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The Structure of Hilbert Flag Varieties

Dedicated to the memory of our father
By

Gerard F. HELmMINCK* and Aloysius G. HELMINCK**

Abstract

In this paper we present a geometric realization of infinite dimensional analogues of the finite
dimensional representations of the general linear group. This requires a detailed analysis of the
structure of the flag varieties involved and the line bundles over them. In general the action of the
restricted linear group can not be lifted to the line bundles and thus leads to central extensions of
this group. It is determined exactly when these extensions are non-trivial. These representations
are of importance in quantum field theory and in the framework of integrable systems. As an
application, it is shown how the flag varieties occur in the latter context.

§1. Introduction

Let H be a complex Hilbert space. If H is finite dimensional, then it is
a classical result that the finite dimensional irreducible representations of the
general linear group GL(H) can be realized geometrically as the natural action
of the group GL(H) on the space of global holomorphic sections of a
holomorphic line bundle over a space of flags in H. By choosing a basis of
H, one can identify this space of holomorphic sections with a space of
holomorphic functions on GL(H) that are certain polynomial expressions in
minors of the matrices corresponding to the elements of GL(H). Infinite
dimensional analogues of some of these representations occur in quantum field
theory, see e.g. [5]. Infinite dimensional Grassmann manifolds play an
important role in the framework of integrable systems. The first person to
realize this was Sato, see [24].

In this paper we will give an infinite dimensional analogue of all these
representations. Thereto we take a separable Hilbert space H. In H we
consider a collection of flags that generalizes the Grassmanian from chapter 7
in [23]. This flag variety carries a natural Hilbert space structure and there
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exist line bundles over it that are similar to the finite dimensional ones. This
includes the determinant bundle and its dual from [23]. In the “dominant”
case the space of global holomorphic sections of such a line bundle turns out
to be non-trivial. However, the action of the analogue of the general linear
group can, in general, not be lifted to the line bundle under consideration and
one has to pass to a central extension of this group. Besides of the
introduction, this paper consists of three sections. In the first section we give
the definition of the flag variety § and we treat some properties of § The
second section is devoted to the construction of the holomorphic line bundles,
to a description of the corresponding central extensions and to the analysis of
the space of global holomorphic sections. As an application, we show in the
final section what role the geometry plays in the context of some integrable
systems. A more detailed description of the content of the different sections
is as follows.

The first subsection of section 2 discusses the type of flags in H that will
be considered. Here the model for the size of the flags is the basic flag F©
corresponding to a finite orthogonal decomposition of H. The flag variety §&
is a homogeneous space for a certain unitary group U, (H). As in the finite
dimensional case it is convenient to see § also as a homogeneous space for a
larger group of automorphisms of H, namely GL,.(H). This is the analogue
of the general linear group in this framework. Analogously to the finite
dimensional case the group U,.(H) is the unitary component in the polar
decomposition of GL,.(H). In the second subsection we give an explicit
description of the manifold structure on & and we discuss decompositions of
certain open subsets of GL,.(H). A first difference with the finite dimensional
situation appears at the description of the connected components of § in the
third subsection. The fourth subsection contains the technical prerequisites for
the construction of the line bundles. First we choose a suitable orthonormal
basis of H, we order its index set conveniently and we introduce the Weyl
group W of GL. (H). Next we show that the charts around the points in
the W-orbit through F‘© cover ¥ By using this covering one obtains a
stratification of & into parts that are all homeomorphic to a Hilbert space. On
the group level this gives you the Birkhoff decomposition for GL,. (H).

Let §© be the connected component of § containing F'©. From the
foregoing results one deduces that F© is a homogeneous space for a Banach
Lie group ® that permits you to take suitable minors. As a group the group
® is a subgroup of GL,. (H), but its topology is stronger than the one induced
by GL,.(H). The description of ® and its topology can be found in the first
subsection of section 3. There we introduce also the maximal torus T(.!") of
® and its group of analytic characters 7. In the second subsection we introduce
a dense tower of finite dimensional flag varieties in F'®. The next subsection
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shows how you can associate to certain elements y,, ke Z™, of T a holomorphic
line bundle L(k) over . Further it is shown there that, if one tries to lift
the action of the connected component GL® (H) of GL,.(H), one might meet

res
obstructions and that one can only lift the action of a central extension of
GL? (H). The natural question that comes up then is “how essential is this
extension”. This question is treated fully in the next subsection. Then one
has come to the final subsection of this section. There we determine, when
L( k) has global non-trivial sections and we show that the action of ® on this

space defines an irreducible ®-module of highest weight V.

Section 4 is an illustration of the fact that the geometry of the foregoing
sections plays a role in the theory of integrable systems. The system we will
consider is the multicomponent KP-hierarchy. The first subsection describes
the flows in GL,. (H) corresponding to this system. The algebraic framework
for this system of equations is given in the second subsection. In the final
subsection of this paper we indicate how the flag varieties form the starting
point of the construction of solutions to the equations of the multicomponent
KP-hierarchy and the modified versions of the KP-hierarchy.

We would like to thank the referee for bringing to our attention papers
by Faltings [10] and Kashiwara [19], who give an algebraic geometrical
approach to infinite dimensional flag varieties.

§2. Properties of Hilbert Flag Varieties

2.1. The flag variety. Let H be a separable complex Hilbert space with inner
product -, - >. We will consider certain finite chains of subspaces in H and
we will call them flags as in the finite dimensional case. First one has to
specify the “size” of the components of the flag. Therefore we start with an
orthogonal decomposition of H,

(1) H=H ®---®H,, where H; L H; for i#]j.

We assume that m; =dim (H;) satisfles | <m; <oc. An example of a
decomposition occurring in quantum field theory is the one corresponding to
the positive and negative spectrum of the Dirac operator, see [5] and [21]. In
the context of integrable systems we have:

Example 2.1.1. Let (-, -) be the standard inner product on C". The
Grassmann manifold Gr(H) that is crucial at the construction of solutions of
KP-type hierarchies in [23], [13] and [25] corresponds to the case that H is
the space of power series

H =L1*8',C)={Y a,=" a,eC", Y (a,. a,) < )

IB
neZ neZ

(> a,2"eH} and H,={) a,2"eH).

n>0 n<0

H,



404 GERARD F. HELMINCK AND ALOYSIUS G. HELMINCK

If one takes r=1 and k and ! in Z with k> then the basic manifold
corresponding to the (k, [)-modified KP-hierarchy is the flag variety correspon-
ding to H=L*(S',C)=H, ® H, ® H,, with

k—1

Hy={) a,z"eH}, Hy={), a,2"¢H} and Hy={) a,z"€eH}.

n>k n>1 n<l
This correspondence is described in the fourth section.

Let p;, 1 <i<m, be the orthogonal projection of H onto H;. Then we
will use throughout this paper the following

Notation 2.1.2. If g belongs to #(H), the space of bounded linear operators
from H to H, then g = (g;;), ] <i<mand 1 <j < m denotes the decomposition
of g w.r.t. the {H;|1 <i<m}. Thatis to say g;; = p;og|H;.

Remark 2.13. Let K,, i=1,2, be Hilbert spaces with inner products
{, > i=12 1If A belongs to B(K,, K,), the space of bounded linear
operators from K, to K,, then its adjoint A*: K, — K, is defined by

<A(k1), k2>2 = <k17 A*(k2)>1-

If g = (g;;) as in notation 2.1.2, then we have for its adjoint g* the decomposition
(g%);; = (9;0*, for all i and j.

(0)

2.14. To the decomposition (1) we associate the basic flag F'© given by

r

J
j=1

Now we consider in H flags F = {F(0),..., F(m)}, that is to say chains of closed
subspaces of H,
{0} =F(0)= F(1) =---< F(m) = H,
that are of the same “size” as the basic flag F®, i.e. for all i, | <i<m,
dim (F(i)/F(i — 1)) = dim (H,).
To such a flag F is associated an orthogonal decomposition of H,
H=F ®---®F,, where F;,=F(@{nF(i—1)".

We will denote such a flag F by F = {F(0),...,F(m)} as well as F = {F,...F,}.
The class of flags one obtains in this way is still too wide and we will
require that our flags do not differ too much from the basic flag. One can
express this “nearness” in various ways. Our choice is a natural generalization
of that used in [23] for the Grassmann manifold. However, a lot of the
constructions given here for that case can be carried out with some minor



THE STRUCTURE OF HILBERT FLAG VARIETIES 405

adjustments also for other choices. We start by introducing notations for some
spaces of compact operators that occur in the sequel.

Notation 2.1.5. If K, and K, are Hilbert spaces, then we denote the space
of Hilbert-Schmidt operators from K,; to K, by #¥(K,, K,) and the
Hilbert-Schmidt norm by || - | ,,. We will write 4/ (K,, K,) for the space of
nuclear operators from K, to K, and the trace norm on it will be denoted
by || - .. The space ¥(K,, K,) of compact operators from K,; to K, will be
assumed to have been equipped with the operator norm. Then we have the
following chain of continuous inclusions:

N (K, Ky)c HF (K, Ky) €K, K,).

In each of these spaces the collection of finite dimensional operators & (K, K,)
lies dense. If K, is equal to K, then we simply write & (K,), /' (K,), #¥(K,)
and ¥(K,) for respectively & (K, K,), /' (K, K;), #&¥(K,, K,) and 4(K, K,).

Definition 2.1.6. Let § be the collection of flags F = {F,,..., F,}, satisfying
dim (F;) = dim (H;), and for all i and j with j # i, the orthogonal projection
pj: F;—» H; is a Hilbert-Schmidt operator. We call § the flag variety
corresponding to the decomposition (1).

Remark 2.1.7. 1If only one m; is infinite, then the Hilbert-Schmidt condition
is superfluous. E.g. the space of flags with m; < co for all i < m, plays a role
in [2] at the construction of irreducible representations of the Hilbert Lie group
U(9),. This is the unitary part of the group of invertible transformations of
the form “identity + a Hilbert-Schmidt operator”.

