations of the general linear group. This requires a detailed analysis of the
structure of the flag varieties involved and the line bundles over them. In general the action of the
restricted linear group can not be lifted to the line bundles and thus leads to central extensions of
this group. It is determined exactly when these extensions are non-trivial. These representations
are of importance in quantum field theory and in the framework of integrable systems. As an
application, it is shown how the flag varieties occur in the latter context.

§ 1. Introduction

Let H be a complex Hilbert space. If H is finite dimensional, then it is
a classical result that the finite dimensional irreducible representations of the
general linear group GL(H) can be realized geometrically as the natural action
of the group GL(H) on the space of global holomorphic sections of a
holomorphic line bundle over a space of flags in H. By choosing a basis of
H, one can identify this space of holomorphic sections with a space of
holomorphic functions on GL(H) that are certain polynomial expressions in
minors of the matrices corresponding to the elements of GL(H). Infinite
dimensional analogues of some of these representations occur in quantum field
theory, see e.g. [5]. Infinite dimensional Grassmann manifolds play an
important role in the framework of integrable systems. The first person to
realize this was Sato, see [24].

In this paper we will give an infinite dimensional analogue of all these
representations. Thereto we take a separable Hilbert space H. In H we
consider a collection of flags that generalizes the Grassmanian from chapter 7
in [23]. This flag variety carries a natural Hilbert space structure and there
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exist line bundles over it that are similar to the finite dimensional ones. This
includes the determinant bundle and its dual from [23]. In the "dominant"
case the space of global holomorphic sections of such a line bundle turns out
to be non-trivial. However, the action of the analogue of the general linear
group can, in general, not be lifted to the line bundle under consideration and
one has to pass to a central extension of this group. Besides of the
introduction, this paper consists of three sections. In the first section we give
the definition of the flag variety g and we treat some properties of g. The
second section is devoted to the construction of the holomorphic line bundles,
to a description of the corresponding central extensions and to the analysis of
the space of global holomorphic sections. As an application, we show in the
final section what role the geometry plays in the context of some integrable
systems. A more detailed description of the content of the different sections
is as follows.

The first subsection of section 2 discusses the type of flags in H that will
be considered. Here the model for the size of the flags is the basic flag F(0}

corresponding to a finite orthogonal decomposition of H. The flag variety g
is a homogeneous space for a certain unitary group Ures(H). As in the finite
dimensional case it is convenient to see g also as a homogeneous space for a
larger group of automorphisms of H, namely GLres(H). This is the analogue
of the general linear group in this framework. Analogously to the finite
dimensional case the group UTes(H) is the unitary component in the polar
decomposition of GLres(H). In the second subsection we give an explicit
description of the manifold structure on g an^ we discuss decompositions of
certain open subsets of GL res(ff). A first difference with the finite dimensional
situation appears at the description of the connected components of g in the
third subsection. The fourth subsection contains the technical prerequisites for
the construction of the line bundles. First we choose a suitable orthonormal
basis of //, we order its index set conveniently and we introduce the Weyl
group W of GLtes(H). Next we show that the charts around the points in
the W-orbit through F(0) cover g. By using this covering one obtains a
stratification of g into parts that are all homeomorphic to a Hilbert space. On
the group level this gives you the Birkhoff decomposition for GLres(/f).

Let g(0) be the connected component of g containing F(0). From the
foregoing results one deduces that g(0) is a homogeneous space for a Banach
Lie group (5 that permits you to take suitable minors. As a group the group
(5 is a subgroup of GLres(//), but its topology is stronger than the one induced
by GLres(ff). The description of © and its topology can be found in the first
subsection of section 3. There we introduce also the maximal torus T(,T) of
© and its group of analytic characters f. In the second subsection we introduce
a dense tower of finite dimensional flag varieties in g(0). The next subsection
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shows how you can associate to certain elements i^, keZm, of fa holomorphic

line bundle L(k_) over 5(0)- Further it is shown there that, if one tries to lift

the action of the connected component GL(
r°Q[(H) of GLres(/f), one might meet

obstructions and that one can only lift the action of a central extension of
GL(£}S(H). The natural question that comes up then is "how essential is this
extension1'. This question is treated fully in the next subsection. Then one
has come to the final subsection of this section. There we determine, when
L(k_) has global non-trivial sections and we show that the action of (S on this

space defines an irreducible ©-module of highest weight ^.
Section 4 is an illustration of the fact that the geometry of the foregoing

sections plays a role in the theory of integrable systems. The system we will
consider is the multicomponent KP-hierarchy. The first subsection describes
the flows in GLres(H) corresponding to this system. The algebraic framework
for this system of equations is given in the second subsection. In the final
subsection of this paper we indicate how the flag varieties form the starting
point of the construction of solutions to the equations of the multicomponent
KP-hierarchy and the modified versions of the KP-hierarchy.

We would like to thank the referee for bringing to our attention papers
by Faltings [10] and Kashiwara [19], who give an algebraic geometrical
approach to infinite dimensional flag varieties.

§2. Properties of Hilbert Flag Varieties

2.1. The flag variety. Let H be a separable complex Hilbert space with inner
product < •, • >. We will consider certain finite chains of subspaces in H and
we will call them flags as in the finite dimensional case. First one has to
specify the "size" of the components of the flag. Therefore we start with an
orthogonal decomposition of //,

(1) H = Hl®"-®Hm, where H{ J_ Hj for / ^j.

We assume that mi = dim(Hi) satisfies 1 < m,-< oc. An example of a
decomposition occurring in quantum field theory is the one corresponding to
the positive and negative spectrum of the Dirac operator, see [5] and [21]. In
the context of integrable systems we have:

Example 2.1.1. Let (-, •) be the standard inner product on C. The
Grassmann manifold Gr(H) that is crucial at the construction of solutions of
KP-type hierarchies in [23], [13] and [25] corresponds to the case that H is
the space of power series

H = L2^1, C) = { £ «„_-", a,,eC7, £ (fl.. an) < oo],
»eZ neZ

H! = ( X anz"eH} and H2 = ( £ a.
n > 0 n < 0
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If one takes r = 1 and k and I in Z with k > /, then the basic manifold
corresponding to the (fc, /)-modified KP-hierarchy is the flag variety correspon-
ding to H = L2(S^ C) = H1®H2® #3, with

H1 = { Z a n z » e H } 9 H 2 = {Zan?eH} and H3 = { 5>Bz"eH}.
n>k n>l n<l

This correspondence is described in the fourth section.

Let pi9 1 < i < m, be the orthogonal projection of H onto Hz. Then we
will use throughout this paper the following

Notation 2.1.2. If g belongs to 3$(H), the space of bounded linear operators
from H to H, then g = (gtj), 1 < i < m and 1 <j<m denotes the decomposition
of g w.r.t. the { H t \ l < i < m}. That is to say gtj = p

Remark 2.1.3. Let Kh i = 1, 2, be Hilbert spaces with inner products
< 5 ).5 i = 15 2. If A belongs to ^(K1? X2), the space of bounded linear
operators from K1 to X2, then its adjoint ,4*: K2-*Kl is defined by

If 0 = (gtj) as in notation 2.1.2, then we have for its adjoint g* the decomposition
(9*)tj = fe)*, f°r all i and j.

2.1 .4. To the decomposition (1) we associate the basic flag F{0) given by

7=1

Now we consider in ff flags F = {F(0),...,F(m)}? that is to say chains of closed
subspaces of H,

{0} = F(0) c F(l) c ... c F(m) = H,

that are of the same "size" as the basic flag F(0), i.e. for all /', 1 < i < m,

dim (F(f)/F(/ - 1)) = dim (Ht).

To such a flag F is associated an orthogonal decomposition of H,

H = Fl®---®Fm, where F, = F(i)f]F(i - I)1.

We will denote such a flag F by F = (F(0),...,F(m)} as well as F = {Fl5...Fm}.
The class of flags one obtains in this way is still too wide and we will

require that our flags do not differ too much from the basic flag. One can
express this "nearness" in various ways. Our choice is a natural generalization
of that used in [23] for the Grassmann manifold. However, a lot of the
constructions given here for that case can be carried out with some minor
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adjustments also for other choices. We start by introducing notations for some
spaces of compact operators that occur in the sequel.

Notation 2.1.5. If K1 and K2 are Hilbert spaces, then we denote the space
of Hilbert-Schmidt operators from K1 to K2 by Jf^(X l5 K2) and the
Hilbert-Schmidt norm by || • \\#>#>. We will write J^(K1, K2) for the space of
nuclear operators from K1 to K2 and the trace norm on it will be denoted
by li • \\jr- The space ^(Kl9 K2) of compact operators from K1 to K2 will be
assumed to have been equipped with the operator norm. Then we have the
following chain of continuous inclusions :

19 K2) c jeST(K^ K2) c= <g(Kl9 K2).

In each of these spaces the collection of finite dimensional operators J^(X l5 K2)
lies dense. If K2 is equal to K1? then we simply write 3F(K^, ^(K
and ^(K^ for respectively &(Kl9 KJ, ^(Xl5 KJ, J^^(Kl9 KJ and

Definition 2.1.6. Let g be the collection of flags F = {F1;...,Fm}, satisfying
dim (Fj) = dim (Ht), and for all i and j with j / i, the orthogonal projection
Pj : Ff -> HJ is a Hilbert-Schmidt operator. We call g the /fog variety
corresponding to the decomposition (1).