Remark 2.1.8. Instead of the condition p;: F;— H;, i#j, belongs to
HS(F;, H)), one could also consider flags such that this map belongs to
N (F;, Hj) or €(F;, H). The flag varieties one obtains in this way we denote
by &(A") respectively §(%). A more asymmetric condition is considered in [14]
where it is required that merely for i<j the projection p;: F;— H; is
Hilbert-Schmidt. In this way we get the flag manifold $(%). Because of the
inclusions mentioned above, we have a chain of injections

&(A) e § = F(®) = FA).

For m = 2 more general versions of flag spaces are considered in [9].

Remark 2.1.9. In [8], they associate a Banach Grassmann manifold to
each Banach Jordan pair. It would be interesting to see if, and if so, how
the flag varieties introduced here fit into their framework.

2.1.10. The space & is a natural generalization of the Grassmann manifold
introduced in section 7.1 of [23]. The flag variety § is a homogeneous space
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for an analogue adapted to this situation, of the general linear group. The
Banach structure of this group follows directly from that of its Lie
algebra. Therefore we start with the analogue of the Lie algebra of the general
linear group.

Definition 2.1.11. A restricted endomorphism of H is a u = (u;) in %(H)
such that u;; is a Hilbert-Schmidt operator for all i #j. We denote the space
of all restricted endomorphisms of H by 4%, (H).

For all i and j, we extend the elements of #% (H;, H;) outside H; by zero
and obtain thus a natural embedding of # & (H;, H) into #% (H). The space
AB..s(H) is a subalgebra of #(H) since the collection of Hilbert-Schmidt operators
is a 2-sided ideal in #(H). Hence it is also a Lie subalgebra of the Lie algebra
#(H). The algebra %, (H) becomes a Banach algebra if we equip it with the
norm || - ||, defined by

lully = llull + 3 gl -

i#j

Since the adjoint of a Hilbert-Schmidt operator is again Hilbert-Schmidt,
it is clear that 4,.(H) is stable under “taking adjoints”. If GL(H) denotes
the group of invertible elements in %(H), then we consider

Definition 2.1.12. The restricted linear group, GL,.(H), consists of
{9lge GL(H)N B, (H)}.

To see that GL . (H) is indeed a group, one merely has to show that if
g = (g;;) belongs to GL. (H) then its inverse g t= ((g‘l),-j) also belongs to
GL,..(H). Now, the relation

gii(g_l)ii = IdH, - Z gij(g_l)ji,
Jj#Fi
shows first of all that for all i, 1 <i<m, both g; and (g~ '); are Fredholm
operators, i.e. they have a finite dimensional kernel and cokernel. Next one
considers the relation

92107 i1 + 922007 as + -Zz gzj'(g_l)n =0.
}>
Since the operator g,, is Hilbert-Schmidt and the operators (g~ '),; and g,
are Fredholm, the operator (g ~'),, has to be Hilbert-Schmidt too. Continuing
in this fashion, one shows that all (g~');; with i #j are Hilbert-Schmidt. In
other words, GL,. (H) consists of the invertible elements of B, (H). As such,
it is in a natural way a Banach Lie group with Lie algebra B, (H).
The analogue of the unitary group U(H) in this context is:
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Definition 2.1.13. The restricted unitary group, U, (H) = GL(H)nU(H).

Both U, (H) and GL,(H) are natural generalizations of the restricted
unitary and general linear group, introduced in chapter 6 of [23]. The Lie
algebra of U, (H) consists of

ures(H) = {XlXE%res(H)a X* = - X}

This is a real Lie subalgebra of B, (H) and the Lie algebra B, (H) can be
written as

%res (H) = ul’es (H) @ i' L"I'BS (H)'

In other words B,,,(H) is the complexification of u,(H). On the group level
this corresponds to the fact that the group GL,.(H) possesses a “polar
decomposition” of which U, (H) forms the unitary component. For, consider
the sets

P(H) = {A|AeGL(H), A= A* and 4 > 0} and
P (H) = B, (H)NP(H).

On P, (H) we put the topology induced by B, (H). Since the map AH\/Z
from P, (H) to P(H) is locally given by a convergent power series in A, this
map is in fact a continuous map from P, (H) to itself. Thus we get

Proposition 2.1.14.  The map (u, p)— up from U, (H) x P, (H) to GL,.(H)
is a homeomorphism.

Proof. The inverse of this map is

g—(9(/9%9)~ ", Vg*9)

and we have just seen that it is continuous. []
With each g in GL,(H) we can associate the flag

From the definition of GL,.(H) one sees directly that this flag belongs to .
The group U, (H) acts already transitively on & Let F = {F,,...,F,}
belong to § From the definition of § we know that there is for each i,
1 <i<m, an isometry u; between H; and F,. If we put u=u; @ - ® u,,
then the condition defining & implies that u belongs to the group U . (H) and
that F = u(F%).
The stabilizer in GL,(H) of the basic flag is the “parabolic subgroup”

res
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i1 0 Yim

0 . : . .
P= ngEGLres(H)a g= . . . ’ Wlth giieGLres(Hi)5 1Slsm

0 .. 0 Irum

Thus we can identify & also with the homogeneous space GL,.(H)/P. Let
t: GL,..(H) > § be the projection t(g) = g- F©. On & we will put a Hilbert
manifold structure that makes t into an open submersion. This will be
discussed in the next subsection.

Remark 2.1.15. 1Tt will be clear that for the spaces F(A"), §(¥) and F(X)
the corresponding general linear group consists of those g = (g;;) in GL(H) such
that respectively

(2) gi;€ N (H;, Hy) for all i#j,
(3) guecg(Hj, Hl) for all i 75],
“) g€ XS H;, H)  for all i<j.

2.2. The manifold structure of § In this subsection we discuss the Hilbert
manifold structure on & and some decompositions of open subsets in
GL,.(H). From the definition of the parabolic group P one sees directly that
the Lie algebra of P is given by

L(P) = {g|g = (9;) € B, (H), g;; = 0 for all i >j}

and that a complement of L(P) in B,.,(H) is the Hilbert space (E, | - || ) With

E= & HL(H;H).
1<jsm=-1
i>j

From section 6.1 in [3], we know then that the homogeneous space
& =GL, . (H)/P carries an analytic E-manifold structure for which t is a
submersion and for which the natural action of GL,.(H) on § is analytic.

Next we give descriptions of some open subsets in GL,. (H) that will be
needed later on. Consider for each k, 1 <k <m — 1, the set Q(k) in GL,. (H)
given by

911 7 Yai
Q(k): QEGLres(HH eGLres(H1®"'®Hi) for all lSk
9i1 0 Gi

Since we have for each i, 1 <i < m, a continuous surjection from %, (H) onto
'%res(Hl CRES) H;) given by
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bu bu

by, - b

the set Q(k) is open and, as in the finite dimensional case, it can be

decomposed. For, let U_(k) and P(k) be the Lie subgroups of GL,.,(H) defined
by

gy = Idy, for all i
U-(k)=< g=1(9)€GLs(H) | g;=0  for j>i
Igij=0 for i>j and j>k

and
P(k) = {g = (9:)€GL,;(H)lg;; =0 if i >j and j < k}.
Clearly P(k)nU_(k) = {Idg} and this gives you the uniqueness in

Lemma 2.2.1. The map (u, p)—>up from U_(k) x P(k)—> GL,.(H) deter-
mines a homeomorphism between U_(k) x P(k) and Q(k).

Proof. We use induction on k to show the result. Let g be an element
in 2(1). Then we know that g, is invertible and if we define u(l)e U_(1) by
u(1),, = — g,19:1 for all r>2, then one sees directly that u(l)g belong to
P(1). Assume now that we know Q)= U_(I)P(l). Since we have Q(l) >
QU+ 1) and U_() <U_(l+ 1), we may assume that geQ(l + 1) belongs to
P(l). Hence the condition ge Q(! + 1) means that g,,, ;. is invertible. Define
u(l+ 1) =(uy) in U_(I+1) by uy.y=—gpi1(gre14+1)7" for j>1+1 and
u;=01if i>jand j# 1+ 1. Then u(l + 1)-g belongs to the parabolic group
P(l + 1). This proves the lemma. []

As in the finite dimensional case we call Q(m — 1) = U_(m — 1)- P the big
cell of § and we also write 2 and U_ instead of Q(m — 1) and U_(m — 1).

From this lemma we see that the restriction of 7 to U_ gives you a
diffeomorphism u+—suF® between U_ and the open neighborhood 7(2) of
F©®_ Clearly the group U_ is diffeomorphic to the Hilbert space E. Note
that from the definition of © one can conclude directly that

1(Q)={F =(F)eFIPp;: ®F;,— @ H, is a bijection for all | < m}.
j=st i<l i<l

This characterization of 7(£2) tells you how to choose around a general point
of § a concrete neighborhood difftfomorphic to E. This requires, however, the
introduction of the following notation.

Notation 22.2. If W is closed subspace of H, then we denote the
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orthogonal projection on W by py,.
Consider a F = (F,,...,F,) in & Then the analogue of 7(2) for F is

Up={V=(V) in F @ pr: ®V,—> @ F, is a bijection for all 1 << m}.
i<l i<l i<l

Since § = U,..(H)- F'©, we have for all F and G in § that, if i #j, the map
pr,: G;j— F; is a Hilbert-Schmidt operator. Hence, if V belongs to U, then
there is a unique operator A in ® HL(F;, F) such that for all i

1<jsm-—-1

1 SlSm, i>j
V(i) = {x + A(x)|xeF(i)}.

This is why we call V also the graph of 4 and we write V= graph(A4).
It is convenient to have a special name for the flags in Up.

Definition 2.2.3. A flag V in Uy is called transversal to F.

Let gr be an element of U, (H) such that gp- F® = F. Instead of the
big cell 2 in GL,. (H) with respect to the decomposition H =H, ®---® H,,,
we could also have introduced a big cell with respect to H=F, ®---® F,,
and it will be clear that this set can be written as

grU-P(gr ).
Consequently, we get for Uy that
Ur = {grup(gp) ' F|with ueU_ and peP} =1(g;U_P).

Then we can define for each F in § a diffeomorphism ¢r: Up — E by
@plgruF®) = u —1d.

Each (Ug, @F) is a concrete chart around F for the E-manifold structure on &.
We have obtained now a concrete description of the manifold structure

on &:
Proposition 2.2.4. The (Ug, @f) are the charts of the analytic E-manifold

structure on §.

Proof. It is sufficient to show for each Upu, and Upe with Upa N Upe) # @
that

QPp@2y° (P;(ll)i (Pp(l)(UF(l) n Upa)) E— (PF(Z)(UF(I) n UF(Z))

is an analytic map. From the step by step decomposition described in
Lemma 2.2.1 follows that the U_-component of (gr=)~ 'grwu actually depends
analytically on u. This proves the proposition. []
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2.3. The connected components of GL,. (H). Let g=(g;) be an element of
GL,. (H). Recall that in the proof that GL,.(H) consists of the invertible
elements in %,.,(H), we have shown that each g,; is a Fredholm operator. The
collection of Fredholm operators on a Hilbert space K is an open part of the

space #(K). Its connected components are given by the index, which is defined
as

ind (B) = dim (ker (B)) — dim (coker (B)),

where B is a Fredholm operator on K. Since all off-diagonal operators are
Hilbert-Schmidt and hence compact, the operator

g1 0
g= ( ) where g = (9;;)€ GL,(H),
0 Grmm

is a Fredholm operator of index zero. Hence we have that the indices of the
{9411 < i< m} satisfy

Y ind (9;) = 0 and ind (g,) = 0 if m;, < 0.

i=1

These relations lead to the introduction of the subgroup Z of Z™ defined by
Z={z=(z)eZ™| ) z;=0, z,=0 if m, < oo}.
i=1

The standard properties of the index imply that the map i: GL,.(H) - Z,

g~ (ind (g1,), ..., 1nd (gynm))»

is a continuous group homomorphism. Hence the sets

G L(Z)

n(H) = {g1geGL(H), i(g) = z}, with z€Z,
are open. In fact, they are exactly the connected components of GL,. (H), for

Proposition 2.3.1. For each zeZ, the set GLY\(H) is non-empty and
connected.

Proof. Let z=(z) be in Z and let h;e ®(H;) be such that ind(h) = z,.
Then
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belongs to @®(H) and has index zero. Therefore one can add to h an
isomorphism between the kernel of & and the orthogonal complement of the
image of h to obtain an element of GLY,(H). This shows that i is
surjective. As for the connectedness it suffices to show that GLWQ(H) is
connected. First one notes that, since P is homeomorphic to

s

GL(H) x [[ #%(H,, H)

1 j<i

i

and all the GL(H;) are connected, (see [20]), the group P is connected. Next
we show that each element of GL% (H) can be joined by a continuous path
to an element of P. For an element g =up in @ = U_P it is clear how to
proceed: the map t+ {Id + (1 — t)(u — Id)} p joins g with p. A general element
g is first joined with an element in Q(1). For, if g,; is not invertible, then
there is a bijection E between ker (g,,) and J(g,;)*nH, and we extend E by
zero on ker(g,;)* to get an element E of %, (H). It is no restriction to
assume |E|[, < |gl,. Then we know that g + tE belongs to GL?.(H) for all
te[0, 1] and by construction g + E belongs to (1) and we can write
g+ E=u;p,. The map t+> {Id + (1 — t)(u; — Id)}p, joins g + E with p,. By
adding a small finite dimensional operator in %(H,), one reduces the case to
an element in (2) that can be linked in the same way to an element of
P(2). Continuing in this fashion one finds a continuous path from g to an
element of P. This proves the assertion. [

This Proposition is the extension to flag varieties of Proposition 6.2.4 in [23].
Since the parabolic group P is connected, we see that

Corollary 2.3.2. The connected components of § are given by
§9 = {g- F®lge GLE (H)}.

Remark 2.3.3. A holomorphic line bundle L over § consists simply of a
collection of holomorphic line bundles {L, > F*1zeZ}. Therefore we restrict
our attention to holomorphic line bundles over F© in the third section.

24. A special covering of §. In this subsection we choose a suitable
orthonormal basis of H and we introduce a collection of charts of & that can
be described completely in terms of the index set of this orthonormal basis. In
particular these charts cover § and enable you to give a combinatorial
description of the Birkhoff decomposition of GL,,(H) and to construct
concretely a collection of holomorphic line bundles over .

Let {e]seS;}, 1<i<m, be an orthonormal basis of H; Recall that
dim (H;) = m; for all i, 1 <i<m. Hence we can write
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On §; we define a total order by
sik) = s;(N) =k > 1

These orders we compose to a total order on the index set S = U S; by
requiring that =
s; <s; for all s;€§; and all s;eS; with j > i.

Now that we have an orthonormal basis {e,|se S} of H with a totally ordered
index set S, we can associate to each bounded g in #(H) an S x S-matrix
Lg] = (g,) with matrix coefficients

g, = {g(e), e;», where s and ¢ are in S.

Notation 2.4.1. Let gl(S) be the collection of S x S-matrices corresponding
to operators in %,.(H).

The context has been chosen such that the product of two elements in
gl(S) is again in gl(S) and therefore gl(S) is a Lie algebra. In gI(S) we have
the Lie subalgebra gl(oo) corresponding to the matrices of the operators

Definition 2.4.2. An operator g in #(H) is called a “finite-size” operator
if it has only a finite number of non-zero matrix coefficients w.r.t. the {e,|se S}.

Remark 243. If m=2 and m; =m, = oo, then S=2Z. In [18] it was
shown that the Lie algebra A, can be realized as a central extension of the
collection gl(c0) of Z x Z-matrices g = (g;;) of “finite-width”, i.e. satisfying
gij=0if |i —j| > N for some N. The composition of such matrices is always
defined and from this point of view gl(S) can be seen as a complete bounded

version of gl(c0). The central extension defining A4, also occurs naturally in
our geometric framework, see subsection 4 of the next section.

In the sequel we will frequently use some notations related to subsets of S.

Notation 2.4.4. The number of elements in a subset 4 of S is denoted
by #A.

Notation 2.4.5. If A is a non-empty subset of S, then we denote the closure
of the span of the {e/se A} by H,. If A is empty, then H, denotes the space
{0}. It is convenient to denote the orthogonal projection onto H, by p,.

Maps between subsets of S have a direct translation to partial isometries
between closed subspaces of H, i.e.

Notation 2.4.6. If A and B are subsets of S and 7: 4 — B is a map with
uniformly bounded finite fibers, then we denote by 7 the mapping from H,
to Hy given by
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x (Z )“tel) = Z }"ter(t)'

ted ted

Now that we have chosen the orthonormal basis {¢,|s€ S}, we can introduce
“diagonal operators” in %, (H). Suppose that we have a set of bounded
complex numbers

{d,Is€S, 6,eC and |5, < M for all seS}.
Then we can associate to it a diagonal operator diag(d,) in #(H) by
diag (6) (). Ae) = Y. 8, e,
€S tes
Inside GL,.(H) we have then the “maximal torus”
T={glgeGL,(H), g = diag(,)}.

Clearly T is commutative and it is a straightforward verification to show that
the centralizer of T inside GL(H) is equal to T. Hence we have

Lemma 24.7. The centralizer Z(T) of T in GL,(H) is equal to T.

Each permutation ¢ of S determines a unitary map ¢ :H—H as in

notation 2.4.6. With the help of the matrix, one shows that the normalizer
of T in GL(H) consists of

{t- o|teT, o a permutation of S}.

Hence, if we define the subgroup W of U, (H) as

W={g|ageU,(H), c a permutation of S},

then we have

Corollary 2.4.8. The normalizer N(T) of T in GL,(H) is the semi-direct
product of W and T. In particular, we see that W is isomorphic to N(T)/Z(T)
and we call W the Weyl group of T.

To each ¢ in W, corresponds a partition X = {J Z; of S, where
i>1

Y, =o0(S;). The concrete description of which partitions occur in this way,

brings one in a natural way to the consideration of subsets of S that are

“equal up to a finite set”. Therefore we define

Definition 2.4.9. If 4 and B are subsets of S, then we call A and B
commensurable (notation 4 ~ B) if A — {AnB} and B — {An B} are finite. We
write i(A, B) for the number
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#{A—{AnB}} — #{B— {AnB}}.

Thus commensurability is equivalent to: the orthogonal projection py,:
H,— Hy is a Fredholm operator with index i(4, B). Let L= {Z;|1 <i<m]
be an arbitrary partition of S into m disjoint parts. Then this partition

corresponds to an element of W, if and only if the following two conditions hold:
5) #X, =#S; for all i, 1 <i<m, and
(6) X xS forall i, 1<i<m

To any partition X satisfying these conditions there corresponds a flag Fy in
& given by

0c Hy, cHy 5,c--cHg=H.

For simplicity we denote for each X satisfying (5) and (6) the open set Uy, in
& also by Us.
In the sequel we will make use of the following notion

Definition 2.4.10. An element in H is said to be of order s, seS, if it has
the form

h=ase,+ Y ae, with a;# 0,

teS
t<s

Notation 2.4.11. 1If W is a subspace of H then the union of all the elements
in W of some order s in S and {0} is called the space of elements of finite
order in W and is denoted by Wj,,.