Remark 2.1.7. If only one mf is infinite, then the Hilbert-Schmidt condition
is superfluous. E.g. the space of flags with mt < oo for all i < m, plays a role
in [2] at the construction of irreducible representations of the Hilbert Lie group
U(&)2- This is the unitary part of the group of invertible transformations of
the form "identity + a Hilbert-Schmidt operator".

Remark 2.1.8. Instead of the condition pj-.F^Hj, i / J9 belongs to
HJ), one could also consider flags such that this map belongs to
j) or #(Ff, HJ). The flag varieties one obtains in this way we denote

by 5(^) respectively 3K^). A more asymmetric condition is considered in [14]
where it is required that merely for / < j the projection pt : Fj -> H ,- is
Hilbert-Schmidt. In this way we get the flag manifold *$($). Because of the
inclusions mentioned above, we have a chain of injections

For m = 2 more general versions of flag spaces are considered in [9] .

Remark 2.1.9. In [8], they associate a Banach Grassmann manifold to
each Banach Jordan pair. It would be interesting to see if, and if so, how
the flag varieties introduced here fit into their framework.

2.1.10. The space 5 is a natural generalization of the Grassmann manifold
introduced in section 7.1 of [23]. The flag variety g is a homogeneous space
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for an analogue adapted to this situation, of the general linear group. The
Banach structure of this group follows directly from that of its Lie
algebra. Therefore we start with the analogue of the Lie algebra of the general
linear group.

Definition 2.1.11. A restricted endomorphism of H is a u = (utj) in
such that u^ is a Hilbert-Schmidt operator for all / =£ j. We denote the space
of all restricted endomorphisms of H by ^res(/f).

For all / and 7, we extend the elements of jf?&'(Hi, H-) outside Ht by zero
and obtain thus a natural embedding of ̂ ^(H^ Hj) into je^(H). The space
&res(H) is a subalgebra of <%(H) since the collection of Hilbert-Schmidt operators
is a 2-sided ideal in &(H). Hence it is also a Lie subalgebra of the Lie algebra
&(H). The algebra ^res(/f) becomes a Banach algebra if we equip it with the
norm || • ||2 defined by

= II "II + Z *r-

Since the adjoint of a Hilbert-Schmidt operator is again Hilbert-Schmidt,
it is clear that ^res(H) is stable under "taking adjoints". If GL(H) denotes
the group of invertible elements in ^(H), then we consider

Definition 2.1.12. The restricted linear group, GLres(/f), consists of

To see that GLres(/f) is indeed a group, one merely has to show that if
g = (g.j) belongs to GLres(/f) then its inverse g~l = ((0~%) also belongs to
GLres(#). Now, the relation

shows first of all that for all i, 1 < i < m, both git and (g~l)u are Fredholm
operators, i.e. they have a finite dimensional kernel and cokernel. Next one
considers the relation

92i(0~1)ii + 922(ff~1)2i + Z 92j(9~l}ji = 0.
j>2

Since the operator g21 is Hilbert-Schmidt and the operators (g~l}n and g22

are Fredholm, the operator (g~l)2i has to be Hilbert-Schmidt too. Continuing
in this fashion, one shows that all (#"%• with i+j are Hilbert-Schmidt. In
other words, GLres(/f) consists of the invertible elements of BTes(H). As such,
it is in a natural way a Banach Lie group with Lie algebra J5res(ff).

The analogue of the unitary group U(H) in this context is:
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Definition 2.1.13. The restricted unitary group, Ures (H) = GLres (JET) n U(H).

Both UrQS(H) and GLres(7f) are natural generalizations of the restricted
unitary and general linear group, introduced in chapter 6 of [23]. The Lie
algebra of Ures(H) consists of

(H), X*=-X}.

This is a real Lie subalgebra of %>res(H) and the Lie algebra 33res(H) can be
written as

In other words 23res(/f) is the complexification of ures(H). On the group level
this corresponds to the fact that the group GLres(H) possesses a "polar
decomposition" of which £/res(H) forms the unitary component. For, consider
the sets

P(H) = {A\AEGL(H), A = A* and A > 0} and

On Pres(H) we put the topology induced by 23res(H). Since the map
from Pres(H) to P(H) is locally given by a convergent power series in A, this
map is in fact a continuous map from Pres(//) to itself. Thus we get

Proposition 2.1.14. The map (u, p)^ up from Ures(H) x Pres(H) to GLres(H)
is a homeomorphism.

Proof. The inverse of this map is

9 ' — » gor ,
and we have just seen that it is continuous, n

With each g in GLres(H) we can associate the flag

From the definition of GLres(H) one sees directly that this flag belongs to 5.
The group Urcs(H) acts already transitively on 5- Let F = {F l5...,Fm}

belong to 5- From the definition of 5 we know that there is for each f,
1 < i < m, an isometry ut between Ht and Ft. If we put u = u1®---@um,
then the condition defining 5 implies that u belongs to the group Ures(H) and
that F = u(F(0)).

The stabilizer in GLres(H) of the basic flag is the "parabolic subgroup"
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0im \

P = g\gEGLres(H), g =
0

I 0 - 0 gml

, with 0 i£eGLres(#f), l<i<m

Thus we can identify g also with the homogeneous space GLres(H)/P. Let
i: GLres(H) -> g be the projection T(#) = g • F(0). On g we will put a Hilbert
manifold structure that makes i into an open submersion. This will be
discussed in the next subsection.

Remark 2.1.15. It will be clear that for the spaces g(^), g(#) and
the corresponding general linear group consists of those g = (gtj) in GL(H) such
that respectively

(2) giJe^r(Hj9H^ for all i*j,

(3) gtjeVWjtHJ for all i*j,

(4) gij€je^(Hj9H^ for all /<;.

2.2. The manifold structure of g. In this subsection we discuss the Hilbert
manifold structure on g and some decompositions of open subsets in
GLres(#). From the definition of the parabolic group P one sees directly that
the Lie algebra of P is given by

L(P) = {g\9 = ( g i j ) E B r e s ( H ) , 9ij = 0 for all i >j}

and that a complement of L(P) in Bres(H) is the Hilbert space (£, || • ||^^) with

E= ©

From section 6.1 in [3], we know then that the homogeneous space
$ = GLres(H)/P carries an analytic ^-manifold structure for which T is a
submersion and for which the natural action of GLres(ff) on 5 is analytic.

Next we give descriptions of some open subsets in GLres(/f) that will be
needed later on. Consider for each fe, 1 < k < m — 1, the set Q(k) in GLres(/f)
given by

Q(k} = ;) for all

Since we have for each i, 1 < i < m, a continuous surjection from ^res (//) onto

^res(#!©•••©#;) given by
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the set Q(k) is open and, as in the finite dimensional case, it can be
decomposed. For, let L/_(/c) and P(k) be the Lie subgroups of GLres(H) defined
by

g = (gij)EGLTes(H)

ga = IdHi for all i

gij = Q for j>i

g.. = 0 for i > j and j > k

and

P(Q = {g = toy)eGLre8(H)|00. = 0 if i >j and j<k}.

Clearly P( fe )nC/_( fc ) = {IdH} and this gives you the uniqueness in

Lemma 2.2.1. The map (u,p)\-*up from U_(k) x P(k) -> GLres(H) deter-
mines a homeomorphism between U_(k) x P(k) and Q(k}.

Proof. We use induction on k to show the result. Let g be an element
in O(l). Then we know that gll is invertible and if we define w(l)e £/_(!) by
w(l) r l = — gr\9ii f°r all r>2, then one sees directly that u(l)g belong to
P(l). Assume now that we know Q(l)= U_(l)P(l). Since we have £( / )=>
Q(l + 1) and £ /_ ( / ) < £ / _ ( / + 1), we may assume that geQ(l + 1) belongs to
P(l). Hence the condition geQ(l + 1) means that gl+1J + 1 is invertible. Define
u(l+l) = (Uij) in t / _ ( / + l ) by u j lT l - - ^+i (g z + i j + i )~ 1 for j > I + 1 and
M f j- = 0 if i > j and j ^ I + 1. Then M(/ + 1) • g belongs to the parabolic group
P(l + 1). This proves the lemma. D

As in the finite dimensional case we call Q(m— 1) = U_(m — 1) • P the big
cell of g and we also write Q and U _ instead of Q(m — 1) and t/_(m — 1).

From this lemma we see that the restriction of T to £/_ gives you a
diffeomorphism u^>uF(0} between U_ and the open neighborhood t(Q) of
F(0). Clearly the group L/_ is difTeomorphic to the Hilbert space E. Note
that from the definition of Q one can conclude directly that

i(Q) = {F = (Ff)e g| © p7-: 0 F;- - > 0 H7- is a bijection for all / < m}.
j<i j<i j<i

This characterization of i(Q) tells you how to choose around a general point
of 5 a concrete neighborhood difTeomorphic to E. This requires, however, the
introduction of the following notation.

Notation 2.2.2. If W is closed subspace of H, then we denote the



410 GERARD F. HELMINCK AND ALOYSIUS G. HELMINCK

orthogonal projection on W by pw.
Consider a F = (F1?...,FJ in JJf. Then the analogue of i(Q) for F is

Up = [V= (Vi) in 5! © pFl : © K - > 0 Ff is a bijection for all 1 < I < m}.

Since g - l/res(#) • ̂ (0), we have for all F and G in g that, if i /;, the map
pFi : Gj -> Fj is a Hilbert-Schmidt operator. Hence, if F belongs to l/F, then
there is a unique operator A in © J^^(FJ9 Ft) such that for all i,

This is why we call V also the graph of A and we write V= graph (A).
It is convenient to have a special name for the flags in UF.