For each z in Z, we denote the collection of partitions X of the index
set S such that Fy; belongs to §®, by #(z). The basic property of the
(Fs|Ze#(2)} is

Proposition 2.4.12. For each flag F = (F(1),...,F(m)) in & there is a X
in &F(z) such that F is transversal to Fy.

Proof. Let geGL,(H) be such that F =g¢g-F©. First we show that
there is a £, commensurable with S; and with #S, = #X,, such that py, oglg,
is an isomorphism between H; and Hy,. Since p,(g(H,)) has finite codimension
in Hy, we can find a S,(n) = {s;(k), k >n}, n>0, such that F(1) =g(H,)
projects surjectively onto Hg, . The kernel of this projection has a basis
{h;|]1 <j < N} of elements of finite order, i.c.

hj=e, + Z; a;(t)e,, where s; #s; for i # j.
te
t<s,

It is clear that we can take X, = S;(n)U{s;/1 <j < N}. The other parts of
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the desired partition £ of S are constructed step by step from X;. For, assume
that we have found disjoint {X;|j <i} with X; = S; and #S; =#ZX; such that
the orthogonal projection of F(j) onto &),.;Hs, is a bijection for all j <i.
Then we know that p;.,(9(H;.,) has finite codimension in H;,,. So
there exists a subset S;., of S,,,, commensurable with S, and disjoint of
X, U--X,;, such that F(i + 1) projects surjectively onto Hy, @---@® Hy @ Hs,_,.
The kernel of this projection is again finite dimensional and has a basis of
elements of different order. As X,,, one takes then the union of S.., and
the orders of the elements in this basis. In this way we obtain after a finite
number of steps the desired partition X of S. [

This proposition is a generalization of Proposition 7.16 in [23].

Remark 2.4.13. Since Fy is transversal to Fy if and only if X =1I, we
can conclude from this proposition directly that ' is no longer compact if
H is infinite dimensional.

For each ¥ in & = |J #(2), the elements of finite order in Fy(j) span
zeZ

a dense subspace of Fy(j) for all j, 1 <j<m. By combining this with
Proposition 2.4.12 we get the following generalization of proposition 7.3.2 in

[23].

Corollary 2.4.14. For each flag F in § and for each j, 1 <j < m, the space
F(j)sin forms a dense subspace of F(j).

For each flag F = (F(0),..., F(m)) in §® we can concretely describe a X (F)
in &(z) such that F is transversal to Fy. Namely for each 1 <i < m we put

Z(F)(i) = {s|seS, F(i) contains an element of order s}
and
L(F); =2(F)(i)) — Z(F)(i— 1) for i > 1.

Clearly each F(i) projects bijectively onto Hy,; and therefore X(F) = {Z(F);}
belongs to &(z). Next we consider flags that give the same partition in this
way.

If Ze%(z), then we write

Fs = {FIFe§, L(F)=3}.
Let U, be the subgroup of GL,(H) of all operators with a unipotent lower

triangular matrix, i.e.

Uy = {ulue GL,(H), for all seS, u(e) =e,+ Y ue,}.
t<s

Then we want to show
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Proposition 2.4.15. The subset &y is exactly the Uy-orbit through Fy.

Proof. From the form of an operator u in U,, one sees directly that for
each element h of order s, the element u(h) has also order s. Thus we have
that Z(uF) = Z(F) for each F in X.

Assume now that F belongs to &y. Since F(i) projects bijectively onto
Fs(i) for all i, 1 <i <m, the flag F is the graph of an operator T in

m-—1

@® @ A S (Hy,, Hy).

j=1 j<i
In particular this means that there is an u in GL.(H) such that u(Fy) =F
and for all s;€X;, 1 <i<m,

(7 uleg)=e,+ 3 Y T e ,if i<mand u(e)=e¢, if i=m
J>is5EL,

The fact that F belongs to §y can be expressed completely in term of the

coefficients {7,  [s;€Z;, s;€X;,j > i}. Namely, it is equivalent to

®) T, =0, if 5;> s

S;81

If namely T, # 0 for some s; with s; > s;, then the element u(e,) will be of
some order s¢X(i) and hence X(F)(i) # X(i). This contradicts the fact that F
belongs to &y. By definition, the operator u defined by (7) belongs to U,, if
condition (8) is satisfied. This concludes the proof of the proposition. []

Thus we have obtained a subdivision of each connected component of {,

8'(2) = U B
e (z)
into parts that are homeomorphic to a Hilbert space, thanks to property
(8). This is a generalization to flag varieties of the stratification in section 7.3
of [23]. Let gy, for each £e ¥ (z), be a permutation of S such that g +(S;) = Z;,
for all i, 1 <i<m. Then this decomposition of § translates directly to the
group GL,.(H) and results in

Proposition 2.4.16. (Birkhoff decomposition.) Each connected component of
the group GL..(H) decomposes as

GLLH= | UyasP.
Ye¥(z)

Remark 2.4.17. The decomposition derived here is the analytic equivalent
of the algebraic decomposition from [22].
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§3. Holomorphic Line Bundles over §®

3.1. Another description of F®. For each X in (z), there are numerous
o e W such that Fy = g F®. We start by describing a special choice that is

useful at the description of F© as the homogeneous space of another group.
We construct a bijection g;: S; > Z%;, as follows: since S; and X; are
commensurable, there is a N > 0 such that

{s:(k)]k > N} < %;nS..

Consider the finite set X, — {s;(k)|k > N}. If it is empty, then we define
0;: §;— X, as follows:

0,(s;(k)) = s;(k + N) for all k, 1 <k <m;+ 1.
In this case we put 7, = — N.
If X, is not equal to {s,(k)|k > N}, then we write X, — {s;(k)|k > N} =
{t1,...ty+s} for some #; in Z, £, > — N, and we define g; by
ai(si(k)) = 1, for all k, 1<k<N+¢,
oi(s;(k)) =s;(k—¢) forall k>N +/,.
For all i, 1 <i<m, consider the map t;: S; > S; defined by
(k) = s(N +1) forall k, 1<k<N+7,
t(s:(k) = si(k — ¢)  for all k>N +¢,.

Since p;o o, — 1, is a finite dimensional operator, p;o ¢; and t; have the
same index and for 7; one clearly has ind(t;)=N+7¢,— N =/,. In other

words, the number /; is equal to z;. The {0;/1 <i < m} compose to a bijection
o:S— S such that ¢ F©© = F;. We will introduce a special term for this type

of permutations.

Definition 3.1.1. Let X be a partition of S in &(z). A permutation o of
S such that o(S;) = Z; is called admissible of level N if the following property
holds

(i) For each i and for all k > N + z;, o(s;(k)) = s;(k — z,).

One easily verifies that the collection of admissible permutations of S of
all levels forms a subgroup W, of W. It has a normal subgroup W/” = W,
NGLC (H) such that the quotient W,/W.® is isomorphic to Z. The elements
of W/ can be described in a direct concrete way. If G is a finite subset of
S and if p is a permutation of G, then we denote the extension of p by the
identity to a permutation of S, by . Then we have
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WO = lim W9(N)= lim {a|g e W ® is of level N}
v N~
= {p lp a permutation of G, G a finite subset of S}.

Now we can introduce another group that acts transitively on F®. Its
advantage is that it enables you to construct in a simple way holomorphic
line bundles over F®. Let X be in &(0) and let o be an admissible permutation
of § such that ¢(S;) =Z%;,. From the definition of admissibility we know that
o decomposes in operators (g ;;) with the properties

(i) Foreach 1 <i<m, g, =1Idy + a “finite-size” operator.

(i) For all i and j, i #j, o, is a “finite-size” operator.
Since every flag F in §® is transversal to some Fy, with £ in %(0), we may
conclude that each F in ? is equal to g - F® with ge GL,.,(H) of the form

(a) Foreach i, 1 <i<m, g;=1dy + a “finite-size” operator.

(b) For all i and j, i <j, g;; is a “finite-size” operator.

(c) For all i and j,j <, g;; belongs to # ¥ (H;, H).
Note that for all the operators g; from (a) det (g;;) is defined. Since we are
working in an analytic setting we will consider a somewhat wider class of
operators such that on one hand we work in a Banach framework and on the
other we can take determinants of certain minors. Recall, see [12], that the
determinant is defined for each operator of the form “identity + a nuclear
operator”. Therefore we introduce

Ba) = {glgedan, 7 ne L
gi,€X S (H;, H) for i #j

On B,(H) we put a different topology than the one induced by 4, (H). For,
let & be the subspace of 4., (H) defined by

bye A (H)
Then & is a Banach space if we equip it with the norm | - ||, given by

m

Iblly =Y Iblles + 2 Ibulle-

i*j i=1
The collection B,(H) is nothing but Z shifted by the identity and we transfer
the Banach structure on & to B,(H) by means of the map g+—g¢g + Id. Since
the product of two Hilbert-Schmidt operators is nuclear, one sees that B,(H)
is closed under multiplication. Moreover the multiplication with an element
of B,(H) is an analytic map from B,(H) to itself. In B,(H) we have the
subgroup U_ and its “adjoint” the group
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U, ={u*lueU_}.

Consider an element b in B,(H). Now we define u = (u;;) in U_ and v = (v;)
in U, by

u; =v; =Idg, u;;=—>b

~-b

j i 1>, u;=0if j>i

V.. =

J if i<jand v;=0if i >]

ij
A direct verification shows that ubv belongs to Id + A7(H). Since B,(H) is
closed w.r.t. taking adjoints, we have

Lemma 3.1.2. Every be B,(H) can be written in the form b =u;b v, or
b =v,b,u,, where u, and u, belong to U_, v, and v, belong to U, and b,
and b, lie in 1d + &' (H).

The decompositions in lemma 3.1.2 are clearly not unique, but they suffice
to define a determinant map det: B,(H) —» C. Namely, for b =u;b,v, as in
lemma 3.1.2, we put det (b) = det (u, b,v,) = det (b;).

To see that this is well-defined, we note first of all that for ueU_n
{Id + #'(H)} and veU,n{ld + #(H)} we have det(u)=det(v)=1, since
u — Id and v — Id have zero trace. Now, assume be B,(H) can be written as
b=ub,vy =u,b,v, with b,eld + &/ (H), y;eU_ and v;eU,. Then b, =
(uy *u;)b,(v,v; ) and, since both b, and b, belong to Id + A'(H), this implies
that u;'u,; eU_n{Id + A/ (H)} and v,v;'eU.n{Id + #(H)}. By the mul-
tiplicativity of the determinant on Id + A7(H), we get det(b,) = det (u; 'u,)
det (b,) det (v,v5 !) = det(b,).

Remark 3.1.3. Since the operators in Id + A'(H) lie dense in B,(H) and
since det is multiplicative on Id + A"(H) we get that for each b, and b, in B,(H)
det (b, b,) = det (b,)det (b,)

From the fact that an operator g of the form Id + A(H) is invertible if
and only if det(g) is non-zero, we see that the invertible elements of B,(H)
form a group ® and are given by

® = {b|be B,(H), det (b) # 0}.

Clearly ® is a Banach Lie group with Lie algebra & and it acts analytically
and transitively on F©. The stabilizer of F© in ® has the form

lyg oo Lim

0 : tye{ld + A" (H)}nGL(H)
o tye XS (H;, H)forj>i

0O .- 0 o J
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Thus we can identity F® with the homogeneous space G/7.

Remark 3.14. If we would work with §(A") instead of &, then we could
simply take instead of B,(H) the collection Id + A"(H) and instead of ® the
group of invertible operators of the form Id + A (H). If one likes to work
with (%) then the group

bjje /' (H;, H) if j > i

bje€(H;, H) if j <i
acts transitively on the connected component of (%) containing the basic flag
and allows you to take determinants of suitable minors.

3.1.5. Next we consider the maximal torus T(A)=Tn® in &. It consists
of all operators of the form diag ({1 + ¢,}), with 1 + ¢, # 0 and ) [t < c. In

seS

T(A") we have the dense subgroup T, given by
T, = {t|t = diag ({1 + t,})e T(A"), t, # 0 for only finitely many s in S}

Any analytic group homomorphism of T, into C* has the form

t =diag (1 +t))— [T + t)™ = xu(1),

seS
where m = {m}, with myeZ for all seS. This character y, can be continued
to an analytic character of T(/") if and only if there are only finitely many
different my, seS. This extension of y, is also denoted by y, and we write
T for the group of analytic characters of T(A4"). Following the finite
dimensional terminology, we will speak, when T(A") acts on a vector according
to a yeT, of “v is a vector of weight y”.

For each s and r in S, let E, be the operator in %,(H) given by

E(e) = d,€, for all leS.
The adjoint action of T(A") on %, (H) gives for these elements

RS

tE t =" 2¢
¥ 1+t

EST =: XSP‘(Z‘)ESV'

A character y of T(A) is called positive, notation y > 0, if it belongs to the
semigroup generated by the {y,|s€S;, reS;, i >j}. This enables you to define
a partial order on T by

1<Yy=0<y""y.

Clearly we call ¥ in T negative if and only if y ! > 0.
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Remark 3.1.6. One can see the space §© also as a homogeneous space
for the group of invertible operators in “Id + #%(H)”, which in its turn can
be identified with an open part of the Hilbert-Schmidt operators on H. This
group, however, does not permit you to take suitable minors.

Remark 3.1.77. One can give the same type of description for the other
components & by taking some e .#(z) and by introducing the group ® as
the operators that decompose w.r.t. H=Hy @---@ Hy_ in the above way.

3.2. Finite dimensional subvarieties. In this subsection we consider some finite
dimensional flag subvarieties contained in F®. Let K be a finite subset of
S. For simplicity we assume that K contains all the S; that are finite. The
general linear group GL(Hg) embeds into GL{% (H) by extending ue GL(Hg)
on Hg_y by the identity. We write &y for the subvariety of F® given by

e = (WF lueGLHY} = {uF® |uc U(Hy)}.

If K,  K,, then we have a natural embedding of GL(Hy,) into GL(H,) and
of ¥k, in Fx,- Now one considers a collection of finite subsets {K,|neN} of
S given by

K,= U {sik) [k <n + nax (m)}.

i=1

Then S = |J K, and with the identifications mentioned above we write
neN

GL(0) = U GL(Hg,), U(o0) = J U(Hg,) and §(o0) = U &k,
neN neN neN
Since, for all i # j, the “finite-size” operators are dense in #&(H;, H;), and
the Uy, Te%(0), cover F?, we get

Lemma 3.2.1. The space F(co) lies dense in F.

Consider now a holomorphic function f on F®. The restriction of f to
some F, must be a constant, since §, is a compact complex manifold. Hence
f is a constant on $(oo) and the lemma implies then

Corollary 3.2.2. The only holomorphic functions from F® to C are the
constants.

This is a generalization for flag varieties of Proposition 7.2.2 in [23].

Remark 3.2.3. The results of this subsection remain true if one would
work with the nuclear flag space F(A") or the “compact” flag variety
%(%). However: the “finite-size” flags from $F(co) are not lying dense in the
space of bounded flags F(%).
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3.3. The line bundles and the central extension. For each k = (k,,...,k,) In
2", we define ¢, in T by

‘p’_i(dlag {1 + ts}) = l—[ (1 + tsl)k1 1—_[ (1 + tsz)kz"' H (1 =+ tsm)km
51681 52682 SmESm
Clearly y, extends to an analytic character of 4 by means of the formula
lpk(t) = det (tll)k1 e det (tmm)km'

According to section 6.5 in [4], there exists for each analytic character y; of
7, a holomorphic line bundle L(k)=6®7 C over FO=6/7. It is

concretely defined as follows: consider on the space & x C the equivalence
relation

(91> A1) ~ (92, A)) =g, = g ot, with te T and 4, = A1y ().
The space & x C modulo this equivalence relation is L(k). For each ge®
and each 4 in C, we denote the equivalence class to which the pair (g, 4)
belongs by [g, 4]. There is a natural projection m;: L( k) — F? given by
m(lg, A1) =g F©.

The space L(k) is a Hilbert manifold based on the Hilbert space E® C. For
each Xe%(0) one can give a concrete trivialization of L(k) above Uy. Let

o be an admissible permutation of S such, that X, = ¢(S;). Then we define
(B E@C“’ﬂk—l(U):) by

0s(A, 1) =[a (Id + A), A].

Assume we have a X and R in &(0) such that z, '(Ug)nm, *(Ug) is non-empty.
Let ¢ and p be admissible permutations of S with o¢(S;) = X; and p(S;) = R;.
If (4,4) is such that @g(4, 1) belongs to =, '(Ug) then we know that
p ' a(Id + A) belongs to 2n® and because of Lemma 2.2.1

p ta(d+ A) =u(A)p(A), with u(4)eU_, p(A)eT

Here u(A4) and p(A) depend analytically of A and thus we get
or ' 0x(4, 2) = w(4) — Id, 2Yu(p(4)))
and this map is clearly analytic. This proves that

Lemma 3.3.1. The {(n; (Uy), ¢z ')|Z€F(0)} are the charts of an analytic
E® C_ structure on L(k).
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Remark 3.3.2. For the case m = 2, m; = m, = oo, the bundles L((+ 1, 0))
and L((— 1, 0)) are the determinant bundle Det and its dual Det* as introduced
in section 7.7 of [23].

There is a natural analytic action of the group ® on the space L(k) by
left translations

g1 92, 41 =1[9:192, A1.

This is a lifting of the natural action of & on ¥ to one on L(k). However,
the natural action of GL! (H) can, in general, not be lifted to one on
L(k). Such an attempt may lead to nontrivial central extensions of GL!% (H)

as we will show.
Note that each g in GL)(H) can be written as g = dg,, with g,€® and
d belonging to the subgroup

D= {g|g=(gij)EGL(rg)s(H)7 gij=0 if i?é]'}-

of GL? (H). Clearly the group D normalizes the group ®. Since the
determinant of an operator of the form “identity + nuclear” is invariant under
conjugation with an invertible operator, we get that D centralizes each , i.e.
for each ¢t in  and each d in D we have

Yidtd ™) = Yy (2).

This fact permits you to lift the action of D on  to one on L( k) by means of

d-[g, A]=[dgd™*, A].

For an element d from Dn®, this action differs by a factor ¥, (d ') from the
action induced by that of ®. Hence we cannot combine them to an action
of GL'9 (H) on F®. To overcome this problem we build a group extension
G of GL (H). 1t is defined by

G={(g, d)|geGL? (H), deD and gd~ 'e®}.

As one verifies directly this group acts on L(k) by means of

@ g1, 111 = [gg1d—l, A1l

It is simply the combination of the G-action and the D-action given above. Let
n: G — GL% (H) be the canonical projection, i.e. n((g, d)) = g for all (g, d)eG.
For certain subgroups of GL'?) (H) there exist several ways to embed them into
G. Therefore we introduce special notations for two of them. Let i resp.



THE STRUCTURE OF HILBERT FLAG VARIETIES 425

j be the embedding of ® resp. D into G given by
i(g9)=(9,1d) and j (d) =(d, d).

As a group G is the semi-direct product of i (®) and j (D). We equip each
GL(H;) with the operator norm topology and we put on j (D) the product
Banach Lie group structure. On i (®) we take the Banach structure based
on %. The conjugation with an element d of D defines an analytic
diffeomorphism of &. Hence if we put on G the product topology of i (®)
and j (D), it becomes a Banach Lie group based on

(® #(1)© 7.

The group G is a fiber bundle over GL® (H), with fiber 7 nD. This is clear
from the following useful trivializations. For each X = (X;) in & (0) consider
the open set G(X) of G given by

= {(g, d)|(g, d)e G, ps,og|H; is a bijection for all i, 1 <i<m}.