Definition 2.23. A flag V in UF is called transversal to F.

Let gF be an element of L/res(/f) such that g F - F ( 0 ) = F. Instead of the
big cell Q in GLres(H) with respect to the decomposition H = Hl®---@Hm,
we could also have introduced a big cell with respect to H = F1@---@Fm

and it will be clear that this set can be written as

Consequently, we get for UF that

UF = {gFup(gF)~1F\vfith ueU_ and peP} = i(gF U_P).

Then we can define for each F in 5 a diffeomorphism cpF : UF -+ E by

K - Id.

Each ([/F, (pf) is a concrete chart around F for the £-manifold structure on g.
We have obtained now a concrete description of the manifold structure

on g:

Proposition 2.2.4. The (UF, (pF) are the charts of the analytic E-manifold
structure on 3.

Proof. It is sufficient to show for each UF(D and UFw with UF(D n UF(2} ^ 0
that

^>F(2) ° ̂ Fd1) : <PFW(UFM H t/F(2)) - > <pF(2)(UF(i} fl C/F(2))

is an analytic map. From the step by step decomposition described in
Lemma 2.2.1 follows that the ^/.-component of (gF^)~lgF^u actually depends
analytically on u. This proves the proposition. Q
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2.3. The connected components of GLres(H). Let g = (g$ be an element of
GLres(/f). Recall that in the proof that GLTes(H) consists of the invertible
elements in ^res(#), we have shown that each gi{ is a Fredholm operator. The
collection of Fredholm operators on a Hilbert space K is an open part of the
space J*(K). Its connected components are given by the index, which is defined
as

ind (B) = dim (ker (B)) - dim (coker (£)),

where B is a Fredholm operator on K. Since all off-diagonal operators are
Hilbert-Schmidt and hence compact, the operator

0=1 ••• h where g = (^0-)eGLres(ff),

\ 0 gmm I

is a Fredholm operator of index zero. Hence we have that the indices of the
{gn\ I <i<m} satisfy

m

£ ind (git) = 0 and ind (gkk) = 0 if mk < GO.
i = l

These relations lead to the introduction of the subgroup Z of Zm defined by

m

Z = {z = (z£)eZm | X z{ = 0, zk = 0 if mk < oo}.
i = l

The standard properties of the index imply that the map i : GLres (H ) -> Z,

g\ — > (ind (gf! O,.. . , ind temj),

is a continuous group homomorphism. Hence the sets

GL(^(H) = {g\geGLres(H), i(g) = z}, with zeZ,

are open. In fact, they are exactly the connected components of GLres(/f), for

Proposition 2.3.1. For each zeZ, the set GL(^(H] is non-empty and
connected.

Proof. Let z = (zf) be in Z and let hiE0(Hi) be such that md(ht) = zt.
Then

*• °
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belongs to <P(H) and has index zero. Therefore one can add to h an
isomorphism between the kernel of h and the orthogonal complement of the
image of h to obtain an element of GL(^(H}. This shows that i is
surjective. As for the connectedness it suffices to show that GL(^(H) is
connected. First one notes that, since P is homeomorphic to

i = 1 j<i

and all the GL(Ht) are connected, (see [20]), the group P is connected. Next
we show that each element of GL{£}S(H) can be joined by a continuous path
to an element of P. For an element g = up in Q = U_P it is clear how to
proceed: the map fi— »{Id + (1 — t)(u — Id)}/? joins g with p. A general element
g is first joined with an element in O(l). For, if g11 is not invertible, then
there is a bijection E between ker^u) and 3 ( g l l ) ± { ] H l and we extend E by
zero on kerfef^)1 to get an element E of ^res(H). It is no restriction to
assume \\E\\2 < \\g\\2- Then we know that g + tE belongs to GL(£S(H) for all
fe[0, 1] and by construction g + E belongs to Q(\) and we can write
g + E = u1p1. The map n— >{Id -f (1 — t)(u1 — Id)}pi joins g 4- E with p1. By
adding a small finite dimensional operator in &(H2), one reduces the case to
an element in Q(2) that can be linked in the same way to an element of
P(2). Continuing in this fashion one finds a continuous path from g to an
element of P. This proves the assertion. Q

This Proposition is the extension to flag varieties of Proposition 6.2.4 in [23] .
Since the parabolic group P is connected, we see that

Corollary 2.3.2. The connected components of 5 are given by

Remark 2.3.3. A holomorphic line bundle L over g consists simply of a
collection of holomorphic line bundles {Lz -> g(2)!zeZ}. Therefore we restrict
our attention to holomorphic line bundles over g(0) in the third section.

2.4. A special covering of g. In this subsection we choose a suitable
orthonormal basis of H and we introduce a collection of charts of g that can
be described completely in terms of the index set of this orthonormal basis. In
particular these charts cover g and enable you to give a combinatorial
description of the Birkhoff decomposition of GLres(/f) and to construct
concretely a collection of holomorphic line bundles over g(0).

Let {eJseSj, 1 < / < m, be an orthonormal basis of Ht. Recall that
dim (//,-) = mt for all i, 1 < i < m. Hence we can write
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On Si we define a total order by

Si(fc)>Si(0 *=**>/.

m

These orders we compose to a total order on the index set S = (J St by
requiring that l=1

Sj < st for all Si e St and all Sj e Sj with j > i.

Now that we have an orthonormal basis {es|seS} of H with a totally ordered
index set S, we can associate to each bounded g in @(H) an S x S-matrix
[0] — (9st) with matrix coefficients

s>, where s and t are in S.

Notation 2.4.1. Let gl(S) be the collection of S x S -matrices corresponding
to operators in $res(H).

The context has been chosen such that the product of two elements in
gl(S) is again in gl(S) and therefore gl(5) is a Lie algebra. In gl(S) we have
the Lie subalgebra gl(oo) corresponding to the matrices of the operators

Definition 2.4.2. An operator g in <%(H) is called a "finite-size" operator
if it has only a finite number of non-zero matrix coefficients w.r.t. the {es|seS}.

Remark 2.4.3. If m = 2 and ml = m2 = oo, then S = Z. In [18] it was
shown that the Lie algebra A^ can be realized as a central extension of the
collection gl(oo) of Z x Z-matrices g = (gi]] of "finite- width", i.e. satisfying

gtj = 0 if |i — j\ > N for some N. The composition of such matrices is always
defined and from this point of view §l(S) can be seen as a complete bounded
version of gl(oo). The central extension defining A^ also occurs naturally in

our geometric framework, see subsection 4 of the next section.

In the sequel we will frequently use some notations related to subsets of S.

Notation 2.4.4. The number of elements in a subset A of S is denoted
by #A.

Notation 2.4.5. If A is a non-empty subset of S, then we denote the closure
of the span of the {es\seA} by HA. If A is empty, then HA denotes the space
(0). It is convenient to denote the orthogonal projection onto HA by pA.

Maps between subsets of S have a direct translation to partial isometries
between closed subspaces of H, i.e.

Notation 2.4.6. If A and B are subsets of S and i : A -> B is a map with
uniformly bounded finite fibers, then we denote by i_ the mapping from HA

to HB given by
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Now that we have chosen the orthonormal basis {eJseS}, we can introduce
"diagonal operators" in ^res(//). Suppose that we have a set of bounded
complex numbers

{<5s|seS, <5seC and |<5S | <M for all seS}.

Then we can associate to it a diagonal operator diag (ds) in ^(H) by

feS reS

Inside GLres(//) we have then the "maximal torus"

T={g\geGLTes(H), g = diag(c5s)}.

Clearly T is commutative and it is a straightforward verification to show that
the centralizer of T inside GL(H) is equal to T. Hence we have

Lemma 2.4.7. The centralizer Z(T) of T in GLTes(H) is equal to T.

Each permutation a of S determines a unitary map g_ : H -> H as in

notation 2.4.6. With the help of the matrix, one shows that the normalizer
of T in GL(H) consists of

{t- q_\teT, a a permutation of 8}.

Hence, if we define the subgroup W of C/res (H) as

W= { g_ | g_ E Ures(H), a a permutation of S},

then we have

Corollary 2.4.8. The normalizer N(T) of T in GLTes(H) is the semi-direct
product of W and T. In particular, we see that W is isomorphic to N ( T ) / Z ( T )
and we call W the Weyl group of T.

To each o_ in W9 corresponds a partition Z = \J It- of S, where
i > l

Zf = cr(S'j). The concrete description of which partitions occur in this way,
brings one in a natural way to the consideration of subsets of S that are
"equal up to a finite set". Therefore we define

Definition 2.4.9. If A and B are subsets of 5, then we call A and B
commensurable (notation A % B) if A — {A flB} and B — {A f}B} are finite. We
write i(A, B) for the number
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#{A-{AnB}}-#{B-{A{]B}}.

Thus commensurability is equivalent to: the orthogonal projection pHs:
HA -+ HB is a Fredholm operator with index i(A, B). Let I = {IJ1 < i < m]
be an arbitrary partition of S into m disjoint parts. Then this partition
corresponds to an element of W, if and only if the following two conditions hold :

(5) #I£ = #St for all i, 1 < i < m, and

(6) If % Si for all i, 1 < i < m

To any partition E satisfying these conditions there corresponds a flag Fs in
5 given by

For simplicity we denote for each I satisfying (5) and (6) the open set L/Fl in
g also by L/z.