The group G is the union of these open sets. If ¢ is an admissible permutation
with o(S;) = Z,, then we define an analytic bijection from n(G(Z)) x {Z nD} to
G(Z) by

(g’ t)'_—) (g’ a)(Ida t)a

where d in D is determined by
&) dii=£_1°Pz,°g|Hi-

Next we try to minimalize the extension of GL! (H) that acts on ® and

res

L(k). Thereto we consider the action of the kernel of = on L(k)

(Id, d)- [g, 2] =[gd ™", 4] = [g, Yu(d " A].

In particular the group D(k) = {(Id, d)|(Id, d)e G and Y, (d) = 1} acts trivially
on L(k) and we see that it sufﬁces to consider the extenslon G(k)=G/D(k)
of GL (H). If the character y, is trivial, i.e. k =0, then G(k) is just
GL%9.(H). For k # 0, one computes directly that G(k) is a central extension
of GL'9.(H) with Ker(n)/D(k) =~ C*. For m =2, m; = m, = oo, the extension
G((— 1, 0)) is the one introduced in section 6.6 of [23].

One can describe such an extension with a Borel 2-cocycle a: GL (H) x
GLY.(H)— C*. Tt can be constructed as follows: take a section p of the fiber
bundle G 5 GL (H), i.e. for each g in GL% (H) we have
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p(9) = (9, q(g)) with q(g)eD.

By definition we have for each g, and g, in GL'% (H) that

9(91)4(9,)a(g,9,) " €D 6.

Thus we get for the action on L(k) the relation

p(9192) - [9, A1 = p(91) - {p(92) - [9, MWi(a(91)9(92)9(9:92)~ 1]}
=:p(g1) - {p(9,) - [g, Anlg1, 92)~ ']}

The group G(k) is then isomorphic as a group to the product space
GLY (H) x C* with the multiplication

res

(91> A1) * (92, 42) = (91925 A1 4,2(91,5 92))-

ret (H) with p(g) = (9, 4(9)), then we have by

definition for each g in GL{® (H) that §(g) = q(g)t(g) with t(g) in F nD. The
corresponding 2-cocycle o satisfies

If § is another section of G 5 GL{?

Yi(t(g,92))
Yi(t(9.)) ¥ (t(92)

In other words, it differs by a trivial 2-cocycle and we merely have to consider
one section p.

A section p can be composed from the local trivializations of n: G —
GL'? (H) defined above. First we number the elements of ¥ (0): & (0) = {£?]

i > 0}, such that X is the partition corresponding to the basic flag. For
ge G(Z®) we choose g(g) according to the trivialization (9) with ¢ = Id. Next

m m—1
we define g(g) inductively by: if g belongs to |J G(Z%) and not to |J G(ZY),
i=0 i=0
then we take q(g) according to the trivialization of G(Z™) given by (9). In

particular if ¢, h and gh belong to G(Z(®), then the 2-cocycle « is given by

gy, ga) = (g1, g2)-

(10 a(g, h) = 1_[ det (Id + Z gijhjihizlgizl)k'~

i=1 I

From this formula we will compute in the next subsection the corresponding
Lie algebra 2-cocycle.

3.4. The non-triviality of the extension G(k). First we consider the case that
k;=11eZ,for all i. Then we have for each ge Dn.J that y,(g) = det (9)'. We
can adjust the ®-action on L(k) as follows:

g*[x, A] = [gx, det (g)"'4].
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Hence for elements deDn®, we get
d=[x, A] = Yp(d”H[dxd~'d, 1] = [dxd "', A].

Now we combine this new ®-action with that of D and we define for g =d, g,
in GL©) (H), where d,eD and g — 1€,

g* [X, }“] = [dlglxcil_lﬁ det (gl)_li]-

It is a straightforward verification to show that this is well-defined and that
it defines an action of GL® (H) on L(k). This implies that G(k) is a trivial
central extension of GL% (H).

Secondly we consider the case where at most one of the m; is infinite. Then
GL® (H) is simply GL(H) and we know from [20] that this group is
contractible. In particular the fiber bundle G 5 GL(H) is then topologically
trivial and the group G(k) is the direct product of GL(H) and Ker (n)/D(k).

Hence we may assume in the sequel that there are at least two infinite m;’s.
The next case we have a look at is that k satisfies

(11) k; #0 =m; < 0.

Let gi—(g, q(9)) be a section of G — GL9 (H). We will adjust g(g) such that

the 2-cocycle determining G( k ) becomes trivial. Namely, we define §(g) in D by

49 = q(g); if m;= oo and
4(9); = diag (1,..., 1, det (q(9); 1)) q(9)i» if m; < co.

(12)

Then g (g, §(g)) defines another section p of G— GL (H) and the
corresponding 2-cocycle & is trivial

&(g1, g5) = %( 4(9192)4 (gz) 4(g,)~ ) =

In the cases considered so far we have seen that the fiber bundle G 5 GL%) (H)
is trivial and hence also the central extension G(k) of GLC (H). We will
show now that the extension G(k) can be non-trivial.

Note that the 2-cocycle o is given close to the identity by an analytic
expression. Hence we can consider the corresponding Lie algebra 2-cocycle
do. We consider the elements of 4, (H) as left invariant vector field on

GL% (H). Then do: %, (H) x %8,.,(H)— C is given by

d d d
da(X, Y)= 5 %cx(exp (tX), exp (sY))|, =9 s Ea(exp (sY), exp (tX))|, =g

For X =(X;) in #,.,(H), we write g =exp (tX)=(g;;). With respect to the
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parameter t we have
g = Idy, + tX; + “higher order in t”
gi; = tX;; + “higher order in t” for i #j.
If h=(h;) =exp(sY), then we are interested in the ts-term in
det (Idg, + Z gijhjihi_ilgﬁl)
VE

=det(ldy, + N)=1+ Y Trace (4“N)

k=1

=1+1sY Trace (X;Y;)+ “at least 2nd order in ¢ or s”.
Jj#i

By combining this expression with the local formula (10) for «, we obtain the
following formula for dx:

k; Trace {) XY, — > Y;X;}.

1 j#i j#i

M=

da(X, Y)= .

13

This Lie algebra cocycle is trivial if it has the form f([X, Y]) with
f: B..s(H) — C some linear map. The element [X, Y] in %,.,(H) has the form

[Xua Y11]+2j¢1X1ij1_Ej*1Ylej1 *
[X, Y]=
* [Xmm7 Ymm] + Zj:tm‘)(mj ij - 2j¢mijij

Note that if k satisfies (11), then we can directly define such an f. For, in
that case, we have for all i with k; # 0 that Trace [X;;, Y;] is well-defined and
equal to zero and we can take

f(X)= ) k; Trace (X;).

i,k #0

This is the infinitesimal version of the trivialization described at the beginning
of this subsection. There is, however, no well-defined trace function for general
elements of %, (H) so that this formula makes no sense in the general case.

Now, let i and j be such that i <j, m;=m;= + oo and k; # k;. Then
we have an element 4 in GL,.(H) given by

Ales,w) = €s0+1)>
Ales, @) = €5,0-1y if k> 1,
Alegy) = egq if 1 #i and 1 #j.

Ales, 1) = 5,01
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Now we have that da(4, 47') is equal to
k; — k; = k; Trace A;(A~"); — k; Trace (A;'4;) # 0

In particular da is a non-trivial Lie algebra 2-cocycle. This implies that also
the group 2-cocycle o is non-trivial. For, consider the commuting elements
g, = exp(tA4) and g, = exp(s4~'). In case that o was trivial we would have
a(gy, g2) = a(g,, g1). However, for sufficiently small ¢ and s, the map
(¢, s)—>alg,, g,) is a non-constant holomorphic function, since da(A4, 4~1) # 0.
On the other hand one computes directly that for all i, 1 <i < m,

(9291)i = (92):(91); == (92, 91) = 1.

This shows that a(g,, g,) # @(g9,, g,) and hence « is a non-trivial 2-cocycle. We
summarize this result in a

Theorem 3.4.1.

(a) The extension G( k) is always trivial if there is at most one infinite m;.
(b) If there are at least two infinite dimensional components in the basic

flag, then G(k) is trivial if and only if for all i and j,
m; =m; = o0 ==k; = k;.

(c) If k;# k; for infinite dimensional H; and H;, then the corresponding
Lie algebra 2-cocycle for the extension G(k) is given by

da(X, Y)= ) k; Trace {} X;Y;— ) Y;X;}.
i=1

j*i j#i
Remark 3.4.2. Consider the case m=2, m; =m,=o00, k; = —1 and
k, =0 and restrict da to gl,Nngl(S). Then we have the 2-cocycle defining
the Lie algebra 4.

3.5. The holomorphic sections of L(k). Let £(k) denote the space of global

holomorphic sections of L(k). The space £(k) is given the topology of
uniform convergence on compact subsets of F©. It becomes then a complete

locally convex space, see [16]. Let f : & — L(k) belong to £(k). Then
it can be written as

f(g-F?=1[g,f(9)], for all g6,

where f: ® — C is a holomorphic function satisfying

(13) fgt) = f(g)i(t) ™! for all ge® and all te T
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Thus we can identify £(k) with the space of holomorphic functions on ®
that satisfy this condition. Since each (g,d) in G acts as an analytic

diffeomorphism on F? as well as L(k), we get a natural action of G on
2(k) that corresponds on the functions on ® satisfying (13) to

(9. d)(f)g1) = f(g~'g1d), with g, €6 and (g, d)€GC.

Let K, be the finite subset of S introduced in subsection 3.2. By restricting
the elements of 2( k) to GL(H,) one obtains a space of holomorphic functions
on GL(Hy,) satisfying

(14)
fyy e tim
911 " Yim 0 m
ft)=f < ) Coe = U det (t;) 7% f(9),
gml gmm 0 0 ¢

mm

where ge GL(Hy,), te GL(Hk, )N and the decomposition of g and ¢ is w.r.t.

Hy = @ Hg,,s,- The Borel-Weil theorem says that such functions +# 0 exist
i=1

if and only if k satisfies
(15) ky <k, <k, , <k,.

Since F(oo0) is dense in F?, the restriction of some non-zero f in £(k) must
be non-zero for a sufficiently large n. Hence this condition from the finite
dimensional situation is also necessary in this Hilbert context. We will show

that it is sufficient too. So we assume from now on that k e€Z™ satisfies
condition (15).

Before we will construct concrete non-zero elements of £( k), we will first
introduce some basic building blocks. If X = {Z,;} belongs to #(0), then we
write

()= UZ; and &, ={Z(i)|ZeL(0)}.
j<i

Let 6 =0, ® - ® o, be an admissible permutation of S corresponding to X.
Consider for ge® the operator (g, @@ ;) 'opsyog| @ H; from P H;
to itself. It decomposes as J=t Ist

hll hli

Lo , with hj; — Idy e /'(H)), hjje #¥(H;, H) for all j#i.
hy - hy
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In particular we can take the determinant of this operator. The function
f}:(i): (6 —>C deﬁned by

fZ(i)(g) =det((oc,; @@ Qi)_lc’l’z(i)og} @ Hj)
j<i
satisfies for each t = (t;;) in  the condition

Jew (9t) = frwlg)det (t,,)---det (t;)

In other words f;;, belongs to £((—1,...,—1,0,...)). Now we consider the
action of T(A") on such a function f;;,. Let g be in ® and t = diag ({1 + t,})
in T(A"). By definition fy;, (t "' g) is equal to the determinant of the operator

el’—_g—’ Z grler’_[_—:—) Z (1 + [r)_lgrler

reS reS

Hy(, _ a1 —
)m Z (1 + tr) 1grlerl——) Z (1 + ta(c)) 1ga(c)lec'

reX(i) ceZ(0)(i)

Hence each f;; is an eigenvector for the T(.4")-action and we have

b fyo = H 1+ ta(c))_lf‘i(i)'

ceX(0)(i)

If we define the character y; of T(A") by

Vi) = I A+e)7",

ceX(0)(i)

then we get in general

tfaw = I1 t+e)- I a+ toe) " Vi) fr

&= 1(c)ex(0) (i) ceZ(0)(i)
cex(0) (i) a(c)¢Z(O)(i)

Because ¢ has index zero, the products in the right hand side are over the
same number of elements. Since we have by definition, for each ¢, eZ9(i)
with a7 (c;)¢2®(i) and for each ¢, eZ(?(i) with a(c,)¢Z (i), that y 4, <0,
it is clear that the weight of f; is less then or equal to ;. In other words,
among the weights of the { fy,), X(i)e &}, ¥; is maximal. Note that condition
(15) on k allows you to decompose ¥, as follows

Ual0) = [ det ()
i=1

m m—1
= { H det (tii)}km : { H det ([ii)}_k'"*‘kmfl {det ([11)—k2+k1}
i=1 i=1
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= O TT (™

Now we choose for each j, 1 <j<m— 1 a non-zero homogeneous polynomial
P;in the { f5;| Z(j)e &;} of degree k; ., — k;. Let P,: & — C* be the function

g+— det (g) .

From the foregoing formulae it will be clear that P = [[ P; is a non-zero
i=1

holomorphic function on ® that belongs to £(k). If we consider the special
choice P = [] P,
i=1

~

ﬁi = (fzw)(i))k'”_k'a l<i<m-1, P,=P,,
then the T(A")-action on this element of £(k) is given by the character

m—1
t— [T (e 7% ()™ = Yy (0).
i=1

Let 8,(k) be the span of the functions P described above. From the
T(A )-action on the {f;;} one concludes that this is the highest weight

occurring in £,(k). If H is finite dimensional then it is known that
€,(k)=2(k). By using this and the fact that F(co) is dense in F, we get

Theorem 3.5.1.
(a) The space L(k) is non-zero if and only if k, < --- <k,,.
(b) The subspace L,(k) lies dense in £(k).

Next we consider the representation of G on £(k). Let V be a closed
subspace of £,(k) and let v be a non-zero element of V. Then there is an n
such that the restriction of v to GL(Hy,) is non-zero. Since the representation
of U(Hg,) on the holomorphic functions on GL(Hy,) satisfying (14) is irreducible,
we get

span {u-v|ue U(Hg,)} = {f|GL(HKn)|fe‘Q(k.)}-

So, if we define W as the closure of the span of the {u-v|ueU(x)} then we
have for each v, in V a sequence {w,} in W such that v, |GL(Hg,)=w,| GL(H ).
Since U(o0)- F@ is dense in §?, this implies that {w,} converges to v, and
we get that V= W. Hence we can say

Theorem 3.5.2. Let k = (k,....k,)EZ™ satisfy k, < --- <k,,. The repre-
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sentation of ® (and hence of G) on L(k) is topologically irreducible.

This Theorem is a generalization of Theorem 10.4.6 in [23].
For each neN, we know that the representation of GL(Hg) on

{fIGL(H,)|fe 2(k)} has up to a constant a unique vector that is w.r.t. the
{T(N/)NGL(H,)} action of highest weight

t— mﬁl {W(0) oo (det (1) ).
i=1

In view of the foregoing results we may conclude now for the space 2(k):

Theorem 3.5.3. All T (A )-weights W occurring in &( k) satisfy
m—1
U< [T W) = gy
i=1

The vector P spans the subspace of vectors with T(N)-weight 179

In view of the results in the Theorems 3.5.2 and 3.5.3, one could call the
characters y, satisfying (15) dominant.

§4. Applications to Integrable Systems

4.1. A group of commuting flows. In the first subsection we discuss the flows
that form the basis of the equations of the multicomponent KP-hierarchy and
of the modified equations. Let H be the Hilbert space L*(S', C") with the
usual norm. Let {f;|1 </ <r} be the standard basis of C". Then the
elements of H can be written as

r

Y Y oy fid, with 4y eC.

ieZ k=1

The space H is decomposed as H = H; @ H, with

Hy={) hi|heC} and H,= Hj.

i20

The elements {f,A'|1 <k <r, i >0} are an orthonormal basis of H, and the
{fid'1i<0, 1 <k <r} one of H,. To get a numbering like in the foregoing
section, one defines e, ;,_; = fyA’. In the present context it is also convenient

to see the matrix [g] of an operator g in %, (H) as an Z x Z-matrix with
entries in gl (C), ie.



434 GERARD F. HELMINCK AND Aroysius G. HELMINCK

G G
[4] = k+1c+1 Yk+1s . with G,egL(C).
G+t Gy ]

An important operator in 4,.(H) is the multiplication 4 on each factor with
A. It has the matrix [4] with 4;_; =1d and 4;; =0, if j #i — 1. One verifies
directly that the centralizer Z(A) of A in %,.(H) consists of all g in £ . (H)
such that the matrix of g looks like

Goo  Gio

[g] = G_10 Goo Gy -

G—1o Goo '

Clearly, multiplying with an A from gl,(C), defines an element of 4,.,(H). Let
b be the diagonal matrices in gl,(C). It is obvious then that

{Y HA'e%,,(H), Hieh  for all i}

ieZ
is a maximal commutative subalgebra of %, (H). The group of commuting
flows that we will consider is contained in this algebra and takes care of
essentially all independent directions. To be more precise, let U be a connected
neighborhood of S! in C and let I'(U) be the space of all analytic maps
y: U -1 such that det(y(u)) #0 for all ueU. In a natural way I'(U) is a
group. If U; o U, then we get an embedding of I'(U,) into I'(U,) by restricting
functions to U,. We write I for the inverse limit of the {I'(U)}. Each yel’
has a Fourier series

y=2 %A, nieh.

ieZ
The multiplication with 7, defines the element ) y,4' in %, (H). Let E,,
ieZ
1 < a <r, be the diagonal matrix in gl,(C) with («, x)-entry equal to 1 and the
other entries equal to zero. At the consideration of the flows from I on &
we make use of a decomposition of the elements of /. In I” we consider
namely the following subgroups

Io={ylyel, y=exp( ) t,EA)},
i>0
1<a<r

ro={yly= ) v;#}el} and

j<0

4 ={6|6 = diag (4",..., A*) with k;eZ for all i}.
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Then there holds
Lemma 4.1.1. The group I decomposes as I =1 AT _.

This lemma is a direct consequence of the decomposition of holomorphic
line bundles over P!(C), see [11]. As we will see in the third subsection the
flows from I"_ do not contribute to the system. Hence there is no need for
a description in coordinates for elements from I"_.