In the sequel we will make use of the following notion

Definition 2.4.10. An element in H is said to be of order s, seS, if it has
the form

h = ases + £ atet, with as ̂  0,
teS
t<s

Notation 2.4.11. If W is a subspace of H then the union of all the elements
in W of some order s in S and {0} is called the space of elements of finite
order in W and is denoted by Wfin.

For each z in Z, we denote the collection of partitions S of the index
set S such that FE belongs to g(z), by ^(z). The basic property of the

is

Proposition 2.4.12. For eac/z ^fag -F — C F O ) > - - - > ^ ( m ) ) z/7 3(z) there is a £
z« ^(z) such that F is transversal to FE.

Proof. Let #eGL res(#) be such that F = g - F ( 0 ) . First we show that
there is a St commensurable with S1 and with #SX = #I1? such that p H T l ° g \ H l

is an isomorphism between #! and HZl. Since pi^CHJ) has finite codimension
in /f l 5 we can find a S^w) = (s^fc), fc>rc}, n > 0, such that F(l) = g(H1)
projects surjectively onto HSl(n). The kernel of this projection has a basis
{hj 1 <j < N} of elements of finite order, i.e.

hj = e*j + Z aj(0^, where st + Sj for / /j.
teS

t<Sj

It is clear that we can take Ex = S^nju [Sj\ 1 <j<N}. The other parts of
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the desired partition £ of S are constructed step by step from I,1. For, assume
that we have found disjoint {£^7 < i} with I7- « Sj and #Sj = #Ij such that
the orthogonal projection of F(j) onto ®^<jH^ is a bijection for all j < i.
Then we know that pi + i(g(Hi + i)) has finite codimension in Hi + 1. So
there exists a subset S^x of Si + 1, commensurable with S f + 1 and disjoint of
I ^ U - ' - E j , such that F(i+ 1) projects surjectively onto JfSl © ••• © f/Li 0 H§i + l.
The kernel of this projection is again finite dimensional and has a basis of
elements of different order. As Zi + 1 one takes then the union of Si + 1 and
the orders of the elements in this basis. In this way we obtain after a finite
number of steps the desired partition £ of S. D

This proposition is a generalization of Proposition 7.16 in [23].

Remark 2.4.13. Since Fz is transversal to Fn if and only if I = II, we
can conclude from this proposition directly that g(0) is no longer compact if
H is infinite dimensional.

For each Z in ^ = (J «9*(z), the elements of finite order in F^(j) span
zeZ

a dense subspace of Fz (7) for all 7, 1 < 7 < m. By combining this with
Proposition 2.4.12 we get the following generalization of proposition 7.3.2 in
[23].

Corollary 2.4.14. For each flag F in $ and for each 7, 1 <j<m, the space
F(j)fin forms a dense subspace of F(j).

For each flag jp = (F(0),...,F(m)) in g(z) we can concretely describe a E(F)
in ^(z) such that F is transversal to FI(F). Namely for each 1 < / < m we put

E(F)(0 = {s|seS, F(i) contains an element of order s}

and

I(F), = I(F)(/) - Z(F)(i - 1) for / > 1.

Clearly each F(i) projects bijectively onto HZ(Fm and therefore I(F) = {S(F)J
belongs to ^(z). Next we consider flags that give the same partition in this
way.

If Ie^(z), then we write

Let L/o be the subgroup of GLres(H) of all operators with a unipotent lower
triangular matrix, i.e.

L/o = {u\ueGLres(H), for all ssS, u(es) = es + ^ ^}-

Then we want to show
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Proposition 2.4.15. The subset gL is exactly the U0-orbit through Fz.

Proof. From the form of an operator u in (70, one sees directly that for
each element h of order s, the element u(h) has also order s. Thus we have
that I(wF) = L(F) for each F in I.

Assume now that F belongs to gz. Since F(i) projects bijectively onto
Fz(i) for all i, 1 < i < m, the flag F is the graph of an operator T in

m - l

xix vi/ t^T> LX \±J. Y 5 -O v J .

j = l J < '

In particular this means that there is an u in GLres(#) such that w(Fz) = F
and for all s f £Z £ , 1 < f < m,

(7) w(eSi) - esi + £ I rSjSieSj, if i < m and w(eSi) - eSi if z - m.
7 > i Sjelj

The fact that F belongs to gs can be expressed completely in term of the
coefficients {7^S i | s f6Z i 9 s^-eZy, 7' > /}. Namely, it is equivalent to

(8) TSjSi - 0, if s7. > s,..

If namely 7^Si / 0 for some Sj with Sj > si9 then the element u(es) will be of
some order s^S(i) and hence Z(F)(i) 7^ S(i). This contradicts the fact that F
belongs to gy. By definition, the operator u defined by (7) belongs to L/0, if
condition (8) is satisfied. This concludes the proof of the proposition. G

Thus we have obtained a subdivision of each connected component of g,

%(z}= U Si,
Ee^(z)

into parts that are homeomorphic to a Hilbert space, thanks to property
(8). This is a generalization to flag varieties of the stratification in section 7.3
of [23]. Let <7S, for each XecS^(z), be a permutation of S such that ers(Sj) = Zi9

for all i, 1 < i < m. Then this decomposition of g translates directly to the
group GLres(H) and results in

Proposition 2.4.16. (Birkhoff decomposition.} Each connected component of
the group GLres(/f) decomposes as

Remark 2.4.17. The decomposition derived here is the analytic equivalent
of the algebraic decomposition from [22].
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§3. Holomorphic Line Bundles over g(0)

3.1. Another description of g(0). For each Z in «9^(z), there are numerous

a_£W such that Fs = <r F(0). We start by describing a special choice that is

useful at the description of 5(0) as the homogeneous space of another group.
We construct a bijection <r£ : S£ ->Ii? as follows: since S{ and Zf are

commensurable, there is a N > 0 such that

Consider the finite set ^ — {st(k)\k > N} . If it is empty, then we define
Gi : Sj -> Ij as follows :

ff£(sf(fc)) = st-(Jc + N) for all fe, 1 < k < mt + 1.

In this case we put I \ = — N.
If Zt- is not equal to {st(k)\k > AT}, then we write ^ — {st(k)\k > N} =

{ti,... f jv+*f j f°r some /; in Z, ^ > — JV, and we define <r£ by

o-.(s.(fc)) = tk for all fc, 1 < k < N 4- /f,

c7.(s.(/c)) - Sf(fe - /<) for all fc > N + ^.

For all i, 1 < f < m, consider the map it: St -> Sf defined by

T.(s.(/c)) - sf(N + 1) for all fc, 1 < k < N + fi

Si) for all fc > N + ^.

Since Pi° o_i~ ^_i is a finite dimensional operator, Pi° a_i and jr t- have the

same index and for i_t one clearly has ind (i_t) = N + /f — N = I {. In other

words, the number ^ is equal to zf. The {a{ I < i < m} compose to a bijection
a: S -> S such that o: F(0) = FE. We will introduce a special term for this type

of permutations.

Definition 3.1.1. Let £ be a partition of S in &*(z). A permutation a of
5 such that cr(Sj) = Z^ is called admissible of level N if the following property
holds

(i) For each i and for all k > N + zf, t7(sf(fc)) = s£(fc - zt-).

One easily verifies that the collection of admissible permutations of S of
all levels forms a subgroup Wa of W. It has a normal subgroup Wa

(0) = Wa

nGL(
r
0

e
}

s(H) such that the quotient WJW™ is isomorphic to Z. The elements
of W^0) can be described in a direct concrete way. If G is a finite subset of
S and if p is a permutation of G, then we denote the extension of p by the
identity to a permutation of S, by p. Then we have
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Wa
{0} = lim ^a

(0)(AO = lim { a a 6 Wa
(0) is of level N]

N * N >

= [p_\p a permutation of G, G a finite subset of 5).

Now we can introduce another group that acts transitively on 5(0). Its
advantage is that it enables you to construct in a simple way holomorphic
line bundles over g(0). Let I be in c9*(0) and let o be an admissible permutation
of S such that o-(S^) = Sf. From the definition of admissibility we know that
(7 decomposes in operators (cr^-) with the properties

(i) For each 1 < i < m, (j £i = IdHi + a "finite-size" operator.

(ii) For all i and j, i^j, cr^- is a "finite-size" operator.

Since every flag F in g(0) is transversal to some Fls with I in ^(0), we may
conclude that each F in g(0) is equal to g • F(0) with g E GLres (H) of the form

(a) For each i, 1 < f < m, 0ff = IdHi + a "finite-size" operator.
(b) For all i and j, i < j, 0fj- is a "finite-size" operator.
(c) For all i and ;,; < i, 0y belongs to 3e^(R-p Ht).

Note that for all the operators gu from (a) det (ga) is defined. Since we are
working in an analytic setting we will consider a somewhat wider class of
operators such that on one hand we work in a Banach framework and on the
other we can take determinants of certain minors. Recall, see [12], that the
determinant is defined for each operator of the form "identity + a nuclear
operator". Therefore we introduce

On B2(H) we put a different topology than the one induced by ^res(//). For,
let & be the subspace of ^res(#) defined by

Then J^ is a Banach space if we equip it with the norm \\ • \\£ given by

i * j i=l

The collection B2(H) is nothing but ^ shifted by the identity and we transfer
the Banach structure on 3£ to B2(H) by means of the map Q\-*Q + Id. Since
the product of two Hilbert-Schmidt operators is nuclear, one sees that B2(H)
is closed under multiplication. Moreover the multiplication with an element
of B2(H) is an analytic map from B2(H) to itself. In B2(H) we have the
subgroup 17 _ and its "adjoint" the group
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U+ = {U*\UEU_}.