4.2. The multicomponent KP-hierarchy. We present here a formal algebraic
set-up of this system of equations in which the formulae from the appendix
of [27] make sense. It offers one also the possibility to consider these equations
from an algebraic point of view. Let R be a complex commutative differential
algebra with a collection of commuting derivations {J,,|i>1, 1 <a <r} of R.
In the geometric picture R will be an algebra of meromorphic functions on
I', and 0,, will be taking the partial derivative w.r.t. t,,. Let 0 be the derivation

Y 0,,. The equations of the hierarchy can be formulated conveniently in
a=1

terms of relations for certain elements from the ring gl.(R)((3, 3~ 1)) of pseudo
differential operators in 0 with coefficients from gl,(R). We extend the J,, to
derivations of gl(R)((d, @~ 1)) by letting it act coefficient wise on elements of

gl,(R) and on an element Y p;&’ of gl (R)((3, 0~ ")) by

Jj<N

Oia( Z Pjaj) = Z 6ia(pj)aj

Jj<N Jj<N

In the ring gl,(R)((3, d~')) we denote the differential operator part Y p;é’ of

j=0

P =Y p;0’ by P, and we write P_ for P— P,. Let E,, 1 <a<r, be as in
j

the foregoing subsection. In the ring gl(R)((0, @~ ')) we consider elements of
the form

(16) L=0+ Y ¢;077 and U,=E,+ Y u,;07/

j>0 j>0

Examples of this type of operators can be obtained as follows: take the trivial
example L=1dd =0 and U,=E, and choose some K =1Id+ ) k;077 in
gl.(R)((3, 07%)). Such a K is invertible and 770

(17) L=KoK™' and U,=KEK™!

have the form (16). Following [27], the equations of the multicomponent
KP-hierarchy are
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(18) [L, U] =[U, U]=0

(19) U,Uy = 6,5Uy

(20 du(L) = [(L'UY4, L] = [B» L]
1) 0:w(Up) = [B Uy)-

The equations (18) and (19) are satisfied by all elements L and {U,} of the
form (17). The equations (20) and (21) boil down to non-linear differential
equations for the {u,;} and {/;}. Since all the solutions of the multicomponent
KP-hierarchy that we will construct are of the form (17), we merely have to
focus on (20) and (21). These last equations can be seen as compatibility condi-
tions for a linear system. This requires the introduction of a gl.(R)((d, d~1)-
module. Let M consist of the formal products

(Y BHen( T tEM={ 3 Big0,

j=—o i>1
1<ax<r

with ;egl(R). For fegl(R), the action of B on M is defined by

N N
BEY BAa={ ¥ BB}a0h).

J=—®© J=—©

1)

The action of d;,, on M is defined such that it corresponds to “differentiating’
this formal product w.r.t. the variable t;,, i.e.

0ul{T b4 g(0) = {3 0ulb) ¥ + Y. b;E, 2"} g(2).

In particular we see that the action of 0 on M
o{Y.b; A g(A) =Y {0(bp)¥ + 3 b7 }g(h)

is invertible with the inverse 0! given by

Ms

0" (T bt = {

3

Y (=1 (b Hg(A).

0

1]

These actions compose to a gl,(R)((6, 8™ !))-module structure on M. In fact,
M is a free gl(R)((0, 0~ ')-module with generator g(i), for, if P=XP;0'¢
al,(R)((8, @7 1)), then a direct computation shows
P-g(A) = {Y.P;’}g(4).
Let 4 be the subgroup of gl,(C(4, A~ 1)) given by
4 ={6|6 = diag (A*,..., A*) with (k,...,k,)eZ"}.



THE STRUCTURE OF HILBERT FLAG VARIETIES 437

Take any 6 = Zdjlj, d;egl,(C), in 4. To ¢ corresponds the element § = Xd;0’
in gl,(R)((6, 0~')). Then we have the notion

Definition 4.2.1. A function of type 6 is an element of  of M that has
the form

g ={0d+ 3 ¥;/)(Xd2}g(2).

i<o k

To any function ¥ of type 6 we associate the operator K, in gl.(R)((0, 0~ ')
given by

j

Next we assume that we have been given operators L and {U,} of the form
(17). Then we introduce the following notion:

Definition 4.2.2. A wavefunction of type ¢ for L and the {U,} is a function
Y of type ¢ satisfying

(@) L) =4y

(b) U,y =VE,

() 0u(Y) =Py -y with P, egl(R)[J].
The first two properties translate respectively into

(22) L=K,0K;"' and U,=K,EK;".

Hence L and the {U,} are completely determined by y. One computes directly
that (c) implies P, = (L'U,), and by applying the operators 0;, to the equations
(a) and (b) and by substituting (c) one shows

Theorem 4.2.3. If s is a wavefunction of type 6, then the operators K ,0K,
and {K,E,K; '} satisfy the equations of the multicomponent KP-hierarchy.

The equations from definition 4.2.2 are called a linearization of the system
and from theorem 4.2.3 we see that we merely have to show (c) if L and the
{U,} are defined by (22).

4.3. The solutions. First we consider the space H and its decomposition as
in subsection 4.1. Since m = 2, all flags in § correspond to subspaces W of
H. For each W in §, consider

Aw ={6|0€4, there is a yel', such that y"'67'W is transversal to H,}
The first property of Ay is

Lemma 4.3.1. The collection 4y, is non-empty.
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For each § in 4, we consider the open subset (5, W) of I', given by
I, Wy={yleI'., y"*6"*W is transversal to H,}.

Let R be the ring of analytic functions on 7°(6, W) and let 9;, be the derivation
of R consisting of partial differentiation w.r.t. t;,. Then there holds

Theorem 4.3.2.

(a) For each We§ and each Sedy there is a unique function Yoy =
b, - 6-g(A) of type 8, such that W, (y)eW for all yeI'(5, W).

(b) The function Y3y from (a) is a wavefunction of type 6.

For a proof, we refer to [13]. If we write ¥$, = K3 -5 g(4), then we
know from theorem 4.2.3 that

Ly =Kyd(Ky)™' and Uy = Ky E,(Ky) ™!

are solutions of the multicomponent KP-hierarchy. The following theorem
makes clear why we did not consider the commuting flows from I"_. Its proof
can also be found in [13].

Theorem 4.3.3. For each g= )Y v;# in I'_, we have L}, =1L and

5 _ F} j<0
Uaz,gW - Ua,W'

Remark 43.4. 1If r > 1, then 4, may contain several elements. If 4, and
6, are in Ay, then the solutions {L%}, Up,} and {L3%, Uj?,} are related by
so-called differential difference equations that reduce in a specific case to the
equations of the Toda-lattice, see [13]. These differential difference equations
are a generalization to the KP-level of equations considered in [1].

Also in the multicomponent setting the coefficients of ¥, can be expressed
in terms of Fredholm determinants related to the line bundle L((— 1, 0)). If
W=g,F?, with g, e®, then we define t,,5,: G- C by

o1, (9, @) = (9, q) - (fz)(g;) = det (pgog tog,og| Hy).

It measures the failure of G-equivariance of the section corresponding to
fs@. If one takes another element §, of ® with W= g, F?, then t;,,, and
7,,1u, differ by a non-zero constant. In 4 we consider the elements 4, ; given by

Al/] = diag(...i,...,;v_l,..-),

where the A-factor stands at the i-th place, the A~ !-factor at the j-th place and
the resulting factors are equal to 1.
If keC, |k| > 1, then we still need the element ¢ from I, given by

. A
qP = diag(...l, 1- o 1,...),
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where the factor 1 —% stands at the i-th place. Then there holds

Theorem 4.3.5. Consider a W in & and a 6 in Ay. Then 6~ 1(W) = gF'©,
with ge® and we have

(a) For all 1 <i<r, the (i, i)-entry of {3}, is the L>-boundary value of

ks Tgim, (744
TgiH, (V)

(b) For j #1i, there is a lifting ZI,-U of 4;; to G such that the (i, j) entry
of Y3 is the L2-boundary value of
K k1 Tg\Hl(“)’Aiuq;;).
To1a,(7)

This theorem gives a geometric interpretation of formulae, stated in the appendix
of [27] and generalizes the one component interpretation given in [25]. For
the one component case a representation theoretic interpretation of the t
depending polynomially of the {r,} was given in [18]. For a proof of
theorem 4.3.5 we refer the reader to [13]. There one can also find more

equations that fit in the framework just described.

Next we consider the one component case somewhat more in detail. For
convenience we denote the set of independent variables simply as t = {t;|i > 1}
and we see the elements of R as functions in t. Further we restrict each 7, .y,
to I", and we write simply 7 or =(t). If keZ and WeF* ¥, then 4, = {174}
and we have exactly one solution L}, “ to the KP-hierarchy. In this way every
component of § leads to the same bunch of solutions of the KP-hierarchy.
Hence, for the construction of solutions, it suffices to consider only one
component of §. The different components are, however, essential for the
modified systems as we will see in a moment.

In the one component case the Japanese school, see [17], translates the
equations that are satisfied by the wavefunction to equations for the t-function
and these can be written in the so-called bilinear form

1 1 2 (t—s)kt
23 t— — L+ — 1>1 dk = 0,
@) §T<<l ik‘)) T<<S +ik’>>e

for all (t;) and (s;) and with dk such that

é)‘dk o
2mik

Also this formula can be given a geometric interpretation. For if We &® then
one can consider W* as an element of the Grassmann manifold corresponding
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to H=H,®H,. If Yy is linked to t by theorem 4.3.5, then one can show

Theorem 4.3.6. The wavefunction Yy, can be expressed in T by

T ti + —
1 2
((z)

If we consider instead of I, the group of flows consisting of the adjoints
of the elements of I',, then relation (23) boils down to the orthogonality
relations for ¥, and Y.

For /eZ, let W, be a general element of F“ 9. According to the
theorems 4.3.2 and 4.3.5 there corresponds a wavefunction of type A to W,
and a t-function 7, to W,. Consider an increasing set of integers /; < ¢, --- </
and denote it by 7. To /Z corresponds a decomposition of H by

Uwi(2) = A~

H=H,® - ®H,,,, where H = { ) a;A'eH},

i>ls

H;={ Y aieH}forj 1<j<sand Hy,, ={) aieH}.
i>¢, i<fy
i<f;+1
Denote the flagvariety corresponding to this decomposition by §;. Then we
can describe the elements of 8‘}0) in terms of nonlinear equations for the

corresponding 7 functions.

Theorem 4.3.7. For ¢, <--- </, let W, be a general elements of F
and let t, be a with W, corresponding t-function. Then the {W,} determine
an element of § if and only if the {1,} satisfy the following bilinear equations

1 1 e~ Ty 1ty =8)A 17 _
fo Rl e

for all {t;} and {s;} and for i, 1 <i<s.

The simplest case of these equations ¢, < /,, gives a relation between 2
t-functions. It has been considered in [17] and is called the (¢,, £,)-modified
KP-hierarchy there.
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