Consider an element b in B2(H). Now we define u = (wl7) in C/_ and v = (uy)
in U+ by

Uii = vu = IdHi, MO. = - by if i > ;, My = 0 if ; > i,

i>y = — by if f < j and 0y = 0 if / > 7.

A direct verification shows that ubv belongs to Id + Jfr(H). Since B2(H) is
closed w.r.t. taking adjoints, we have

Lemma 3.1.2. Every beB2(H) can be written in the form b = u1blv1 or
b = v2b2u2, where u1 and u2 belong to 17 _, v2 and v1 belong to U+ and b1

and b2 lie in Id +

The decompositions in lemma 3.1.2 are clearly not unique, but they suffice
to define a determinant map det: B2(H) -> C. Namely, for b = u1b1v1 as in
lemma 3.1.2, we put det (b) = det (u1b1vi) = det (b^.

To see that this is well-defined, we note first of all that for w e [ / _ n
{Id + ^(H)} and ve U+ n (Id + JV(H)} we have det (u) = det (t;) - 1, since
u — Id and v — Id have zero trace. Now, assume beB2(H) can be written as
b = ulb1v1 = U2b2v2 with b^eld + J^(H], uteU_ and vieU+. Then b2 =
(u2

1ul)bl(v1v2
1) and, since both bl and b2 belong to Id 4- ̂ (H)9 this implies

that w2-1w1e[/_n{Id + tyr(/f)} and v^v^e U+ n{Id + JT(H)}. By the mul-
tiplicativity of the determinant on Id + ^(H), we get det (b2) = det ( M ^ " I M I )
det (bj det (v^ v2

 x) =

Remark 3.1.3. Since the operators in Id + Jf(H) lie dense in B2(H) and
since det is multiplicative on Id + Jf(H) we get that for each b1 and b2 in B2(H)

det(b1b2) = det(b1)det(b2)

From the fact that an operator g of the form Id + ^(H) is invertible if
and only if det (g) is non-zero, we see that the invertible elements of B2(H)
form a group (5 and are given by

© = (b|be£2(H), de t (b )^O) .

Clearly (5 is a Banach Lie group with Lie algebra ^ and it acts analytically
and transitively on g(0). The stabilizer of F(0) in (5 has the form

t =

I til •
0

\ o .

^lm \

• o tmm I
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Thus we can identity g(0) with the homogeneous space

Remark 3.1.4. If we would work with (S(^r) instead of g, then we could
simply take instead of B2(H) the collection Id + ^(H) and instead of (6 the
group of invertible operators of the form Id + J^(H). If one likes to work
with g(^) then the group

<, = b | b = (fey) 6 GL(H), bit e Id +

acts transitively on the connected component of g(#) containing the basic flag
and allows you to take determinants of suitable minors.

3.1.5. Next we consider the maximal torus T(J^)= Tn© in (5. It consists
of all operators of the form diag({l + tj), with 1 + ts ^ 0 and ]T \ts\ < oo. In

T(Jf) we have the dense subgroup 7} given by

7} = {t|t - diag({l + ts})eT(JO, ts / 0 for only finitely many s in S}

Any analytic group homomorphism of 7} into C* has the form

t = diag ((1 + Q) K->
seS

where m = (mj, with m seZ for all seS. This character %m can be continued

to an analytic character of T(JT) if and only if there are only finitely many
different ms, se5. This extension of %m is also denoted by %m and we write
T for the group of analytic characters of T(>"). Following the finite
dimensional terminology, we will speak, when T(Jf} acts on a vector according
to a %ef, of "i; is a vector of weight /".

For each s and r in S, let £sr be the operator in ^res(H) given by

Esr(et) = drles for all

The adjoint action of T(J^) on ^res(H) gives for these elements

F —7 (t)EJ^sr — • /CsrV1 / ^ sr •
1 + tr

A character % of T(J^) is called positive, notation / > 0, if it belongs to the
semigroup generated by the {/sr|seSi5 r e S j y i>j}. This enables you to define
a partial order on T by

Clearly we call ^ in T negative if and only if x"1 > 0.
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Remark 3.1.6. One can see the space g(0) also as a homogeneous space
for the group of invertible operators in "Id + JJ? 5f(H)", which in its turn can
be identified with an open part of the Hilbert-Schmidt operators on H . This
group, however, does not permit you to take suitable minors.

Remark 3.1.7. One can give the same type of description for the other
components g(z) by taking some le^z) and by introducing the group (5 as
the operators that decompose w.r.t. H = H^ © ••• © /flm in the above way.

3.2. Finite dimensional subvarieties. In this subsection we consider some finite
dimensional flag subvarieties contained in g(0). Let K be a finite subset of
S. For simplicity we assume that K contains all the S^ that are finite. The
general linear group GL(HK) embeds into GL(^S(H) by extending ueGL(HK]
on HS_K by the identity. We write gK for the sub variety of g(0) given by

ueGL(HK)} = {uF^ ueU(HK)}.

If K1 c K2, then we have a natural embedding of GL(HKl) into GL(HK2) and
of $Kl in gK2. Now one considers a collection of finite subsets {KJweN} of
S given by

m

Kn = U {Si(k) | k < n + max (m^)}.
• — -I mj < °O

Then S = (j Kn and with the identifications mentioned above we write
«eN

GL(oo) - U GL(HKn), t/(oo) = (J U(HKn) and 5(oo) - U Sxn-
neN neN neN

Since, for all i / j, the "finite-size" operators are dense in J^^(Hj, Ht), and
the C/z, Ie^(0), cover g(0), we get

Lemma 3.2.1. The space g(oo)

Consider now a holomorphic function / on g(0). The restriction of/ to
some $Kn must be a constant, since 5Kn is a compact complex manifold. Hence
/ is a constant on 3f(oo) and the lemma implies then

Corollary 3.2.2. The only holomorphic functions from 3(0) to C are the
constants.

This is a generalization for flag varieties of Proposition 7.2.2 in [23].

Remark 3.2.3. The results of this subsection remain true if one would
work with the nuclear flag space 3f(«^O or tne "compact" flag variety
5(#). However- the "finite-size" flags from g(oo) are not lying dense in the
space of bounded flags
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3.3. The line bundles and the central extension. For each k_ = ( f c l 5 . . . , f c m ) in

Zm, we define ^ in T by

i + t,})= n (i + U*1 n (! + utj- n (! + 'j*m
sieSi S2eS2 smeSm

Clearly i/^ extends to an analytic character of ?T by means of the formula

According to section 6.5 in [4], there exists for each analytic character i/^ of
y, a holomorphic line bundle L(.fc) = © (g^C over J^(0) - ©/^. It is

concretely defined as follows: consider on the space © x C the equivalence
relation

(01, ^ l ) ^ ( # 2 > >l'2)<=>01 = 02°*,

The space © x C modulo this equivalence relation is L(jc). For each

and each A in C, we denote the equivalence class to which the pair (g, A)
belongs by [g, X]. There is a natural projection n^\ L(A)-^5 (0 ) given by

The space L ( _ f e ) is a Hilbert manifold based on the Hilbert space £ © C. For

each 1 6^(0) one can give a concrete trivialization of L(k.) above t/s. Let

a be an admissible permutation of S such, that Lf = cr(Sj). Then we define
^n^(U^ by

Assume we have a S and ^ in ^(0) such that 7c^"1(C/2)n7c^"1(L/'u) is non-empty.
Let a and p be admissible permutations of S with a (5^) = Zf and p(Sf) = K^.
If (A, X) is such that <px(A, A) belongs to 7c^"1(C//j) then we know that
£-1 cr (Id + A) belongs to On© and because of Lemma 2.2.1

2_~l a(Id + A) = u(A)p(A), with u(A)eU-9

Here u(A) and p(A) depend analytically of A and thus we get

V^V^A, A) = (u(A) - Id, Wh(p(A)))

and this map is clearly analytic. This proves that

Lemma 3.3.1. The {(n^iU^, cp^ x)| 16.5^(0)} are the charts of an analytic
£ © C _ structure on L(^c).
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Remark 3.3.2. For the case m = 2, ml = m2 = oo, the bundles L((+ 1, 0))
and L((— 1, 0)) are the determinant bundle Det and its dual Det* as introduced
in section 7.7 of [23].

There is a natural analytic action of the group © on the space L ( _ f c ) by

left translations

01 '[02» ^1 = [0102. ^1-

This is a lifting of the natural action of © on g(0) to one on L(_fc ). However,

the natural action of GL(£)S(H) can, in general, not be lifted to one on
L(lc) . Such an attempt may lead to nontrivial central extensions of

as we will show.
Note that each g in GL(

T°el(H) can be written as g = dg2, with # 2
E ®

d belonging to the subgroup

f), gtj = 0 if i *j}.

of GL(^S(H). Clearly the group D normalizes the group ©. Since the
determinant of an operator of the form "identity 4- nuclear" is invariant under
conjugation with an invertible operator, we get that D centralizes each i/^, i.e.
for each t in ZT and each d in D we have

This fact permits you to lift the action of D on 5(0) to one on L ( k ] by means of

For an element d from Dn©, this action differs by a factor \l/k(d~1} from the
action induced by that of ©. Hence we cannot combine them to an action
of GL(^S(H) on 5(0)- To overcome this problem we build a group extension
G of GL(

r°el(H). It is defined by

G = {(g9d)\geGLW(H)9 deD and ^e©}.

As one verifies directly this group acts on L(J^) by means of

It is simply the combination of the ©-action and the D-action given above. Let
7i : G -> GL(°e

}
s(H) be the canonical projection, i.e. n((g, d)) = g for all (g, d)eG.

For certain subgroups of GL{^S (H) there exist several ways to embed them into
G. Therefore we introduce special notations for two of them. Let J_ resp.
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j_ be the embedding of (B resp. D into G given by

1(0) = (g, Id) and j_(d) = (d, d).

As a group G is the semi-direct product of J_((5) and j_(D). We equip each
GL(Hi) with the operator norm topology and we put on j_(D) the product
Banach Lie group structure. On _L(@) we take the Banach structure based
on 3£. The conjugation with an element d of D defines an analytic
diffeomorphism of (5. Hence if we put on G the product topology of j_((5)
and j_(D), it becomes a Banach Lie group based on

The group G is a fiber bundle over GL(
r°

}
s(//), with fiber &~ftD. This is clear

from the following useful trivializations. For each I = (Zf) in <9*(0) consider
the open set G(S) of G given by

G(I) = {(g, d)\(g, d)eG, pZ i
o^|//i is a bijection for all i, 1 < i < m}.

The group G is the union of these open sets. If a is an admissible permutation
with a(Si) = I.i9 then we define an analytic bijection from 7r(G(Z)) x {^T nD} to
G(Z) by

where 2 in D is determined by

(9) da= a-1 op^l Jff , .

Next we try to minimalize the extension of GL(£*S(H) that acts on g(0) and
L(_/c) . Thereto we consider the action of the kernel of n on L(k_)

(Id, d) - [g, A] = [gd-1, A] = [gf, ^(d-^A].

In particular the group D ( / c ) = {(Id, d)|(Id, d)eG and i//k(d) = 1} acts trivially
on L(/c ) and we see that it suffices to consider the extension G(k_) = G/D(k_)
of GL(

T°el(H). If the character i/^ is trivial, i.e. fe. = 0, then G(k_) is just
GL(^S(H). For Jc / 0, one computes directly that G(k_ ) is a central extension
of GL(?e

]
s(H) with Ker(;c)/D(A) ̂  C*. For m = 2, ml = m2 = oo, the extension

G((— 1, 0)) is the one introduced in section 6.6 of [23].
One can describe such an extension with a Borel 2-cocycle a: GL(?JS(H) x

GL(
r°el(H) -» C*. It can be constructed as follows: take a section p of the fiber

bundle G^GL(
r°el(H), i.e. for each g in GL(%S(H) we have



426 GERARD F. HELMINCK AND ALOYSIUS G. HELMINCK

with

By definition we have for each g1 and g2 in GL(
r°

}
s(/f) that

Thus we get for the action on L(k_) the relation

The group G ( / c ) is then isomorphic as a group to the product space

GL$S(H) x C* with the multiplication

(01, AJ* (02, A2) - (0!02, A^Of^!, 02)).

If p is another section of G A GL(?e{(H) with p(0) = (0, 0(0)), then we have by

definition for each 0 in GL{
T°JS(H) that £(0) - q(g)t(g) with t(0) in ^"nD. The

corresponding 2-cocycle a satisfies

In other words, it differs by a trivial 2-cocycle and we merely have to consider
one section p.

A section p can be composed from the local trivializations of n : G -»
GL(

r°el(H) defined above. First we number the elements of ^(0): ^(0) = {Z(0|
i > 0}, such that S(0) is the partition corresponding to the basic flag. For
#eG(I(0)) we choose 0(0) according to the trivialization (9) with a = Id. Next

m m— 1

we define 0(0) inductively by: if 0 belongs to U G(E(0) and not to (J G(I(t)),
i = 0 i = 0

then we take 0(0) according to the trivialization of G(Z(m)) given by (9). In
particular if 0, h and gh belong to G(S(0)), then the 2-cocycle a is given by

(10) a(0, h ) = f [ det (Id + X gifoh^g^.
i = 1 ./ * i

From this formula we will compute in the next subsection the corresponding
Lie algebra 2-cocycle.

3.4. The non-triviality of the extension <?(&). First we consider the case that
kt = /, /eZ, for all i. Then we have for each 0eDn^" that ^(0) = det (0)*. We
can adjust the ©-action on L(k] as follows:
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Hence for elements d e D n © , we get

d*[x, A] - \ljh(d-l}[_dxd-ld, A] =

Now we combine this new ©-action with that of D and we define for g = dlgl

in GL™8(H), where dl eD and 0 - 1 e®,

It is a straightforward verification to show that this is well-defined and that
it defines an action of GLf^s(H) on L(k_). This implies that G ( / c ) is a trivial
central extension of GL(^S(H).

Secondly we consider the case where at most one of the mf is infinite. Then
GL(^S(H) is simply GL(H) and we know from [20] that this group is

contractible. In particular the fiber bundle G A GL(H) is then topologically
trivial and the group G(k_) is the direct product of GL(H) and Ker (n)/D(k_).
Hence we may assume in the sequel that there are at least two infinite wf's.

The next case we have a look at is that k_ satisfies

(11) fc. / 0 = > m i < o o .

Let 0h->(0, q(g)) be a section of G -» GL(
r°

}
s (H) . We will adjust q(g) such that

the 2-cocycle determining G(k_) becomes trivial. Namely, we define q(g) in D by

(12] 9(9)u = q(g)u if mt = co and

.., if m. < oo.

Then g*-+(g,q(g)) defines another section p of G -> GL(^]
S(H) and the

corresponding 2-cocycle a is trivial

In the cases considered so far we have seen that the fiber bundle G A GL(
r°

}
s (H)

is trivial and hence also the central extension G ( / c ) of GL(£l(H). We will
show now that the extension G( jc) can be non-trivial.

Note that the 2-cocycle a is given close to the identity by an analytic
expression. Hence we can consider the corresponding Lie algebra 2-cocycle
doc. We consider the elements of &res(H) as left invariant vector field on
GL(£8(H). Then rfa: @res(H) x J"res(H)-»C is given by

d d
= a(exp (tX), exp (57))

dt ds
-— — a(exp(s7), exp(tX))l~o ds dt 5 = 0

For X = (Xij) in *res(H), we write g = exp (tX) = (g^. With respect to the
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parameter t we have

g.. = UHi + tXu + "higher order in t"

g.. = tXtj + "higher order in r" for i /;.

If h = (h^ = exp(sY), then we are interested in the ts-term in

det(Id f l i+ ZflfyM"1^1)
j*i

= det(IdHi + N)=l+ £ Trace (AkN)
k=l

= 1 + ts X Trace (Xyiy + "at least 2nd order in t or s".
j*t

By combining this expression with the local formula (10) for a, we obtain the
following formula for doc:

m

da(X, 7) = £ fc, Trace { £ X^ - £ 7 ,̂}.
i=l j*i J*i

This Lie algebra cocycle is trivial if it has the form f([_X, 7]) with
/: J*res(H) -» C some linear map. The element \_X, 7] in J*res(7f) has the form

L^mm? ^mm] +

Note that if Jc satisfies (11), then we can directly define such an /. For, in
that case, we have for all i with kt ^ 0 that Trace \_Xih ya-] is well-defined and
equal to zero and we can take

f(X) = X *i Trace (^J.
i , fc ,^0

This is the infinitesimal version of the trivialization described at the beginning
of this subsection. There is, however, no well-defined trace function for general
elements of ^res(JFf) so that this formula makes no sense in the general case.

Now, let i and j be such that i <j, mi = mj= +00 and kt ^ kj. Then
we have an element A in GLres(//) given by

if fe> 1,

=esi(k) if l*i and
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Now we have that da(A, A~1} is equal to

fc. - kj = kt Trace A{j(A~\ - kj Trace (AJ^ A^ ^ 0

In particular doc is a non-trivial Lie algebra 2-cocycle. This implies that also
the group 2-cocycle a is non-trivial. For, consider the commuting elements
g1 = exp(M) and g2 = cxp(sA~l). In case that a was trivial we would have
a(0i> #2) = a(025 0i)« However, for sufficiently small t and s, the map
(t, s)i— »a(01? g2) is a non-constant holomorphic function, since dx(A, A~l) ^ 0.
On the other hand one computes directly that for all i, 1 < / < m,

This shows that a(# l 5 #2) ^
 a(02> 0i) an(i hence a is a non-trivial 2-cocycle. We

summarize this result in a

Theorem 3.4.1.

(a) The extension G(kL) is always trivial if there is at most one infinite mt.
(b) If there are at least two infinite dimensional components in the basic

flag, then G(k] is trivial if and only if for all i and j,

mt = rrij = oo => kt = kj.

(c) If kt ^ kj for infinite dimensional Ht and Hjy then the corresponding

Lie algebra 2-cocycle for the extension G(Jc) is given by

da(X, Y) = £ k, Trace { £ X^ - ^ ryX7/}.
1=1

Remark 3.4.2. Consider the case m = 2, m1 = m2 = oo, /q = — 1 and
k2 = 0 and restrict da to gl(oo) ngl(S). Then we have the 2-cocycle defining

the Lie algebra Ax.

3.5. The holomorphic sections of /,(/[)• Let fi( fe.) denote the space of global

holomorphic sections of L(k_). The space &(k_) is given the topology of
uniform convergence on compact subsets of g(0). It becomes then a complete

locally convex space, see [16]. Let / : g ( 0 )-»L(^c) belong to fi(k.)- Then
it can be written as

for all

where /: © -> C is a holomorphic function satisfying

(13) f ( g t ) = f ( g ) \ l j ] £ ( t r 1 for all ge® and all
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Thus we can identify fi(/c) with the space of holomorphic functions on ©
that satisfy this condition. Since each (g, d) in G acts as an analytic
diffeomorphism on g(0) as well as L ( / c ) , we get a natural action of G on

£(_Jc) that corresponds on the functions on © satisfying (13) to

(g,d)(f)(g1)=f(g-1g1d), with ^e© and (g,d)eG.

Let Kn be the finite subset of S introduced in subsection 3.2. By restricting
the elements of £(Jc) to GL(HKn) one obtains a space of holomorphic functions
on GL(HKn) satisfying

(14)
tlm v v

011 '•• din

0

0

o ... o tmm I I
where geGL(HKn), t e GL(HKn) n ̂  and the decomposition of 0 and t is w.r.t.

m

#KM = © HKnnSi. The Borel-Weil theorem says that such functions ^ 0 exist

if and only if k_ satisfies

(15) k, Zk2-<km.1<km.

Since g(oo) is dense in g(0), the restriction of some non-zero / in fi( fc.) must
be non-zero for a sufficiently large n. Hence this condition from the finite
dimensional situation is also necessary in this Hilbert context. We will show
that it is sufficient too. So we assume from now on that jfc e Zm satisfies
condition (15).

Before we will construct concrete non-zero elements of fi( k.), we will first
introduce some basic building blocks. If Z = {Lj} belongs to 5^(0), then we
write

•^(0 — U £/ and y^i = {L(f

Let o = a1 © • • • © om be an admissible permutation of S corresponding to S.
Consider for g E © the operator (a x © - • • © o_ f ) ~ 1 o pI(.} ° 01 0 #. from ® Hj
to itself. It decomposes as j-1 j~l

, with hjj - U H j E ^ ( H j ) , hijEJjfytfj, Ht) for all j
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In particular we can take the determinant of this operator. The function
/z(0 '• © -» C defined by

satisfies for each t = (^) in 2T the condition

/KO toO = /zw to) det (f ! x) • • • det (y

In other words /Z(/) belongs to £((- 1,...,- 1,0,...)). Now we consider the
action of T(*V) on such a function /Z(f). Let 0 be in © and r = diag({l + ts})
in T ( j y ) . By definition f^(i)(t~

lg) is equal to the determinant of the operator

reS reS

rel(i) cel<0)(j)

Hence each /z(i) is an eigenvector for the T(~V)-action and we have

f - / L ( 0 = Jl ( o(l+W))~1 /J :« i , .

If we define the character \l/t of T(Jf) by

^.(t) = Y[ (i + O'1.

then we get in general

n (i + o- n
(c)£l(0MO cel<°>(0

Because ^ has index zero, the products in the right hand side are over the

same number of elements. Since we have by definition, for each c l E l . ( 0 ) ( i )
with ej-^cJ^S^O') and for each c26l (0 )(i) with (i(c2)^I(0)(0, that iCia(C2) < 0,
it is clear that the weight of/Z(0 is less then or equal to i//^ In other words,
among the weights of the {/Z(l-)s 2(0 e^-}, *Ai is maximal. Note that condition
(15) on k_ allows you to decompose i/^ as follows

det(f (,)}
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i <m

Now we choose for each j, 1 < j < m — I a non-zero homogeneous polynomial
Pj in the {f^(j) \ !(;) e 5^} of degree kj+ 1 - kj. Let Pm : (5 -> C* be the function

From the foregoing formulae it will be clear that P = Yl PI *s a non-zero
i = l

holomorphic function on (5 that belongs to £( /c) . If we consider the special
m

choice P=Y\P.

then the TC^^action on this element of fi( fe.) is given by the character

i = l

Let £y( /c ) be the span of the functions P described above. From the
T(Jf)-action on the {/E(j)} one concludes that this is the highest weight

occurring in £ / (_&)• If H is finite dimensional then it is known that

£/(A) = £(&.)• By using this and the fact that 5(oo) is dense in g(0), we get

Theorem 3.5.1.

(a) The space fi(/c) is non-zero if and only if fcx < ••• < km.

(b) The sub space £/(A) lies dense in fi( fe.).

Next we consider the representation of G on &(k_). Let F be a closed

subspace of £/( fc.) an(l let ^ be a non-zero element of V. Then there is an n
such that the restriction of v to GL(HKn) is non-zero. Since the representation
of U(HKn) on the holomorphic functions on GL(HKn) satisfying (14) is irreducible,
we get

So, if we define W as the closure of the span of the {u- v\ueU(co)} then we
have for each v1 in V a sequence {wj in W such that vl GL(HKn) = wj GL(HKn).
Since U(co) • F(0) is dense in g(0), this implies that {wj converges to yt and
we get that V= W. Hence we can say

Theorem 3.5.2. Let _fc = (fc l 5 . . . ,A;m )6Zm satisfy kl < ••• < km. The repre-



THE STRUCTURE OF HILBERT FLAG VARIETIES 433

sentation of (5 (and hence of G) on £( kj is topologically irreducible.

This Theorem is a generalization of Theorem 10.4.6 in [23].
For each neN, we know that the representation of GL(HKn) on

{ f \ G L ( H K n ) \ f e £ ( k _ ) } has up to a constant a unique vector that is w.r.t. the
{T(^V)r\GL(HKn)} action of highest weight

In view of the foregoing results we may conclude now for the space S.(k_):

Theorem 3.5.3. All T(<A")-weights ^ occurring in fi(/c) satisfy

The vector P spans the subspace of vectors with T(^")-weight i/^.

In view of the results in the Theorems 3.5.2 and 3.5.3, one could call the
characters i/^ satisfying (15) dominant.

§4. Applications to Integrable Systems

4.1. A group of commuting flows. In the first subsection we discuss the flows
that form the basis of the equations of the multicomponent KP-hierarchy and
of the modified equations. Let H be the Hilbert space L2(S1

9C
r) with the

usual norm. Let { f f \ \ < f < r } be the standard basis of Cr. Then the
elements of H can be written as

Z Z «ifc/k;^ with

ieZ fc=l

The space H is decomposed as H = Hl®H2 with

and

The elements {fk/,
l\ 1 < fe < r, i > 0} are an orthonormal basis of Hl and the

{ / f e A ' l i < 0, 1 < k < r} one of H2. To get a numbering like in the foregoing
section, one defines efc + ir-i = f k ^ 1 - ^n tne present context it is also convenient
to see the matrix [0] of an operator g in ^res(H) as an Z x Z-matrix with
entries in g!r(C), i.e.
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with GsfegUQ.

An important operator in &Tes(H) is the multiplication A on each factor with
L It has the matrix [A] with Aii_i = Id and Atj = 0, if j =£ i — I. One verifies
directly that the centralizer Z(A) of A in J*res(/f) consists of all g in &Tes(H)
such that the matrix of g looks like

^-10 ^00

\ 10 ••• /
Clearly, multiplying with an A from gIr(C), defines an element of ^res(ff). Let
I) be the diagonal matrices in g!r(C). It is obvious then that

{ Z #;^Ie^res(£0> Hi^fy f°r a^ 0
ieZ

is a maximal commutative subalgebra of $Tes(H). The group of commuting
flows that we will consider is contained in this algebra and takes care of
essentially all independent directions. To be more precise, let U be a connected
neighborhood of S1 in C and let F(U) be the space of all analytic maps
7: [/->!) such that det (7(w)) /0 for all ueU. In a natural way F(U) is a
group. If U1 =) U2 then we get an embedding of FCU^) into F(U2) by restricting
functions to U2. We write F for the inverse limit of the {F(U)}. Each
has a Fourier series

7 = Z 7 f>J
ieZ

The multiplication with 7, defines the element ^y^A1 in 3$res(H). Let £a,
IEZ

1 < a < r, be the diagonal matrix in g!r(C) with (a, a)-entry equal to 1 and the
other entries equal to zero. At the consideration of the flows from F on g
we make use of a decomposition of the elements of F. In F we consider
namely the following subgroups

and

,;>) with kteZ for all i}.
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Then there holds

Lemma 4.1.1. The group F decomposes as F = F+AF_.

This lemma is a direct consequence of the decomposition of holomorphic
line bundles over P^C), see [11]. As we will see in the third subsection the
flows from F_ do not contribute to the system. Hence there is no need for
a description in coordinates for elements from F_ .

4.2. The multicomponent KP-hierarchy. We present here a formal algebraic
set-up of this system of equations in which the formulae from the appendix
of [27] make sense. It offers one also the possibility to consider these equations
from an algebraic point of view. Let R be a complex commutative differential
algebra with a collection of commuting derivations [di(X\ i > 1, 1 < a < r} of R.
In the geometric picture R will be an algebra of meromorphic functions on
F+ and diaL will be taking the partial derivative w.r.t. tioc. Let d be the derivation

r

£ 3la. The equations of the hierarchy can be formulated conveniently in
« = i
terms of relations for certain elements from the ring Qlr(R)((d, d'1)) of pseudo
differential operators in d with coefficients from g!r(K). We extend the dia to
derivations of Qlr(R)((d, d~1)) by letting it act coefficient wise on elements of

glr(K) and on an element £ p.tf of gHr(R)((d, d'1)) by
J<N

3J Z P>#) = I di«(Pj)dJ

In the ring Qlr(R)((d, d'1)) we denote the differential operator part £ Pjdj of
j>o

P = ^ P j d j by P+ and we write P_ for P-P+. Let £a, 1 < a < r, be as in
j

the foregoing subsection. In the ring §lr(R)((d, d'1)) we consider elements of
the form

(16) L= 3 + X fjd-J and V, = Ex + £ uxjd''
j > 0 j > 0

Examples of this type of operators can be obtained as follows : take the trivial
example L= Id d = d and t/a = Ea and choose some K = Id 4- £ fc/3"-7' in

'1)). Such a X is invertible and J>°

(17) L=KdK~l and Utt = KE^K'1

have the form (16). Following [27], the equations of the multicomponent
KP-hierarchy are
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(18) [L, t/J = [t/a, E/,] - 0

(19) U.U^S.fUf

(20) 3^) = [(^Ua)+,L] = [5£a,L]

(21) W,)=[Bfa, t/,].

The equations (18) and (19) are satisfied by all elements L and {Ua} of the
form (17). The equations (20) and (21) boil down to non-linear differential
equations for the {uaj} and {/,}. Since all the solutions of the multicomponent
KP-hierarchy that we will construct are of the form (17), we merely have to
focus on (20) and (21). These last equations can be seen as compatibility condi-
tions for a linear system. This requires the introduction of a glr(K)((d, d"1)-
module. Let M consist of the formal products

with f}jEQlr(R). For /?eglr(-R), the action of ft on M is defined by

j = - oo j = - oo

The action of 3ia on M is defined such that it corresponds to "differentiating
this formal product w.r.t. the variable ti<K9 i.e.

In particular we see that the action of d on M

d{W}g(z> = ZtfW
is invertible with the inverse 5"1 given by

These actions compose to a g!r(jR)((d, S'^J-module structure on M. In fact,
M is a free $lr(R) ((8, d~ ^-module with generator g(X), for, if P = ItPjd

JE
Qlr(R)((d, d~~1)), then a direct computation shows

Let A be the subgroup of g!r(C(A, A"1)) given by

(Ak1,...,^) with (fc1 , . . . , fc r)eZ r}.
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Take any 5 = E^-A-7, ^-egIr(C), in A. To 6 corresponds the element d_ = ZdjdJ

in glr(K)((3, d'1)). Then we have the notion

Definition 4.2.1. A function of type d is an element of ij/ of M that has
the form

To any function ^ of type d we associate the operator K^ in glr(^)((3, 5"1))
given by

K, = Id

Next we assume that we have been given operators L and {[/J of the form
(17). Then we introduce the following notion:

Definition 4.2.2. A wavefunction of type d for Land the {[/J is a function
if/ of type d satisfying

(a) LW) = W
(b) t/> = ^£a

(c) 3...WO = Pfa • tfr with PfcGgU*)!?].
The first two properties translate respectively into

(22) L=K^dK^1 and U« = K^EaK^.

Hence Land the {Ua} are completely determined by \l/. One computes directly
that (c) implies Pfa = (LlUa)+ and by applying the operators dia to the equations
(a) and (b) and by substituting (c) one shows

Theorem 4.2.3. If if/ is a wavefunction of type d, then the operators K^dK^1

and {K^EaK^1} satisfy the equations of the multicomponent KP-hierarchy.

The equations from definition 4.2.2 are called a linearization of the system
and from theorem 4.2.3 we see that we merely have to show (c) if L and the
{l/J are defined by (22).

4.3. The solutions. First we consider the space H and its decomposition as
in subsection 4.1. Since m = 2, all flags in 5 correspond to subspaces W of
H. For each W in 5> consider

Aw = {6\SeA, there is a yeF+ such that y~16~1W is transversal to Hj

The first property of Aw is

Lemma 4.3.1. The collection Aw is non-empty.
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For each 6 in Aw we consider the open subset F(d, W) of F+ given by

r(6, W) = {y eF^7 y-16'lW is transversal to Hj.

Let R be the ring of analytic functions on F(d, W) and let diaL be the derivation
of R consisting of partial differentiation w.r.t. tigL. Then there holds

Theorem 4.3.2.
(a) For each WE$ and each 5eAw there is a unique function \l/w =

$ d
w - d - g ( l ) of type d, such that \l/d

w(y)eW for all yeF(d, W).
(b) The function \jjd

w from (a) is a wavefunction of type 6.

For a proof, we refer to [13]. If we write \j/d
w = Kd

w • d • g(X), then we
know from theorem 4.2.3 that

L'w = K'wd(K*wrl and Ut.w = K'wEa(K*wrl

are solutions of the multicomponent KP-hierarchy. The following theorem
makes clear why we did not consider the commuting flows from F_ . Its proof
can also be found in [13].

Theorem 4.3.3. For each g= £ jjAj in F_, we have Ld
gW = Ld

w and
rrd _ rj6 ^°Ua,gW — U<x,W-

Remark 4.3 .4. If r > 1, then Aw may contain several elements. If S1 and
b2 are in Aw, then the solutions {L ,̂ l/^,«} and (L^, Ufyja} are related by
so-called differential difference equations that reduce in a specific case to the
equations of the Toda-lattice, see [13]. These differential difference equations
are a generalization to the KP-level of equations considered in [1].

Also in the multicomponent setting the coefficients of $8
W can be expressed

in terms of Fredholm determinants related to the line bundle L((— 1, 0)). If
W=g1F

(0}, with g^e®, then we define T, l |H l: G -> C by

T0i |Hi((0» 4)) = (0> fl) ' (/iV»M0i) = det (P^0)09~l °9i ° ^ l ^ i ) -

It measures the failure of G-equivariance of the section corresponding to
y^o). If one takes another element g^ of © with W=g1F

(0}, then T~ I ) H I and
ig i (Hl differ by a non-zero constant. In A we consider the elements At/j given by

where the /l-factor stands at the z-th place, the A-1-factor at the ;-th place and
the resulting factors are equal to 1.

If fceC, | fc | > 1, then we still need the element <$ from F+ given by

.l, 1- 1 , . . . ,
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where the factor 1 -- stands at the i-th place. Then there holds
k

Theorem 4.3.5. Consider a Win ^ and a d in Aw. Then d~1(W) = gF(0},
with ge(5 and we have

(a) For all 1 < i < r, the (i, i)-entry of ^, is the L2 -boundary value of

(b) For j / i, there is a lifting 2;/J- of Aifj to G such that the ( i j ) entry
of ifrw is the L2 -boundary value of

This theorem gives a geometric interpretation of formulae, stated in the appendix
of [27] and generalizes the one component interpretation given in [25]. For
the one component case a representation theoretic interpretation of the i
depending polynomially of the {tig} was given in [18]. For a proof of
theorem 4.3.5 we refer the reader to [13]. There one can also find more
equations that fit in the framework just described.

Next we consider the one component case somewhat more in detail. For
convenience we denote the set of independent variables simply as t = {tj i > 1}
and we see the elements of R as functions in t. Further we restrict each Tg i |Hl

to F+ and we write simply T or r(t). If fee Z and We%(k*~k\ then Aw = {l~k]
and we have exactly one solution Lk

w
k to the KP-hierarchy. In this way every

component of g leads to the same bunch of solutions of the KP-hierarchy.
Hence, for the construction of solutions, it suffices to consider only one
component of g. The different components are, however, essential for the
modified systems as we will see in a moment.

In the one component case the Japanese school, see [17], translates the
equations that are satisfied by the wavefunction to equations for the r-function
and these can be written in the so-called bilinear form

for all (£;) and (s;) and with dk such that

dk
IJ 2nik

Also this formula can be given a geometric interpretation. For if We g(0) then
one can consider WL as an element of the Grassmann manifold corresponding
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to H = H2@Hl. If \j/w is linked to T by theorem 4.3.5, then one can show

Theorem 4.3.6. The wavefunction \j/w± can be expressed in T by

If we consider instead of F+ the group of flows consisting of the adjoints
of the elements of F+, then relation (23) boils down to the orthogonality
relations for \j/w and \lfw±.

For /eZ, let We be a general element of g(A~°. According to the
theorems 4.3.2 and 4.3.5 there corresponds a wavefunction of type )f to Wf

and a r-function t^ to Wf. Consider an increasing set of integers f ^ < { 2 - - - < {s

and denote it by f. To z? corresponds a decomposition of H by

H = H1@-@Hs+l, where Jff x = { X M'eH},
i>^s

H7. = { X fl^'eH} for ;, 1 < j < s and, Hs+1 - { £ a£A'eH}.
i>( f j i<^i

i < ^ j + i

Denote the flagvariety corresponding to this decomposition by Qp. Then we
can describe the elements of g^0) in terms of nonlinear equations for the
corresponding T functions.

Theorem 4.3.7. For f± < ••• < /s, fe? ^ ^ a general elements of g((f"~^}

aw^/ let ifi be a with W£i corresponding i-function. Then the (H^J determine
an element of 3^0) if and only if the {T^} satisfy the following bilinear equations

/or a// {tj} and {s}} and for i, 1 < i < s.

The simplest case of these equations { ^ < /2? gives a relation between 2
r-functions. It has been considered in [17] and is called the (/2, /^-modified
KP-hierarchy there.
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